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On the dependence of asymptotics of s-numbers
of fractional integration operators
on weight functions
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1. Introduction

In the recent paper [7] there was discovered the following effect : sin-
gular values of the Riemann-Liouville fractional integration operator IS :
Ly(RL,e7") — Lo(RY, x%e™") have the asymptotics
O ~ m—a/2
asm — 00 , not g, ~ m~“ as one could expect from the smoothing properties
of the operator I§ .

We show that this effect is not a result of non-compactness of R! : we
may have the same effect on a finite interval, and on the contrary, we may
have o, ~ m™ on R}F

We discuss some arising questions and give some extensions to the multi-
dimensional case, for the Riesz potential operator in weighted L?(R™)-spaces.
In case n = 1 we explicitely construct singular systems for the potential type
operator s, both over R! and over a finite interval. We give also some con-
clusions for the Liouville fractional integration operators over the whole real
line as a corollary of our results for the potential type operator.

It should be noted that there exist many investigations on the asymp-
totics of singular numbers of integral operators. We refer for example to the
papers [1] - [3], where some powerful tools were developed for finding the
asymptotics of singular numbers of certain pseudo-differential operators of
general types. See also [14] where one can find results for the asymptotics
in case of fractional integration operators of order o > 1/2 with a certain
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type of a weight function, where a depende nce of the asymptotics On a
weight function is given in certain terms. We would like to emphasize that
because of the applied aspects of the considered operators we prefer to give
the direct construction of a sequence of s-numbers, not only its asympto tics,
together with the constructive realization of the ”singular value decomposi-
tion”. Besides, even in case of asymptotics, our weighted considerations are
not covered by the known results, up to our knowledge.

2. Preliminaries.

1). Fractional integral operators.

We use both the left- and right-sided Riemann-Liouville fractional inte-
grals

1 x
1% u() = m/ (x— 0 u()dt, x>a, a>0, (1)
1 b
I u(x) = m/x (t—z) ut)dt, r<b,a>0, (2)
and deal mainly with the cases a =0 or a = —1, and b= 1.

The corresponding Liouville fractional integrals on the whole real line R*
will be denoted as

u(z) = ﬁ /_Oo(:r; )t lu@)dt, xE€RY, a0,  (3)
Iu(z) = ﬁ /:o(t —z)* tu(t)dt, r€ R ,a>0, (4)

The one-dimensional (fractional) Riesz potential has the form

1 * uly) dy 1
1%y = , € R, a>0, 1,3,5,... . 5
" 2T (av) cos & /Oo |z — y|t-o ‘ “ a7 (5)

We shall also treat its modification for the finite interval
1
d
Aau:/ ) Ay (6)
=yl
The multidimensional version of the operator (5) is

1 d
Iy = / uy) Y zeR (7)
Yu(@) Jpn | —y|me
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where a > 0, #n,n+2,n+4,... and

( 2072 (%)
TlQ) = —/=m=ay
I'(3%)
is the normalizing constant for the Riesz potential, see [19] , section 25.2.
We shall consider the above operators within the frameworks of weighted
L?-spaces

226 p(e)) = { 1)+ [ 1f0)Potelds <

over the corresponding set {2 with some special types of weight functions
p(x).

2). On boundedness of fractional integration operators .

Lemma 1 . Let the real numbers p, v and vy satisfy the conditions p < 1
and vi = v —2«a if v —2a > —1 and vy > —1 if v — 2a < —1. Then the
operator Ig, s

bounded from L* ([0,1]; (1 — x)¥) into L* ([0, 1]; 2*72*(1 — z)"1).

Lemma 2. Let the real numbers u,p; and v satisfy the conditions
v<landp = p—2cif p—2a > —1 and py > —1 if p—2a < —1.
Then the operator 1?1 s bounded from L?*([—1,1]; (1 + 2)*(1 — x)") into
L2 (=11 (14 @) (1 — z)72)

Lemma 3. Let the real numbers p, v and vy satisfy the conditions pu < 1
and vy =vifu+v<1landv, >1—pif p+v > 1. Then the operator I§,
is bounded from L? (RY;2"(1+ x)") into L* (RY;a# (1 — z)"1) .

Lemma 4. The operators (8)-(5) are bounded from L*(R; (1 + 22)%)
into L2(RY; (14 2%)2) if 4 > 2a — 1 and v < min(u, 1) — 2a.

Lemmas 1 - 4 are particular cases of more general results on boundedness
of operators of fractional integration within the framework of LP-spaces with
power-type weights, see [19], Theorems 3.10 and 5.5. We also note that
Lemma 2 can be obtained from Lemma 1 by an obvious linear change of
variables, while Lemma 3 can be derived from Lemma 2 by means of the
connection (23)-(24) given below.

3). On mapping between the spaces on [—1,1] and R!.

Obviously, the involutive change of variables

11—z 1—vy
=Y, 7,7 =%
1+x 1+y

maps the half-axis R! onto [—1,1] and vice versa.
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We introduce the operator

1—2
M, = [f(2) = y(Q4az)" " : 9
fa) = £ = a7 (150) )
associated with the order « of fractional integration. The normalizing factor
’}/ _ 2u+r2/+1

is chosen to achieve isometry between weighted spaces considered in Lemma
4 below.

We note that the expression for the operator inverse to M, coincides with
the expression for M, up to a constant numerical factor :

M, f(x) = 207" Mo f(x) (10)

Lemma 5. Let p,v and « be arbitrary real numbers. Then the operator
M, maps the space L* ([—1,1]; (1 4+ y)*(1 — y)*) onto L* (RY; 2" (1 + z)**~+~")
preserving the scalar product:

[ s o= [ e,

Remark 1. In view of (1)-(3) we also have the relation

/_ ) fi@) fal@)a” (La)?ede = 2207 /_ 1 i) f5(y)(+y)*(1—y)"dy

4). Singular numbers.

We recall the essentials of the theory of singular numbers of compact
linear operators (see details in [4]). Let U and V be infinite-dimensional
Hilbert spaces. If A : U — V is an injective compact linear operator, then
there exist

(i) an orthonormal basis {u;};en, in U ;

(ii) an orthonormal system {v;}en, in V' ;

(ili) a nonincreasing sequence {o;};en, of positive numbers with limit 0
as j — oo , such that

AU]' = 0;,Vj, j S No.

The numbers o; are known as singular numbers or s-numbers of the op-
erator A and the system {c;,u;,v;},en, is called a singular system for the
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operator A (in view of what is discussed in the paper, it is appropriate to

refer to {o;, u;, v;}jen, as a singular system not for the operator A only, but

for the operator A and a given pair U and V' of the spaces involved.
Remark 2. We note that for any operator A the setting

A L p(x) — LH(Q;9(x))

with a singular system {o,,, u,, v, } is equivalent to the setting
Ay =2 Ap e [A(Q) — L*(9Q)

with the system {o,,, cp%um,1/1%vm}.

Proposition 1 ([4] , p.27) . For any bounded linear operator B : U — U
or B:V =V,

om(AB) < [|Blly om(A),
om(BA) < [|Bllv om(A),
respectively.
In the following theorems , obtained in [7], C}(x), P%#(x) and LY ()

are the standard notations, see e.g. [8] , for the Gegenbauer, Jacobi and
Laguerre polynomials correspondingly and

22—1 171/2
o - [2 (m—l—)\)m} i

2172 (m + N)m!T(m + 2)) 1/2
7l(m + 2)) )

)o bm = {F(m+)\—04+1/2)r(m+)‘+a+1/2

W m| K. _< L(m+B+1) >1/2
m(F(ﬂ+m+1)) P \I(m+a+8+1)

Theorem A [7] . Let A\ > a—1/2,a > 0, # 0. Then the operator

%y, : L2 ([—171]; (L_ri)Am) — L? <[—1,1]; G;i)Am (1- :c%“")

(11)

has the following singular system:

T M — 1/2)1Y2
Um:{ (m + o+ /)} .

I'm+A+a+1/2) (12)
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um($) — am(l“'l‘))\_lﬂcﬁ\n(l‘) ’ Um(I‘) — bm(1+$)OH_)\_1/2P7(n>\_a_1/2’>\+a_1/2)([L') ]

(13)
Theorem B [7] . Let 8 > —1 and o > 0. Then the operator
I§y : LR a™Pe™) — LA(Ry; 27 Pe™) (14)
has the following singular system
r 1) 1Y
O_m: |: (m+5+ ) :| Nm_a/2, (15)
'm+a+6+1)
Up (1) = Az L (z) | v (2) = Bra®PLEH8) (1) (16)

As a corollary of Theorem A we also have the following theorem for the
adjoint operator

I u(z) = ﬁ / (t— )" Yu(t)dt , z<1.

Theorem A/ . Let A > a —1/2,a > 0,\ # 0. Then the operator

I r ([—1,1]; G;i)l/H) — L ([—1,1]; G;i)m_ku—ﬁ)—a)

(17)

has the following singular system:

C[Dm+x—a+1/2)]"77 .
Um_{mm+A+a+Um} mme (18)

Um($) _ am(l_m)/\—l/QCT)\n(l,) 7 Um($) — bm(l—I’)OH_)\_1/2P751>\_a_1/2’/\_a_1/2) ($) ]

(19)
To derive Theorem A’ from Theorem A it is sufficient to remark that
I =QIr*,Q (20)

where Qu(z) = u(—x) and note that

Ch(=a) = (“1)"Ch(a) , P2 (=a) = (~1)" P2 (a)

5). Stereographic projection.



We consider the Euclidean space R" imbedded into R™*! | identifying
R" with the hyperplane {z € R"™ : z,.; = 0}. The change of variables in
Rt

é: S(CL’) - {Sl(x>7 "'7Sn+1(‘r)}7

21y, lz|? -1
2T p 1 n sp(r) = 21
5k<x) 1+ |.T|2’ yeey Ty S +1(.CC) |.I’|2—|— 1 ( )
where © = (71, ...,2p41) € R 2] = (23 + ... + 22,,)Y/?, generates the

mapping known as the stereographic projection. It maps the subspace R™
one-to-one onto the unit sphere S C R"*!, S" = {{ € R" : 4. +&2,, =
1}, where by R™ we denote the complementation of the Euclidean space R
by a single infinite point. It is known [11] that the following relations hold

2|z — y|
—o| = 22
£l = TR e .
2™ dy
do=———2 2
o )

where &£ = s(z), 0 =s(y), z,y € R".

6). Spherical harmonics.

We refer e.g. to [12],[20] for harmonic analysis on S™ and recall only
some notations and the Funk-Hekke formula . By Y,,(0),0 € S™, we denote
an arbitrary spherical harmonic of order m , that is, the restriction of a ny
homogeneous harmonic polynomial in R"*! onto S™. The space H,, of all
such harmonics has a dimension

n—|—2m—1<m+n—1>

dn+1(m) = (24)

n+m-—1 m

Let{YmH}M:]. ..... dn+1(
that the sequence

my be an orthonormal basis in H,, . It is known ([12],[20])

is a basis in L?(S™).
The formula

/n k(&o)Yy(o)do = N\pYin (&), €€ 5™, (25)



known as the Funk-Hekke formula [9], states that an arbitrary spherical
harmonic Y;,(§) is an eigen-function for any operator K , defined as

Ku — /S k(o)ulo)do € € 5", (26)

with the kernel depending only on the scalar product {o. In (25)

- (minn12)/ll(1t2)’310,;(t)k<t)dt (27)

m

where A = 21, C7 (t) is the Gegenbauer polynomial and [S™~!| is the surface

area of the unit sphere in R™ | |S"7!| = %
2

3. Statements and comments

Theorems 1 and 2 below show that the effect of o, ~ m~ is not a
result of the consideration of the non-compact set R. instead of a compact
interval. We show that the same operator I, has different asymptotics of
s-numbers in two different settings on a finite interval:

a/2

Ig o L0, 1); pr(@) — LX([0,1]sm1(2) , o ~m™", (28)

Ig + L*([0,1]; pa(x)) — L2([0, s ra(2)) , 0 ~m /2 (29)

The case (28) is contained in Theorem A | while the case (29) is covered by
Theorem 2 below.
Similarly, we may have both situations on the half-axis R} :

Iy - LQ(R}HSOl(m)) - LQ(R-lﬁwl(x)) ;O ~m (30)

I§ : LX(Ry;a(w) — L*(RY;4(2)) , 0 ~m™, (31)
the case (31) being contained in Theorem B , while the case (30) is covered
by Theorem 1 below.

Theorem 1 . The asymptotics o, ~ m~ takes place for the operator
I¢ ,a >0, on the half-azis R in the setting (30) under the following choice
of the weight-functions:

pr(z) =23 N1+ 2)% () = 2720, (32)
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where A > a — 1/2, X # 0. The singular system is given by the same o, as
in (12) and

11—z
" — 2)\ " A—1/2 1 —)x-Oé—l/QC)\ 33
() = a0 ey (120)

() = 2,\bmx/\+a—1/2(1 4 I)—A—a—B/ZPY(n)\—a—l/Z)\—&-a—1/2) <i —T_ i) (34)

Theorem 2 . The asymptotics o,, ~ m~*? takes place for the operator

I¢, a0 > 0, on the interval [—1,1] in the setting (29) under the following
choice of the weight-functions:

14z

pa() = (1+2) (1= 2)2 e 5, ro() = (1+2) 7721 — )% 1,

where 3 > —1. The singular system is given vy the same o, as in (15) and

1
() = 22 A0 (14 )’ (1 — )= 'L (—1 - i) ,

1
Um($) — 21/QBm(1 + :L')a+ﬁ(1 _ w)fﬁflLfﬂgHrﬂ) (1 i— i)

Theorems 1 and 2 lead to the following Question:

Question. Given s € (0,al, does there exist a pair of weight functions
p(x) and r(z) , such that s-numbers of the operator

Iy o L*(Qp(2) — L2(Qr(x))
with Q@ = [0,1] or Q = R have the asymptotic

Om ~m~—° 7

Because of Theorems 1 and 2, Question seems to be especially natural for
values s € [a/2,a].

In Theorem 3 below we give some version of Theorem 1 for the multidi-
mensional Riesz potential operator (7) using the notation & = (z,x,.1) €
R where # € R", and s(%) for the stereographic projection in the Eu-
clidean space R"™! | which maps the hyperplane R" = {# € R""! : z,,,, =
0}, onto the unit sphere S™ C R"™ | see (21). By Y,,,.(£),& € S™, we denote
basic spherical harmonics (see Section 1, no 6).).
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Theorem 3. The operator

I L*(RY (14 |z[)*) = L2 (R (1 + [2]*) ™), a > 0, # n,n+2,n+4, ...,

(35)
has singular values
1 I'(m+ %52)
M= 2 1 e 36
g 20 T (m + 22) m (36)
and a singular system is {0, U, (), Uy (z)} with
25 Y, () 25 Y, ()
() = ) @)= D) (g
(14 [af?) " (14 [x]?) "2

pw=12..d,1(m);m=0,1,2,..

where Y,,,,,(2) = Yiuu[$(2)] |ons1=0 -
Corollary 1 (of Theorem 3) . The one-dimensional Riesz potential
(5) in the setting

I*: LRy (1+2%)%) — LR (1+2°) 0 < a< 1, (38))

has a singular system {0, Umu, Vmp}u=1,2:meN, Where o, is given by (36)
with n =1 and
2 2
Tm (1+§2) Tm (1+§2)

Ui\ L) = ——— 70 ) Uni\T) = ———,
1(#) (14 22)" /(%) (14 22)2"

where m = 0, 1,2, ... and

1 — Um, 2_x2 1 — x? Umf 2_:162
Um2(2) = ( =) 13+(a1+x ) , Uma() = ( il - (Hx )

(14a2)"" (1422)7"

where m = 1,2,... , T,,,(x) and U™(x) being the Chebyshev polynomials of
the 1st and 2nd kind, respectively.

Remark 3. According to the above corollary the singular system is found
explicitely in the one -dimensional case in terms of Chebyshev polynomials.
If n > 1, the functions Y,,,(z),z € S", we use in (37) can be only described
as restrictions of basic harmonic homogeneous polynomials Y, (%), Z € R"*!
onto S™. In this connection we refer to the paper [17] where there is given a
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criterion, in terms of coefficients, for an arbitrary homogeneous polynomial
> |jl=m @57 to be harmonic.

Corollary 2 (of Theorem 3) . Let 0 < o < 1/2. The singular values of
the Liouville fractional integration operators (3)-(4) considered in the setting

(38) , have the asymptotics o, ~ m™.
Theorem 4. The potential-type operator (6) in the setting

A" L ([-1,1; (1 —2%)*) — L ([-1,1; 1 — 2*) ™), (39)

0 < a <1, has the singular system {0, Um, Vm }meNg With

ml(m+1—«) 1
Om = N ~
m!sin FT(1 - a) me
and . -
U (2) = (1 — 23 72CL? (1), vp(x) = cnCn? (z) (40)

1
o (m(n+52) 2 .
with ¢, =T (152) 272 (%) LLCM(@), A = 15¢, being the Gegenbauer

polynomials.

4. Proofs of Theorems.

Proof of Theorem 1.

Naturally, we base our proof on reduction to Theorem As . Therefore,
we use the change of variables (8) and the mapping operator (9) to reduce
the case of the half-axis R} to the case of the interval [-1,1] and then apply
Theorem A7 . By (1) we have

/OI( wOdt_ _ gary 4 yice / (u(;—) dr (41)

T — t)lfa 1 + 7—)1+a (7— _ y)lfa

with y = ;—i This relation is crucial for our purposes (compare with the

relation (5.33) in [19]).
Because of Theorem A/ we choose the space

2 <[—1,1]; G;i)l/H>
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for functions on [-1,1] . So, we base our consideration on Lemma 5 with
i = —v =\—1/2. For the mapping (9), by Lemma 5 we see that

w(r) = 2Y2(1 + 7)1y G J_r :) e L? ([—1, 1; G J—r :)”2A> (42)

if u(z) € L* (RL;27*/2(1 + 2)*) . In terms of the mapping (9) the relation
(41) can be represented as

I§u(z) = 2272 (14 ) eI ur (y), (43)

which can be also given symmetrically as
IFo(y) = 22721+ a) 0 Ig, 0" (2). (44)

The latter can be verified directly in view of (10).
To apply Theorem A/ , we must be sure that our consideration of the
operator [§, as

I, o L (R}r; M2 4 I)Qa) — L2 (Ri; x_’\_‘”l/z) (45)
exactly corresponds to the setting (17) of the operator I;_ in Theorem Av.
(We note that the consideration (17) under the condition A > o — 1/2 is in

accordance with Lemma 2 . (Lemma 2 gives even a stronger assertion).
Checking this correspondence , in view of (43) we have:

< a— > —ayo % 2 A« 1/2
5 e = 272 [0t ]y o e
0

1/2

1+x
1 1_y —A—a+1/2
= 2@ / L+y) I u*(y 2(—) dy
s (172

= 29w (y) ]

L2 [1a( 55 (1-y?)=e

—y\ A1/
=)

Then, by Theorem A/ we have

Lum(y) = Omm(y)

where 0, is given by (18) and u,,(y), v, (y) are defined in (19). Applying the
connection (43), we obtain

1—
20712 (1 4 1) I (%) = TV (1 n z)
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or

1§y uy, () = ool (2) (46)
where a )2
+x)™
v o) = S @),

Here the sequence {u,,(z)} is an orthonormal basis in the space
L? (RY; 27 */2(1 4 z)**) by Lemma 5. The orthogonality also holds for
v (z) in L* (RL;27*72%1/2) | Really,

/ off (x)of (x) a0 24y =
0

/_ 1 U (Y)om (y) (ﬂ) o (1 —y*) " dy = S

1 I+y

Then (46) means that
{Om: ur (@), 07 ()}

is a singular system for the operator (45). The direct calculation shows that
*

u’, (z) and v (z) coincide with functions given in (33)-(34). O

m

Proof of Theorem 2.

The proof of Theorem 2 is completely analogous to that of Theorem 1 :
we must

1) use the relation (41) = (43) to pass from the interval to the half-axis;

2) to apply then Theorem A for the half-axis and return back to the
interval by means of (8) , recalculating u,,(z) and v,,(x) ;

3) to verify that the new constructed sequences u,,(z) and v, (z) are
really orthonormal in the corresponding spaces.

Proof of Theorem 3.

We base the proof on the following two facts:

a) there exists an explicit relation between the Riesz potential (7) over
R™ and the similar spherical potential over S™ C R"*!;

b) the L?(S™)-basis of spherical harmonics is the set of eigen-functions of
the spherical potential operator.

The relation mentioned in a) is the following
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/ f(O')dO’ — 2a(|56|2 + 1)”2‘1/ f[S(y)]dy (47>
S R

n [ —are oz — g1+ |yf2) "5

where 0 = s(y) is the stereographic projection (21) of R™ onto the unit
sphere S™. The equality (47) immediately follows from (22)-(23) (see [15]
and references there).

As regards the fact b), it is given precisely by the relation

1 / Y, (o)do
= An Yu(&), £€ 5", 48
30(@) Jou TE— ol © o
where Y,,,(§) is an arbitrary spherical harmonic of order m and
I'(m+ %=
s "
(m +232)

The formula (48)-(49) is known: it can be found e.g. in [18] in a non-direct
form. We mention that this formula is a consequence of the Funk-Hekke
formula (25). Really, since

€ —ol* =2(1 - ¢0)

for £,0 € S™, the spherical potential operator, that is the left-hand side in
(47) , has the form (26) with

(1=t
2%t '

k(t
) Y ()

Then the Funk-Hekke formula (25) is applicable, which gives (48) and, to
obtain (49), it remains to calculate the integral (27) for the above kernel
k(t) :

-2 1 n

gl+ogn 2 1 P NS —1
A = (1) (L) ECA0dt, A ="~
m+n—2 > _

1 2



202V 3 4+ 1)y (A + 1/2)T (2N + m)T(B — A + 3/2)
mICRNL(B—A—m+3/2)T(B+ X X+m+3/2)
see e.g. [8], 7.311.3. Hence, after easy calculations we arrive at (49).
Now, we use the relation (47) which allows to transform (48) to

2¢ Yiuls(y)] dy _ Yin[s(2)]
Jo e

V@) Jrn (14 [y)2)" = lo —ylm=e T4 f2f2) 5

This is valid for an arbitrary spherical harmonic Y,,. We take in particular
basic harmonics and then this may be rewritten as

o /\m
It () = S0 (2)

with the functions from (37). These functions form basises in the spaces
LA(R™ (1+ o)), LA(R™ (1+ |2)7) (50)

respectively. Checking that, for example, for the former of these spaces, by
(23) we have

/n Uy (2) gy, (2) (1 + |2]?)*da =

n [ Youls(@)]Yi[s(z)] _
2 /n 1+ |z2) dr = /n Yo (§) Yo (§)dE = iy

where 0y = 1 if both m = k and ¢ = v and 6,0, = 0 otherwise .
This gives the orthogonality condition. It remains to refer to the fact that

77777

form basis in the corresponding weighted spaces (50) as well.

Finally, it remains to observe that the operator I* is bounded in the
setting (35) which follows from the relation (47) and boundedness of the
operator in the left hand side of (47) in the space L*(S™). O

Proof of Corollary 1

The operator I® is bounded in the setting (38) by Lemma 4. So, we
should only calculate the functions Y;,,(x) in (37) , taking into account that
u=1,2in case n = 1. Evidently,

cosmb sin mo

Yo (2) |s1= NG v Yoa(2) [s1= NG

, 0< 0 <2
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forn+1=2(& = (r,25) € S' ={& € R?: 2> + 23 = 1};0 = arccos z). Since

S(j):( 2 x2+x§—1)7

T+a2+a22 22+ 22 +1

Yo [5(8)] ouco— %Tm (%) ,

~ 11— 22 2x
Ym2[5($)] |$2:0: EmUmq (m) )

which proves the corollary.

we obtain

Proof of Corollary 2.

It is known ([19], Section 12 ) that the Riesz potential operator (5) and
the Liouville fractional integration operators (3)-(4) are connected with each
other by means of the relation

I$ = I°By = B.I* (51)

where o o
Bi:COST E F sinT S,

E being the identity operator and

Sy — l/‘x’ u(t)dt'

™ t—=x

[e.o]

It is well known that S? = —E | see [13]. Then, evidently, the operators By
are invertible and (B1)™! = Bz, so that

[* = B,I¢ (52)
We apply Proposition 1 (Section 1, no 4) to (51) and (52) and obtain
om(1E) < cla)om(I%) ,

Um([a) < C(O‘)Um(]i) y

where c(a) = | cos G| + | sin G |||S|| L2(r1;(1402))-
It remains to refer to the boundedness of the operator .S in the weighted
spaces L2(RY; (1 + 2%)*) in case 0 < a < 1/2.
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Proof of Theorem 4.
The following relation holds

1 “ 1-a 1—a
/ 2 —y* (1 —y*) 20 (y)dy = 0,Ci® (2), |z| <1,

1

9T () (m+1— o .
%, see [16 | (where it is given in a non-
: 2

where 0 < a < 2,0, =

direct form). This may be rewritten as
A%Uy = Om U,

where u,, and v, are the functions given in (40). Both {u,,} and {v,,} form
a basis in the corresponding space. This is checked directly due to the well
known orthogonality relations for the Gegenbauer polynomials. It remains
to refer to the boundedness of the operator A% = I'(a)(/%,, + I{_ in the
setting (39) which follows from Lemmas 1-2 in the case 0 < o < 1.

5. Returning to the Question.

Let us reformulate the Question put in Section 3 in the following form.

Given s € (0,a] , does there exist a pair of Hilbert spaces U and V' of
functions defined on [0,1] or RY such that singular values of the operator
I§, U — V have the asymptotics

O ~ m % 7

Naturally, in such a general setting this question is already very easy,
definitely having a positive answer. Really, admitting spaces U and V' of
types completely independent of each other, we can always take the space V
with better smoothness properties, which will immediately diminish order of
decreasing of singular numbers. This is quite understandable in general, but
to be precise, we give below the exact statement (Theorem 5).

Let H® = H*(R') = H**(R') be the well known Sobolev space of frac-
tional smoothness, known also as the space of Bessel potentials. It is defined
as the completion of C§° with respect to the norm

el = Hlullz + 171+ €% 2 Fullz (53)

where F' stands for the Fourier transform operator.
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By H§([0,1]) we denote the space of restrictions of functions wu(z) €
H*(R") onto [0,1] satisfying the conditions

u®(0)=0, k=0,1,...[s — 1/2].

(HY = L?).
Theorem 5. Given any s € [0,a],s # o — 1/2,a0 — 3/2, ..., the singular
numbers of the operator

Igy + L*([0,1]) — H§ ([0, 1]) (54)
have the asymptotics o, ~ m™°.

Proof. The key moment in the proof is in the following fact: if s #
1/2,3/2,...,[a — 1/2], the space H([0,1]) coincides with the range I§, (L?)
of the fractional integration operator I3, , considered in L*([0,1]), up to
equivalence of the norm (53) to the natural norm in the range defined by

| Ig, (L2) = ”DSJrUHLQv

where Df, is the fractional differentiation operator, left inverse to If, (see
[19], Theorem 18.3 and Remark 18.1).

Therefore, the range H{*(]0, 1]) used in (54) can be treated as a Hilbert
space with the scalar product

(u, v)v = (Dgs"u, D5 *v) 2. (55)

The operator I, : L*([0,1]) — L?*([0,1]) is known to have the singular
system { o, U, U } With

and some {u,,(z)} and {v,,(z)} :
IS um(x) = 0pum ().
Then we take Uy, () = um(z) , Vin(x) = 157 *vm (). Obviously,
I§ U (x) = 00, Vin(2)
and it remains to note that the sequence V,,,(x) is orthonormal in H§™* with

respect to the scalar product (55). O
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6. Further comments.
In view of Theorems 1 and 2 it is interesting to find whether there exist
weight function p,(x) and ry(z) depending, say, on a parameter A such that

the operator
I8, o LP (5 pa(z) — L2 (5 ra(2)) (56)

has singular values with behaviour at infinity explicitly depending on the
parameter \.

This remains open for the fractional integration operator . Lemma 6
below shows that such an effect happens for an integral operator of another
kind, with essentially better behaviour of the kernel. Anyhow, we find it
important to show that such things really may happen in principle.

Let us consider the example

Ku(z) = / e~ u(y)dy, = € R (57)

o0

Since the kernel e~ is infinitely differentiable, its s-numbers vanish at in-

finity more rapidly than any power. It is natural to expect that
Om ~ q" (58)

for some ¢ € (0,1). The following lemma shows that the number ¢ determin-
ing the asymptotics (58), explicitly depends on the choice of weight functions.
We treat the operator (58) as

K : L¥(RY%e ™) — L}(RY e ™) (59)

where (3 is an arbitrary number in (0,1) and vy = W
Lemma 6. The singular values of the operator (59) are equal to

g, = 7T1/2qn+1/2 (60)

where ¢ = (1 — 32)'/2 and



the H,(x) being the Hermite polynomials.
Proof. The Hermite polynomials form an orthogonal basis in the space
L2(R';e ") :

/ e_rZHk(x)Hm(x)dx = CoOmk 5 Cm = 2™mlT/?,
Hence it is easily derived that the sequences (61) - (62) are orthonormal
basises in the spaces L2(R';e ") and L2(R';e~7"""), respectively. So, it
remains to check the relation Ku,, = 0,,v,, that is

/ e_(x_y)QHm(ﬁy)dy = 721 = B> H,,(yx) (63)
which is known, see [8], 7.374.8, but may be also checked directly. Really, we
may make use of the generating function for the Hermite polynomials:

67t2+2ty — _Hk<y) (64)

(see [8], 8.957.1). Replacing here y by ay , multiplying by e~ @ %* and
integrating and then using the generating series (64) again, we arrive at
(63). O

Remark 4. It is well known that convolution operators with a summable
kernel definitely are not compact in LP(R'),;1 < p < oo, see e.g. [9]. Since
limy—oo0n, = 0 if and only if an operator is compact ([4], p.62, Corollary
7.1), this means that the operator K in the setting (59) should be certainly
compact. The latter may be checked directly. Really, by Remark 2, the
setting (59) is equivalent to K; : L*(R') — L*(R') for

2,2 o0 52,2
Kiu=e 2 / eﬁTte_(x_t)Qu(t)dt :

o0

We transform K to

Kyu = eCQxQ/ e e =)y (1) dt

o0

with a = (1 — %2)1/2, b=1/a, c = (221 - p*)(2 —ﬁQ)]_1/2. Then the
operator K is compact because of the factor e=<*" (see e.g. [9]).
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