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On the dependence of asymptotics of s-numbers

of fractional integration operators

on weight functions
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1. Introduction
In the recent paper [7] there was discovered the following effect : sin-

gular values of the Riemann-Liouville fractional integration operator Iα
0 :

L2(R
1
+, e−x) −→ L2(R

1
+, xαe−x) have the asymptotics

σm ∼ m−α/2

as m →∞ , not σm ∼ m−α as one could expect from the smoothing properties
of the operator Iα

0 .
We show that this effect is not a result of non-compactness of R1

+ : we
may have the same effect on a finite interval, and on the contrary, we may
have σm ∼ m−α on R1

+.
We discuss some arising questions and give some extensions to the multi-

dimensional case, for the Riesz potential operator in weighted L2(Rn)-spaces.
In case n = 1 we explicitely construct singular systems for the potential type
operator s, both over R1 and over a finite interval. We give also some con-
clusions for the Liouville fractional integration operators over the whole real
line as a corollary of our results for the potential type operator.

It should be noted that there exist many investigations on the asymp-
totics of singular numbers of integral operators. We refer for example to the
papers [1] - [3], where some powerful tools were developed for finding the
asymptotics of singular numbers of certain pseudo-differential operators of
general types. See also [14] where one can find results for the asymptotics
in case of fractional integration operators of order α > 1/2 with a certain

1



type of a weight function, where a depende nce of the asymptotics 0n a
weight function is given in certain terms. We would like to emphasize that
because of the applied aspects of the considered operators we prefer to give
the direct construction of a sequence of s-numbers, not only its asympto tics,
together with the constructive realization of the ”singular value decomposi-
tion”. Besides, even in case of asymptotics, our weighted considerations are
not covered by the known results, up to our knowledge.

2. Preliminaries.
1). Fractional integral operators.
We use both the left- and right-sided Riemann-Liouville fractional inte-

grals

Iα
a+u(x) =

1

Γ(α)

∫ x

a

(x− t)α−1u(t)dt , x > a , α > 0 , (1)

Iα
b−u(x) =

1

Γ(α)

∫ b

x

(t− x)α−1u(t)dt , x < b , α > 0 , (2)

and deal mainly with the cases a = 0 or a = −1, and b = 1.
The corresponding Liouville fractional integrals on the whole real line R1

will be denoted as

Iα
+u(x) =

1

Γ(α)

∫ x

−∞
(x− t)α−1u(t)dt , x ∈ R1 , α > 0 , (3)

Iα
−u(x) =

1

Γ(α)

∫ ∞

x

(t− x)α−1u(t)dt , x ∈ R1 , α > 0 , (4)

The one-dimensional (fractional) Riesz potential has the form

Iαu =
1

2Γ(α) cos απ
2

∫ ∞

−∞

u(y) dy

|x− y|1−α
, x ∈ R1, α > 0, α 6= 1, 3, 5, ... . (5)

We shall also treat its modification for the finite interval

Aαu =

∫ 1

−1

u(y) dy

|x− y|1−α
, |x| < 1. (6)

The multidimensional version of the operator (5) is

Iαu =
1

γn(α)

∫

Rn

u(y)dy

|x− y|n−α
, x ∈ Rn, (7)
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where α > 0, α 6= n, n + 2, n + 4, ... and

γn(α) =
2απn/2Γ(α

2
)

Γ(n−α
2

)

is the normalizing constant for the Riesz potential, see [19] , section 25.2.
We shall consider the above operators within the frameworks of weighted

L2-spaces

L2 (Ω; ρ(x)) =

{
f(x) :

∫

Ω

|f(x)|2ρ(x)dx < ∞
}

over the corresponding set Ω with some special types of weight functions
ρ(x).

2). On boundedness of fractional integration operators .
Lemma 1 . Let the real numbers µ, ν and ν1 satisfy the conditions µ < 1

and ν1 = ν − 2α if ν − 2α > −1 and ν1 > −1 if ν − 2α ≤ −1. Then the
operator Iα

0+ is
bounded from L2 ([0, 1]; xµ(1− x)ν) into L2 ([0, 1]; xµ−2α(1− x)ν1) .
Lemma 2. Let the real numbers µ, µ1 and ν satisfy the conditions

ν < 1 and µ1 = µ − 2α if µ − 2α > −1 and µ1 > −1 if µ − 2α ≤ −1.
Then the operator Iα

1− i s bounded from L2 ([−1, 1]; (1 + x)µ(1− x)ν) into
L2 ([−1, 1]; (1 + x)µ1(1− x)ν−2α) .

Lemma 3. Let the real numbers µ, ν and ν1 satisfy the conditions µ < 1
and ν1 = ν if µ + ν < 1 and ν1 > 1− µ if µ + ν ≥ 1. Then the operator Iα

0+

is bounded from L2
(
R1

+; xµ(1 + x)ν
)

into L2
(
R1

+; xµ−2α(1− x)ν1
)
.

Lemma 4. The operators (3)-(5) are bounded from L2(R1; (1 + x2)
µ
2 )

into L2(R1; (1 + x2)
ν
2 ) if µ > 2α− 1 and ν < min(µ, 1)− 2α.

Lemmas 1 - 4 are particular cases of more general results on boundedness
of operators of fractional integration within the framework of Lp-spaces with
power-type weights, see [19], Theorems 3.10 and 5.5. We also note that
Lemma 2 can be obtained from Lemma 1 by an obvious linear change of
variables, while Lemma 3 can be derived from Lemma 2 by means of the
connection (23)-(24) given below.

3). On mapping between the spaces on [−1, 1] and R1
+.

Obviously, the involutive change of variables

1− x

1 + x
= y ,

1− y

1 + y
= x (8)

maps the half-axis R1
+ onto [−1, 1] and vice versa.
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We introduce the operator

Mαf(x) = f ∗(x) = γ(1 + x)−1−αf

(
1− x

1 + x

)
, (9)

associated with the order α of fractional integration. The normalizing factor

γ = 2
µ+ν+1

2

is chosen to achieve isometry between weighted spaces considered in Lemma
4 below.

We note that the expression for the operator inverse to Mα coincides with
the expression for Mα up to a constant numerical factor :

M−1
α f(x) = 2α−µ−νMαf(x) (10)

Lemma 5. Let µ, ν and α be arbitrary real numbers.Then the operator
Mα maps the space L2 ([−1, 1]; (1 + y)µ(1− y)ν) onto L2

(
R1

+; xν(1 + x)2α−µ−ν
)

preserving the scalar product:
∫ 1

−1

f1(y)f2(y)(1 + y)µ(1− y)νdy =

∫ ∞

−∞
f ∗1 (x)f ∗2 (x)xν(1 + x)2α−µ−νdx ,

Remark 1. In view of (1)-(3) we also have the relation

∫ ∞

−∞
f1(x)f2(x)xν(1+x)2α−µ−νdx = 22(α−µ−ν)

∫ 1

−1

f ∗1 (y)f ∗2 (y)(1+y)µ(1−y)νdy

4). Singular numbers.
We recall the essentials of the theory of singular numbers of compact

linear operators (see details in [4]). Let U and V be infinite-dimensional
Hilbert spaces. If A : U → V is an injective compact linear operator, then
there exist

(i) an orthonormal basis {uj}j∈N0 in U ;
(ii) an orthonormal system {vj}j∈N0 in V ;
(iii) a nonincreasing sequence {σj}j∈N0 of positive numbers with limit 0

as j →∞ , such that
Auj = σjvj, j ∈ N0.

The numbers σj are known as singular numbers or s-numbers of the op-
erator A and the system {σj, uj, vj}j∈N0 is called a singular system for the
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operator A (in view of what is discussed in the paper, it is appropriate to
refer to {σj, uj, vj}j∈N0 as a singular system not for the operator A only, but
for the operator A and a given pair U and V of the spaces involved.

Remark 2. We note that for any operator A the setting

A : L2(Ω; ϕ(x)) → L2(Ω; ψ(x))

with a singular system {σm, um, vm} is equivalent to the setting

A1 = ψ
1
2 Aϕ−

1
2 : L2(Ω) → L2(Ω)

with the system {σm, ϕ
1
2 um, ψ

1
2 vm}.

Proposition 1 ([4] , p.27) . For any bounded linear operator B : U → U
or B : V → V,

σm(AB) ≤ ‖B‖U σm(A),

σm(BA) ≤ ‖B‖V σm(A),

respectively.
In the following theorems , obtained in [7], Cλ

n(x), P α,β
n (x) and L

(β)
n (x)

are the standard notations, see e.g. [8] , for the Gegenbauer, Jacobi and
Laguerre polynomials correspondingly and

am =

[
22λ−1(m + λ)m!

πΓ(m + 2λ)

]1/2

Γ(λ) , bm =

[
21−2λ(m + λ)m!Γ(m + 2λ)

Γ(m + λ− α + 1/2)Γ(m + λ + α + 1/2)

]1/2

,

Am =

(
m!

Γ(β + m + 1)

)1/2

, Bm =

(
Γ(m + β + 1)

Γ(m + α + β + 1)

)1/2

Theorem A [7] . Let λ > α− 1/2, α > 0, λ 6= 0. Then the operator

Iα
−1+ : L2

(
[−1, 1];

(
1− x

1 + x

)λ−1/2
)
→ L2

(
[−1, 1];

(
1− x

1 + x

)λ−1/2

(1− x2)−α

)

(11)
has the following singular system:

σm =

[
Γ(m + λ− α + 1/2)

Γ(m + λ + α + 1/2)

]1/2

∼ m−α , (12)
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um(x) = am(1+x)λ−1/2Cλ
m(x) , vm(x) = bm(1+x)α+λ−1/2P (λ−α−1/2,λ+α−1/2)

m (x) .
(13)

Theorem B [7] . Let β > −1 and α > 0. Then the operator

Iα
0+ : L2(R1

+; x−βe−x) → L2(R1
+; x−α−βe−x) (14)

has the following singular system

σm =

[
Γ(m + β + 1)

Γ(m + α + β + 1)

]1/2

∼ m−α/2, (15)

um(x) = AmxβL(β)
m (x) , vm(x) = Bmxα+βL(α+β)

m (x) . (16)

As a corollary of Theorem A we also have the following theorem for the
adjoint operator

Iα
1−u(x) =

1

Γ(α)

∫ 1

x

(t− x)α−1u(t)dt , x < 1 .

Theorem A′ . Let λ > α− 1/2, α > 0, λ 6= 0. Then the operator

Iα
1− : L2

(
[−1, 1];

(
1− x

1 + x

)1/2−λ
)
→ L2

(
[−1, 1];

(
1− x

1 + x

)1/2−λ

(1− x2)−α

)

(17)
has the following singular system:

σm =

[
Γ(m + λ− α + 1/2)

Γ(m + λ + α + 1/2)

]1/2

∼ m−α , (18)

um(x) = am(1−x)λ−1/2Cλ
m(x) , vm(x) = bm(1−x)α+λ−1/2P (λ−α−1/2,λ−α−1/2)

m (x) .
(19)

To derive Theorem A′ from Theorem A it is sufficient to remark that

Iα
1− = QIα

−1+Q (20)

where Qu(x) = u(−x) and note that

Cλ
m(−x) = (−1)mCλ

m(x) , P (α,β)
m (−x) = (−1)mP (α,β)

m (x)

5). Stereographic projection.
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We consider the Euclidean space Rn imbedded into Rn+1 , identifying
Rn with the hyperplane {x ∈ Rn+1 : xn+1 = 0}. The change of variables in
Rn+1 :

ξ = s(x) = {s1(x), ..., sn+1(x)},

sk(x) =
2xk

1 + |x|2 , k = 1, ..., n, sn+1(x) =
|x|2 − 1

|x|2 + 1
, (21)

where x = (x1, ..., xn+1) ∈ Rn+1, |x| = (x2
1 + ... + x2

n+1)
1/2, generates the

mapping known as the stereographic projection. It maps the subspace Ṙn

one-to-one onto the unit sphere Sn ⊂ Rn+1, Sn = {ξ ∈ Rn+1 : ξ2
1+...+ξ2

n+1 =

1}, where by Ṙn we denote the complementation of the Euclidean space Rn

by a single infinite point. It is known [11] that the following relations hold

|ξ − σ| =
2|x− y|

(1 + |x|2)1/2(1 + |y|2)1/2
, (22)

dσ =
2ndy

(1 + |y|2)n
, (23)

where ξ = s(x), σ = s(y) , x, y ∈ Rn+1.

6). Spherical harmonics.
We refer e.g. to [12],[20] for harmonic analysis on Sn and recall only

some notations and the Funk-Hekke formula . By Ym(σ), σ ∈ Sn, we denote
an arbitrary spherical harmonic of order m , that is, the restriction of a ny
homogeneous harmonic polynomial in Rn+1 onto Sn. The space Hm of all
such harmonics has a dimension

dn+1(m) =
n + 2m− 1

n + m− 1

(
m + n− 1

m

)
. (24)

Let{Ymµ}µ=1,...,dn+1(m) be an orthonormal basis in Hm . It is known ([12],[20])
that the sequence

{Ymµ}µ=1,...,dn+1(m);m∈N0

is a basis in L2(Sn).
The formula

∫

Sn

k(ξσ)Ym(σ)dσ = λmYm(ξ) , ξ ∈ Sn, (25)
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known as the Funk-Hekke formula [9], states that an arbitrary spherical
harmonic Ym(ξ) is an eigen-function for any operator K , defined as

Ku =

∫

Sn

k(ξσ)u(σ)dσ , ξ ∈ Sn, (26)

with the kernel depending only on the scalar product ξσ. In (25)

λm =
|Sn−1|(

m + n− 2
m

)
∫ 1

−1

(1− t2)
n−1

2 Cλ
m(t)k(t)dt (27)

where λ = n−1
2

, Cλ
m(t) is the Gegenbauer polynomial and |Sn−1| is the surface

area of the unit sphere in Rn , |Sn−1| = 2πn/2

Γ(n
2
)
.

3. Statements and comments
Theorems 1 and 2 below show that the effect of σm ∼ m−α/2 is not a

result of the consideration of the non-compact set R1
+ instead of a compact

interval. We show that the same operator Iα
0+ has different asymptotics of

s-numbers in two different settings on a finite interval:

Iα
0 : L2([0, 1]; ρ1(x)) → L2([0, 1]; r1(x)) , σm ∼ m−α , (28)

Iα
0 : L2([0, 1]; ρ2(x)) → L2([0, 1]; r2(x)) , σm ∼ m−α/2 . (29)

The case (28) is contained in Theorem A , while the case (29) is covered by
Theorem 2 below.

Similarly, we may have both situations on the half-axis R1
+ :

Iα
0 : L2(R1

+; ϕ1(x)) → L2(R1
+; ψ1(x)) , σm ∼ m−α , (30)

Iα
0 : L2(R1

+; ϕ2(x)) → L2(R1
+; ψ2(x)) , σm ∼ m−α/2, (31)

the case (31) being contained in Theorem B , while the case (30) is covered
by Theorem 1 below.

Theorem 1 . The asymptotics σm ∼ m−α takes place for the operator
Iα
0+, α > 0, on the half-axis R1

+ in the setting (30) under the following choice
of the weight-functions:

ϕ1(x) = x
1
2
−λ(1 + x)2α , ψ1(x) = x

1
2
−λ−α, (32)
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where λ > α − 1/2, λ 6= 0. The singular system is given by the same σm as
in (12) and

um(x) = 2λamxλ−1/2(1 + x)−λ−α−1/2Cλ
m

(
1− x

1 + x

)
, (33)

vm(x) = 2λbmxλ+α−1/2(1 + x)−λ−α−3/2P (λ−α−1/2,λ+α−1/2)
m

(
1− x

1 + x

)
(34)

Theorem 2 . The asymptotics σm ∼ m−α/2 takes place for the operator
Iα
−1, α > 0, on the interval [−1, 1] in the setting (29) under the following

choice of the weight-functions:

ρ2(x) = (1 + x)−β(1− x)2α+βe−
1+x
1−x , r2(x) = (1 + x)−β−α(1− x)β−αe−

1+x
1−x ,

where β > −1. The singular system is given vy the same σm as in (15) and

um(x) = 21/2Am(1 + x)β(1− x)−α−β−1L(β)
m

(
1 + x

1− x

)
,

vm(x) = 21/2Bm(1 + x)α+β(1− x)−β−1L(α+β)
m

(
1 + x

1− x

)

Theorems 1 and 2 lead to the following Question:
Question. Given s ∈ (0, α], does there exist a pair of weight functions

ρ(x) and r(x) , such that s-numbers of the operator

Iα
0 : L2(Ω; ρ(x)) → L2(Ω; r(x)) ,

with Ω = [0, 1] or Ω = R1
+ have the asymptotic

σm ∼ m−s ?

Because of Theorems 1 and 2, Question seems to be especially natural for
values s ∈ [α/2, α].

In Theorem 3 below we give some version of Theorem 1 for the multidi-
mensional Riesz potential operator (7) using the notation x̃ = (x, xn+1) ∈
Rn+1, where x ∈ Rn, and s(x̃) for the stereographic projection in the Eu-
clidean space Rn+1 , which maps the hyperplane Rn = {x̃ ∈ Rn+1 : xn+1 =
0}, onto the unit sphere Sn ⊂ Rn+1 , see (21). By Ymµ(ξ), ξ ∈ Sn, we denote
basic spherical harmonics (see Section 1, no 6).).
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Theorem 3. The operator

Iα : L2
(
Rn; (1 + |x|2)α

) → L2
(
Rn; (1 + |x|2)−α

)
, α > 0, α 6= n, n+2, n+4, ...,

(35)
has singular values

σm =
1

2α

Γ(m + n−α
2

)

Γ(m + n+α
2

)
∼ m−α (36)

and a singular system is {σm, umµ(x), vmµ(x)} with

umµ(x) =
2

n
2 Ỹmµ(x)

(1 + |x|2)n+α
2

, vmµ(x) =
2

n
2 Ỹmµ(x)

(1 + |x|2)n−α
2

, (37)

µ = 1, 2, ..., dn+1(m); m = 0, 1, 2, ...

where Ỹmµ(x) = Ymµ[s(x̃)] |xn+1=0 .
Corollary 1 (of Theorem 3) . The one-dimensional Riesz potential

(5) in the setting

Iα : L2(R1; (1 + x2)α) → L2(R1; (1 + x2)−α, 0 < α < 1, (38))

has a singular system {σm, umµ, vmµ}µ=1,2;m∈N0 where σm is given by (36)
with n = 1 and

um1(x) =
Tm

(
2x

1+x2

)

(1 + x2)
1+α

2

, vm1(x) =
Tm

(
2x

1+x2

)

(1 + x2)
1−α

2

,

where m = 0, 1, 2, ... and

um2(x) =
(1− x2)Um−1

(
2x

1+x2

)

(1 + x2)
3+α

2

, vm2(x) =
(1− x2)Um−1

(
2x

1+x2

)

(1 + x2)
3−α

2

where m = 1, 2, ... , Tm(x) and Um(x) being the Chebyshev polynomials of
the 1st and 2nd kind, respectively.

Remark 3. According to the above corollary the singular system is found
explicitely in the one -dimensional case in terms of Chebyshev polynomials.
If n > 1, the functions Ymµ(x), x ∈ Sn, we use in (37) can be only described
as restrictions of basic harmonic homogeneous polynomials Ymµ(x̃), x̃ ∈ Rn+1

onto Sn. In this connection we refer to the paper [17] where there is given a
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criterion, in terms of coefficients, for an arbitrary homogeneous polynomial∑
|j|=m ajx

j to be harmonic.

Corollary 2 (of Theorem 3) . Let 0 < α < 1/2. The singular values of
the Liouville fractional integration operators (3)-(4) considered in the setting
(38) , have the asymptotics σm ∼ m−α.

Theorem 4. The potential-type operator (6) in the setting

Aα : L2
(
[−1, 1]; (1− x2)α

) → L2
(
[−1, 1]; (1− x2)−α

)
, (39)

0 < α < 1, has the singular system {σm, um, vm}m∈N0 with

σm =
πΓ(m + 1− α)

m! sin απ
2

Γ(1− α)
∼ 1

mα

and

um(x) = cm(1− x2)−αC
1−α

2
n (x) , vm(x) = cmC

1−α
2

n (x) (40)

with cm = Γ
(

1−α
2

)
2−

α
2

(
m!(n+ 1−α

2
)

πΓ(n+1−α)

) 1
2

, Cλ
m(x), λ = 1−α

2
, being the Gegenbauer

polynomials.

4. Proofs of Theorems.
P r o o f o f T h e o r e m 1 .
Naturally, we base our proof on reduction to Theorem A′ . Therefore,

we use the change of variables (8) and the mapping operator (9) to reduce
the case of the half-axis R1

+ to the case of the interval [-1,1] and then apply
Theorem A′ . By (1) we have

∫ x

0

u(t)dt

(x− t)1−α
= 2α(1 + y)1−α

∫ 1

y

u
(

1−τ
1+τ

)

(1 + τ)1+α

dτ

(τ − y)1−α
(41)

with y = 1−x
1+x

. This relation is crucial for our purposes (compare with the
relation (5.33) in [19]).

Because of Theorem A′ we choose the space

L2

(
[−1, 1];

(
1− x

1 + x

)1/2−λ
)
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for functions on [-1,1] . So, we base our consideration on Lemma 5 with
µ = −ν = λ− 1/2. For the mapping (9), by Lemma 5 we see that

u∗(τ) = 21/2(1 + τ)−1−αu

(
1− τ

1 + τ

)
∈ L2

(
[−1, 1];

(
1− τ

1 + τ

)1/2−λ
)

(42)

if u(x) ∈ L2
(
R1

+; x−λ+1/2(1 + x)2α
)
. In terms of the mapping (9) the relation

(41) can be represented as

Iα
0+u(x) = 2α−1/2(1 + y)1−αIα

1−u∗(y), (43)

which can be also given symmetrically as

Iα
1−v(y) = 2α−1/2(1 + x)1−αIα

0+v∗(x). (44)

The latter can be verified directly in view of (10).
To apply Theorem A′ , we must be sure that our consideration of the

operator Iα
0+ as

Iα
0+ : L2

(
R1

+; x−λ+1/2(1 + x)2α
) → L2

(
R1

+; x−λ−α+1/2
)

(45)

exactly corresponds to the setting (17) of the operator I1− in Theorem A′.
(We note that the consideration (17) under the condition λ > α − 1/2 is in
accordance with Lemma 2 . (Lemma 2 gives even a stronger assertion).

Checking this correspondence , in view of (43) we have:

‖Iα
0+u(x)‖L2(R1

+;x−λ−α+1/2) = 2α−1/2

{∫ ∞

0

∣∣(1 + y)1−αIα
1−u∗(y)

∣∣2
y= 1−x

1+x

x−λ−α+1/2dx

}1/2

= 2α

{∫ 1

−1

∣∣(1 + y)−αIα
1−u∗(y)

∣∣2
(

1− y

1 + y

)−λ−α+1/2

dy

}1/2

= 2α‖Iα
1−u∗(y)‖

L2

�
[−1,1];( 1−y

1+y )
−λ+1/2

(1−y2)−α

�.

Then, by Theorem A′ we have

I1−um(y) = σmvm(y)

where σm is given by (18) and um(y), vm(y) are defined in (19). Applying the
connection (43), we obtain

2α−1/2(1 + x)1−αIα
0+um(x) = σmvm

(
1− x

1 + x

)

12



or
Iα
0+u∗m(x) = σmv#

m(x) (46)

where

v#
m(x) =

(1 + x)2α

2α
v∗m(x).

Here the sequence {um(x)} is an orthonormal basis in the space
L2

(
R1

+; x−λ+1/2(1 + x)2α
)

by Lemma 5. The orthogonality also holds for

v#
m(x) in L2

(
R1

+; x−λ−α+1/2
)

. Really,

∫ ∞

0

v#
k (x)v#

m(x)x−λ−α+1/2dx =

∫ 1

−1

vk(y)vm(y)

(
1− y

1 + y

)−λ+1/2

(1− y2)−αdy = δmk.

Then (46) means that
{σm, u∗m(x), v#

m(x)}
is a singular system for the operator (45). The direct calculation shows that
u∗m(x) and v#

m(x) coincide with functions given in (33)-(34). 2

P r o o f o f T h e o r e m 2 .
The proof of Theorem 2 is completely analogous to that of Theorem 1 :

we must
1) use the relation (41) = (43) to pass from the interval to the half-axis;
2) to apply then Theorem A for the half-axis and return back to the

interval by means of (8) , recalculating um(x) and vm(x) ;
3) to verify that the new constructed sequences um(x) and vm(x) are

really orthonormal in the corresponding spaces.

P r o o f o f T h e o r e m 3 .
We base the proof on the following two facts:
a) there exists an explicit relation between the Riesz potential (7) over

Rn and the similar spherical potential over Sn ⊂ Rn+1;
b) the L2(Sn)-basis of spherical harmonics is the set of eigen-functions of

the spherical potential operator.
The relation mentioned in a) is the following

13



∫

Sn

f(σ)dσ

|ξ − σ|n−α
= 2α(|x|2 + 1)

n−α
2

∫

Rn

f [s(y)]dy

|x− y|n−α(1 + |y|2)n+α
2

, (47)

where σ = s(y) is the stereographic projection (21) of Rn onto the unit
sphere Sn. The equality (47) immediately follows from (22)-(23) (see [15]
and references there).

As regards the fact b), it is given precisely by the relation

1

γn(α)

∫

Sn

Ym(σ)dσ

|ξ − σ|n−α
= λm Ym(ξ) , ξ ∈ Sn, (48)

where Ym(ξ) is an arbitrary spherical harmonic of order m and

λm =
Γ

(
m + n−α

2

)

Γ
(
m + n+α

2

) . (49)

The formula (48)-(49) is known: it can be found e.g. in [18] in a non-direct
form. We mention that this formula is a consequence of the Funk-Hekke
formula (25). Really, since

|ξ − σ|2 = 2(1− ξσ)

for ξ, σ ∈ Sn, the spherical potential operator, that is the left-hand side in
(47) , has the form (26) with

k(t) =
(1− t)

α−n
2

2
n−α

2 γn(α)
.

Then the Funk-Hekke formula (25) is applicable, which gives (48) and, to
obtain (49), it remains to calculate the integral (27) for the above kernel
k(t) :

λm =
21+α−n

2 π
n
2

Γ
(

n
2

)
γn(α)

(
m + n− 2

m

)
∫ 1

−1

(1−t)
α−2

2 (1+t)λ− 1
2 Cλ

m(t)dt , λ =
n− 1

2
,

which is known: ∫ 1

−1

(1 + t)β(1− t)λ− 1
2 Cλ

m(t)dt =

14



2β+λ+1/2Γ)β + 1)γ(λ + 1/2)Γ(2λ + m)Γ(β − λ + 3/2)

m!Γ(2λ)Γ(β − λ−m + 3/2)Γ(β + λ + m + 3/2)
,

see e.g. [8], 7.311.3. Hence, after easy calculations we arrive at (49).
Now, we use the relation (47) which allows to transform (48) to

2α

γn(α)

∫

Rn

Ym[s(y)]

(1 + |y|2)n+α
2

dy

|x− y|n−α
= λm

Ym[s(x)]

(1 + |x|2)n−α
2

.

This is valid for an arbitrary spherical harmonic Ym. We take in particular
basic harmonics and then this may be rewritten as

Iαumµ(x) =
λm

2α
vmµ(x)

with the functions from (37). These functions form basises in the spaces

L2(Rn; (1 + |x|2)α) , L2(Rn; (1 + |x|2)−α) , (50)

respectively. Checking that, for example, for the former of these spaces, by
(23) we have ∫

Rn

umµ(x)ukν(x)(1 + |x|2)αdx =

2n

∫

Rn

Ymµ[s(x)]Ykν [s(x)]

(1 + |x|2)n
dx =

∫

Sn

Ymµ(ξ)Ykν(ξ)dξ = δmµ,kν

where δmµ,kν = 1 if both m = k and µ = ν and δmµ,kν = 0 otherwise .
This gives the orthogonality condition. It remains to refer to the fact that
{Ymµ(σ)}µ=1,...,dn+1(m);m=0,1,2,... is a basis in L2(Sn) and so the functions (37)
form basis in the corresponding weighted spaces (50) as well.

Finally, it remains to observe that the operator Iα is bounded in the
setting (35) which follows from the relation (47) and boundedness of the
operator in the left hand side of (47) in the space L2(Sn). 2

P r o o f o f C o r o l l a r y 1
The operator Iα is bounded in the setting (38) by Lemma 4. So, we

should only calculate the functions Ymµ(x) in (37) , taking into account that
µ = 1, 2 in case n = 1. Evidently,

Ym1(x̃) |S1=
cos mθ√

2
, Ym2(x̃) |S1=

sin mθ√
2

, 0 < θ < 2π

15



for n + 1 = 2(x̃ = (x, x2) ∈ S1 = {x̃ ∈ R2 : x2 + x2
2 = 1}; θ = arccos x). Since

s(x̃) =

(
2x

1 + x2 + x2
2

,
x2 + x2

2 − 1

x2 + x2
2 + 1

)
,

we obtain

Ym1[s(x̃)] |x2=0=
1√
2
Tm

(
2x

1 + x2

)
,

Ym2[s(x̃)] |x2=0=
1√
2

1− x2

1 + x2
Um−1

(
2x

1 + x2

)
,

which proves the corollary.

P r o o f o f C o r o l l a r y 2 .
It is known ([19], Section 12 ) that the Riesz potential operator (5) and

the Liouville fractional integration operators (3)-(4) are connected with each
other by means of the relation

Iα
± = IαB± = B±Iα (51)

where
B± = cos

απ

2
E ∓ sin

απ

2
S ,

E being the identity operator and

Su =
1

π

∫ ∞

−∞

u(t)dt

t− x
.

It is well known that S2 = −E , see [13]. Then, evidently, the operators B±
are invertible and (B±)−1 = B∓, so that

Iα = BmIα
± (52)

We apply Proposition 1 (Section 1, no 4) to (51) and (52) and obtain

σm(Iα
±) ≤ c(α)σm(Iα) ,

σm(Iα) ≤ c(α)σm(Iα
±) ,

where c(α) = | cos απ
2
|+ | sin απ

2
|‖S‖L2(R1;(1+x2)α).

It remains to refer to the boundedness of the operator S in the weighted
spaces L2(R1; (1 + x2)±α) in case 0 < α < 1/2.
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P r o o f o f T h e o r e m 4 .
The following relation holds

∫ 1

−1

|x− y|α−1(1− y2)−
α
2 C

1−α
2

m (y)dy = σmC
1−α

2
m (x), |x| ≤ 1,

where 0 < α < 2, σm = 2Γ(α)Γ(m+1−α)
m! cos απ

2
, see [16 ] (where it is given in a non-

direct form). This may be rewritten as

Aαum = σm vm,

where um and vm are the functions given in (40). Both {um} and {vm} form
a basis in the corresponding space. This is checked directly due to the well
known orthogonality relations for the Gegenbauer polynomials. It remains
to refer to the boundedness of the operator Aα = Γ(α)(Iα

−1+ + Iα
1− in the

setting (39) which follows from Lemmas 1-2 in the case 0 < α < 1.

5. Returning to the Question.
Let us reformulate the Question put in Section 3 in the following form.
Given s ∈ (0, α] , does there exist a pair of Hilbert spaces U and V of

functions defined on [0, 1] or R1
+ such that singular values of the operator

Iα
0+ : U → V have the asymptotics

σm ∼ m−s ?

Naturally, in such a general setting this question is already very easy,
definitely having a positive answer. Really, admitting spaces U and V of
types completely independent of each other, we can always take the space V
with better smoothness properties, which will immediately diminish order of
decreasing of singular numbers. This is quite understandable in general, but
to be precise, we give below the exact statement (Theorem 5).

Let Hs = Hs(R1) = Hs,2(R1) be the well known Sobolev space of frac-
tional smoothness, known also as the space of Bessel potentials. It is defined
as the completion of C∞

0 with respect to the norm

‖u‖Hs = ‖u‖2 + ‖F−1(1 + |ξ|2)1/2Fu‖2 (53)

where F stands for the Fourier transform operator.

17



By Hs
0([0, 1]) we denote the space of restrictions of functions u(x) ∈

Hs(R1) onto [0,1] satisfying the conditions

u(k)(0) = 0, k = 0, 1, ..., [s− 1/2].

(H0
0 = L2).
Theorem 5. Given any s ∈ [0, α], s 6= α − 1/2, α − 3/2, ..., the singular

numbers of the operator

Iα
0+ : L2([0, 1]) → Hα−s

0 ([0, 1]) (54)

have the asymptotics σm ∼ m−s.
Proof. The key moment in the proof is in the following fact: if s 6=

1/2, 3/2, ..., [α − 1/2], the space Hs
0([0, 1]) coincides with the range Is

0+(L2)
of the fractional integration operator Is

0+ , considered in L2([0, 1]), up to
equivalence of the norm (53) to the natural norm in the range defined by

‖u‖Is
0+(L2) = ‖Ds

0+u‖L2 ,

where Dα
0+ is the fractional differentiation operator, left inverse to Iα

0+ (see
[19], Theorem 18.3 and Remark 18.1).

Therefore, the range Hα−s
0 ([0, 1]) used in (54) can be treated as a Hilbert

space with the scalar product

(u, v)V = (Dα−s
0+ u,Dα−s

0+ v)L2 . (55)

The operator Is
0+ : L2([0, 1]) → L2([0, 1]) is known to have the singular

system {σm, um, vm} with
σm ∼ m−s

and some {um(x)} and {vm(x)} :

Is
0+um(x) = σmvm(x).

Then we take Um(x) = um(x) , Vm(x) = Iα−s
0+ vm(x). Obviously,

Iα
0+Um(x) = σmVm(x)

and it remains to note that the sequence Vm(x) is orthonormal in Hα−s
0 with

respect to the scalar product (55). 2
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6. Further comments.
In view of Theorems 1 and 2 it is interesting to find whether there exist

weight function ρλ(x) and rλ(x) depending, say, on a parameter λ such that
the operator

Iα
0+ : L2 (Ω; ρλ(x)) → L2 (Ω; rλ(x)) (56)

has singular values with behaviour at infinity explicitly depending on the
parameter λ.

This remains open for the fractional integration operator . Lemma 6
below shows that such an effect happens for an integral operator of another
kind, with essentially better behaviour of the kernel. Anyhow, we find it
important to show that such things really may happen in principle.

Let us consider the example

Ku(x) =

∫ ∞

−∞
e−(x−y)2u(y)dy, x ∈ R1. (57)

Since the kernel e−x2
is infinitely differentiable, its s-numbers vanish at in-

finity more rapidly than any power. It is natural to expect that

σm ∼ qm (58)

for some q ∈ (0, 1). The following lemma shows that the number q determin-
ing the asymptotics (58), explicitly depends on the choice of weight functions.

We treat the operator (58) as

K : L2(R1; e−β2x2

) → L2(R1; e−γ2x2

) (59)

where β is an arbitrary number in (0,1) and γ = β
(1−β2)1/2 .

Lemma 6. The singular values of the operator (59) are equal to

σn = π1/2qn+1/2 (60)

where q = (1− β2)1/2 and

um(x) =

(
β

2mm!π1/2

)1/2

Hm(βx), (61)

vm(x) =
( γ

2mm!π1/2

)1/2

Hm(γx), (62)
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the Hn(x) being the Hermite polynomials.
Proof. The Hermite polynomials form an orthogonal basis in the space

L2(R1; e−x2
) :
∫ ∞

−∞
e−x2

Hk(x)Hm(x)dx = cmδmk , cm = 2mm!π1/2.

Hence it is easily derived that the sequences (61) - (62) are orthonormal
basises in the spaces L2(R1; e−β2x2

) and L2(R1; e−γ2x2
), respectively. So, it

remains to check the relation Kum = σmvm that is
∫ ∞

−∞
e−(x−y)2Hm(βy)dy = π1/2(1− β2)m/2Hm(γx) (63)

which is known, see [8], 7.374.8, but may be also checked directly. Really, we
may make use of the generating function for the Hermite polynomials:

e−t2+2ty =
∞∑

k=0

tk

k!
Hk(y) (64)

(see [8], 8.957.1). Replacing here y by αy , multiplying by e−(x−y)2 and
integrating and then using the generating series (64) again, we arrive at
(63). 2

Remark 4. It is well known that convolution operators with a summable
kernel definitely are not compact in Lp(R1), 1 ≤ p ≤ ∞, see e.g. [9]. Since
limn→∞σn = 0 if and only if an operator is compact ([4], p.62, Corollary
7.1), this means that the operator K in the setting (59) should be certainly
compact. The latter may be checked directly. Really, by Remark 2, the
setting (59) is equivalent to K1 : L2(R1) → L2(R1) for

K1u = e−
γ2x2

2

∫ ∞

−∞
e

β2t2

2 e−(x−t)2u(t)dt .

We transform K1 to

K1u = e−c2x2

∫ ∞

−∞
e−(bx−ay)2u(t)dt

with a = (1 − β2

2
)1/2, b = 1/a, c = β2 [2(1− β2)(2− β2)]

−1/2
. Then the

operator K1 is compact because of the factor e−c2x2
(see e.g. [9]).
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