

On Local Summability of Riesz Potentials in the case $\Re\alpha > 0$

S.Samko

1. Introduction

It is well known that the Riesz potential operator

$$I^\alpha \varphi = \int_{R^n} k_\alpha(x-y) \varphi(y) dy$$

with

$$k_\alpha(x) = \frac{1}{\gamma_n(\alpha)} \begin{cases} |x|^{\alpha-n}, & \alpha - n \neq 0, 2, 4, 6, \dots \\ |x|^{\alpha-n} \ln \frac{1}{|x|}, & \alpha - n = 0, 2, 4, 6, \dots \end{cases}$$

(see the value of the normalizing constant $\frac{1}{\gamma_n(\alpha)}$, for example, in [1]), is well defined for $\varphi(y) \in L_p(R^n)$, $1 \leq p < \infty$, in case of $0 < \Re\alpha < \frac{n}{p}$. It has also a sense in the case when $p = \frac{n}{\alpha}$, $\alpha \in R^1$, and it is known that in this case $I^\alpha \varphi \in \mathbf{BMO}$. In the general case $\Re\alpha \geq \frac{n}{p}$, there exists a known way to define $f = I^\alpha \varphi$ as a distribution over the Lizorkin test function space Φ :

$$(I^\alpha \varphi, \omega) = (\varphi, I^\alpha \omega), \quad \omega \in \Phi, \quad \varphi \in L_p, \quad (1)$$

based on the fact that I^α preserves the space Φ (see details in [2], Subsections 25.2 and 26.7 as well as references there). In this case , it was known that, although $f = I^\alpha \varphi$ of $\varphi \in L_p$ is, generally speaking, a distribution, nevertheless, f is quasingular in the sense that finite differences $\Delta_h^\ell(I^\alpha \varphi)$ of $I^\alpha \varphi$ prove to be usual functions ($\in L_p$) for $\ell > \Re\alpha$, the differences of distributions being defined in the standard way.

The goal of this note is to prove that, in fact, any distribution $I^\alpha \varphi$, $\varphi \in L_p$, $1 \leq p < \infty$, $0 < \alpha < \infty$, is a regular distribution and even belongs to $L_p^{loc}(R^n)$. This question is close in a sense to the problem of behaviour at infinity of functions with a given L_p -behaviour of their derivatives $D^j f$, $|j| = \alpha = 1, 2, 3, \dots$, which was investigated by P.I.Lizorkin [1]. In case of non-integer α , in [1] there were used the Strichartz fractional differentiation constructions.

2. Statement of the main result

Definition. By $I^\alpha(L_p)$, $1 \leq p < \infty$, $Re\alpha > 0$, we denote the space of distributions $f \in \Phi'$ represented as

$$f = I^\alpha \varphi, \quad \varphi \in L_p(R^n),$$

in the sense of (1).

By $L_p^{loc}(R^n)$ we denote the space of functions which are in L_p on any finite ball.

Theorem. $I^\alpha(L_p) \subset L_p^{loc}(R^n)$, $1 \leq p < \infty$, $\Re\alpha > 0$.

Remark. The connection between the Lizorkin and Schwartz spaces Φ' and S' is given by the factor-space relation

$$\Phi' = S'/\mathcal{P} \tag{2}$$

modulo the subspace \mathcal{P} of all polynomials. So, the statement that some element $f \in S'/\mathcal{P}$ belongs to $L_p^{loc}(R^n)$ should be understood in the sense that every representative $f_o \in S'$ of the "class" $f \in S'/\mathcal{P}$ belongs to $L_p^{loc}(R^n)$.

3. Preliminaries.

The following Proposition is well known, see [3].

Proposition 1. *For any $f \in S'$, there exists a polynomial $P_m(x)$, $x \in R^n$, such that*

$$f = P_m(D)g, \quad D = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right)$$

where

$$g = g(x) \in C(R^n) \cap S'(R^n). \tag{3}$$

Let

$$A_{N,k}f = \int_{R_+^n} a_N(y)f(x-ky) dy, \quad N = 1, 2, 3, \dots, \quad k > 0, \quad (4)$$

be the convolution operator, where

$$a_N(y) = e^{-y} y_+^{N-1} = e^{-y_1 - \dots - y_n} (y_1 \dots y_n)_+^{N-1}.$$

This convolution is well defined for distributions $f \in S'$:

$$(A_{N,k}f, \varphi) = (f, A_{N,k}^* \varphi), \quad \varphi \in S,$$

since the operator A_N^* preserves the space S invariant, which can be easily seen in Fourier transforms:

$$F(A_{N,k}^* \varphi) = \text{const} \left(\prod_{\nu=1}^n \frac{1}{kx_\nu - i} \right)^N \hat{\varphi}(x).$$

Lemma 1. *For any $f \in S'$ there exists N such that*

$$A_{N,k}f \in C(R^n) \cap S'(R^n) \quad (5)$$

for any $k > 0$.

Proof. By Proposition 1 we have

$$(A_{N,k}f, \varphi) = (g, P_m(-D)A_{N,k}^* \varphi), \quad \varphi \in S'. \quad (6)$$

Evidently,

$$F(P_m(-D)A_{N,k}^* \varphi) = \text{const} \sum_{0 \leq |j| \leq N} a_j \frac{x_1^{j_1} \dots x_n^{j_n}}{(kx_1 - i)^N \dots (kx_n - i)^N} \hat{\varphi}(x), \quad (7)$$

where a_j are constants. Obviously,

$$\frac{x_1^{j_1} \dots x_n^{j_n}}{(kx_1 - i)^N \dots (kx_n - i)^N} \in W_0(R^n), \quad \text{if } N < m,$$

$W_0(R^m)$ being the Wiener ring of Fourier transforms of functions in $L_1(R^n)$. So, $P_m(-D)A_{N,k}^*$ is an integral convolution operator:

$$P_m(-D)A_{N,k}^* \varphi = \int_{R^n} a(x-y) \varphi(y) dy =: A\varphi$$

in case of $N > m$. Then from (6)

$$(A_{N,k}f, \varphi) = (A^*g, \varphi)$$

where $g(x)$ satisfies the condition (3). To prove (5), it suffices to verify that the operator A preserves the subspace $C(R^n) \cap S'(R^n)$. To show this, we observe that, as it is easily seen from the structure of the Fourier transforms in (7), the operator A is a sum of convolutions with kernels of the form $D^j(e^y y_+^{N-1})$. Therefore, it suffices to consider the kernels $b(y) = e^y y_+^\lambda$, where λ is a multi-index with positive components. Since $g \in S'$ has slow growth at infinity, we can represent the convolution with this kernel as

$$e^{-y} y_+^\lambda * g(x) = \int_{R^n} b(y)(1 + |x - y|^\mu)g_0(x - y) dy, \quad (8)$$

where $\mu > 0$ and

$$g_0(x) = (1 + |x|)^\mu g(x) \in C(R^n) \cap L_1(R^n).$$

It is clear that

$$\sup_{|x| \leq A} \sup_{y \in R_+^n} b(y)(1 + |x - y|)^\mu < \infty \quad (9)$$

for any finite ball $|x| < A$. Then it is obvious that (8) is a locally bounded function. Since it is equal to

$$\int_{R^n} b(x - y)(1 + |y|)^\mu g_0(y) dy,$$

it is also easily checked that this function is continuous for any fixed value of x . \square

Let $\Delta_h^\ell f(x) = \sum_{k=0}^\ell (-1)^k \binom{\ell}{k} f(x - kh)$. The following statement is known.

Lemma 2. *Let $f = I^\alpha \varphi$, $\varphi \in L_p(R^n)$, $1 \leq p < \infty$, $\Re \alpha > 0$ and let $\ell > \Re \alpha$. Then*

$$\|\Delta_h^\ell f\|_p \leq c|h|^{\Re \alpha} \|\varphi\|_p, \quad h \in R^n, \quad (10)$$

where c does not depend on h and φ .

The proof of the estimate (10) may be found in [2], p.537, in case of real α and $1 < p < \frac{n}{\alpha}$ (we take this opportunity to note a misprint in [2], p.537:

in (26.98) there should stand $\Delta_h^\ell f$ instead of $\Delta_h^\alpha f$. The arguments there remain valid in case of complex α , because (10) is derived as a consequence of the representation

$$\Delta_h^\ell f(x) = |h|^\alpha \int_{R^n} k_{\ell,\alpha}(y) \varphi(x - |h|\omega_h(y)) dy \quad (11)$$

valid for complex α as well. Here $k_{\ell,\alpha}(y) \in L_1(R^n)$ and $\omega_h(y)$ is a rotation in R^n , such that $\omega_h(e_1) = \frac{h}{|h|}$, $e_1 = (1, 0, \dots, 0)$.

As regards the case $p \geq \frac{n}{\Re \alpha}$ (and $p = 1$), it is also derived from the above representation, because this representation is now valid in the distributional sense:

$$(\Delta_h^\ell f, \omega) = (\Delta_{\ell,\alpha})(\cdot, h) * \varphi, \omega,$$

for all $\omega \in \Phi$ and all $f = I^\alpha \varphi$, $\varphi \in L_p(R^n)$, $1 \leq p < \infty$.

4. Proof of Theorem.

From the equality

$$\int_{R_+^n} e^{-h} h^{N-1} \Delta_h^\ell f(x) dh = \sum_{k=0}^{\ell} (-1)^k \binom{\ell}{k} \int_{R_+^n} e^{-h} h^{N-1} f(x - kh) dh$$

we get

$$\begin{aligned} \mu f(x) &= \int_{R_+^n} e^{-h} h^{N-1} \Delta_h^\ell f(x) dh \\ &\quad - \sum_{k=1}^{\ell} (-1)^k k^{n-N+1} \binom{\ell}{k} (A_{N,k} f)(x), \end{aligned} \quad (12)$$

where $\mu = \int_{R_+^n} e^{-h} h^{N-1} dh \neq 0$ and $A_{N,k}$ are the operators (4). By Lemma 1, $A_{N,k} f$ are continuous functions, if we take N sufficiently large. So, it suffices to show that the integral term in (12) is in L_p^{loc} . This function is even in $L_p(R^n)$ for $\ell > \Re \alpha$, because

$$\left\| \int_{R_+^n} e^{-h} h^{N-1} \Delta_h^\ell f(\cdot) dh \right\| \leq c \int_{R_+^n} e^{-h} |h|^{n(N-1)+\Re \alpha} dh \cdot \|\varphi\|_p$$

by Lemma 2, c being the constant from (10). \square

References

1. Lizorkin, P.I. Behaviour of functions in Liouville classes at infinity. Riesz potentials of arbitrary order. *Trudy Steklov Matem. Inst.*, **150**(1979), 174-196
2. Samko, S.G., Kilbas, A.A. and Marichev, O.I. *Fractional Integrals and Derivatives. Theory and Applications*. Gordon & Breach Science Publishers, 1993.
3. Vladimirov, V.S. *Generalized Functions in Mathematical Physics*, Moscow : Nauka, 1976.

Prof. Dr. Stefan Samko
Department of Mathematics and Mechanics
Rostov State University
Zorge 5 , Rostov-na-Donu, 344104, Russia
Currently at Unidade de Ciencias Exactas e Humanas
Universidade de Algarve
Campos de Gambelas
Faro 8000 , Portugal
e-mail: ssamko@ualg.pt