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SOME APPLICATIONS OF POTENTIALS AND
APPROXIMATIVE INVERSE OPERATORS
IN MULTI-DIMENSIONAL FRACTIONAL CALCULUS

I. Introduction

There are known several approaches in fractional calculus to the definition of fractional
integration and differentiation of functions on R™ . One of these approaches deals with
complex powers [P(D)]%, where P(D) is a partial differential operator in R™ with constant
coefficients (see,for example, the books [37] and [38]). In this survey we treat fractional
integrals and derivatives in just the same way. We consider complex powers of second
order differential operators of the form

Ay +c-D, D= ( 0 i), (1.1)

oxy ' Ox,

where
ceC", 2= (xy,...,2), k<n-—1.

The class of the operators (1.1) contains in particular examples of such operators as
hypoelliptic operators and generalized Schrédinger operators, which are known to be of
essentially different nature. Negative (Ra < 0) powers of these operators are realized as
potentials, positive powers - inverse to negative- as approximative inverse operators (AIO),
within the framework of the spaces L,(R"), which can be represented as hypersingular
integrals (HSI) in case of nice functions.

We also consider some other problems of potential theory, such as L, — L,—estimates
for potentials with oscillating kernels or symbols. It should be noted that we deal with
potentials, having ”"bad” properties of their kernels and (or) symbols. Their kernels
have singularities, ”spread” over hyperplanes or spheres (which may be even locally non-
integrable). Their symbols degenerate on different sets in R™ (in the most general case -
on a set of null measure in R™ ) or have singularities, ”"spread” over spheres, paraboloids
and other sets. Such "bad” properties of kernels and symbols produce natural difficulties
in the investigation of these potentials.

We observe that the previous surveys [35] and [21] covered, in particular, investiga-
tions of complex powers of some special differential operators (in particular, the classical
operators of mathematical physics). In these surveys some applications of HSI and AIO
to the inversion of potential-type operators were also given.

The main results covered in this survey were obtained during the last three years in
the research group, guided by the second author at the Rostov State University.



II. Complex powers of second order differential
operators with complex coefficients in lower

In the papers [1],[2] (see also [21]) complex powers of the operators
—A+c¢-D, ceC" (2.1)

within the framework of the space L, = L,(R") were investigated. In this Section we deal
with complex powers of the operator (1.1), which is more difficult in comparison with the
operator (2.1), especially when ¢ =ib, b € R".

Negative powers I& of the operator (1.1) are defined on nice function ¢(z) via Fourier
transforms as follows:

(FIZQ)E) = = (|€ —ic-€)® (Fo)(€), Ra>0. (2.2)

We realize the operator /& as a potential with explicitly written kernels and treat negative
powers

(=Ay +c-D)° 2

as these potential-type convolution operators within the framework of L,-spaces.
We start with the case c € R".

2.1. Complex powers of hypoelliptic operators in L,-spaces

We assume that ¢ € R", ¢, # 0 (the case ¢, = 0 reduces to the case of elliptic
operators (2.1) in R"!). Let Ra > 0,

1—n a—n—1

217 (a2 - |dPe, |,
Ko(z) = = T2 (In r e _Bl& [lia 2.3
() I'(5)enl (cn) “rp ( 2 4 x, 4 ¢, (23)

if ’é—: > (0 and
kX(x) =0

if ”é—: < 0. Then
1)) = [ KeOpla )t (2.4)

for nice function (z). The convolution operator (2.4) is defined on functions ¢(x) in L,
for0 < Ra<n+1, 1<p< "%—21 and is bounded from L, into L,, ¢ = % if
1 <p <% (see [3] and [5]).

Within the framework of the method of AIO, positive powers of the operator (1.1)
were realized in [3] and [5] as follows. Let

DEf=he ] (25)
where .
he(a) = F! {(m’ﬁ ie-g)f (—5) cap <—e\512>] (2) (26)

c-&+ie
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m=0ifl<Ra<n+1lor0<Ra <1, 1<p<Mandmzlif0<§Roz§

2(nt1) (n41) 2Ra+n+1
n-+ n—+
1’ 2Ra+n+1 <p< Ra
Theorem 2.1. ([3],[5]) Let 0 < Ra <n+1, f=1%, p€ L, 1<p< D
Then
DI IZp =,
where
(Lp)
Def =l D (2.7)
e— ’

The relation (2.7) is also valid with the almost everywhere limit. Moreover,

(n+1)  (n+1)p
Ra q_n+1—p3‘ka

]g(L,,):{f:feLq, Defel, 1<p<

This theorem gives an explicit expression for positive powers of the operator (2.1),
within the framework of L,-spaces, as well as a description of domains of these powers.
It was also generalized in [3] and [5] to the case of an arbitrary second order hypoelliptic
operator in R™ with real coefficients.

2.2. Complex powers of some strongly degenerating
second order differential operators with real coefficients

Potentials realizing negative powers of the operator (1.1) may be reduced, in the case
k <n—1, c € R" to the known ones (in R¥! or R¥ ) . In the case ¢’ # 0, ¢’ =

(Ckt1, .-, Cn), the operator I may be written in the form
a —1 o,k
(I89) (x) = U G, Us(2), (2.8)
where z!, = (z1,...,Tk11), ]s‘,’z, is the operator (2.4) in RF™! | applied in the variable

zl, U is a rotation in R™ such that Uc = (¢y,..., ¢, |c"],0,...,0)
If " =0 then
(Ie0) () = Tl ) (), (2.9)
where Jj’k is a partial potentials in R¥, realizing negative powers of the operator (2.1)
and applied in the variable 2/, see [1] and [2] for the explicit form of these potentials.
Using the results of the papers [1] and [2] and Theorem 2.1, one can construct the

inversion of potential /& (on the basis of (2.8), (2.9) ) and describe its range (see [4] for
details).

2.3. Thecase cec C", k=n—1

Passing to the case of complex coefficients in lower terms, we consider here only the
most interesting situations (see [6] for other cases).

Let us consider the case $¢, # 0 at first. The kernel £(x) of the potential 2,
realizing negative powers of the operator (1.1), has the form (2.3) with Z;:ll ¢; instead
of |'|? and \/c2 instead of |c,| if 72 > 0 and equals zero if gz < 0. The condition

Sc=d Re for some d € R'\{0} (2.10)
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appears here. If this condition fails, then the kernel k% (z) becomes non-integrable at
infinity with respect to any power ¢ > 1; in fact, it exponentially grows at infinity. In
accordance with (2.10) we consider the case ¢ = Xa, A = 1 +1id, d € R"\{0}, a €
R", a, # 0.

Let DZ_ be the operator (2.5) with the kernel (2.6) in which the function (céflg)m is

substituted by (agfw)m with m = 0 if % >n—landm>n—1-— % if % <n-—1.
An explicit expression for positive powers of the operator (1.1) (within the framework of
L,-spaces) may be obtained and the domains of these powers may be also described in
terms of the operator (2.7). The corresponding results are formulated in the same way as
in the case of hypoelliptic operators (see Theorem 2.1).

The most difficult is the case Re¢, = 0 with S¢,, # 0, which is essentially different

from the described above. Let I be the operator (2.4) with the kernel

1—n . a—n—1
Q=ng T egp (Rmazlimi 2 ot 2’12 o Srnole2
( 4 ) Ci\L'n el.p x-c —Zl | SCn Jj=1"j Cfn

2 4 xn 4 Sen

k‘g({L‘) _ [Sen| Sen A
it (&) 7 >0
(2.11)
a—n—1
T 2
and kIf(z)=0 if <0 ) <0.
Sey,

It is seen from (2.11) that k2 (x) exponentially grows at infinity if #¢’ # 0 . Therefore we
assume below that ¢ =1b, b € R", b, # 0.
For w(z) in a special class of test functions (invariant for the operator I§ ) it was
shown in [6] that
(Fw)(§))

(1€ +b-€+i0)2
The potential I§w is interpreted in the "usual” sense - as the integral (2.4) over R" - if
fa > n—1 and in the sense of analytic continuation of the integral (2.4) if 0 < Ra <n—1
(see [6]). By virtue of (2.12) we conclude that the operators I§ really realize negative
powers of the operator (1.1).

Inversion of the potential I§w, Ra > 0, was constructed in [6] on nice functions w(z)
in the form of the following HSI

F(Lw)(€) =

. Ra>0. (2.12)

(D3)@) = s [ (LD )y

where
!

(AL (@) =Y cif(x—dy), a>1

J=0

is the generalized difference of the function f(z) (see [6] for details).
The integral Iy does not converges, generally speaking, for ¢ € L, , so that the
potential f = Iy is treated in this case in the distributional sense, see [6]. A description
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of the range I(L,) seems to be a problem, but in [6] the authors succeeded to describe
the spaces I§}(L,) () L, = I,. We note that these spaces are some analogs of the spaces
Lg . (R") of Riesz potentials, introduced and investigated in [28] and [29], see also [34],[37]
and [38].

To formulate one of the main results, presented in this survey, we denote

(Lp) (L2)
lim lim (R3"5"  f) (x) if 0<Ra<2n, a#24,...,2(n-1)

e—00—0
DS f = (2.13)
lir% (h%’go * f) (x) if Ra>2n, or a=2,4,...,2(n—1),
where .
(€ +b-E+140)2 + 6
(€2 +b- & +i6)’
n—1 if 0<Ra<2n, a#2/4,...,2(n—1)

hiyes(2) = F exp (—elg]*)| (@) |

0 =
0 if Ra>2n, or a=24,...,2(n—1).

Theorem 2.2. ([6]) Let Ra >0, 1<p,r<2. Then
1) for f € I3, with f = Igp, ¢ € Ly, we have

D5, f = o,

where DY is the operator (2.13); the limit in L,-norm in (2.13) may be also replaced by
the almost everywhere limait;

2) If, ={f: fel, DgfeL,}, where Dj is the operator (2.13).

We observe that the case ¢ = (0,...,0,4) (the case of Shrodinger operator) was con-
sidered in [22]. There is also the paper [23] in which the spaces of Ly . —type , connected
with the wave and the Klein-Gordon-Fock operators were investigated (see also the survey

[21]).

II1. L,— L,— estimates for potentials with
oscillating kernels or symbols

In this section we consider some potentials with oscillating kernels or symbols. Our goal

is to construct a convex set on the <1l>’ %)—plane such, that the corresponding potential

is bounded from L, into L, if the point (}D, é) belongs to this set. In some cases we
succeed to construct the £— characteristic of the potential under the consideration, that
is, we give an explicit description of all pairs (%, %) for which the operator is bounded
from L, into L,. We note that construction of the £-characteristic of the potential is an
interesting and difficult problem itself. Also, knowledge of the L-characteristic is very

useful for description of ranges of potentials in non-elliptic case, see Subsection 4.4.
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3.1. L, — L,-estimates for Riesz-type potentials with oscillating characteristics

To formulate the corresponding result for the operator
etlyl

oyl

(Ko‘f)(x):/ flx—y)dy, 0<a<n, n>2, (3.1)

we introduce the following notation:
£(A) = {4, 1) € 0.1 x [0,1] : | Allp, 1, < 00}

p’q
(A, B,C,...,K) is an open polygon;
[A,B,C, ... K] is its closure;
(A, B) is an open interval;

n—1 e
a:1_%’ b:%) d:%7 e:l—%, kzz&—fl);
A=(1-a0), B=(1-a,1-0b), C"=(kk), G=(1—-a,1-e), H=(1—a,1—a);
A= (1l,a), B=(ba), C=(1-k,1-k), D=(d,1-d), E=(1,0), G=(e,a), H=
(a,a)
Theorem 3.1. ([24]) I The following imbeddings are valid:

a) (A, B, B,A) | J(A A D} c £(K*) if n=2 <a<;

1

2

/ ! !/ !/ « N — 1

b) (A H' HA) | JA, A JH H) C LK) if n=2, 0<a<y
or n=3, 0<a<1§1 or n >3, 0<0z<nT_1;

L , _ n(n—1) n—1

A A A A K* > — < :

O (GG AW A C LK) i nzd Sor e T

d) (4,6, D, G, A) | J(A', A) C LK™ if n>3, ”T_l <a<n;

n

e) [A,C C, ANHAY JTAY) C L(K&®) if n>3, nel s .
4 n—1

II. The set L(K*) does not contain:

a) the points, lying on the segment [H, A| and above it;

b) the points, lying on the segment [A', H'] and to the left of it;

c) the points, lying above the straight line BB', when "T_l <a<n;

d) the points, belonging to the set [A', A, E]\(A’, A).

We observe that the study of L, — Lg,-boundedness of potentials with oscillating
kernels are at the very beginning. Besides the operator K, there were considered only
two classes of "specific” oscillation, namely, generated by the Bessel function which give
the Bochner-Riesz means, see [8], and by the Hankel function producing the acoustic
potentials, see [20].

3.2. On the L-characteristic of some potentials with oscillating symbol

in this Subsection we construct the £-characteristic of the operator A% with the symbol



|£]~%exp (i|¢]). This operator was realized in [43] on functions ¢(z) € L, in the form

(A%)(z) = | Qallyl)e(z — y)dy, (3.2)

Rn

2l < a < n. An explicit expression for the kernel Q4(|y|) in terms of the Gauss

hypergeometric function is given in [43]. We only note that ,(|y|) is continuous in
R™\S" 1 where S"! is the unit sphere in R", and

a_ntl  n—1 n+1

Qullyl) ~ e (L= ly)*™F, 2= <a< 2
n—+1

Qa(ly]) ~cln |1 —[yl[, a= for |y| — 1;

2

and
Qa(lyl) ~cly|*™, for |y| — oo

Theorem 3.2. ([10]) Let 5 < o < n. The operator A* is bounded:

a) from L, into L, 1<p§q<ooifandonlyif$§%—%and
n—1

n—1
— or ;
2

1
2 P

o>,

<«

1
q

=
|
"=
< |3
Q| =
D3

b) from Ly into Ly, 1§Q§Ooifand0nlyif$<1—%and— <a+ 252

c) from Ly, into Lo, 1 < p < oo if and only if & <110<oz—"T*1.

There is a number of papers devoted to L, — L-estimates for operators with oscillating
symbols, see [12],[13],[26],[27],[40] and [42], but all the symbols in these papers do not have
singularities, being smooth functions.

As an application of Theorem 3.2 we consider the convolution operators A with

symbol of the form

Q=

W€l exp (€], 5/=%, V>0

Theorem 3.3. ([10]) Let %5+ <o <n, we C™(S"'), m > 2. and satisfies the
ellipticity condition: w(c) #0, o€ S L. Then

L(AT) = L(A%)

3.3. The case of potentials with the Hankel function in their symbols

We consider the operator

(H*p)(z) = cma/ (1— [t + z'o)%*1 ol —t)dt, 0<a<?2, (3.3)

n

P(1— §)exp (Z25=2)
ims 9ot -1

Cn,a = )



with the symbol

nt+a—2

ha(€]) = 675 Husas (J€]) (3.4)

where H,El)(z) is the first Hankel function. Because of the the function H', ,(|¢]), the
2

symbol h,(|¢]) has oscillation.
Theorem 3.4. ([19]) Let A, B and C' be the points on <zla l) -plane defined as

’q

= (s ),

(n—2)(a+2n)+4 (2—a«)
BZ( omn—1) 2(1—n))’

= (s 2e )

Then
L(H)=[AB,C|] if n>3

and

L(HZ) =[A,B,C\{A}U(BY) if n=2.

The statement of Theorem 3.4 is also valid in the case 2—n < a < 0, a # =2, —4, ...,
if the operator H® is interpreted as analytic continuation of the integral in the right-
hand side of (3.3). Such analytic continuation into the domain 2 —n < Ra < 0, a #
0,—2,—4,..., may be constructed by integrating by parts in the form

01

app] (0" Sp(w,p))dp, ¢ €S (3.5)

(H¢)(z) = / (1= |p|? +i0) ™" {

(S is the Schwarz class of rapidly decreasing smooth functions),

b= [n 3 1} S .C€§+ =1y el ) = /S Pl = po)do.

Theorem 3.5. ([19]) Let2—n < a <0, a # —2,—4,... Then the operator (3.5)
may be extended to a bounded operator from L, into L, if and only if (,2) € [A, B,C].
P’ q

IV. Inversion of some potentials with singularities of
their kernels on a sphere

An actual problem of potential theory is the inversion problem for potentials inversion
of some potentials with singularities of their kernels ”"spread” over different sets in R".
The investigations in this direction are at the very beginning. In the previous survey



[21] the authors dealt with the application of AIO’s method to special-type potentials
only. In this Section, within the framework of AIO’s method, we mention results on
the inversion of wide classes of potentials with singularities of their kernels on a sphere
|t| = 7 is constructed both in elliptic and non-elliptic cases. These potentials are defined
as convolution operators with symbols of the form

0(¢)

- Wexp (2’7|€|> e e 0 ) (41>

mg (&)
where 6 is a smooth function.
We also construct the inversion of well-known operators

(5 +a)

(Ma‘p) (.77) = F%F(Oé)

/|<1 (1 -1y oz —y)dy . a>0 (4.2)

with the symbols

e =1 (5 +a) (§) 7z, (43)

where J,(z) is the Bessel function and their modifications. We also give the description
of the ranges of these operators. We observe that the mentioned results, related to the
description of the ranges of potentials with ”spread” singularities of their kernels in non-
elliptic case, are the first ones in this direction - as is seen from (3.3), the symbol m®(|¢|)
degenerates on an infinite union of spheres. In this connection we can refer only to the
papers [15] and [21], in which a description of the ranges of fractional ”telegraph” poten-
tials, that is, of negative powers of "telegraph” operator, was given, which corresponds to
the case when the kernel of these potentials have singularities on a cone), but this case is
an elliptic one.

4.1. The case of a homogeneous function 6(§) in (4.1)

The case 6(¢) = 0(¢'), 6 € C1(S™") was considered in [14]. The operators Bg . with
the symbol (4.1) were realized in [14] as the following potentials

(Biolle) = [ b, (0ot~ o)t (4.4
Their kernels have a singularity on the sphere |t| = 7. This is power singularity of order
o — ”TH, if 0 < Ra < "TH and logarithmic one, if a = ”TH The kernel b (t) for
n — 1 < Ra < n has the form

1 n=3
L(n—a)|S" 2] [ (L= yP*) * My(t',y)

(2m)n|t]n—e J (—2( _lZT))n—a Y,

where Mjy(t',y) are spherical means of () over (n — 2)-dimensional sections of the unit
sphere by hyperplanes, introduced in [31] and [32] (in these papers the technique of spher-
ical means was applied for the regularization of symbols of generalized Riesz potentials

by (1) = (45)
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with a homogeneous characteristic). In the case 0 < Ra < n — 1 the function by, (¢) is
represented as a sum of the regularized integral (4.5) and the linear combination of Gauss
hypergeometric functions.

In the elliptic case, when 6(c) # 0, o € S"!, the inversion of potential f =
(Bg,p)(w), ¢ €Ly, 1<p< g, was constructed in [14] in the form

(G5, 1)) = lim (g5, f) (2), (46)

where

€1°
0(¢)
the limit in (4.6) being taken in the L,-norm or almost everywhere.

In non-elliptic cases the most general character of degeneracy of the symbol (4.1),
considered in [14], was

o (t) = soeverp (—ivlE] —elgl)] (1),

mes{¢ € R"\{0} : 6(¢') =0} =0. (4.7)
We denote L
(Ugt, ) (@) = b lin (0, 5% ) (2), (48)
where
o o [0 enp (—iyl€] - el€]?)
U“H,'y,s,é(t) =F |9(£,)|2 T 25> (t) .

Theorem 4.1. ([14]) Let 32 <Ra <n, § € C9(S"), where g =2 if n =2 and

3n—1

5 n 1S even

q:
37"+1 n s odd

ifn>3; ¢ € Ly, 1 <p < g with the additional restriction p < 2 for Ra < 5 and the
condition (4.7) is fulfilled. Then
sy Biqe = ¢

4.2. The case of radial functions 0(¢) in (4.1)

Here we assume that 0(&) = 6(|£|) where
O(r) e A™(RL) :={f(r)e C™(RL): fP(r) <™ 0<k<m}.

This class contains, in particular, some functions, slowly oscillating at infinity (for exam-
ple, f(r) = cos In r). It was shown in [16] that convolution operators with the symbol
(4.1) may be represented in the form (4.4) with the kernel

43, (8) = ﬁwf/wamonmwuw7 (49)
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22l < Ra < n. In the case R < 2 the integral in the right-hand side of (4.9) is
interpreted in the sense of regularization. For Holder-type functions stabilizing at infinity:
0(r) € C™P(RL) (C A™), this class having been introduced in [39], it was shown in [10]
that bj . (t) has singularities on the sphere [t| = v as in the case of homogeneous functions
0(§) in (4.1). Inversion of potentials By’ ¢ with L,— densities was constructed in [16] both
in elliptic (}2% la(r)| # 0) and general non- elllptlc (mes {r > 0: 6(r) =0} = 0) cases.
The corresponding results are similar to those in the Subsection 4.1 and we do not dwell
on their explicit formulation.

We consider here one important non-elliptic case - the so-called quasi-elliptic case-

when a(r) #0, r > 0 and one or both limits hH(l) a(r), lim a(r) equal zero. In this case

it is possible to construct the inversion of potential By more effectively in comparison
with the general non-elliptic situation. We assume that

a(r) € A™(RL), m > [5]; a(r) #0, r e R—lh
(4.10)
la(r)| " exp {—nr — g} <c for some mn, 6 >0.

Theorem 4.2. ([16]) Let 7 < Ra<n, p € L,, 1 <p < 5= and 0(r) satisfy the
condition (4.10). Then

Ny By = ¢,

where
(N3, f)(a) =l (0. + f) (2), (4.11)
a _ 1 |€|a . 2 €
n@,'y,s(t) =F ‘9(5) exp (_Z’Y|€| - é‘|€| ) - |§ Qn) (t)a

the limit in (4.11) being taken in the Ly-norm for 1 < p < 5=, or almost everywhere if
1<p<gm.

4.3. Inversion of the operator H* defined in (2.3) and (2.5)

Within the framework of AIO’s method the operator inverse to the operator H* is
constructed in the form

rep =it (LD g (1.12)

where h,(|¢]) is the symbol (3.4).
Theorem 4.3. ([17]) Let0<a <2, 9 € Ly, 1 <p < 2.
case

Then in the elliptic

R*H%p = ¢, (4.13)
the limit in (4.12) being taken in Ly-norm or almost everywhere.
The inversion formula is also valid for
4—a—2n _ 1 _ (n —2)(a+2n) +4
2(1—n) D 2n(n — 1)

@ € Ly,
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(for such p the operator H* may be extended to a bounded operator from L, into L, in
accordance with the Theorem 3.5).
The range H*(L,) was also described in [17] in terms of the inverse operator (4.12).

4.4. Inversion of the operator M* defined in (4.2) and
more general convolution operator of Strichartz-Peral-Miyachi-type

Here we consider the operator (4.2) as well as more general operator M®? with the
symbol

o) =03+ + i) () .

a, f €RY (M= M o>0).

These operators play an important role in different problems of analysis and mathematical
physics (see, for example [12]-[13],[26]-[27],[40]-[42]). We base ourselves on the following
result.

Theorem 4.4. Let M, , denote the class of Fourier p — g-multipliers. Then

1 1
1) plap € Mpy 1<p<g<oo ifandonlyif p<gq, —+-<1, <a+p
p q

|3

1
p

or p<gq, —+->1, <a+p+n-1;

RN
Q|
S

Q|

1 1
2) pap € M1y 1<qg<oo ifandonlyif a+pB>— (=+-=1).
q q

This theorem was proved for different values of parameters o and 3 in [12]-[13],[26]-[27]
and [40]. The formulation, given above, is taken from [27].

We consider the general case of the operator M®#. Within the framework of AIO’s
method, the inverse operator to M*? may be constructed in the form

Ly Lo
L*Pf =1limlim L2} f, (4.15)

e—06—0

where L?’f is the operator, generated by the following p— multiplier

€3t Lexp (—el€?)(1 + [¢])?
I'(3 + a)[Jzra-1([€]) + id]

Theorem 4.5. [17]-[18] Let p,a and B (1 < p < 2; a,3 € R') be such that the
operator M®® is bounded from L, into L, for some q in accordance with Theorem 4.4.
Then

LY Mo = ¢, ¢ € Ly,

where L%P is the operator (4.15); the limit in L,-norm in (4.15) may be replaced the
almost everywhere limit. Moreover,

M*P(L,) ={f:f €Ly L*fe Ly},

12



where q, 1 < q <2 is an arbitrary number such, that M®? is bounded from L, into L,.
We observe that the proof of embedding

{f:feL, L*’fe L,y Cc M*F

is essentially based on the possibility of approximation in the Ly— norm (1 < ¢ < 2)
and in the norm of the space Cy = {f : f € C(R"), f(oco) = 0} of a function w € S by
functions wy from the Lizorkin-type class ®y invariant for the operator M*?, where

v={Us} U0} Si={o sl =n}i=12,

{vi} being the sequence of positive real roots of the function Jx 1, 1(2). The class &y and
their duals Wy, where V' is an arbitrary closed set in R™ were investigated in [30],[33] and
[36]. The denseness of @y, (mes V = 0) in L, is known (see [33] and [36]) for 2 < p < oo
(in the case 1 < p < 2 it was proved in [33] and [36] for special types of sets). Theorem 3.4
provides boundedness of M®? from L, into L,, ¢ < 2 for p, o, 3 under the consideration.

In the case § = 0 we obtain the following result for the operator M* defined in (4.2).

Theorem 4.6. [17]-[18] Let o > 0.1 < p <2, and let L* be the operator (4.15)
with 3 =10. Then

LMp = ¢, ¢ € L,,.

Moreover,
M®(Lp) ={f : f € Lg, L°f € Ly} ,

where q € [1,2] is an arbitrary number such that M® is bounded from L, into L,.

V. Inversion of some Riesz potentials with oscillating
kernels

In the paper [7] the inversion of Riesz potentials

®56)(0) - [ o)

—p(x—t)dt, 0<a<n, (5.1)
Re [t
with the characteristic () = e”l, 4 > 0 was constructed within the framework of AIO’s
method. The arising difficulties are similar to those which appear in the inversion problem
for acoustic potentials (see [43] and [37]): oscillation of the kernels of the corresponding
potentials generates singularities of their symbols on spheres. The most difficult point
in the inversion problem for potentials with the oscillating exponent el in their char-
acteristics, appears in the non-elliptic case when the symbol of the potential degenerates
on some set in R"™ and has singularities on the sphere |{| = v . Another problem arising
here, is connected with the fact that denseness in L, of the Lizorkin-type space ®y, in

13



the case of the sphere V' = {¢£ : [£| = 7}, remains unknown when 1 < p < 2, this space
being invariant with respect to the corresponding potential operator.

This case was considered in [25], where the inversion of potentials K7, , of the form
(5.1) with the characteristic

6(t) = (a-texp(ivlt]), a € R", v >0

was constructed. The symbols v] ,(|¢]) of these potentials have the form

vl (1€]) = im2 (a- OM(E]?)

where

ME(#) = T (a+1) (a4 at2mn .t
g ,ya—‘rl]-—‘(% + 1) 2 ) 2 9 2 3 72 )

Y

!

if t <~% and

DO |

a2 | T(557) a+1l a+l—n 142
W= e [(5)(2’ i)

227I‘( ) a+2 a+2—n37
\/’r(n a)F< 2 7 2 2 t)]

if t > ~2, and F(a,b;c; 2) is the Gauss hypergeometric function. The functlon M (1€17)

has singularities on the sphere || =« (of power or logarithmic type) if a > 2= and it
satisfies the ellipticity conditions
inf VP 0, i [ ()] £ 0, 5:2)

proved in [25] for 0 < a < 1 or n —2 < a < n. Within the framework of AIO’s method
the inversion of potentials f = K} ¢, ¢ € L, for such a may be constructed in the form

(T30 ) (@) = Tim (2, % f) (2), (5.3)
where
- (1617 = v*) exp (—cl€?)
£ F , 5.4
cnel®) = Me(eR) @ &) +ie)leE 122 o | Y
[>n—1+ n(nﬂ)
Theorem5 1. [25] LetO<a<lorn—2<a<n, p€ L, 1<p<min{2 2}
Then

T, Kl.ap=p, w€ Ly,

where T, is the operator (5.3), the limit in (5.8) is taken in the L, + L,-norm, + =
713 + % -1, é < "Q—J;LI, or almost everywhere.
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In the case 1 < a < n— 2 (n > 4) when the question about zeros of the function
M$(|§|2) remains open, the inversion of the potential f = K7 .0, v € L,, 1 < p <
2. p <2, may be constructed in the form

Ly, Lo
TLof =l T, . 55)
where
v 2 _ A2\ _ 2
T, f == F Va,a(§)([€]* —7*)' exp (—€l€]?) . f

(lva.a(€)? +10)(I&]* +72(e + 1))’

VI. Some open questions

6.1. Asisseen from comments to the results of Subsection 4.4 and Section 5, an important
role in the justification of the results on the inversion of potential type operators in L,-
spaces is played by the Lizorkin-type spaces ®y,. As mentioned above, the denseness of
®y in L, for an arbitrary closed set V' in R™ of measure zero remains unknown in the
case 1 < p < 2.

6.2. It is of special interest to construct the complete L-characteristic of the operator
(3.1). The construction, given in Subsection 3.1, has some gaps.

6.3. There are also open problems in investigation of the convolution operator By,
with the symbol (4.1) when 6(z) belongs to the class

A™(R") = {0(x) : 0(x) € C™(R"\{0}), |D?0()| < el 7, 0<j <m},

which is widest possible, in a natural sense. This class contains the classes considered in
Subsections 4.1, 4.2 as well the classes H;"(R"\{0}) and Cj*(R"\{0}), introduced in [11]
and [43], respectively, of functions 6(x) = 6(ro), r € (0,00), o € S"~!, differentiable up
to the order m with respect to the radial variable r and up to the order ¢ with respect to
the spherical variable ¢. In particular, the following points are of interest:

a) To obtain an integral representation of the form (4.4) for such an integral operator
and investigate properties of the corresponding kernel by, such as the nature of singu-
larities on the sphere [t| = 7, behavior at infinity and so on. The arising difficulties are
caused by the fact that multiplication by the exponent el does not preserve the class
A™;
b) To construct the L-characteristic of the operator By
c¢) To describe the ranges Bg‘ﬁ(Lp) in non-elliptic cases. This problem is closely con-
nected with denseness in L, of Lisorkin-type spaces @y (see 6.1), where V = {£: 6(§) =
0}.

Besides the fact that the kernel of the operator By has singularities on the sphere,
our interest to the study of this operator also is stimulated by the following reason.

The operator By, strongly converges in L, as 7 — 0 to the operator with the symbol

mgo(§) = %. It may be shown that the class of convolution operators with symbols
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mgo(§), 0(r) € A, coincides with the class of Riesz potentials with characteristics in A>
(see the surveys [35] and [21] for some aspects of the theory of such potentials). Thus,
the class {Bg. },>0 contains the above mentioned Riesz potentials as the limiting case.

6.4. It is of special interest to investigate complex powers of second order non-
homogeneous differential operators of the form (1.1) but with the Dalambert operator
instead of the Laplace one.
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