
To appear in
Proceedings of the Conference

IWOTA-2000, Faro
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On Inversion of Fractional Spherical Potentials by Spherical
Hypersingular Operators

Stefan Samko

A new proof of the inversion formula for spherical Riesz type fractional potentials in
the case 0 < <α < 2 is presented and a constructive reduction of the case <α > 2 to the
case 0 < <α < 2 is given.

1. Introduction

Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere in Rn. The fractional
spherical potentials, named also Riesz spherical potentials, are known in the form

(Kαϕ)(x) =
1

γn−1(α)

∫

Sn−1

ϕ(σ)dσ

|x− σ|n−1−α
, α > 0, α 6= n−1, n+1, n+3, ...(1.1)

where |x| = 1 and the normalizing constant γn−1(λ) is defined by the formula

γn−1(α) =
2απ

n−1
2 Γ

(
α
2

)

Γ
(

n−1−α
2

) .(1.2)

The inversion of this potential type operator was given more than two decades
ago in [PS1],[PS2] in the case 0 < α < 2 in terms of spherical hypersingular
integrals. We here take up the story again and present another proof, which is
more transparent and effective and also covers the case 0 < <α < 2. As for the
case <α > 2, α − n 6= 2k + 1, k = 0, 1, 2, ..., we show that this case may be
constructively reduced to the case 0 < <α < 2.

The main statements are given in Theorems 3.5 and 4.1 below.
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2. Preliminaries

a) Spherical multiplier of the Riesz potential operator. We use the basics
of the theory of spherical harmonics and Fourier-Laplace expansions into series of
spherical harmonics. We refer, for instance, to the books [SW], [Mu], or [Sa],
Section 2 of Ch.1. In particular, we use the notion of spherical Laplace-Fourier
multipliers.

It is known that in the case α 6= n − 1 + 2k, k = 0, 1, 2, ..., the Laplace-Fourier
multiplier of the operator Kα is equal to

{kα
m}∞m=0 =

{
Γ

(
m + n−1−α

2

)

Γ
(
m + n−1+α

2

)
}∞

m=0

.(2.1)

b) Spherical hypersingular integrals of order 0 < <α < 2. The spherical
hypersingular integral is introduced ([PS]) as

(Dαf)(x) =
1

γn−1(−α)

∫

Sn−1

f(σ)− f(x)
|x− σ|n−1−α

dσ, x ∈ Sn−1 ,(2.2)

which converges absolutely for 0 < <α < 1 in the case of “nice” functions f(x).
It converges also for 1 ≤ <α < 2 in the case of sufficiently “nice” functions
f(σ) provided the integral is interpreted as the limit of truncated hypersingular
operators

(Dα
ε f)(x) =

1
γn−1(−α)

∫

Sn−1
ε (x)

f(σ)− f(x)
|x− σ|n−1−α

dσ, x ∈ Sn−1,(2.3)

where Sn−1
ε (x) = {σ ∈ Sn−1 : |σ − x| > ε}. For completeness we prove this

convergence in the lemma below.
The integral (2.3) is known ([PS1]) to be representable in the form

(Dα
ε f)(x) =

|Sn−2|
γn−1(−α)2(n+α−1)/2

∫ 1− ε
2

−1

Mf (x, t)− f(x)

(1− t)
n−1+α

2

(1− t2)
n−3

2 dt(2.4)

where Mf (x, t) are the means

Mf (x, t) =
1

|Sn−2|(1− t2)
n−2

2

∫
|σ|=1
σ·x=t

f(σ) dsσ.(2.5)

The representation (2.4) follows from (2.3) by the formula
∫

Sn−1
f(σ)ϕ(x · σ) dσ = |Sn−2|

∫ 1

−1

Mf (x, t)(1− t2)
n−3

2 ϕ(t) dt(2.6)

which can be named Cavaliery type principle; for its proof see [Sa2] or [Sa], Lemma
4.13.
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Writing that f(σ) ∈ CN (Sn−1), we mean that f
(

x
|x|

)
∈ CN (Rn\{0}).

Lemma 2.1. Let f(σ) ∈ C2N (Sn−1), N > 3
4n. Then the limit

lim
ε→0

Dα
ε f(x)

exists in C(Sn−1) for every α with 0 < <α < 2.

Proof. We expand f(x) in a Fourier-Laplace series of spherical harmonics, which
converges by the known properties of series of spherical harmonics. We have

(Dα
ε f)(x) =

1
γn−1(−α)

∞∑
mµ

∫

2(1−x·σ)>ε2

Ymµ(σ)− Ymµ(x)

[2(1− x · σ)]
n−1+α

2

dσ .(2.7)

We make use of the Funk-Hekke formula
∫

Sn−1
f(x · σ)Ym(σ) dσ = λYm(x),(2.8)

where

λ = |Sn−2|
∫ 1

−1

f(t)Pm(t)(1− t2)
n−3

2 dt(2.9)

and Pm(t) is the m-th Legendre polynomial. As is known, Pm(t) can be expressed
in terms of the Gegenbauer polynomials via

Pm(t) =
(

m + n− 3
m

)−1

C
n−2

2 (t), n ≥ 3(2.10)

(for more details on the Funk-Hekke formula, see, for example, [Sa], Section 2 of
Ch.1). Formula (2.8) is valid for any function f(t) such that f(t)(1 − t2)

n−3
2 ∈

L1([−1, 1]). By means of this formula we obtain

(Dα
ε f)(x) =

1

2
n−1+α

2 γn−1(−α)

∞∑
mµ

fmµbm,ε(α)Ymµ(x)(2.11)

where

bm,ε(α) =
∫ 1− ε2

2

−1

(1 + t)
n−3

2 (1− t)−1−α
2 [Pm(t)− 1] dt.(2.12)

To estimate this coefficient, we observe that

|P ′m(t)| ≤ m(m + n− 2)
n− 1

,(2.13)
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which follows from (2.10) and the properties

d

dt
Cλ

m(t) = 2λCλ+1
m−1(t), |Cλ

m(t)| ≤ Γ(m + 2λ)
m!Γ(2λ)

of Gegenbauer polynomials. From (2.13) the estimate

|Pm(t)− 1| ≤ m(m + n− 2)
n− 1

(1− t)

follows. Hence
|bm,ε(α)| ≤ cm2

with c not depending on m and ε . Therefore, to demonstrate the uniform conver-
gence of the series (2.11), it suffices to prove the uniform convergence of the series∑∞

m=0 m2|fmµYmµ(x)|. But this follows from known theorems on the convergence
of Fourier-Laplace series of smooth functions (see [Ne], p.232) with the inequality
|Ymµ(x)| ≤ cm

n−2
2 taken into account. 2

c) The multiplier of the spherical hypersingular operator. From the
expansion (2.11) we obtain that the operator (2.2) has the spherical Fourier mul-
tiplier λm (that is, DαYm = λmYm) given by

λm =
|Sn−2|

2
n−1+α

2 γn−1(α)
bm,0(α) .(2.14)

To calculate bm,0(α), we note that bm,0(α) is an analytic function of the parameter
α in the half-plane <α < 2 . Taking <α < 0, we easily calculate bm,0(α) by means
of formula 7.311.3 of [GR], which yields the formula

λm =
Γ

(
m + n−1+α

2

)

Γ
(
m + n−1−α

2

) − Γ
(

n−1+α
2

)

Γ
(

n−1−α
2

) .(2.15)

As a consequence of (2.1) and (2.15), the operator (Kα)−1 inverse to the spherical
potential operator Kα is expected to be

(Kα)−1 = cαI + Dα, cα =
Γ

(
n−1+α

2

)

Γ
(

n−1−α
2

) ,(2.16)

where I is the identity operator.

d) Stereographic projection. The change of variables in Rn defined by

ξ = s(x) = {s1(x), · · · , sn(x)}(2.17)

with sk(x) = 2xk

1+|x|2 , k = 1, · · · , n − 1, and sn(x) = |x|2−1
|x|2+1 , x = (x1, · · · , xn) ∈

Rn, |x| = (x2
1 + · · · + x2

n)
1
2 , generates the mapping known as the stereographic
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projection. It maps the subspace Ṙn−1 one-to-one onto the unit sphere Sn−1 ⊂
Rn, Ṙn−1 being the completion of Rn−1 by a single infinite point. It is known,
see [Mi],p.35-36, that the following relations hold:

|ξ − σ| = 2|x− y|
(1 + |x|2) 1

2 (1 + |y|2) 1
2
, ξ = s(x), σ = s(y),(2.18)

dσ =
2n−1dy

(1 + |y|2)n−1
, ξ = s(x), σ = s(y).(2.19)

This immediately yields the relation
∫

Sn−1

f(σ) dσ

|ξ − σ|n−1−α
= 2α(1+ |x|2)n−1−α

2

∫

Rn−1

f [s(y)] dy

|x− y|n−1−α(1 + |y|2)n−1−α
2

,

(2.20)
s(y) being the stereographic projection of Rn−1 onto Sn−1.

3. Justification of the inversion in Lp(S
n−1) and identity ap-

proximation on the sphere

We wish to show that the operator cα + Dα interpreted as cαI + lim ε→0
(Lp)

Dα
ε

is a left inverse to the operator Kα in the spaces Lp(Sn−1) :

(cαI + lim
ε→0
(Lp)

Dα
ε )Kαϕ = ϕ, ϕ ∈ Lp(Sn−1) .(3.1)

Direct calculations yield

(Dα
ε Kαϕ)(x) =

∫

Sn−1
Lε(x · σ)ϕ(σ)dσ(3.2)

where the kernel Lε(x · σ) is defined by

Lε(x · σ) =
1
γ

∫

Sn−1
ε (x)

|τ − σ|1−n+α − |x− σ|1−n+α

|τ − x|n−1+α
dτ(3.3)

and γ = γn−1(α)γn−1(−α) = −dn−1,1(α)γn−1(α). We know beforehand that the
kernel in (3.3) may depend only on the inner product x · σ because Dα

ε Kα is a
composition of two spherical convolution operators.

As we shall see, the kernel Lε(x · σ) involves an identity approximation kernel,
so we dwell on this notion. We say that the spherical convolution operator

(Aεϕ)(x) =
∫

Sn−1
Aε(x · σ)ϕ(σ)dσ(3.4)



6 S. Samko

is a spherical identity approximation operator in Lp(Sn−1) if

lim
ε→0
(Lp)

‖Aεϕ− ϕ‖Lp(Sn−1) = 0 .

The following theorem ([BBP], p.210) provides sufficient conditions for a kernel
Aε(x · σ) to be an identity approximation kernel.

Theorem 3.1. Let Aε(t) satisfy the conditions
i) limε→0

∫
Sn−1 Aε(x · σ)dσ = 1;

ii)
∫

Sn−1 |Aε(x · σ)|dσ ≤ M < ∞, 0 < ε < ε0, with M not depending on ε;
iii) limε→0

∫
x·σ<1−t0

|Aε(x · σ)|dσ = 0 for each t0 ∈ (0, 2).
Then the operator (3.4) is an identity approximation in Lp(Sn−1), 1 ≤ p < ∞
(and in C(Sn−1) as well).

The main job to be done now is to single out the identity approximation term
in the kernel (3.3), which will be accomplished in Lemma 3.3 below. Lemma 3.2
is crucial for this purpose.

Let u ∈ Rn−1 be the vector connected with x, σ ∈ Sn−1 by the relation

s(u) = ω(σ),(3.5)

where s is the stereographical projection (2.17) and ω(σ) = ωx(σ) is any rotation
of the sphere such that

ω(x) = −en = (0, 0, ..., 0,−1).(3.6)

We also use the notation
〈u〉 =

√
1 + |u|2 .

Lemma 3.2. Let x, σ ∈ Sn−1. Then
∫

Sn−1
f(|x− τ |, |σ − τ |) dτ = 2n−1

∫

Rn−1
f

(
2|v|
〈v〉 ,

2|v|
〈v〉

)
dv

〈v〉2(n−1)
(3.7)

under the assumption that the integrals converge. Here u is the vector defined in
(3.5), so that

|u| = |x− σ|
|x + σ| , 〈u〉 =

2
|x + σ| ,

〈u〉
|u| =

2
|x− σ| .(3.8)

Proof. Making the rotation change of variables η = ω(τ) with the rotation (3.6),
we transform the left-hand side of (3.7) to

∫

Sn−1
f(|η + en|, |ξ − η|)dη.
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After that, we may apply the stereographical projection (2.17) by putting

η = s(v), v ∈ Rn−1,

(so that −ηn = s(0)). Making use of the relations (2.18) and (2.19), we arrive at
formula (3.7).

To check the relations (3.8), we denote ξ = ω(σ) and have

x · σ = ω−1(en) · ω−1(ξ) = en · ξ = −ξn.

Since (3.5) implies sn(u) = ξn, we obtain ξn = |u|2−1
|u|2+1 . Therefore,

|u|2 =
1 + ξn

1− ξn
=

1− x · σ
1 + x · σ =

|x− σ|2
|x + σ|2 ,(3.9)

from which the first of the relations (3.8) follows, the two others being its conse-
quences. 2

Remark. The representation (3.7) may be rewritten in the form
∫

Sn−1
f(|x− τ |, |σ − τ |) dτ = 2n−1

∫

Rn−1
f

(
2|y|
〈y〉 ,

2|re1 − y|√
1 + r2〈y〉

)
dy

〈y〉2(n−1)
(3.10)

where r = |u| = |x−σ|
|x+σ| = 1−x·σ

1−x·σ , which obviously reveals the dependence of this
integral on the inner product x · σ only.

To get (3.10) from (3.7), it suffices to make another change of variables, namely,
the rotation v = rot y in Rn−1 which rotates e1 to u

|u| : rot e1 = u
|u| . Then

|u− v| = ||u|e1 − y|, which yields (3.10).
In the following lemma on the representation of the kernel Lε(x · σ) introduced

in (3.2), we use the kernel

K1,α(r) =
1

γrn−1

∫

|y|〈r

(|y − e1|α−n+1 − |y|α−n+1
)

dy(3.11)

with the integration over the ball in Rn−1. We remark that this kernel is a direct
analog of a similar kernel familiar in the theory of spatial hypersingular integrals
(see [Sa1]; [SKM], formula (26.30); [Sa], formula (3.46) ).

Lemma 3.3. The kernel Lε(x · σ) may be represented as

Lε(x · σ) =
c(ε)

|x− σ|n−1−α
+ Kε(x · σ),(3.12)

where

c(ε) =
|Sn−2|
γ2α

∫ ∞

δ

1− (1 + r2)
α+1−n

2

r1+α
dr, δ =

ε√
4− ε2

,(3.13)
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and

Kε(x ·σ) =
2−α

|x + σ|n−1−α

1
δn−1

K1,α

( |x− σ|
δ|x + σ|

)
=

21−n〈u〉n−1−α

δn−1
K1,α

( |u|
δ

)
,

(3.14)
u being the vector defined in (3.5).

Proof. Applying formula (3.7) to the spherical integral (3.3), we arrive at the
representation

Lε(x · σ) =
21−n〈u〉n−1−α

γ|u|n−1−α

∫

Rn−1
δ

|u|n−1−α −
(
|u−v|
〈v〉

)n−1−α

〈v〉n−1+α|u− v|n−1−α
dv

where Rn−1
δ = {v ∈ Rn−1 : |v| > δ}. Hence

Lε(x · σ) =
21−n

γ

( 〈u〉
|u|

)n−1−α
(∫

|v|>δ

|u|n−1−α − |u− v|n−1−α

|v|n−1+α|u− v|n−1−α
dv

+
∫

|v|>δ

1− 〈v〉α−n+1

|v|n−1+α
dv

)
=:

〈u〉
|u|n−1−α

(Jδ(u) + cε)(3.15)

with

cε = 21−n

∫

|v|>δ

〈v〉n−1−α − 1
|v|n−1−α〈v〉n−1−α

dv.

Passing to polar coordinates, we transform cε to cε = 2α−(n−1)c(ε) with c(ε) given
by (3.13). It remains to transform the term Jδ in (3.15). To this end, we make
the same rotation change of variables as in the proof of the remark after Lemma
3.2 and get

Jδ(u) =
21−n

γ
|u|n−1−α

∫

|y|> δ
|u|

|y − e1|α−n+1 − 1
|y|n−1+α

dy.

Making the inversion change y = t
|t|2 , dy = dt

|t|2(n−1) , and using the relation∣∣∣ y
|y|2 − e1

∣∣∣ = |y−e1|
|y| , we obtain

Jδ(u) =
21−n

γ|u|α
∫

|y|< |u|
δ

(|y − e1|α−n+1 − |y|α−n+1
)

dy,

which transforms (3.15) into (3.12)-(3.14). 2

Lemma 3.4. Let 0 < <α < 2. The kernel Kε(x · σ) satisfies conditions i)-iii) of
Theorem 3.1 and is therefore an identity approximation kernel.
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Proof. To check condition ii) of Theorem 3.1, we have, according to (3.14), to
estimate the integral

∫

Sn−1
|Kε(x · σ)| dσ =

21−n

δn−1

∫

Sn−1
〈u〉n−1−α

∣∣∣∣Kε

( |u|
δ

)∣∣∣∣ dσ

where δ = ε√
4−ε2 . We transform this integral to one over Rn−1 by means of the

change of variables (3.5). Using relation (2.19) for the stereographical projection,
we arrive at
∫

Sn−1
|Kε(x·σ)| dσ =

1
δn−1

∫

Rn−1

∣∣∣∣K1,α

( |x|
δ

)∣∣∣∣
du

〈u〉n−1+α
≤

∫

Rn−1
|K1,α(|u|)| du <∞

by the known fact that the kernel K1,α(|u|) is integrable as shown in [Sa1], Theorem
1 or [SKM], Lemma 26.4.

To check i), we proceed similarly:

lim
ε→0

∫

Sn−1
Kε(x · σ) dσ = lim

δ→0

∫

Rn−1
|K1,α(|u|) du

(1 + δ2|u|2)n−1+α
2

= 1

because K1,α(|u|)| is an averaging kernel; see [Sa1], formula (2.8) or [SKM], formula
(26.42). Finally, condition iii) is verified in a similar fashion:

lim
ε→0

∫

x·σ<1−t0

|Kε(x · σ)| dσ = lim
δ→0

∫

|u|> 1
δ

√
t0

2−t0

|K1,α(|u|)| du

(1 + δ2|u|2)n−1+α
2

= 0.

2

Theorem 3.5. Let 0 < <α < 2. The operator

Tα = cαI + Dα = cαI + lim
ε→0
(Lp)

Dα
ε(3.16)

with the constant cα defined by (2.16) is a left inverse to Kα in Lp(Sn−1), 1 ≤
p < ∞ and in C(Sn−1).

Proof. From (3.2) and (3.12) we have

(TαKαϕ)(x) = cα(Kαϕ)(x) + lim
ε→0
(Lp)

∫

Sn−1

[
c(ε)

|x− σ|n−1−α
+ Kε(x · σ)

]
ϕ(σ) dσ,

or

(TαKαϕ)(x) =
[
cα + γn−1(α) lim

ε→0
c(ε)

]
(Kαϕ)(x) + lim

ε→0
(Lp)

∫

Sn−1
Kε(x ·σ)ϕ(σ) dσ .

(3.17)
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Evidently,

γn−1(α) lim
ε→0

c(ε) =
2−α|Sn−2|
γn−1(α)

∫ ∞

0

1− (1 + r2)
α+1−n

2

r1+α
dr

=
Γ

(
n−1+α

2

)

Γ
(

n−1
2

)
Γ

(−α
2

)
∫ ∞

0

1− (1 + t)
α+1−n

2

t1+
α
2

dt .

We make use of the formula
∫ ∞

0

1− (1 + t)−µ

t1+β
dt =

Γ(µ + β)Γ(1− β)
βΓ(µ)

, 0 < <β < 1, <(µ + β) > 0,

which is easily obtained by integration by parts, and obtain

γn−1(α) lim
ε→0

cε =
2Γ(1− α

2 )Γ(n−1+α
2 )

αΓ(−α
2 )Γ(n−1−α

2 )
= −cα .

Therefore, by (3.17),

(TαKαϕ)(x) = lim
ε→0
(Lp)

∫

Sn−1
Kε(x · σ)ϕ(σ)dσ.

It remains to make use of Lemma 3.4. 2

Remark. Since the spherical potential operator Kα can be transformed to a
similar operator over Rn−1, see (2.20), we could try to use the known inversion
results for the spatial case (see [Sa1], Theorem 2, or [SKM], Theorem 26.3). How-
ever, this way proves to be inappropriate because the natural truncation of the
hypersingular integral in Rn−1, by the ball of the radius ε, is transformed by the
stereographic projection, used in (2.20), into an artificial truncation on the sphere,
which, in addition, depends on the pole of the projection. The spherical hyper-
singular integral truncated in such an induced way, proves to be non-commuting
with rotations. Above we used the direct truncation, which is rotation invariant.

4. Inversion of the spherical Riesz potential in the case
<α > 2

To lower the order of the potential operator, it is natural to use the Beltrami-
Laplace operator

δf = R∆Pf, f = f(σ), σ ∈ Sn−1,

where Pf = f
(

x
|x|

)
is the operator of the continuation of a function f(σ) on Sn−1

to a homogeneous function in Rn and R is the operator of restriction to Sn−1. In
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what follows the Beltrami-Laplace operator for a function f(x) in the range of the
operator Kα is treated in the distributional sense:

(δf, ψ) = (f, δψ) , ψ ∈ C∞(Sn−1).(4.1)

Theorem 4.1. Let f = Kαϕ, ϕ ∈ Lp(Sn−1), 1 ≤ p < ∞, where <α > 0, <α 6=
2, 4, 6, . . . and α 6= n− 1 + 2k, k = 0, 1, 2, 3, ... Then

ϕ(x) = cβg(x) + Dβg(x)(4.2)

where β = α − 2N, N =
[<α

2

]
, so that 0 < β < 2, cβ being the constant defined

by (2.16) and g being the function

g(x) = PN (−δ)f(x),(4.3)

where PN (t) is the polynomial

PN (t) = (t− t1) · · · (t− tN )(4.4)

with the roots

tj =
(

j +
β + n− 3

2

)(
j +

β + 1− n

2

)
.(4.5)

The inversion (4.2) is also valid for α = 2, 4, 6, .... In this case ϕ = g(x) =
Pα

2
(−δ)f.

Proof. We first construct the inverse operator on nice functions ϕ ∈ C∞(Sn−1).
By the property Γ(x + 1) = xΓ(x) of the function Γ(x), the spherical multiplier

λm(α) =
Γ

(
m + n−1−α

2

)

Γ
(
m + n−1+α

2

)

of the operator Kα is reduced to λm(β), β = α− 2N :

λm(α) =
λm(β)(

m + n−1+β
2

)
N

(
m−N + n−1−β

2

)
N

where (a)N stands for the Pochhammer symbol.
Hence, the operator inverse to Kα must have the multiplier

1
λm(α)

=
[m2+m(n−2) + γ+(γ−−1)]· · ·[m2+ m(n−2) + (γ++N−1)(γ− −N)]

λm(β)

where γ± = n−1±β
2 . In the numerator we have a polynomial in tm = m2+m(n−2).

The latter is the multiplier of the Beltrami-Laplace operator −δ. Therefore,

1
λm(α)

=
PN (tm)
λm(β)

,(4.6)
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where

PN (t) =
N∏

j=1

[t + (γ+ + j − 1)(γ− − j)] ,

which coincides with (4.4)-(4.5).
Thus, the inversion formula (4.2) is proved in the case of functions ϕ ∈ C∞(Sn−1).

To extend it to the case where ϕ ∈ Lp(Sn−1), we observe that PN (−δ)f is defined
in the distributional sense (4.1) on functions f : = Kαϕ with ϕ ∈ Lp if 2N < α.
Moreover,

PN (−δ)f = Kα−2Nϕ ,(4.7)

since (PN (−δ)f, ψ) = (f,KαPN (−δ)ψ) = (f, Kα−2Nψ) for ψ ∈ C∞(Sn−1) .
Thus, it suffices to invert the right-hand side of (4.7) by means of Theorem 3.5. 2

We mention the paper [Ru] in which there was developed a certain technique,
based on the Cavaliery type principle (4.24), to organize finite differences of order
` with respect to the “shift” Mf (x′, t). This led to a construction of the operator
inverse to the Riesz potential operator Kα for all 0 < α < ∞, although in terms
of rather complicated constructions.

Finally, as an open question we note the development of the method of ap-
proximative inverse operators for spherical potential operators. In application to
spatial potential operators this method was developed in a series of papers, see
[ZN], [NS1], [NS2], [Sa3], [Sa4]. This idea is especially attractive in the case of
large values of <α. We hope to shed light on this question in the future.
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