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On Local Summability
of Riesz Potentials in the case fa > 0

S.Samko

1. Introduction

It is well known that the Riesz potential operator

1% = [ kale = y)ely) dy

with
o () 1 |z|*™ | a—n#0,2,4,6,---
a\l) = —F—= a—n
Yola) | |7 lnﬁ, a—n=20,2,4,6,---
(see the value of the normalizing constant ﬁ , for example, in [1]), is well

defined for p(y) € Ly(R"), 1 < p < oo, in case of 0 < Ra < 7. It has also
a sense in the case when p = >, o € R!', and it is known that in this case
10 € BMO. In the general case Ra > % , there exists a known way to

define f = [%y as a distribution over the Lizorkin test function space & :
(Ip,w) = (p,['w), we® pel,, (1)

based on the fact that I® preserves the space ® (see details in [2], Subsec-
tions 25.2 and 26.7 as well as references there). In this case , it was known
that, although f = I%p of ¢ € L, is, generally speaking, a distribution,
nevertheless, f is quasisingular in the sense that finite differences Af(1%p)
of I%p prove to be usual functions ( € L, ) for £ > Ra , the differences of
distributions being defined in the standard way.



The goal of this note is to prove that, in fact, any distribution I%p, ¢ €
L, 1 < p < 00,0 < a < o0, is a regular distribution and even be-
longs to LZ’C(R”). This question is close in a sense to the problem of be-
haviour at infinity of functions with a given L,-behaviour of their derivatives
Dif |j| =a=1,2,3, -, which was investigated by P.I.Lizorkin [1]. In case
of non-integer «, in [1] there were used the Strichartz fractional differentiation
constructions.

2. Statement of the main result
Definition. By I%(L,), 1 < p < oo, Rea > 0, we denote the space of
distributions f € @’ represented as

[=1%, pe L,(R"),

in the sense of (1).

By LZ’C(R”) we denote the space of functions which are in L, on any finite
ball.

Theorem. [*(L,) C LI’“(R"), 1 < p < oo, Ra > 0.

Remark. The connection between the Lizorkin and Schwartz spaces ®’
and S’ is given by the factor-space relation

o = S'/P (2)

modulo the subspace P of all polynomials. So, the statement that some
element f € S'/P belongs to LI*“(R") should be understood in the sense that
every representative f, € S’ of the "class” f € S’/P belongs to Li“(R™).

3. Preliminaries.

The following Proposition is well known, see [3].

Proposition 1. For any f € S’ , there exists a polynomial Py, (x),z €
R™ such that

0 0
f = Pu(D)g, D_<3551"”’0xn>

where

g = g(z) € C(RMNS'(R"). (3)



Let

Anipf = /RnaN(y)f(x—ky) dy, N=1,2,3,--- , k>0, (4)

+

be the convolution operator, where

an(y) = ey = T ()Y

This convolution is well defined for distributions f € S

(Avif,0) = (£, Avap), p €S,

since the operator A} preserves the space S invariant, which can be easily
seen in Fourier transforms:

F(A% 1) :const<ﬁ ! )N¢(x).

ook, — i

Lemma 1. For any f € S’ there exists N such that

Anipf e CR")(S'(R") (5)
for any k > 0.
Proof. By Proposition 1 we have
(Avif, @) = (9, Pu(—D)Axu0), 9 €5 (6)
Evidently,
FIBN-D)Aie) = const 3 aye— e ey 910) (1)

where a; are constants. Obviously,
x{l DY x:,]/l/n

(kz1 — )N - (ky — )N

e Wo(R"), if N<m,

Wo(R™) being the Wiener ring of Fourier transforms of functions in L, (R").
So, Pn(—D)Ay,, is an integral convolution operator:

Pu(=D)Aiye = [ ale—y)el) dy =: Ap
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in case of N > m. Then from (6)

(AN,kfv 90) = (A*97 90)

where g(x) satisfies the condition (3). To prove (5), it suffices to verify that
the operator A preserves the subspace C(R")NS'(R™) . To show this, we
observe that, as it is easily seen from the structure of the Fourier transforms
in (7), the operator A is a sum of convolutions with kernels of the form
Di(e¥yl~1). Therefore, it suffices to consider the kernels b(y) = e¥y?, where
A is a multi-index with positive components. Since g € S’ has slow growth
at infinity, we can represent the convolution with this kernel as

ylgle) = [ b+ e -yl —y) dy ®)
where p > 0 and
wol) = (1+[al)'g(@) € CRHNLi(RY).

It is clear that
sup sup b(y)(1 + |z — y[)" < oo (9)
o] <A yeRT
for any finite ball |z| < A. Then it is obvious that (8) is a locally bounded
function. Since it is equal to

/Rn b(z —y) (1 + [y])"g0(y) dy ,

it is also easily checked that this function is continuous for any fixed value
of x. O
Let AL f(x) = S _o(=1)* ( lf; > f(x — kh). The following statement is
known.
Lemma 2. Let f = [%¢,p € L,(R"),1 < p < oo,Ra > 0 and let
¢ > Ra. Then
1ALl < chl™ llell, . he R, (10)

where ¢ does not depend on h and ¢ .
The proof of the estimate (10) may be found in [2], p.537, in case of real
o and 1 < p < % (we take this opportunity to note a misprint in [2], p.537:
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in (26.98) there should stand A} f instead of AYf ). The arguments there
remain valid in case of complex «a, because (10) is derived as a consequence
of the representation

LS @) = B [ kealy)e(s = Blon(y)) dy (11)

valid for complex o as well. Here kyo(y) € L;(R") and wy(y) is a rotation
in R" , such that wy(e;) = |—Z| , e1=(1,0,---,0).

As regards the case p > - (and p = 1), it is also derived from the above
representation, because this representation is now valid in the distributional
sense:

(Afzf’w) = (A£7Oé)('a h)) * Sovw)a
forallw e ® and all f =1%, p € L,(R"),1 <p < 0.

4. Proof of Theorem.
From the equality

/ e PENIAL f(2) dh = i(—nk ( ¢ >/ e P hN=Lf (2 — kh) dh
R h k) Jr

t k=0 T

we get

pf@) = [ e A () dh (12)

RY
: 0
= S () ()

k=1

where = fR1 e "hN"1 dh # 0 and Ay, are the operators (4). By

Lemma 1 , Ayyf are continuous functions, if we take N sufficiently large.
So, it suffices to show that the integral term in (12) is in LI*° . This function
is even in L,(R") for £ > Ra, because

Js

by Lemma 2, ¢ being the constant from (10). O

e hNTIALF() th < [ et g g,
Rn

n
+ +
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