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I. Introduction

There are known several approaches in fractional calculus to the definition of fractional
integration and differentiation of functions on Rn . One of these approaches deals with
complex powers [P (D)]α, where P (D) is a partial differential operator in Rn with constant
coefficients (see,for example, the books [37] and [38]). In this survey we treat fractional
integrals and derivatives in just the same way. We consider complex powers of second
order differential operators of the form

−∆x′ + c · D, D =

(
∂

∂x1

, . . . ,
∂

∂xn

)
, (1.1)

where
c ∈ Cn, x′ = (x1, . . . , xk), k ≤ n− 1 .

The class of the operators (1.1) contains in particular examples of such operators as
hypoelliptic operators and generalized Schrödinger operators, which are known to be of
essentially different nature. Negative (<α < 0) powers of these operators are realized as
potentials, positive powers - inverse to negative- as approximative inverse operators (AIO),
within the framework of the spaces Lp(R

n), which can be represented as hypersingular
integrals (HSI) in case of nice functions.

We also consider some other problems of potential theory, such as Lp → Lq−estimates
for potentials with oscillating kernels or symbols. It should be noted that we deal with
potentials, having ”bad” properties of their kernels and (or) symbols. Their kernels
have singularities, ”spread” over hyperplanes or spheres (which may be even locally non-
integrable). Their symbols degenerate on different sets in Rn (in the most general case -
on a set of null measure in Rn ) or have singularities, ”spread” over spheres, paraboloids
and other sets. Such ”bad” properties of kernels and symbols produce natural difficulties
in the investigation of these potentials.

We observe that the previous surveys [35] and [21] covered, in particular, investiga-
tions of complex powers of some special differential operators (in particular, the classical
operators of mathematical physics). In these surveys some applications of HSI and AIO
to the inversion of potential-type operators were also given.

The main results covered in this survey were obtained during the last three years in
the research group, guided by the second author at the Rostov State University.



II. Complex powers of second order differential

operators with complex coefficients in lower

In the papers [1],[2] (see also [21]) complex powers of the operators

−∆ + c · D, c ∈ Cn (2.1)

within the framework of the space Lp ≡ Lp(R
n) were investigated. In this Section we deal

with complex powers of the operator (1.1), which is more difficult in comparison with the
operator (2.1), especially when c = ib, b ∈ Rn.

Negative powers Iα
c of the operator (1.1) are defined on nice function ϕ(x) via Fourier

transforms as follows:

(FIα
c ϕ)(ξ) : =

(
|ξ′|2 − ic · ξ

)−α
2 (Fϕ)(ξ), <α > 0 . (2.2)

We realize the operator Iα
c as a potential with explicitly written kernels and treat negative

powers
(−∆x′ + c · D)−

α
2

as these potential-type convolution operators within the framework of Lp-spaces.
We start with the case c ∈ Rn.

2.1. Complex powers of hypoelliptic operators in Lp-spaces

We assume that c ∈ Rn, cn 6= 0 (the case cn = 0 reduces to the case of elliptic
operators (2.1) in Rn−1). Let <α > 0,

kα
c (x) =

21−nπ
1−n

2

Γ(α
2
)|cn|

(
xn

cn

)α−n−1
2

exp

(
x′ · c′

2
− |x′|2

4

cn

xn

− |c′|2

4

xn

cn

)
(2.3)

if xn

cn
> 0 and

kα
c (x) = 0

if xn

cn
≤ 0. Then

(Iα
c ϕ)(x) =

∫
Rn

kα
c (t)ϕ(x− t)dt (2.4)

for nice function ϕ(x). The convolution operator (2.4) is defined on functions ϕ(x) in Lp

for 0 < <α < n + 1, 1 ≤ p < n+1
<α

and is bounded from Lp into Lq, q = (n+1)p
n+1−p<α

if

1 < p < n+1
<α

(see [3] and [5]).
Within the framework of the method of AIO, positive powers of the operator (1.1)

were realized in [3] and [5] as follows. Let

Dα
c,εf = hα

c,ε ∗ f , (2.5)

where

hα
c,ε(x) = F−1

[(
|ξ′|2 − ic · ξ

)α
2

(
c · ξ

c · ξ + iε

)m

exp (−ε|ξ|2)
]

(x) (2.6)
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m = 0 if 1 < <α < n + 1 or 0 < <α ≤ 1, 1 < p < 2(n+1)
2<α+n+1

and m = 1 if 0 < <α ≤
1, 2(n+1)

2<α+n+1
< p < (n+1)

<α
.

Theorem 2.1. ([3],[5]) Let 0 < <α < n + 1, f = Iα
c ϕ, ϕ ∈ Lp, 1 ≤ p < (n+1)

<α
.

Then
Dα

c Iα
c ϕ = ϕ ,

where

Dα
c f =

(Lp)

lim
ε→0

Dα
c,εf (2.7)

The relation (2.7) is also valid with the almost everywhere limit. Moreover,

Iα
c (Lp) =

{
f : f ∈ Lq, Dα

c f ∈ Lp, 1 < p <
(n + 1)

<α
, q =

(n + 1)p

n + 1− p<α

}
This theorem gives an explicit expression for positive powers of the operator (2.1),

within the framework of Lp-spaces, as well as a description of domains of these powers.
It was also generalized in [3] and [5] to the case of an arbitrary second order hypoelliptic
operator in Rn with real coefficients.

2.2. Complex powers of some strongly degenerating
second order differential operators with real coefficients

Potentials realizing negative powers of the operator (1.1) may be reduced, in the case
k < n − 1, c ∈ Rn, to the known ones (in Rk+1 or Rk ) . In the case c′′ 6= 0, c′′ =
(ck+1, . . . , cn), the operator Iα

c may be written in the form

(Iα
c ϕ) (x) = U−1Iα,k

(U−1c)′∗, x′∗
Uϕ(x), (2.8)

where x′∗ = (x1, . . . , xk+1), Iα,k
a′∗,x′∗

is the operator (2.4) in Rk+1 , applied in the variable
x′∗, U is a rotation in Rn such that Uc = (c1, . . . , ck, |c′′|, 0, . . . , 0)

If c′′ = 0 then
(Iα

c ϕ) (x) = Jα,k
c′ ϕ(·, x′′)(x′), (2.9)

where Jα,k
c′ is a partial potentials in Rk, realizing negative powers of the operator (2.1)

and applied in the variable x′, see [1] and [2] for the explicit form of these potentials.
Using the results of the papers [1] and [2] and Theorem 2.1, one can construct the

inversion of potential Iα
c (on the basis of (2.8), (2.9) ) and describe its range (see [4] for

details).

2.3. The case c ∈ Cn, k = n− 1

Passing to the case of complex coefficients in lower terms, we consider here only the
most interesting situations (see [6] for other cases).

Let us consider the case <cn 6= 0 at first. The kernel kα
c (x) of the potential Iα

c ,
realizing negative powers of the operator (1.1), has the form (2.3) with

∑n−1
j=1 c2

j instead

of |c′|2 and
√

c2
n instead of |cn| if xn

<cn
> 0 and equals zero if xn

<cn
≤ 0 . The condition

=c = d <c for some d ∈ R1\{0} (2.10)
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appears here. If this condition fails, then the kernel kα
c (x) becomes non-integrable at

infinity with respect to any power q ≥ 1; in fact, it exponentially grows at infinity. In
accordance with (2.10) we consider the case c = λa, λ = 1 + id, d ∈ R1\{0}, a ∈
Rn, an 6= 0.

Let Dα
c,ε be the operator (2.5) with the kernel (2.6) in which the function

(
c·ξ

c·ξ+iε

)m

is

substituted by
(

a·ξ
a·ξ+iε

)m

with m = 0 if <α
2

> n − 1 and m > n − 1 − <α
2

if <α
2
≤ n − 1.

An explicit expression for positive powers of the operator (1.1) (within the framework of
Lp-spaces) may be obtained and the domains of these powers may be also described in
terms of the operator (2.7). The corresponding results are formulated in the same way as
in the case of hypoelliptic operators (see Theorem 2.1).

The most difficult is the case <cn = 0 with =cn 6= 0, which is essentially different
from the described above. Let Iα

c be the operator (2.4) with the kernel

kα
c (x) =


21−nπ

1−n
2 exp ( (n−α−1)πi

4 )
|=cn|

(
xn

=cn

)α−n−1
2

exp

(
x′·c′

2
− i |x

′|2
4

=cn

xn
−

∑n−1
j=1 c2j
4

xn

=cn

)
if

(
xn

=cn

)α−n−1
2

> 0

(2.11)

and kα
c (x) = 0 if

(
xn

=cn

)α−n−1
2

≤ 0 .

It is seen from (2.11) that kα
c (x) exponentially grows at infinity if <c′ 6= 0 . Therefore we

assume below that c = ib, b ∈ Rn, bn 6= 0.
For ω(x) in a special class of test functions (invariant for the operator Iα

ib ) it was
shown in [6] that

F(Iα
ibω)(ξ) =

(Fω)(ξ))

(|ξ′|2 + b · ξ + i0)
α
2

, <α > 0 . (2.12)

The potential Iα
ibω is interpreted in the ”usual” sense - as the integral (2.4) over Rn - if

<α > n−1 and in the sense of analytic continuation of the integral (2.4) if 0 < <α ≤ n−1
(see [6]). By virtue of (2.12) we conclude that the operators Iα

ib really realize negative
powers of the operator (1.1).

Inversion of the potential Iα
ibω, <α > 0, was constructed in [6] on nice functions ω(x)

in the form of the following HSI

(Dα
ibf)(x) =

1

dn,l(α)

∫
Rn

(∆l
yf)(x)k−α

ib (y)dy,

where

(∆l
yf)(x) =

l∑
j=0

cjf(x− ajy), a > 1

is the generalized difference of the function f(x) (see [6] for details).
The integral Iα

ibϕ does not converges, generally speaking, for ϕ ∈ Lp , so that the
potential f = Iα

ibϕ is treated in this case in the distributional sense, see [6]. A description
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of the range Iα
ib(Lp) seems to be a problem, but in [6] the authors succeeded to describe

the spaces Iα
ib(Lp)

⋂
Lr = Iα

p,r. We note that these spaces are some analogs of the spaces
Lα

p,r(R
n) of Riesz potentials, introduced and investigated in [28] and [29], see also [34],[37]

and [38].
To formulate one of the main results, presented in this survey, we denote

Dα
ibf =


(Lp)

lim
ε→0

(L2)

lim
δ→0

(
hα,n−1

ib,ε,δ ∗ f
)
(x) if 0 < <α < 2n, α 6= 2, 4, . . . , 2(n− 1)

(Lp)

lim
ε→0

(
hα,0

ib,ε,0 ∗ f
)
(x) if <α ≥ 2n, or α = 2, 4, . . . , 2(n− 1),

(2.13)

where

hα,θ
ib,ε,δ(x) = F−1

[
(|ξ′|2 + b · ξ + i0)

α
2 + θ

(|ξ′|2 + b · ξ + iδ)θ
exp (−ε|ξ|2)

]
(x) ,

θ =


n− 1 if 0 < <α < 2n, α 6= 2, 4, . . . , 2(n− 1)

0 if <α ≥ 2n, or α = 2, 4, . . . , 2(n− 1).

Theorem 2.2. ([6]) Let <α > 0, 1 ≤ p, r ≤ 2. Then
1) for f ∈ Iα

p,r with f = Iα
ibϕ, ϕ ∈ Lp, we have

Dα
ibf = ϕ,

where Dα
ib is the operator (2.13); the limit in Lp-norm in (2.13) may be also replaced by

the almost everywhere limit;
2) Iα

p,r = {f : f ∈ Lr, Dα
ibf ∈ Lp} , where Dα

ib is the operator (2.13).
We observe that the case c = (0, . . . , 0, i) (the case of Shrödinger operator) was con-

sidered in [22]. There is also the paper [23] in which the spaces of Lα
p,r−type , connected

with the wave and the Klein-Gordon-Fock operators were investigated (see also the survey
[21]).

III. Lp − Lq− estimates for potentials with

oscillating kernels or symbols

In this section we consider some potentials with oscillating kernels or symbols. Our goal
is to construct a convex set on the (1

p
, 1

q
)-plane such, that the corresponding potential

is bounded from Lp into Lq if the point (1
p
, 1

q
) belongs to this set. In some cases we

succeed to construct the L− characteristic of the potential under the consideration, that
is, we give an explicit description of all pairs (1

p
, 1

q
) for which the operator is bounded

from Lp into Lq. We note that construction of the L-characteristic of the potential is an
interesting and difficult problem itself. Also, knowledge of the L-characteristic is very
useful for description of ranges of potentials in non-elliptic case, see Subsection 4.4.
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3.1. Lp → Lq-estimates for Riesz-type potentials with oscillating characteristics

To formulate the corresponding result for the operator

(Kαf)(x) =

∫
Rn

ei|y|

|y|n−α
f(x− y)dy, 0 < α < n, n ≥ 2, (3.1)

we introduce the following notation:

L(A) =
{

(1
p
, 1

q
) ∈ [0, 1]× [0, 1] : ‖A‖Lp→Lq < ∞

}
;

(A, B, C, . . . , K) is an open polygon;
[A, B, C, . . . , K] is its closure;
(A, B) is an open interval;

a = 1− α
n
, b = 2n+α(n−1)

n(n+1)
, d =

1+2α−n−1
n+1

2
, e = 1− (1−α

n
)(n−1)

n+3
, k = n+3

2(n+1)
;

A′ = (1−a, 0), B′ = (1−a, 1− b), C ′ = (k, k), G′ = (1−a, 1−e), H ′ = (1−a, 1−a);
A = (1, a), B = (b, a), C = (1−k, 1−k), D = (d, 1−d), E = (1, 0), G = (e, a), H =
(a, a)

Theorem 3.1. ([24]) I. The following imbeddings are valid:

a) (A′, B′, B, A)
⋃

(A′, A′)
⋃
{D} ⊂ L(Kα) if n = 2,

1

2
≤ α < 2;

b) (A′, H ′, H,A)
⋃

(A′, A)
⋃

(H ′, H) ⊂ L(Kα) if n = 2, 0 < α <
1

2

or n = 3, 0 < α <
3

4
or n > 3, 0 < α <

n− 1

4
;

c) (A′, G′, G, A)
⋃

(A′, A) ⊂ L(Kα) if n ≥ 3,
n(n− 1)

2(n + 1)
≤ α <

n− 1

2
;

d) (A′, G′, D,G,A)
⋃

(A′, A) ⊂ L(Kα) if n ≥ 3,
n− 1

2
≤ α < n;

e) [A′, C ′, C,A]\({A′}
⋃
{A}) ⊂ L(Kα) if n > 3,

n− 1

4
≤ α <

n

n− 1
.

II. The set L(Kα) does not contain:
a) the points, lying on the segment [H, A] and above it;
b) the points, lying on the segment [A′, H ′] and to the left of it;
c) the points, lying above the straight line BB′, when n−1

2
< α < n;

d) the points, belonging to the set [A′, A,E]\(A′, A).
We observe that the study of Lp → Lq-boundedness of potentials with oscillating

kernels are at the very beginning. Besides the operator Kα, there were considered only
two classes of ”specific” oscillation, namely, generated by the Bessel function which give
the Bochner-Riesz means, see [8], and by the Hankel function producing the acoustic
potentials, see [20].

3.2. On the L-characteristic of some potentials with oscillating symbol

in this Subsection we construct the L-characteristic of the operator Aα with the symbol
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|ξ|−αexp (i|ξ|). This operator was realized in [43] on functions ϕ(x) ∈ Lp in the form

(Aαϕ)(x) =

∫
Rn

Ωα(|y|)ϕ(x− y)dy, (3.2)

n−1
2

< α < n. An explicit expression for the kernel Ωα(|y|) in terms of the Gauss
hypergeometric function is given in [43]. We only note that Ωα(|y|) is continuous in
Rn\Sn−1, where Sn−1 is the unit sphere in Rn, and

Ωα(|y|) ∼ c (1− |y|)α−n+1
2 ,

n− 1

2
< α <

n + 1

2
;

Ωα(|y|) ∼ c ln |1− |y||, α =
n + 1

2
for |y| → 1;

and
Ωα(|y|) ∼ c|y|α−n, for |y| → ∞ .

Theorem 3.2. ([10]) Let n−1
2

< α < n. The operator Aα is bounded:
a) from Lp into Lq, 1 < p ≤ q < ∞ if and only if 1

q
≤ 1

p
− α

n
and

1

p
+

1

q
≤ 1,

1

p
− n

q
≤ α− n− 1

2
or

1

p
+

1

q
≥ 1,

n

p
− 1

q
≤ α +

n− 1

2
;

b) from L1 into Lq, 1 ≤ q ≤ ∞ if and only if 1
q

< 1− α
n

and −1
q
≤ α + n−1

2
;

c) from Lp into L∞, 1 < p ≤ ∞ if and only if α
n

< 1
p

< α− n−1
2

.
There is a number of papers devoted to Lp → L-estimates for operators with oscillating

symbols, see [12],[13],[26],[27],[40] and [42], but all the symbols in these papers do not have
singularities, being smooth functions.

As an application of Theorem 3.2 we consider the convolution operators Aα
ω with

symbol of the form

ω(ξ′)|ξ|−αexp (iγ|ξ|), ξ′ =
ξ

|ξ|
, γ > 0

Theorem 3.3. ([10]) Let n−1
2

< α < n, ω ∈ Cm(Sn−1), m > 3n
2

. and satisfies the
ellipticity condition: ω(σ) 6= 0, σ ∈ Sn−1. Then

L(Aα
ω) = L(Aα)

3.3. The case of potentials with the Hankel function in their symbols

We consider the operator

(Hαϕ)(x) = cn,α

∫
Rn

(
1− |t|2 + i0

)α
2
−1

ϕ(x− t)dt, 0 < α < 2, (3.3)

cn,α =
Γ(1− α

2
)exp (−iπ(α−2)

2
)

iπ
n
2
+12

α+n
2
−1

,
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with the symbol

hα(|ξ|) = |ξ|−
n+α−2

2 Hn+α−2
2

(|ξ|) , (3.4)

where H
(1)
ν (z) is the first Hankel function. Because of the the function H

(1)
n+α−2

2

(|ξ|), the

symbol hα(|ξ|) has oscillation.

Theorem 3.4. ([19]) Let A, B and C be the points on
(

1
p
, 1

q

)
-plane defined as

A =

(
4− α− 2n

2(1− n)
,

(α− 2)(n− 2)

2n(1− n)

)
,

B =

(
(n− 2)(α + 2n) + 4

2n(n− 1)
,

(2− α)

2(1− n)

)
,

C =

(
(α + 2n

2(n + 1)
,

(2− α)

2(n + 1)

)
.

Then
L(Hα

ω ) = [A, B, C] if n ≥ 3

and
L(Hα

ω ) = [A, B, C]\({A}
⋃
{B}) if n = 2 .

The statement of Theorem 3.4 is also valid in the case 2−n < α < 0, α 6= −2,−4, . . . ,
if the operator Hα is interpreted as analytic continuation of the integral in the right-
hand side of (3.3). Such analytic continuation into the domain 2 − n < <α < 0, α 6=
0,−2,−4, . . . , may be constructed by integrating by parts in the form

(Hαϕ)(x) =

∫
Rn

(
1− |ρ|2 + i0

)α
2
+k−1

[
∂

∂ρ

1

ρ

]k (
ρn−1Sϕ(x, ρ)

)
dρ , ϕ ∈ S (3.5)

(S is the Schwarz class of rapidly decreasing smooth functions),

k =

[
n− 1

2

]
, ck

n,α =
cn,α

α(α + 2) . . . (α + 2(k − 1))
, Sϕ(x, ρ) =

∫
Sn−1

ϕ(x− ρσ)dσ.

Theorem 3.5. ([19]) Let 2− n < α < 0, α 6= −2,−4, . . . Then the operator (3.5)
may be extended to a bounded operator from Lp into Lq if and only if (1

p
, 1

q
) ∈ [A, B, C].

IV. Inversion of some potentials with singularities of

their kernels on a sphere

An actual problem of potential theory is the inversion problem for potentials inversion
of some potentials with singularities of their kernels ”spread” over different sets in Rn.
The investigations in this direction are at the very beginning. In the previous survey

8



[21] the authors dealt with the application of AIO’s method to special-type potentials
only. In this Section, within the framework of AIO’s method, we mention results on
the inversion of wide classes of potentials with singularities of their kernels on a sphere
|t| = γ is constructed both in elliptic and non-elliptic cases. These potentials are defined
as convolution operators with symbols of the form

mα
θ,γ(ξ) =

θ(ξ)

|ξ|α
exp (iγ|ξ|) , γ > 0 , (4.1)

where θ is a smooth function.
We also construct the inversion of well-known operators

(Mαϕ)(x) =
Γ(n

2
+ α)

π
n
2 Γ(α)

∫
|y|<1

(
1− |y|2

)α−1
ϕ(x− y)dy , α > 0 (4.2)

with the symbols

mα(|ξ|) = Γ
(n

2
+ α

) (
ξ

2

)1−n
2
−α

Jn
2
+α−1(|ξ|) , (4.3)

where Jν(z) is the Bessel function and their modifications. We also give the description
of the ranges of these operators. We observe that the mentioned results, related to the
description of the ranges of potentials with ”spread” singularities of their kernels in non-
elliptic case, are the first ones in this direction - as is seen from (3.3), the symbol mα(|ξ|)
degenerates on an infinite union of spheres. In this connection we can refer only to the
papers [15] and [21], in which a description of the ranges of fractional ”telegraph” poten-
tials, that is, of negative powers of ”telegraph” operator, was given, which corresponds to
the case when the kernel of these potentials have singularities on a cone), but this case is
an elliptic one.

4.1. The case of a homogeneous function θ(ξ) in (4.1)

The case θ(ξ) = θ(ξ′), θ ∈ Cq(Sn−1) was considered in [14]. The operators Bα
θ,γ with

the symbol (4.1) were realized in [14] as the following potentials

(Bα
θ,γϕ)(x) =

∫
Rn

bα
θ,γ(t)ϕ(x− t)dt . (4.4)

Their kernels have a singularity on the sphere |t| = γ. This is power singularity of order
α − n+1

2
, if 0 < <α < n+1

2
and logarithmic one, if α = n+1

2
. The kernel bα

θ,γ(t) for
n− 1 < <α < n has the form

bα
θ,γ(t) =

Γ(n− α)|Sn−2|
(2π)n|t|n−α

1∫
−1

(1− |y|2)
n−3

2 Mθ(t
′, y)(

−i
(
y − γ

|t|

))n−α dy , (4.5)

where Mθ(t
′, y) are spherical means of θ(ξ′) over (n− 2)-dimensional sections of the unit

sphere by hyperplanes, introduced in [31] and [32] (in these papers the technique of spher-
ical means was applied for the regularization of symbols of generalized Riesz potentials
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with a homogeneous characteristic). In the case 0 < <α ≤ n − 1 the function bα
θ,γ(t) is

represented as a sum of the regularized integral (4.5) and the linear combination of Gauss
hypergeometric functions.

In the elliptic case, when θ(σ) 6= 0, σ ∈ Sn−1, the inversion of potential f =
(Bα

θ,γϕ)(x), ϕ ∈ Lp, 1 ≤ p < n
<α

, was constructed in [14] in the form

(Gα
θ,γf)(x) = lim

ε→0

(
gα

θ,γ,ε ∗ f
)
(x), (4.6)

where

gα
θ,γ,ε(t) = F−1

[
|ξ|α

θ(ξ)
exp (−iγ|ξ| − ε|ξ|2)

]
(t),

the limit in (4.6) being taken in the Lp-norm or almost everywhere.
In non-elliptic cases the most general character of degeneracy of the symbol (4.1),

considered in [14], was

mes {ξ ∈ Rn\{0} : θ(ξ′) = 0} = 0. (4.7)

We denote

(Uα
θ,γf)(x) =

Lp

lim
ε→0

L2

lim
δ→0

(
uα

θ,γ,ε,δ ∗ f
)
(x), (4.8)

where

uα
θ,γ,ε,δ(t) = F−1

[
θ(ξ′)|ξ|αexp (−iγ|ξ| − ε|ξ|2)

|θ(ξ′)|2 + iδ)

]
(t) .

Theorem 4.1. ([14]) Let n−1
2

< <α < n, θ ∈ Cq(Sn−1), where q = 2 if n = 2 and

q =


3n−1

2
n is even

3n
2

+ 1 n is odd

if n ≥ 3; ϕ ∈ Lp, 1 ≤ p < n
<α

with the additional restriction p ≤ 2 for <α < n
2

and the
condition (4.7) is fulfilled. Then

Uα
θ,γB

α
θ,γϕ = ϕ

4.2. The case of radial functions θ(ξ) in (4.1)

Here we assume that θ(ξ) = θ(|ξ|) where

θ(r) ∈ Λm(R1
+) : =

{
f(r) ∈ Cm(R1

+) : f (k)(r) ≤ cr−k, 0 ≤ k ≤ m
}

.

This class contains, in particular, some functions, slowly oscillating at infinity (for exam-
ple, f(r) = cos ln r). It was shown in [16] that convolution operators with the symbol
(4.1) may be represented in the form (4.4) with the kernel

bα
θ,γ(t) =

(2π)−
n
2

|t|n−α

∞∫
0

|y|
n
2
−αeiγ y

|t| θ

(
y

|t|

)
Jn−2

2
(y)dy , (4.9)
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n+1
2

< <α < n. In the case <α ≤ n+1
2

the integral in the right-hand side of (4.9) is
interpreted in the sense of regularization. For Hölder-type functions stabilizing at infinity:
θ(r) ∈ Cm,β(Ṙ1

+) (⊂ Λm), this class having been introduced in [39], it was shown in [10]
that bα

θ,γ(t) has singularities on the sphere |t| = γ as in the case of homogeneous functions
θ(ξ) in (4.1). Inversion of potentials Bα

θ,γϕ with Lp− densities was constructed in [16] both
in elliptic (inf

r>0
|a(r)| 6= 0) and general non-elliptic (mes {r > 0 : θ(r) = 0} = 0) cases.

The corresponding results are similar to those in the Subsection 4.1 and we do not dwell
on their explicit formulation.

We consider here one important non-elliptic case - the so-called quasi-elliptic case-
when a(r) 6= 0, r > 0 and one or both limits lim

r→0
a(r), lim

r→∞
a(r) equal zero. In this case

it is possible to construct the inversion of potential Bα
θ,γ more effectively in comparison

with the general non-elliptic situation. We assume that

a(r) ∈ Λm(R1
+), m > [n

2
]; a(r) 6= 0, r ∈ R1

+;

|a(r)|−1exp {−ηr − δ
r
} ≤ c for some η, δ ≥ 0.

(4.10)

Theorem 4.2. ([16]) Let n−1
2

< <α < n, ϕ ∈ Lp, 1 ≤ p < n
<α

and θ(r) satisfy the
condition (4.10). Then

Nα
θ,γB

α
θ,γϕ = ϕ,

where
(Nα

θ,γf)(x) = lim
ε→0

(
nα

θ,γ,ε ∗ f
)
(x), (4.11)

nα
θ,γ,ε(t) = F−1

[
|ξ|α

θ(ξ)
exp (−iγ|ξ| − ε|ξ|2)− ε

|ξ|2n
)

]
(t),

the limit in (4.11) being taken in the Lp-norm for 1 < p < n
<α

, or almost everywhere if
1 ≤ p < n

<α
.

4.3. Inversion of the operator Hα defined in (2.3) and (2.5)

Within the framework of AIO’s method the operator inverse to the operator Hα is
constructed in the form

Rαf = lim
ε→0

F−1

(
exp (−ε|ξ|2)

hα(|ξ|)

)
∗ f, (4.12)

where hα(|ξ|) is the symbol (3.4).
Theorem 4.3. ([17]) Let 0 < α < 2, ϕ ∈ Lp, 1 ≤ p < n

n+α−2
. Then in the elliptic

case
RαHαϕ = ϕ, (4.13)

the limit in (4.12) being taken in Lp-norm or almost everywhere.
The inversion formula is also valid for

ϕ ∈ Lp,
4− α− 2n

2(1− n)
<

1

p
<

(n− 2)(α + 2n) + 4

2n(n− 1)

11



(for such p the operator Hα may be extended to a bounded operator from Lp into Lq in
accordance with the Theorem 3.5).

The range Hα(Lp) was also described in [17] in terms of the inverse operator (4.12).

4.4. Inversion of the operator Mα defined in (4.2) and
more general convolution operator of Strichartz-Peral-Miyachi-type

Here we consider the operator (4.2) as well as more general operator Mα,β with the
symbol

µα,β(|ξ|) = Γ(
n

2
+ α)(1 + |ξ|2)−

β
2

(
|ξ|
2

)1−n
2
−α

Jn
2
+α−1(|ξ|) , (4.14)

α, β ∈ R1 (Mα = Mα,0, α > 0).

These operators play an important role in different problems of analysis and mathematical
physics (see, for example [12]-[13],[26]-[27],[40]-[42]). We base ourselves on the following
result.

Theorem 4.4. Let Mp,q denote the class of Fourier p → q-multipliers. Then

1) µα,β ∈ Mp,q 1 < p ≤ q < ∞ if and only if p ≤ q,
1

p
+

1

q
≤ 1,

1

p
− n

q
≤ α + β

or p ≤ q,
1

p
+

1

q
≥ 1,

n

p
− 1

q
≤ α + β + n− 1;

2) µα,β ∈ M1,q 1 ≤ q < ∞ if and only if α + β >
1

q′
(
1

q
+

1

q′
= 1).

This theorem was proved for different values of parameters α and β in [12]-[13],[26]-[27]
and [40]. The formulation, given above, is taken from [27].

We consider the general case of the operator Mα,β. Within the framework of AIO’s
method, the inverse operator to Mα,β may be constructed in the form

Lα,βf =
Lp

lim
ε→0

L2

lim
δ→0

Lα,β
ε,δ f, (4.15)

where Lα,β
ε,δ is the operator, generated by the following p− multiplier

|ξ|n
2
+α−1exp (−ε|ξ|2)(1 + |ξ|2)β

2

Γ(n
2

+ α)[Jn
2
+α−1(|ξ|) + iδ]

.

Theorem 4.5. [17]-[18] Let p, α and β ( 1 ≤ p ≤ 2; α, β ∈ R1) be such that the
operator Mα,β is bounded from Lp into Lq for some q in accordance with Theorem 4.4.
Then

Lα,βMα,βϕ = ϕ, ϕ ∈ Lp,

where Lα,β is the operator (4.15); the limit in Lp-norm in (4.15) may be replaced the
almost everywhere limit. Moreover,

Mα,β(Lp) = {f : f ∈ Lq, Lα,βf ∈ Lp} ,

12



where q, 1 ≤ q ≤ 2 is an arbitrary number such, that Mα,β is bounded from Lp into Lq.
We observe that the proof of embedding

{f : f ∈ Lq, Lα,βf ∈ Lp} ⊂ Mα,β

is essentially based on the possibility of approximation in the Lq′− norm (1 < q ≤ 2)
and in the norm of the space C0 = {f : f ∈ C(Rn), f(∞) = 0} of a function ω ∈ S by
functions ωN from the Lizorkin-type class ΦV invariant for the operator Mα,β, where

V = {
∞⋃
i=1

Si}
⋃
{0} , Si = {x : |x| = νi} , i = 1, 2,

{νi} being the sequence of positive real roots of the function Jn
2
+α−1(z). The class ΦV and

their duals ΨV , where V is an arbitrary closed set in Rn were investigated in [30],[33] and
[36]. The denseness of ΦV (mes V = 0) in Lp is known (see [33] and [36]) for 2 ≤ p < ∞
(in the case 1 < p < 2 it was proved in [33] and [36] for special types of sets). Theorem 3.4
provides boundedness of Mα,β from Lp into Lq, q ≤ 2 for p, α, β under the consideration.

In the case β = 0 we obtain the following result for the operator Mα defined in (4.2).
Theorem 4.6. [17]-[18] Let α > 0. 1 ≤ p ≤ 2, and let Lα be the operator (4.15)

with β = 0. Then
LαMαϕ = ϕ, ϕ ∈ Lp.

Moreover,
Mα(Lp) = {f : f ∈ Lq, Lαf ∈ Lp} ,

where q ∈ [1, 2] is an arbitrary number such that Mα is bounded from Lp into Lq.

V. Inversion of some Riesz potentials with oscillating

kernels

In the paper [7] the inversion of Riesz potentials

(Kα
θ ϕ)(x) =

∫
Rn

θ(t)

|t|n−α
ϕ(x− t)dt , 0 < α < n, (5.1)

with the characteristic θ(t) = eiγ|t|, γ > 0 was constructed within the framework of AIO’s
method. The arising difficulties are similar to those which appear in the inversion problem
for acoustic potentials (see [43] and [37]): oscillation of the kernels of the corresponding
potentials generates singularities of their symbols on spheres. The most difficult point
in the inversion problem for potentials with the oscillating exponent eiγ|t| in their char-
acteristics, appears in the non-elliptic case when the symbol of the potential degenerates
on some set in Rn and has singularities on the sphere |ξ| = γ . Another problem arising
here, is connected with the fact that denseness in Lp of the Lizorkin-type space ΦV , in
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the case of the sphere V = {ξ : |ξ| = γ}, remains unknown when 1 < p < 2, this space
being invariant with respect to the corresponding potential operator.

This case was considered in [25], where the inversion of potentials Kγ
α,a of the form

(5.1) with the characteristic

θ(t) = (a · t′)exp(iγ|t|), a ∈ Rn, γ > 0

was constructed. The symbols vγ
α,a(|ξ|) of these potentials have the form

vγ
α,a(|ξ|) = iπ

n
2 (a · ξ)Mα

γ (|ξ|2) ,

where

Mα
γ (t) =

iα+1Γ(α + 1)

γα+1Γ(n
2

+ 1)
F

(
α + 1

2
,
α + 2

2
;
n

2
+ 1;

t

γ2

)
,

if t < γ2 and

Mα
γ (t) =

2α

t
α+1

2

[
Γ(α+1)

2
)

Γ(n+1−α
2

)
F

(
α + 1

2
,
α + 1− n

2
;
1

2
;
γ2

t

)

+
2iγΓ(α+2

2
)

√
tΓ(n−α

2
)
F

(
α + 2

2
,
α + 2− n

2
;
3

2
;
γ2

t

)]
,

if t > γ2, and F (a, b; c; z) is the Gauss hypergeometric function. The function Mα
γ (|ξ|2)

has singularities on the sphere |ξ| = γ (of power or logarithmic type) if α ≥ n−1
2

, and it
satisfies the ellipticity conditions

inf
|ξ|<γ

|Mα
γ (|ξ|2)| 6= 0, inf

|ξ|>γ
|ξ|α+1|Mα

γ (|ξ|2)| 6= 0, (5.2)

proved in [25] for 0 < α < 1 or n − 2 ≤ α < n. Within the framework of AIO’s method
the inversion of potentials f = Kγ

α,aϕ, ϕ ∈ Lp for such α may be constructed in the form

(T γ
α,af)(x) = lim

ε→0

(
tγα,a,ε ∗ f

)
(x), (5.3)

where

tγα,a,ε(x) = F−1

[
(|ξ|2 − γ2)lexp (−ε|ξ|2)

iπ
n
2 Mα

γ (|ξ|2)(a · ξ) + iε)(|ξ|2 + γ2(ε + i)2)l

]
(x), (5.4)

l > n− 1 + n(n+1)
2

.
Theorem 5.1. [25] Let 0 < α < 1 or n−2 ≤ α < n, ϕ ∈ Lp, 1 < p < min{ 2n

n−1
, n

α
}.

Then
T γ

α,aKγ
α,aϕ = ϕ, ϕ ∈ Lp ,

where T γ
α,a is the operator (5.3), the limit in (5.3) is taken in the Lp + Lr-norm, 1

r
=

1
p

+ 1
q
− 1, 1

q
< n+1

2n
, or almost everywhere.
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In the case 1 ≤ α < n − 2 (n ≥ 4) when the question about zeros of the function
Mα

γ (|ξ|2) remains open, the inversion of the potential f = Kγ
α,aϕ, ϕ ∈ Lp, 1 < p <

n
α
, p ≤ 2, may be constructed in the form

Tγ
α,af =

Lp

lim
ε→0

L2

lim
δ→0

Tγ
α,a,ε,δf, (5.5)

where

Tγ
α,a,ε,δf == F−1

[
vγ

α,a(ξ)(|ξ|2 − γ2)lexp (−ε|ξ|2)
(|vγ

α,a(ξ)|2 + iδ)(|ξ|2 + γ2(ε + i)2)l

]
∗ f.

VI. Some open questions

6.1. As is seen from comments to the results of Subsection 4.4 and Section 5, an important
role in the justification of the results on the inversion of potential type operators in Lp-
spaces is played by the Lizorkin-type spaces ΦV . As mentioned above, the denseness of
ΦV in Lp for an arbitrary closed set V in Rn of measure zero remains unknown in the
case 1 < p < 2.

6.2. It is of special interest to construct the complete L-characteristic of the operator
(3.1). The construction, given in Subsection 3.1, has some gaps.

6.3. There are also open problems in investigation of the convolution operator Bα
θ,γ

with the symbol (4.1) when θ(x) belongs to the class

Λm(Rn) =
{
θ(x) : θ(x) ∈ Cm(Rn\{0}), |Djθ(x)| ≤ c|x|−j, 0 ≤ j ≤ m

}
,

which is widest possible, in a natural sense. This class contains the classes considered in
Subsections 4.1, 4.2 as well the classes Hm

q (Rn\{0}) and Cm
q (Rn\{0}), introduced in [11]

and [43], respectively, of functions θ(x) = θ(rσ), r ∈ (0,∞), σ ∈ Sn−1, differentiable up
to the order m with respect to the radial variable r and up to the order q with respect to
the spherical variable σ. In particular, the following points are of interest:

a) To obtain an integral representation of the form (4.4) for such an integral operator
and investigate properties of the corresponding kernel bα

θ,γ, such as the nature of singu-
larities on the sphere |t| = γ, behavior at infinity and so on. The arising difficulties are
caused by the fact that multiplication by the exponent eiγ|t| does not preserve the class
Λm;

b) To construct the L-characteristic of the operator Bα
θ,γ;

c) To describe the ranges Bα
θ,γ(Lp) in non-elliptic cases. This problem is closely con-

nected with denseness in Lp of Lisorkin-type spaces ΦV (see 6.1), where V = {ξ : θ(ξ) =
0}.

Besides the fact that the kernel of the operator Bα
θ,γ has singularities on the sphere,

our interest to the study of this operator also is stimulated by the following reason.
The operator Bα

θ,γ strongly converges in Lp as γ → 0 to the operator with the symbol

mα
θ,0(ξ) = θ(ξ)

|ξ|α . It may be shown that the class of convolution operators with symbols

15



mα
θ,0(ξ), θ(r) ∈ Λ∞, coincides with the class of Riesz potentials with characteristics in Λ∞

(see the surveys [35] and [21] for some aspects of the theory of such potentials). Thus,
the class {Bα

θ,γ}γ≥0 contains the above mentioned Riesz potentials as the limiting case.
6.4. It is of special interest to investigate complex powers of second order non-

homogeneous differential operators of the form (1.1) but with the Dalambert operator
instead of the Laplace one.
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