
Analysis Mathematica
25(1999), 205-210.

On Local Summability
of Riesz Potentials in the case <α > 0

S.Samko

1. Introduction

It is well known that the Riesz potential operator

Iαϕ =
∫

Rn
kα(x− y)ϕ(y) dy

with

kα(x) =
1

γn(α)

{ |x|α−n , α− n 6= 0, 2, 4, 6, · · ·
|x|α−nln 1

|x| , α− n = 0, 2, 4, 6, · · ·
(see the value of the normalizing constant 1

γn(α)
, for example, in [1]), is well

defined for ϕ(y) ∈ Lp(R
n), 1 ≤ p < ∞, in case of 0 < <α < n

p
. It has also

a sense in the case when p = n
α
, α ∈ R1, and it is known that in this case

Iαϕ ∈ BMO. In the general case <α ≥ n
p

, there exists a known way to
define f = Iαϕ as a distribution over the Lizorkin test function space Φ :

(Iαϕ, ω) = (ϕ, Iαω) , ω ∈ Φ, ϕ ∈ Lp , (1)

based on the fact that Iα preserves the space Φ (see details in [2], Subsec-
tions 25.2 and 26.7 as well as references there). In this case , it was known
that, although f = Iαϕ of ϕ ∈ Lp is, generally speaking, a distribution,
nevertheless, f is quasisingular in the sense that finite differences ∆`

h(I
αϕ)

of Iαϕ prove to be usual functions ( ∈ Lp ) for ` > <α , the differences of
distributions being defined in the standard way.
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The goal of this note is to prove that, in fact, any distribution Iαϕ, ϕ ∈
Lp, 1 ≤ p < ∞, 0 < α < ∞, is a regular distribution and even be-
longs to Lloc

p (Rn). This question is close in a sense to the problem of be-
haviour at infinity of functions with a given Lp-behaviour of their derivatives
Djf, |j| = α = 1, 2, 3, · · ·, which was investigated by P.I.Lizorkin [1]. In case
of non-integer α, in [1] there were used the Strichartz fractional differentiation
constructions.

2. Statement of the main result
Definition. By Iα(Lp), 1 ≤ p < ∞, Reα > 0, we denote the space of

distributions f ∈ Φ′ represented as

f = Iαϕ, ϕ ∈ Lp(R
n),

in the sense of (1).
By Lloc

p (Rn) we denote the space of functions which are in Lp on any finite
ball.

Theorem. Iα(Lp) ⊂ Lloc
p (Rn), 1 ≤ p < ∞, <α > 0.

Remark. The connection between the Lizorkin and Schwartz spaces Φ′

and S ′ is given by the factor-space relation

Φ′ = S ′/P (2)

modulo the subspace P of all polynomials. So, the statement that some
element f ∈ S ′/P belongs to Lloc

p (Rn) should be understood in the sense that
every representative fo ∈ S ′ of the ”class” f ∈ S ′/P belongs to Lloc

p (Rn).

3. Preliminaries.
The following Proposition is well known, see [3].
Proposition 1. For any f ∈ S ′ , there exists a polynomial Pm(x), x ∈

Rn, such that

f = Pm(D)g , D =

(
∂

∂x1

, · · · , ∂

∂xn

)

where
g = g(x) ∈ C(Rn)

⋂
S ′(Rn) . (3)
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Let

AN,kf =
∫

Rn
+

aN(y)f(x− ky) dy, N = 1, 2, 3, · · · , k > 0, (4)

be the convolution operator, where

aN(y) = e−yyN−1
+ = e−y1−···−yn(y1 · · · yn)N−1

+ .

This convolution is well defined for distributions f ∈ S ′:

(AN,kf, ϕ) =
(
f, A∗

N,kϕ
)
, ϕ ∈ S,

since the operator A∗
N preserves the space S invariant, which can be easily

seen in Fourier transforms:

F (A∗
N,kϕ) = const

(
n∏

ν=1

1

kxν − i

)N

ϕ̂(x).

Lemma 1. For any f ∈ S ′ there exists N such that

AN,kf ∈ C(Rn)
⋂

S ′(Rn) (5)

for any k > 0.
Proof. By Proposition 1 we have

(AN,kf, ϕ) =
(
g, Pm(−D)A∗

N,kϕ
)
, ϕ ∈ S ′. (6)

Evidently,

F (Pm(−D)A∗
N,kϕ) = const

∑

0≤|j|≤N

aj
xj1

1 · · ·xjn
n

(kx1 − i)N · · · (kxn − i)N
ϕ̂(x) , (7)

where aj are constants. Obviously,

xj1
1 · · · xjn

n

(kx1 − i)N · · · (kxn − i)N
∈ W0(R

n) , if N < m ,

W0(R
m) being the Wiener ring of Fourier transforms of functions in L1(R

n).
So, Pm(−D)A∗

N,k is an integral convolution operator:

Pm(−D)A∗
N,kϕ =

∫

Rn
a(x− y)ϕ(y) dy = : Aϕ
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in case of N > m. Then from (6)

(AN,kf, ϕ) = (A∗g, ϕ)

where g(x) satisfies the condition (3). To prove (5), it suffices to verify that
the operator A preserves the subspace C(Rn)

⋂
S ′(Rn) . To show this, we

observe that, as it is easily seen from the structure of the Fourier transforms
in (7), the operator A is a sum of convolutions with kernels of the form
Dj(eyyN−1

+ ). Therefore, it suffices to consider the kernels b(y) = eyyλ
+, where

λ is a multi-index with positive components. Since g ∈ S ′ has slow growth
at infinity, we can represent the convolution with this kernel as

e−yyλ
+ ∗ g(x) =

∫

Rn
b(y)(1 + |x− y|µ)g0(x− y) dy , (8)

where µ > 0 and

g0(x) = (1 + |x|)µg(x) ∈ C(Rn)
⋂

L1(R
n) .

It is clear that
sup
|x|≤A

sup
y∈Rn

+

b(y)(1 + |x− y|)µ < ∞ (9)

for any finite ball |x| < A. Then it is obvious that (8) is a locally bounded
function. Since it is equal to

∫

Rn
b(x− y)(1 + |y|)µg0(y) dy ,

it is also easily checked that this function is continuous for any fixed value
of x. 2

Let ∆`
hf(x) =

∑`
k=0(−1)k

(
`
k

)
f(x − kh). The following statement is

known.
Lemma 2. Let f = Iαϕ, ϕ ∈ Lp(R

n), 1 ≤ p < ∞,<α > 0 and let
` > <α. Then

‖∆`
hf‖p ≤ c|h|<α ‖ϕ‖p , h ∈ Rn, (10)

where c does not depend on h and ϕ .
The proof of the estimate (10) may be found in [2], p.537, in case of real

α and 1 < p < n
α

(we take this opportunity to note a misprint in [2], p.537:
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in (26.98) there should stand ∆`
hf instead of ∆α

hf ). The arguments there
remain valid in case of complex α, because (10) is derived as a consequence
of the representation

∆`
hf(x) = |h|α

∫

Rn
k`,α(y)ϕ(x − |h|ωh(y)) dy (11)

valid for complex α as well. Here k`,α(y) ∈ L1 (Rn) and ωh(y) is a rotation
in Rn , such that ωh(e1) = h

|h| , e1 = (1, 0, · · · , 0).

As regards the case p ≥ n
<α

(and p = 1), it is also derived from the above
representation, because this representation is now valid in the distributional
sense:

(∆`
hf, ω) = (∆`,α)(·, h)) ∗ ϕ, ω),

for all ω ∈ Φ and all f = Iαϕ, ϕ ∈ Lp(R
n), 1 ≤ p < ∞.

4. Proof of Theorem.
From the equality

∫

Rn
+

e−hhN−1∆`
hf(x) dh =

∑̀

k=0

(−1)k

(
`
k

) ∫

Rn
+

e−hhN−1f(x− kh) dh

we get

µf(x) =
∫

Rn
+

e−hhN−1∆`
hf(x) dh (12)

− ∑̀

k=1

(−1)kkn−N+1

(
`
k

)
(AN,kf)(x) ,

where µ =
∫
Rn

+
e−hhN−1 dh 6= 0 and AN,k are the operators (4). By

Lemma 1 , AN,kf are continuous functions, if we take N sufficiently large.
So, it suffices to show that the integral term in (12) is in Lloc

p . This function
is even in Lp(R

n) for ` > <α, because

∥∥∥∥∥
∫

Rn
+

e−hhN−1∆`
hf(·) dh

∥∥∥∥∥ ≤ c
∫

Rn
+

e−h|h|n(N−1)+<α dh · ‖ϕ‖p

by Lemma 2, c being the constant from (10). 2
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