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On Inversion of Fractional Spherical Potentials by Spherical
Hypersingular Operators

STEFAN SAMKO

A new proof of the inversion formula for spherical Riesz type fractional potentials in
the case 0 < Ra < 2 is presented and a constructive reduction of the case Ra > 2 to the
case 0 < R < 2 is given.

1. Introduction

Let S"' = {z € R" : |z| = 1} be the unit sphere in R". The fractional
spherical potentials, named also Riesz spherical potentials, are known in the form

o 1 p(o)do

where |z| = 1 and the normalizing constant 7,,—1(A) is defined by the formula

(1.2) Yn—1(a) = F(nla(%t

The inversion of this potential type operator was given more than two decades
ago in [PS1],[PS2] in the case 0 < a < 2 in terms of spherical hypersingular
integrals. We here take up the story again and present another proof, which is
more transparent and effective and also covers the case 0 < Ra < 2. As for the
case Ra > 2, a—n # 2k+ 1, k = 0,1,2,..., we show that this case may be
constructively reduced to the case 0 < Ra < 2.

The main statements are given in Theorems 3.5 and 4.1 below.



2 S. Samko
2. Preliminaries

a) Spherical multiplier of the Riesz potential operator. We use the basics
of the theory of spherical harmonics and Fourier-Laplace expansions into series of
spherical harmonics. We refer, for instance, to the books [SW], [Mu], or [Sa],
Section 2 of Ch.1. In particular, we use the notion of spherical Laplace-Fourier
multipliers.

It is known that in the case a # n — 1+ 2k, k = 0,1,2, ..., the Laplace-Fourier
multiplier of the operator K¢ is equal to

) o0 = {W} -

b) Spherical hypersingular integrals of order 0 < Ra < 2. The spherical
hypersingular integral is introduced ([PS]) as

(22)  (Df)a)= — " / 1) @) 4y pegnt
Tn-1(=a) Jgn-1 |z — o1

which converges absolutely for 0 < Ra < 1 in the case of “nice” functions f(x).

It converges also for 1 < Ra < 2 in the case of sufficiently “nice” functions

f(o) provided the integral is interpreted as the limit of truncated hypersingular

operators

2.3)  (DOf)(x) = L/S @)= @) 4 e g,

" ni(—a) nl(yy |z —aolrTiTe

where S?71(z) = {o € S"7! : |0 — x| > €}. For completeness we prove this
convergence in the lemma below.
The integral (2.3) is known ([PS1]) to be representable in the form

. B 1572 7 My(,t) = f(x) oy ns
@) D20 = 5 e |, g T

where My (z,t) are the means

1
(2.5) Myl ) = o /alzl £(0) ds..

o-x=t

The representation (2.4) follows from (2.3) by the formula

o) [ r@e o) do =157 [ My - £)F o) i

which can be named Cavaliery type principle; for its proof see [Sa2] or [Sa], Lemma
4.13.
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Writing that f(o) € CNV(S""1), we mean that f (%) € CN(R™\{0}).

Lemma 2.1. Let f(o) € C?N(S"71), N > 3n. Then the limit
lin%) D¢ f(x)
exists in C(S™™1) for every o with 0 < Ra < 2.

Proof. We expand f(z) in a Fourier-Laplace series of spherical harmonics, which
converges by the known properties of series of spherical harmonics. We have

oo

«@ xT) = # Ym“(a) _ Ym#(l') g
(2.7) (DEf)(x) = Yn1(—a) Z/z(l vo)>e? [2(1 — - g)}$ d

mu

We make use of the Funk-Hekke formula

(2.8) /Sm F(& - 0) V(o) do = XY (2),

where

(2.9) A= S”‘2|/ FOPL()(1 =)™ dt

and Py, (t) is the m-th Legendre polynomial. As is known, P,,(t) can be expressed
in terms of the Gegenbauer polynomials via

m+n—3\

(2.10) Po(t) = ( ) 10"7‘2(75), n>3

m
(for more details on the Funk-Hekke formula, see, for example, [Sa], Section 2 of
Ch.1). Formula (2.8) is valid for any function f(t) such that f(£)(1 — ¢2)"z"
L:1([-1,1]). By means of this formula we obtain

(2.11) (D1)(0) = e - meﬂ e (0) V(@)
where ,
(2.12) bm,a(a>=/ A A=) R [Pa(t) — 1] db.

To estimate this coefficient, we observe that

m(m+n —2)

(213) (0] <

b
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which follows from (2.10) and the properties

d

d < T'(m 4+ 2X)
dt

CA(t) = 2202 (1), (oMb < TN

of Gegenbauer polynomials. From (2.13) the estimate

m(m+n—2)

P,(t)—1 <
[Pu(t) -1 < L

(1-1)
follows. Hence
|bme(@0)] < em?

with ¢ not depending on m and e . Therefore, to demonstrate the uniform conver-
gence of the series (2.11), it suffices to prove the uniform convergence of the series
> o M| fnuYmu(z)|. But this follows from known theorems on the convergence
of Fourier-Laplace series of smooth functions (see [Ne|, p.232) with the inequality

[Yiu(x)| < em™ taken into account. O

c) The multiplier of the spherical hypersingular operator. From the
expansion (2.11) we obtain that the operator (2.2) has the spherical Fourier mul-
tiplier A, (that is, D*Y,, = A\, Y;,) given by

n—2
(2.14) Am = ﬁ—'

bm,,O (OZ) .
2555, 1 (a)

To calculate b, o(a), we note that by, o() is an analytic function of the parameter
« in the half-plane fa < 2 . Taking Ra < 0, we easily calculate by, o(«) by means
of formula 7.311.3 of [GR], which yields the formula

(2.15) Am =

[(m+ ) T(m5)
n—1l-a) n=1—a)"
I(m+m=5=2) T (=)
As a consequence of (2.1) and (2.15), the operator (K)~! inverse to the spherical
potential operator K¢ is expected to be

(2.16) (K%)= ¢l + D, Co =

where [ is the identity operator.

d) Stereographic projection. The change of variables in R™ defined by
(2.17) §=s(x) ={s1(x), -, sn(2)}

with sp(z) = 2%,
|

R, |x

_ a1
= P

)2, generates the mapping known as the stereographic

=1,---,n—1, and s,(x) = (21, -,2,) €
1
3
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projection. It maps the subspace R" ! one-to-one onto the unit sphere S*~! C
R™, R"! being the completion of R*~! by a single infinite point. It is known,
see [Mi],p.35-36, that the following relations hold:

2|z -y
(1+]z[2)2 (1 + |y[2)=

(218) |§_J| = ) £:S(m)7 J:S(y),

2n—1dy
(1 + [yt

This immediately yields the relation

OV _ o1 4 o) /ls(w)] dy
= 2%(1 2
(2 20)/;%1 |§ o U‘nilia ( * |x| ) /]vznfl |-T - y|n—1_a(1 + |y|2)n7;7a ’

s(y) being the stereographic projection of R"~* onto S™~1.

(2.19) do =

3. Justification of the inversion in L,(S"!) and identity ap-
proximation on the sphere

We wish to show that the operator ¢, + D interpreted as cqol + lime—o D&

(Lp)
is a left inverse to the operator K* in the spaces L,(S"7!) :

(3.1) (cal + lim D)Ko = ¢, o€ L,(S" ).

(Lp)

Direct calculations yield
(32 (D)) = [ Lo alplo)do
where the kernel L.(x - o) is defined by

1 _ l-nt+a _ _ 1—-n+a
(3.3) Lo(z-0) = 7/ T — o] nIﬂﬂa\ ir
v Jsr @) 7 — 2|

and v = Yp—1(@)Yn-1(—a) = =dp—_11()¥n—1(a). We know beforehand that the
kernel in (3.3) may depend only on the inner product x - o because D*K® is a
composition of two spherical convolution operators.

As we shall see, the kernel L (z - o) involves an identity approximation kernel,
so we dwell on this notion. We say that the spherical convolution operator

(3.49) (Ap)@) = [ Ada-o)plo)do
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is a spherical identity approximation operator in L,(S"~1!) if

lim [[Acp — ¢|l1,(sn-1) =0

(Lp)

The following theorem ([BBP], p.210) provides sufficient conditions for a kernel
Ac(x - o) to be an identity approximation kernel.

Theorem 3.1. Let A.(t) satisfy the conditions

i) lim._,o fsn,l Az - o)do =1;

1) [gur |Ae(x - 0)|do < M < o0, 0 < e < €, with M not depending on €;

iii) lime—o [, , oy, |[Ae(z - 0)|do =0 for each to € (0,2).

Then the operator (5.4) is an identity approximation in L,(S™™1), 1 < p < oo
(and in C(S™1) as well).

The main job to be done now is to single out the identity approximation term
in the kernel (3.3), which will be accomplished in Lemma 3.3 below. Lemma 3.2
is crucial for this purpose.

Let u € R™! be the vector connected with z,0 € S”~! by the relation

(3.5) s(u) = w(o),

where s is the stereographical projection (2.17) and w(o) = w, (o) is any rotation
of the sphere such that

(3.6) w(z) = —e, = (0,0,...,0,—1).
We also use the notation

(w) = /1 [ul? .

Lemma 3.2. Let 2,0 € S '. Then

(3.7) /Snil |z =], —7]) dr = 2”*1/3%1 f <2<|U”>|2<;’>> @ﬁz_l)

under the assumption that the integrals converge. Here u is the vector defined in
(3.5), so that

(3.8) ) |z — o] 2 (u) 2

T {u)

T lrztol Jul Jz—o|
| |" Jul | \

Proof. Making the rotation change of variables n = w(7) with the rotation (3.6),
we transform the left-hand side of (3.7) to

| Hin+ el e =l
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After that, we may apply the stereographical projection (2.17) by putting
n=s(), veR"

(so that —n, = s(0)). Making use of the relations (2.18) and (2.19), we arrive at
formula (3.7).
To check the relations (3.8), we denote £ = w(o) and have

o= W_l(en) 'W_l(f) =en-§=—&n.

Since (3.5) implies s, (u) = &,, we obtain &, = l\;j‘lz% . Therefore,

1-¢&, l4x-0  |z+of?

(3.9) o Lo _Ll=zo_|a—of

from which the first of the relations (3.8) follows, the two others being its conse-
quences. O

Remark. The representation (3.7) may be rewritten in the form

T ol 2oy
310) [ fe=rllo—ryar=2-t [ (3, TS e

= ﬁ;gl = %:i:g, which obviously reveals the dependence of this

integral on the inner product x - o only.
To get (3.10) from (3.7), it suffices to make another change of variables, namely,

the rotation v = 7ot y in R™ ! which rotates e; to ﬁ :rot ep = |L—“ Then

where r = |u]

|u —v| = ||ule; — y|, which yields (3.10).
In the following lemma on the representation of the kernel L.(z - ) introduced
in (3.2), we use the kernel

1
’}/’/‘n_l

(3.11) Ki,a(r) = /|< (ly — ex|* " = [y|*"*h) dy
YT

with the integration over the ball in R"~!. We remark that this kernel is a direct
analog of a similar kernel familiar in the theory of spatial hypersingular integrals
(see [Sal]; [SKM], formula (26.30); [Sa], formula (3.46) ).

Lemma 3.3. The kernel L.(z - o) may be represented as

(3.12) L(x-0) = 9 + Ke(z-0),

|£E _ O—|n717a
where
at+l—n

Sl — (1412)% 5
(3.13)  cle) = |72a | /5 ( 5 +a) dr, 5=
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and

B P 1 lx—of ) 2l=n(y)yn-l-a [l
]Cs(.’E'O’) = |gj‘+0|n_1_o‘ 5n_1’C1,a (5$+O’|> - 5n—1 ]Cl,a ? )
(3.14)

u being the vector defined in (3.5).

Proof. Applying formula (3.7) to the spherical integral (3.3), we arrive at the
representation

(%

n—l—a
n—l—o lu—v|
21—77, n—l—a ‘U| L — )
JC R P / () d
Ry 1

py‘u|n717a <U>n71+a|u_v|n717a

where Ry ' = {v € R""!: |v| > §}. Hence

r ( ) 21—n (<u>>”1a / ‘u|n—1—(x _ ‘u _ ,U|n—1—oz p
xTr-o = -— v
) 7\l B i (] K

1— <q)>a—n+1 B <’LL> " .
(3.15) + /|U>5|U|n_1+a d’l)) = [ufn—1—a (Js(u) +co)

with

n—l—-a __ 1
Ce = 21_”/ (v) dv.
oo (V[P (v)nT e

Passing to polar coordinates, we transform c. to c. = 2~ (»~D¢(e) with c(e) given
by (3.13). It remains to transform the term Js; in (3.15). To this end, we make
the same rotation change of variables as in the proof of the remark after Lemma
3.2 and get

Js(u) = 2 \u|n—1_a/ y—e -1,
v lyl> 2

M
Making the inversion change y = #, dy = lt‘md%l), and using the relation
‘ﬁ — 61‘ = Iy‘_yfl‘, we obtain
2l +1 +1
J _ o a—n _ a—n d
5(“) ,Y|u‘a /y<g (|y 61| |y| ) Y,
which transforms (3.15) into (3.12)-(3.14). a

Lemma 3.4. Let 0 < Ra < 2. The kernel Ke(x - o) satisfies conditions i)-1ii) of
Theorem 3.1 and is therefore an identity approximation kernel.
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Proof. To check condition ii) of Theorem 3.1, we have, according to (3.14), to

estimate the integral
u

21—77, 1
Ke(z-o)|do = —— wyt e
We transform this integral to one over R"~! by means of the

€
4—e2"

change of variables (3.5). Using relation (2.19) for the stereographical projection,

we arrive at
1 || du
. — —_— _— <
/S"_1|IC5(96 o)|do = /Rn_l Ki,a ( 5 ) fyn—iTa 7/Rn_l|lC1’a(\u|)\du <00

by the known fact that the kernel K; ,(|u|) is integrable as shown in [Sal], Theorem
1 or [SKM], Lemma 26.4.
To check i), we proceed similarly:

where § =

Tim Ke(z-0) do = lim K10 (lul) du =1

n—1l+4+ao
e—0 Sn—1

0 Jpn—1 (1+(52\u|2)72

because K1 o (u|)| is an averaging kernel; see [Sal], formula (2.8) or [SKM], formula
(26.42). Finally, condition iii) is verified in a similar fashion:

d
lim K.(z - 0)| do = lim / Ko ([u])] ——)
e—0 z-o<l—tg 6—0

(14 6%|ul?)2

[
lul>F /=%

Theorem 3.5. Let 0 < Ra < 2. The operator

(3.16) T = col + D% = col + lim D?

(Lp)

with the constant c, defined by (2.16) is a left inverse to K* in L,(S"71), 1 <
p < 0o and in C(S"71).

Proof. From (3.2) and (3.12) we have

TR ) = ok o)) + iy [ || (o) an

e—0 |1’7 O’|n7170‘

(Lp)
(I K*¢)(w) = [ca + 1) i e(e)| (K°9)(e) + lim [ Ke(w-o)plo) do
(Lp)

(3.17)
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Evidently,

27§20 — (14 42)

n1(a) li = d

n—1(@) lim c(e) @) s ita "
atl—n

S - Ry S ETEY s
FEEOr(g) b o

We make use of the formula

[T, Terora-g
0 tito B (1) ’

which is easily obtained by integration by parts, and obtain

0<RB<1, R(u+p6) >0,

’Ynfl(a) lime. = o P 2704 —Cq -
T Tar(—g)r(=t=)
Therefore, by (3.17),
(TK%p)(x) = lim Ke(x - o)p(o)do.
(i S5
It remains to make use of Lemma 3.4. O

Remark. Since the spherical potential operator K can be transformed to a
similar operator over R"~!, see (2.20), we could try to use the known inversion
results for the spatial case (see [Sal], Theorem 2, or [SKM], Theorem 26.3). How-
ever, this way proves to be inappropriate because the natural truncation of the
hypersingular integral in R"~!, by the ball of the radius e, is transformed by the
stereographic projection, used in (2.20), into an artificial truncation on the sphere,
which, in addition, depends on the pole of the projection. The spherical hyper-
singular integral truncated in such an induced way, proves to be non-commuting
with rotations. Above we used the direct truncation, which is rotation invariant.

4. Inversion of the spherical Riesz potential in the case
Ra > 2

To lower the order of the potential operator, it is natural to use the Beltrami-
Laplace operator

0f = RAPf, f=f(o), oe€Ss"

where Pf = f (I%) is the operator of the continuation of a function f(o) on ™!

to a homogeneous function in R™ and R is the operator of restriction to S*~1. In
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what follows the Beltrami-Laplace operator for a function f(x) in the range of the
operator K is treated in the distributional sense:

(4.1) (5f,0) = (f,00), »eC=(S").

Theorem 4.1. Let f = K%p, ¢ € L,(S"71), 1 <p < oo, where Ra > 0, Ra #
2,4,6,...and a#n—1+2k, k=0,1,2,3,... Then

(4.2) p(r) = cpgla) + Dg(x)

where 3 = a — 2N, N = [%}, so that 0 < 3 < 2, cg being the constant defined

by (2.16) and g being the function

(4.3) 9(z) = Pn(=0)f(),

where Py (t) is the polynomial

(4.4) Pan(t) = (t—t1)---(t—tn)

with the roots

(4.5) = (j+ﬁ+g_3> (j+ﬁ+;_”> .

The inversion (4.2) is also valid for o = 2,4,6,.... In this case p = g(x) =
Pa(=0)f.
2

Proof. We first construct the inverse operator on nice functions ¢ € C°°(S"1).
By the property I'(z + 1) = 2I'(z) of the function I'(z), the spherical multiplier

_ D(m+ =2
Am(a) = T (m + ooite)

of the operator K¢ is reduced to A\, (8), 8 = a —2N:

Am(5)
(e =322) (Va2

Am(a) =

where (a)n stands for the Pochhammer symbol.
Hence, the operator inverse to K“ must have the multiplier

L P mn=2) £y = D) P m(n=2) + (e N =Dy~ N)]
Am (@) Am(B)

where v = &Qiﬁ . In the numerator we have a polynomial in t,,, = m?+m(n—2).
The latter is the multiplier of the Beltrami-Laplace operator —d. Therefore,
1 P (tm)

(4.6) (@ m(B)
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where

éz

(v+ +J7 = Dly- =51,
j= 1
which coincides with (4.4)-(4.5).

Thus, the inversion formula (4.2) is proved in the case of functions p € C>°(S"~1).
To extend it to the case where ¢ € L,(S"~!), we observe that Py (—9)f is defined
in the distributional sense (4.1) on functions f : = K%p with ¢ € L, if 2N < a.
Moreover,

(4.7) Pn(=0)f = KNy |

since (Py(=08)f,v) = (f, KPn(=6)y) = (f, Ko 2NVe) for op € C°(S"71).
Thus, it suffices to invert the right-hand side of (4.7) by means of Theorem 3.5. O

We mention the paper [Ru] in which there was developed a certain technique,
based on the Cavaliery type principle (4.24), to organize finite differences of order
¢ with respect to the “shift” My (2’,t). This led to a construction of the operator
inverse to the Riesz potential operator K¢ for all 0 < a < oo, although in terms
of rather complicated constructions.

Finally, as an open question we note the development of the method of ap-
proximative inverse operators for spherical potential operators. In application to
spatial potential operators this method was developed in a series of papers, see
[ZN], [NS1], [NS2], [Sa3], [Sad]. This idea is especially attractive in the case of
large values of *ae. We hope to shed light on this question in the future.
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