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Abstract

The Volterra nonlinear integral equation
o™ () = alx) / Kz — Db()p(t)dt + f(z), 0 <z < d < oo,
0

with m > 1 and real nonnegative functions a(x), k(u), b(t) and f(x) is studied. In the
general case some upper bounds are given for the averages % Iy @(t)dt. In the case when
a(x), k(u), b(t) and f(x) have power lower estimates near the origin, lower power type
bounds directly for solutions ¢(x) are given. Conditions for the uniqueness of the solution
in weighted space of continuous functions are proved. Particular cases of the above equation
are specially considered.
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1. Introduction.



We consider the Volterra nonlinear integral equation of the form
o™ (x) = a(x)/ k(x — H)b(H)p(t)dt + f(z), 0 <z < d < oo, (1.1)
0

with m > 0 and real-valued functions a(z), k(u), b(t) and f(x). This equation generalizes
equations investigated by many authors. The equation

o™ () = /0 k(x — ()t + f(z), 0 < < d < oo, (1.2)

arising in applications, e.g. in water perlocation [9], [23], [24] and in the nonlinear theory
of wave propagation [13], was studied in [1], [4], [6], [10], [22], [23], [24], while more general
equation

o™ (x) = a(z) /OI k(x —t)p(t)dt + f(x), 0 <z < d < oo, (1.3)

- in [2], [3], [5], [7]. When m > 1, the equations (1.2) and (1.3) with f(z) = 0 may have
a nontrivial solution ¢(z), see for example [22],[26]. All the papers above were devoted to
investigation of problems concerning in main the existence and uniqueness of a solution
@(x) for equations (1.2) and (1.3) with m > 1, in some spaces of continuous or integrable
functions. The equation (1.2) with 0 < m < 1 and a continuous kernel k(u) was considered
in [1], [4], where some results were given on the uniqueness of its solution ¢(z) in some
spaces of continuous or integrable functions. Such a problem for the equation (1.2) with
m < 0 and non-increasing kernel k(u) in the class of almost decreasing functions was
studied in [12]. Lower estimates and asymptotic properties near zero for the solution ¢(x)
of the equation (1.3) with m > 1 were obtained in [11] provided that a(z), k(u) and f(z)
have power asymptotic behavior near zero.

The existence of the solution for the equation

©"(x) = a(x) /m L)_dt + f(z), 0 <z <d< oo, (1.4)
0o (z—t)—

with m > 0 and weakly singular kernel k(u) = u®™! for 0 < a < 1 was investigated
in spaces of locally integrable and continuous functions in [14], [15], [19]. Asymptotic
properties at zero of the solution ¢(x) for the equation (1.4) with m € R = (—o0, 00),
m # 0,—1,—2,---, in the case when a(z) and f(x) have special asymptotic at zero were
studied in [16], [17], [18], [20], [25]. Special cases of (1.4), when its solution ¢(z) can be
found in closed form, were investigated in [11], [18], [19], [20] and [26].

The equation of the form
o™ () = a(a:)/ b(t)p(t)dt + f(z), 0 <z < d < oo, (1.5)
0

with real m was considered in [21], where existence and uniqueness results were discussed
and special cases of solution in closed form were treated.

The main results in this paper are lower bounds given in Theorem 2.1, upper bounds

for averages of solutions given in Theorem 4.1 and uniquness theorem (see Theorem 5.1).
These results are obtained in the case of m > 1 and real nonnegative functions a(z), k(u),

b(t) and f(z).



2. Lower estimates for a solution of integral equation (1.1)

Let C(0,d), 0 < d < o0, be the space of real valued continuous functions on (0,d),
and let L!°°(0,d) be the space of all Lebesgue measurable functions which are in Ly (0, dy)
for all dy such that 0 < dy < d. We denote by C'L;,.(0,d) the intersection of C(0,d) and
L¢(0, d):

C'Lioe(0,d) = C(0,d) () L(0, d), (2.1)

so that a function in C'L;,.(0,d) may have singularities only at the end points of (0,d). By
CL;,(0,d) we denote the nonnegative functions in CLj.(0, d).

loc

Let C[0,d) be the space of continuous functions on [0,d). Let b(z) be a nonnega-
tive function on [0,d). We denote by C([0,d),b) the space of functions g(z) such that
b(x)g(x) € C[0,d), and by C*[0,d) and C*(]0,d),b) - the subclasses of C|0,d) and
C([0,d),b), respectively, which contain nonnegative functions. Similarly, CL;.((0,d),b))
and C'L; ((0,d),b)) are subclasses of functions g(z) such that b(z)g(z) € CL,e(0,d) or
b(z)g(z) € CL; (0, d), respectively.

Obviously,

loc

C([0,d),0) © CLine((0,d),b), C*([0,d),b) € CLE((0,d),b). (2.2)

Remark 2.1. [t is clear that the equation (1.1) in case b(z) # 0 in a neighborhood of
the origin, may be reduced to the equation only with one coefficient:

o () = ar (@) /O Kz — Dpi()dt + fi(x), 0 <z < d< oo, (2.3)

where @1(x) = b(x)p(x),a1(z) = [b(x)]™a(z) and fi(x) = [b(x)]™f(x) with the solutions
o1(z) looked for in the space C'L\.(0,d). However we find it more convenient to consider
the equations just in the form (1.1).

In this section we give an apriori lower estimate for a nonnegative solution ¢(x) of the
equation (1.1) with m > 1, under the assumption that the functions a(x), k(x), b(z), f(x) €
CL}.(0,d) have lower power bounds, see Theorem 2.1 below. We assume that solutions of
equation (1.1) are in the space CLIOC([O, d),b). Since CL; ([0,00)) is a ring with respect
to Volterra convolution (see, [11], Theorem 1), the integral term in (1.1) is also a locally
integrable function. Therefore, the equation (1.1) is well posed in this class.

We note that the condition

f7 () € CL([0,d),b) (2.4)

r([0,d),b). This fact is a consequence
of the evident inequality f(z) < ¢™(z) and the assumptions on the solution ¢(x). We also
suppose that f(z) satisfies the condition

f(x)#0, z€(0,e) foral e>0. (2.5)

is necessary for solvability of equation (1.1) in C'L}}

Otherwise, if f(z) =0, = € (0,g0) with some ¢y < d and f(x) # 0, x € (9,0 + ¢) for all
€ > 0 we may pass to the function

- 0, 0<z<eg,
w(l') o { §0(1‘+80), o< < d— €0 <26)
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and obtain the same equation (1.1) with respect to ¢(z), for which the condition (2.5) is
satisfied.

In the case when f(x) =0, = € (0,d), the equation (1.1) also may be investigated, but
in this case we need some special additional assumptions on the functions a(x), k(x), b(zx).
We consider this case specially in Section 3. But before that in this section we suppose
that f(x) satisfies the conditions (2.5).

Theorem 2.1. Let m, o, u, v € R be such that
m>1, 0<a<l, p+a+mv>1, (2.7)

and let nonnegative coefficients a(x), b(x) and nonnegative kernel k(x) € CL;|
the conditions

(0, d) satisfy

loc

a(z) > az”, k(z) > ka® !, b(x) > ba" ! (2.8)
with a >0, k>0, b> 0. Let also f(x) satisfy the conditions (2.4)-(2.5). If equation (1.1)
is solvable in C’LJr ((0,d),b), then its solution p(x) satisfies the estimate

loc

p(z) > Agleretr=n/im=), (2.9)
where T
—1 m—
A= {aka <a, p i;_”i” )] (2.10)

and B(z,w) is the Euler beta function. The constant A is precise in the sense that we have
exact equality in (2.9) when f(x) =0 and inequalities in (2.8) are replaced by equalities.
Proof. According to (2.8) and (1.1) we have

v—1

©"(x) > akbx" /OI mgo(t)dt (2.11)
and since 0 < a < 1, we obtain
©™(z) > akbat Tt /OI tLo(t)dt. (2.12)
We denote "
y(z) = /0 = o(t)dt. (2.13)

Since (z) € CL; ((0,d),b), then p(x) € CLE ((0,d),t*"!) so the integral on the right
hand-side of (2.13) exists and y/'(z) € C(0,d) with y(0) = 0. Then p(x) = z'7"y/(z), and
we rewrite (2.12) in the form

[ 7"y (@)™ = akbat " y(2).

Since ™ (x) > f(x), we have

y(x) = / o dt>/ L f



Therefore, y(x) > 0 in some neighborhood of the origin, by (2.5). Then from (2.12) it is
seen that p(z) > 0 for all x € (0,d) and then (2.13) implies that y(x) > 0 for all z € (0, d).
Taking this into account, we obtain

y/(x)y—l/m(x) > (akb)l/mx[(HJrafl)/m]Jrufl. (2.14)

Integrating the latter inequality over (0,z) and using that y(0) = 0 and the conditions in
(2.7), we arrive at the estimate

m—1 m/(m—1)
y(ZL’) > (ak‘b)l/(m_l) l,(u—&-a—i—mu—l)/(m—l)' (2.15>
wr+aoa+mr—1
Then from (2.12) and (2.13), the estimate
@(x) > Dglrtatv=1)/(m=-1) (2.16)

easily follows, but with the constant

D akb(m — 1) 1/(m=1)
Clpta+mr—1 '

It remains to improve the constant. Using the estimate (2.16) on the right-hand side
of (2.11), we obtain

(pm(x) > DakbB ((1/, v+ /HO!"‘V1—1> l»(!H-OH-I/—l)m/(m—l)’
m [—

or
o(x) > DY/m pm=1)/m \.(ptatv=1)/(m=-1)

Substituting again this estimate into (2.11), we obtain in a similar way

o(z) > DYm? g(m=D[+1/m]/m  (u+atv—1)/(m=1)

Repeating this operation n times, we find

p(x) > DY A=D1 meet L mn = fm g (ubacky—1) /(m=1)

Taking the limit as n — oo, we arrive at the inequality (2.9) with the required constant A.
Evidently A > D, since B(z,w) > % for z > 0 and 0 < w < 1. The preciseness
of the constant A may be checked by direct verification of the fact that the function
Agptatv=1/m=1) gatisfies the equation (1.1) when f(z) = 0 and a(x) = az”, k(z) =
kxo=l b(x) = bzv L.
Corollary 2.1. Letm > 1,0 < a <1 and u, v € R be such that p + o+ mv > 1,
a > 0 and let the function fw(z) € CLE((0,d),t*™) and satisfy the condition (2.5). If
the equation
T tufl

" (x) = a:(:“/o m(p(t)dt + f(z), 0 <z <d< o0, (2.17)



is solvable in CL;,

((0,d), 1), then its solution ¢(x) satisfies the estimate

p(z) > Aygltotv=b/m=1 (2.18)

with Ay = [aB (a, %1”1”_1
We note that the condition fw (z) € CLi ((0,d), =) of Corollary 2.1 is satisfied if,

loc

for example, f(z) € CL{ (0,d) and vm > 1.

loc

)]1/(7”—1).

Corollary 2.2. Under the assumptions of Theorem 2.1, if equation (1.1) has a solution
in CL ((0,d),b) with the asymptotic behavior

p(x)=cx” +o(x7), c#0, (2.19)

as x — 0, then necessarily
< M +a+v—1

o (2.20)

Corollary 2.3. Let m > 1, u, v € R be such that p+ mv > 0, and let nonnegative
coeeficients a(x), b(x) satisfy the conditions a(x) > ax*, b(x) > bx"~! with a > 0 and
b> 0. Let also fuw(z) € CLi ((0,d),b) and satisfy the condition (2.5). If equation (1.5)

is solvable in CL} ((0,d),b), then its solution p(x) satisfies the estimate

loc

(2.21)

o 1/(m—1)
p(x) > AgtmD) | 4, — [ab(mlw |

n+ mu

Remark 2.2. By (2.2), the statements of Theorem 2.1 and Corollary 2.1 are also valid
for continuous solutions in the weighted space C([0,d),b).

3. The equation (1.2) in the case f(z) = 0.

By CL;.(0,d) and C*[0,d) we denote the subclass of functions ¢(z) € CL;5(0,d) or
(x) € CT[0,d), respectively, such that p(z) > 0 for > 0. Theorem 2.1 on lower estimates
of solutions of equation (1.2) is also valid in the case f(x) = 0, = € (0,d), that is, the

equation
o™ (z) = / k(z — )p(t)dt, 0 <z < d < oo, (3.1)
0

if we look apriori for solutions in the subclass CL; (0, d).

Theorem 3.1. Let m > 1 and let k(z) € CL; (0,d) satisfy the condition

loc
k(z) > ket (3.2)

with k > 0 and 0 < o < 1. If equation (3.1) is solvable in CL; (0,d), then its solution
(x) satisfies the estimate (2.9) with the constant A in (2.10) calculated for p =0, v = 1.

The proof of Theorem 3.1 is in fact the same as that of Theorem 2.1, if we take into
account that the condition (2.5) on f(x) was used only to show that ¢(z) > 0 for = > 0.

Now we have this by definition of the class CL; (0, d).

loc
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The assumption that the solution ¢(z) is positive for > 0 is natural, which is seen
from the following lemma.

Lemma 3.1. Let m > 1 and let k(z) € L} (0,d) be non-zero in a neighborhood of the
origin:

k(z) £0, = € (0,0) for all 6 > 0. (3.3)

If equation (3.1) is solvable in CL; (0,d), then for the solution p(x) only one of the
following cases may realize:
1) o(x) =0,0 <z <d;
2) p(x) > 0,0 <2 <d
3) there exits dy € (0,d) such that p(xz) = 0,0 <z < dy and p(x) > 0,dy < z < d.

Proof. Suppose that equation (3.1) has a solution in C'L;} (0, d) such that p(xq) > 0.
Then p(z) > 0 for all zy < z < d. Indeed, we have p(t) > @ for t € (zg,x9 + 0) for
sufficiently small §. Then

o"@) = [ k= > [ 7 b — ()t > 90(;"0)

0

/0 "kt > 0. (34)

This gives us the cases 1)-3). We observe that the case 3) may be reduced to the case 2)
by the passing to the function ¢ (z) from (2.6). Lemma is proved.

Remark 3.1. If k(z) in conditions of Lemma 3.1 instead the condition (3.3) satisfy
the similar condition, namely k(x) =0, xz € (0,00) and k(z) Z0, x € (09,00 + d) for all
d > 0 we can repeat our discussion with passing to the function 1 (x) and obtain the result
as in Lemma 3.1 with shift on dg.

4. The upper and lower estimates for averages of solutions.

In the case of the equation (1.2) we intend can obtain the upper bounds for the ”aver-
ages”

= [ ettt

x Jo
when m is an integer: m = 2, 3,4, ... To this end, we need the following auxiliary lemma.

Lemma 4.1. Let a > 0,b > 0 and m > 0. The equation £™ = a& + b,& > 0, has a
unique solution xg, so that

M<al+b <= 0<E<E& and £">al+b <= £ >&. (125.000)
In the case m = 2,3, ..., the following conclusion is also valid
EM<al+b :>£<aﬁ+b%.

Proof. The first statement of Lemma is obvious. The proof of the second part is
motivated by the first one. Let g(§) = £™ — a — b. By means of the binomial formula, it
is easy to show that

glamT +bw) > 0. (4.1)



Then by the first part it should be 0 < £ < & < amT 4 b However, we may give the
1
direct rigorous proof. Indeed, let £™ < a& + b and, on the contrary, £ > am-1 + b . Then

_1 1\m _m_ 1 _1 1
al +b>¢&" > (am—l + bm) =am1 +mabm + ...+ b > a(a™T + mbm ) + b.
Hence
£ > amT +mbw. (4.2)
Repeating these arguments n times, we find
£> a1 + mbw. (4.3)

for an arbitrary n, which is impossible. This completes the proof of the lemma.

Theorem 4.1. Let k(z), f(x) € L} (0,d) andm = 2,3, .... If equation (1.2) is solvable
in CL;.(0,d), then its solution o(x) admits the estimates

L/f fdt < - / ﬁ<UﬁwﬁyL+©Aﬁwﬁy. (4.4)

Proof. The left-hand inequality in (4.4) is obvious, since ¢™(z) > f(z). To prove the
right-hand one, we integrate equation (1.2) and obtain

AZW@@SK@M@+F@. (4.5)

where ®(x) = [y (t)dt, K(x) = [y k(t)dt and F(z) = [; f(t)dt. Using the Holder

inequality, we obtain
xm_l/ " (t)dt > (/ @(t)dt> a (4.6)
0 0

P (x) < 2™ K (2)®(x) + 2™ F (). (4.7)
Then the right-hand inequality in (4.4) follows from (4.7) by Lemma 4.1, where one should
take 8 = ®(z),a = 2™ 'K (x) and b = 2™ 1 F(z). The theorem has been proved.

Hypothesis. Under the assumptions of Theorem 4.1 on k(z) and f(x), the estimate
(4.4) is probably valid for all m > 1.

Corollary 4.1. Under the assumptions of Theorem 4.1, if ¢(x) is a solution of the
equation (1.2), then

so that

z 1
/ o(t)dt = o(x' ™
0
Under the assumption that the solution is bounded, we can obtain the upper estimate
for the solution itself.

Theorem 4.2. Let k(z) € L (0,d), f(z) € LT (0,d) and m = 2,3, ... If equation
(1.2) is solvable in L} (0,d), then

), *—0.

3=

m—1

Fr(@) < pl@) < ( /jkwdt)l + <sup f(t)> . (4.8)

<tz

3=
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Proof. To prove the right-hand side inequality in (4.8), we use the estimate

0<t<z 0<t<zx 0<t<z

(ggﬁ(ﬂ)m = sup ¢"(t) < (Sup s@(ﬂ) /Ozk(t)dH sup f(2).

Applying Lemma 4.1 with the evident choice of 3, a and b, we have

1

sup o) < ( /0 xk(t)dt>ml_1 + <sup f(t))m , (4.9)

0<t<z 0<t<z

which yields (4.8). The theorem has been proved.

Remark 4.2. Let f(z) = 0 and k(z) € L, (0,d). If equation (1.2) is solvable in
L (0,d), then

o(z) < ( /0 ’ k(t)dt)ll . (4.10)

for allm > 1
A similar estimate was known before under the additional assumption that the kernel
k(t) is a continuous increasing function (see, for example, [22],[5])).

Theorem 4.3. Let k*(z) € L;5,(0,d) for some s > 1 and f(z) € CT[0,d). If equation

loc
(1.2) is solvable in Lj (0,d) then its solution ¢(z) belongs to CT[0,d)
Proof. The proof is similar to that in [5], where this theorem was given in the case
f(z) = 0. First of all we show that
©P(z) € L. (0,d) forall p>1. (4.11)
Indeed, from the equation (1.2) we see that the convolution on the right-hand side in
(1.2) belongs to Ls(0,dy). Consequently, p(z) € L;s(0,dy). Repeating our arguments
n times, we obtain that ¢(x) € Ly, (0,dy) for all n, which yields (4.11). To prove the

theorem, it remains to choose n such that sm"™ > s, s’ = —*; and take into account that

1
LS(O, do) * LS/(O, do) C C[O, do)
We note that the statement (4.11) of Theorem 4.3 holds also in the case s = 1.
Corollary 4.2. Let m > 1, a >0, a > 0 and the function f(x) € C*[0,d).

If the integral equation

gpm(x):a/ox(xf(f))l_adt—kf(x), 0<z<d< oo, (4.12)

is solvable in CT[0,d), then its solution satisfies the estimate

3=

Fr@) < elo) < (2)7 a4 sup (), (4.13)

(6] <tz

5. Uniqueness of solution of integral equation (1.1)
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In this section we apply Theorem 2.1 to give some conditions for the uniqueness of the
solution ¢(z) of equation (1.1) in C*([0,d), b).

Theorem 5.1. Letm > 1,0 < a <1 and u, v € R be such that p + o +mv > 1.
Let £ be any number such that 0 < ¢ < d. Suppose that the functions a(zx) b(z) € C*T(0,d),
k(z) € L (0,d) and fi(x) € CT([0,d), 1Y) satisfy the conditions (2.8) and (2.5). Let

loc

M= sup ' H "% (x)b(x) / "k(t)dt < mA™Y, (5.2)
z€(0,0) 0

where A is defined in (2.10). If equation (1.1) is solvable in C*([0,£),b), then its solution

() is unique on the interval [0, ¢].

Proof. Let ¢(z) and ¢o(x) be two solutions of equation (1.1) in C*([0,¢),b). Since
m > 1, by mean value theorem we have

o1 ()] = [pa(2)]™| = mlipr (2) — pa()| (minfipy (), pa(2)])™

Hence, in accordance with the lower estimate (2.10) and Remark 2.2, we have

[l (@)]™ = [pa(2)]™| = mA™ 2t oy () — po(w)].

Then by (1.1),

xT

mA™ T oy (x) — o ()] < a(iv)/o Kz = 0)b(t)]@1(t) — @a(t)]dt. (5-3)

Let
u(z) = b(z)|e1(z) — pa(2)]. (5.4)

Then (5.3) can be rewritten as

u(z) < mAZ(:f;i@wl /0 “ k- bu(t)dt. (5.5)

Let ¢y be a number arbitrarily close to £,0 < fy < ¢ and xy be the maximum point of
u(z) on [0,4y] : u(zg) = maxg<y<p, u(x). Then

/0 " k(o — Du(t)dt < K (z0)ulwo). (5.6)

where K(x) = [j k(t)dt. Substituting this into (5.5) and using the notation in (5.2), we

arrive at the estimate
M

u(zg) < Wu(xg) (5.7)

Since M < mA™ !, we obtain u(zy) = 0 at the maximum point of u(x) on an arbitrary
subinterval [0, ¢p]. Then u(xz) = 0, so that ¢;(z) = a(z), which proves the theorem.

Of course, the condition (5.2) is not necessary for uniqueness, which may be illustrated
by the following equation

goz(x):a/oz(w(t)adt—i-f, 0<z<d, (5.8)

T« x —t)-
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where f is a constant, satisfying the condition f < (%)2 This equation is solvable in

C*[0,d) and has the unique solution ¢(z) = ¢, where the constant ¢ is the positive solution
of the equation ac®?—ac—af = 0, but the condition (5.2) is violated turning into the equality

M =42 =2A.

[e%

Modifying this example, we note that the equation

PO= T et OS2

has the discontinuous solution: ¢(z) = 0,if 0 <2 <1, and ¢ = 2,if 1 < 2 < 2. This
example shows that Theorem 4.3 cannot not be valid in the general case of equation (1.1),
if a(z) has singularities beyond the origin.

Corollary 5.1. Letm>1,a>0,0< a <1 and u, v € R be such that

w+a+mr—1
m—1

u+a+my>1,g<mB a, , (5.9)
and let the function fw (x) € CT([0,d), ™) satisfy the condition (2.5).
If equation (2.17) is solvable in CT([0,d),x"™"), then its solution p(x) is unique.
Theorem 5.2. Let m > 1 and u, v € R be such that y+ mv > 1. Let the functions
a(x), b(z) € CT(0,d) and fw(x) € CT([0,d),b) satisfy the conditions (2.8) and (2.5). Let

-1
M = sup z'""Va(z)b(z) < abM
z€(0,d) mv + [

and equation (1.5) is solvable in C*([0,d),b), then its solution ¢(x) is unique.
Corollary 5.2. Let a > 0 and m, p, v € R be such that

m>1, 0<pu+mrv<m(m-—1), (5.11)

and let the function fw(z) € CT([0,d),t'"Y) satisfy the condition (2.4). If the integral
equation

©"(z) = axt /Om " lot)dt + f(z), 0 <2 <d< oo. (5.12)

is solvable in the space CT([0,d),x*~"), then its solution p(x) is unique.
In particular, Corollary 5.2 holds for equation (5.12) in the case p = 0 and v = 1 if
m > 2.

Remark 5.1. Corollary 5.2 gives some conditions easily verified when m is given and
we want to know what values of p and v are admissible in (5.11) for the uniqueness of the
solution. It is easy to check that, inversely for given values of u and v the possible values
of m are described as follows.

Given 1 and v, the conditions (5.11) are satisfied if

1) In the case 1 > — (%”)2,

1 VD
either m > max (1, —B, +V2+
v

1+V—\/E

5 , (5.13)

) or 1<m<

11



when v > 0, and

m > max (1,

1—|—1/+\/5>
2 b

when v < 0; here D = (1 + v)? + 4u and the interval 1 < m < % in (5.13) is
non-empty if and only if v > max (1, —p);

2
2) In the case p < — (1%”) ,
wy
m > max (1, —) if v>0 (5.14)
v

l<m<-E ifv<o (5.15)
1%

2 )
3) In the remaining case v = 0, we have p > 0 and the following inequality for m:

1+ 1+ 4u>
—5—

with the value m = £ excluded in (5.14)-(5.15) in the case p = — (H—”)Q

m > max (1,
In particular, in the case v =1 we have
m>mcwc(1,—,u,1+ 1+u>, if pu>-—1,

m > max(l, —p), if p<-—1,

Remark 5.2. Ifa(z) # 0 for x € [0,d) in the equation (1.5), then this equation is
equivalent to the following Cauchy problem for the differential equation

where

Thus, results similar to those in Theorems 5.2 are also valid for this problem.
6. The case of singular coefficient

We return here to the integral equation of the type (5.8) with the singular coefficient:

gpm(x):a/ow (('D(t)adt—i-f(x), 0<z<d, (6.1)

z® x—t)-

We suppose that f(z) € CT[0,d) and look for solutions in L} (0, d). Theorem 4.3 states
that in the case when the coefficient of the equation is not singular, any solution which
apriori is in L (0,d), in fact is in CT[0,d). We show that this is also valid in the case of
singular coefficient, as in (6.1).

12



Lemma 6.1. Let o > 0 and

1z o(t)dt
K :—/7 0<z<d. 6.2
L o (z—t)-o’ o (6:2)
The operator K is bounded in L,(0,d), if 1 < p < 0o, and from L1(0,dy) into L1((0,dp),b), b=
(ln %)_/\, where 0 < dy < d, v>dy and X > 1.
Proof. In case p # 1, the statement of lemma is well known, being a particular

case of Hardy-Littlewood theorem [27], on boundedness of integral operators with kernels
homogeneous of degree —1:

1
\Kel, < B (a, - p) ¢l (6.3)

For p = 1 the statement of lemma may be verified directly.

Theorem 6.2. Let 0 < o < 1 and f(z) € CT[0,d). If equation (6.1) is solvable in
L (0,d), then its solution p(x) belongs to CT[0,d)

Proof. The proof uses the idea of the proof of Theorem 4.3.

1 step. First of all we show that the statement (4.11) is valid. By Young theorem,
t°" b s p € Ly(0,dp) for an arbitrary dy € (0,d), where 1 < s < L= Since &+ 1+ > 1 and
0 < a <1 we can find s such that

1

iFrom equation (6.1), z%p™(x) € Lg(0,dy). Moreover, for the functions ¢(z) itself, we
have ¢(z) € L,(0,1) for all

m
l<p< . 6.5
P< T (6.5)

s

Indeed, by Holder inequality with v = % > 14+ as > 1, we have

do do as as do % do asv’ %
/ P (z)dr = / PP (r)zva vdr < (/ (%™ ()" dx) (/ xT v ) < 0.
0 0 0 0

Thus, we obtain (4.11) for the values of p in the interval (6.5). Now we show that (4.11)
takes place for all p > 1. By Lemma 6.1, the integral operator on the right hand side of
(6.1) preserves L,(0,dp),p > 1, so from equation (6.1), we have that ¢™(z) € L,(0,do) or
©(x) € Lpm(0,dp). Repeating the same arguments as in Theorem 4.3, we obtain (4.11).

2 step. We show that the function ¢(z) is in reality bounded on [0, dy]. Since it is in
L,(0,dy) for all p > 1, the integral in the right-hand side (6.1) is a bounded continuous
function. Therefore, to prove boundedness of ¢(z), we have only to show that ¢(x) is
bounded at a neighborhood of the origin, say, on the interval [0, 4], = min(1, dp).

We observe that in the case of the interval (0,6), the L,-norm is an increasing function
in q. Therefore, there exists finite or infinite limit qlLrgo llelly < oo. It is known, see [28],p.14,

that if this limit is finite, then ¢(x) € Lo (0,d) and

el = lim [0l (6.9)

q—00
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Therefore, it suffices to prove that the sequence ||¢||, is bounded for all large values of g.

3 step. Taking L,norm in (6.1) with an arbitrary ¢ > 1 and using (6.3),we have
lellz, < aBla, 1= Hligllg + | flloo- We notice that B(a, 1 - 1) < B (a,}) for all ¢ > 2.
Since we may take ¢ > 2 by (4.11), we have

m 1
lielly < aB (a,5) el + 1 e (638)

where we also have taken into account that |||, < ||¢|lgm by the monotonicity of the
norm. Then [|¢||, is uniformly bounded with respect to ¢ by Lemma 4.1.

4 step. Since p(z) € LT (0,0) we have that t* ! xp € CT[0, ] and then from equation
(6.1) follows that p(x) € C*(0,0].

5 step. It remains to prove that ¢(x) is continuous at the origin. By ¢4 we denote
upper and lower limits of p(z):

o =lim sup p(t), - =lim inf ()

x—0 0<t<z z—0 0<t<x

which evidently exist. Passing to sup on the both sides of (6.1) we easily obtain:
0<t<z

m a
sup ™(t) < — sup p(t) + sup f(?).
0<t<x O 0<t<z 0<t<zx

Hence a
e < P+ + £(0).

Then, by Lemma 4.1.
¢+ < o, (6.11)

where &, is the solution of the equation a&”™ — a§ — af(0) = 0, see Lemma 4.1.
For the lower limits we similarly obtain

inf o"™(t) > < inf o(t)+ inf f(t) (6.12),

0<t<z o 0<t<zx 0<t<z

whence a
" > P + £(0)

which yields that
- > &o, (6.13)

with the same &y as in (6.11). Comparing (6.11) and (6.13) we see that necessarily ¢ = ¢_,
so that ¢ € CT[0,1] and ¢(0) = &. The theorem is proved.

Remark 6.1. Simple examples show that the statement of Theorem 6.2 is not valid, if
f(z) is only bounded, but not continuous function. For example, for the bounded function
flz) =040 <z <dyand f(z) = l—gm if dy < v < d, dy > 0 we have the

T

discontinuous bounded solution p(x) =0 if 0 < x < dy and p(z) =1 if dy < x < d.

14



Corollary 6.1. If in the conditions of Theorem 6.1 f(x) is bounded: f(x) € LI (0,d)
then any solution which is apriori in L;; (0,d) in fact is in f(z) € L1 (0,d).

loc

Finally, we observe that the equation (6.1) in case m < 1 may have non-unique solution.
Thus, the equation

\/go(a:):;a/ox (xf(;)lad“rfa 0<z<d (6.11)

with f is a constant, has a constant solution if ¢ satisfy the equation ac — ay/c + af =0
which has two positive solutions if 4af < «. In the linear case (m=1) the equation (6.1) is
an example of linear integral equations with kernels homogeneous of degree —1, the theory
of which is well developed, see [29] and also the recent survey [30]. The solvability of the
equation (6.1) in C[0,d) and the number of its solutions, were in particular investigated in
detail in [29].
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