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I. Introduction

This paper gives a self-contained representation of the Fredholm theory of one- and multi-
dimensional integral equations

Ap(z) — /| k(x,y)p(y) dy , x € R", |z|<a, 0<a< o0, (1.1)
yi<a

with the homogeneous kernel of degree —n, that is,
k(te,ty) =t "k(x,y), z,y € R*, t>0.

Although known long ago, this theory was not exposed in its complete form anywhere,
its initial results being presented in separate original papers L.Mikhailov [1]-[4]. In the
one-dimensional case such equations (Mellin convolution equations ) are well known as
tightly connected with convolution type equations (Fourier convolution equations). In the
multi-dimensional case the equations (1.1) may be effectively studied under the rotation
invariance condition:

k(w(r),w(y)) =k(z,y), z,y€R", (1.2)

where w(x)) is an arbitrary rotation in R",

Under this assumption the Fredholmness conditions in an explicit form can be given,
as well as the formula for index. Using the apparatus of spherical harmonics, we reduce the
equation (1.1) to a finite system of one-dimensional integral equations with a homogeneous
kernel. This is the key moment of the investigation.

We present in a unified way both the known and new results, which is realized in
terms of rigorous algebraic identities. This allows to consider also some kernels which do
not satisfy the rotation invariance condition.

In Section 2 we treat separately the one-dimensional case. The main results on Fred-
holmness in the multi-dimensional case are presented in Section 3 , while Section 4 con-
tains some further development for the multi-dimensional case (algebras, pseudospectra,
projection method).



II. On operators with homogeneous kernels;
the one-dimensional case

Integral operators

K@;E/ E(z,y)ply) dy ,0<z<a,0<a<o0, (2.1)
0

with the kernel homogeneous of degree —1, that is,
k(te,ty) =t 'k(z,y) , z,y€ R, , t>0, (2.2)

may be considered as some counterparts of convolution operators. These operators in
case of a = oo, are invariant with respect to dilatations, not translations as convolutions
are .

2.1. Connection with convolution operators; L,-boundedness

A simple exponential change of variables establishes a direct correspondence between
convolution type operators and operators (2.1). To show this, we introduce the notation
for the following mapping which is an isometry between the L,-spaces on [0,a], 0 < a <
oo, and R (or on [0,00] and R' in the case a = 00) :

(W) (t) = e_iw(ae’t) , 0<t<oo, (2.3)
in the case a < oo and
(Woo)(t) = e_%go(e’t) , —o<t<oo, (2.4)

in the case a = oco. It is easy to see that

(W) () = (2)"1’ b (—m g) L 0<az<a, (2.5)
in the case 0 < a < 00, and
(W, ) (x) = I_%l/) (—In z), 0<z< o0, (2.6)

in the case a = oo.
Lemma 2.1. The operator W, is an isometry of L,(0,a), 1 < p < oo, onto Ly(RY),
when 0 < a < oo and onto L,(R'), when a = oo, and

W,W, =1, W 'W,=1. (2.7)

Proof is obvious.
For a given kernel k(z,y), homogeneous of degree —1, we define
t

h(t) = er k(1,¢€") . (2.8)
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Let -
Hp = / h(z —t)p(t)dt , =€ R",

and -
He = / h(z —t)p(t)dt , = € RL
0

be the convolution operators. The following relation provides a direct connection between
the operator K and these operators:

W, KW, ' =H, if a=oc0, and WKW, ' =9, if a<oo, (2.9)

which can be verified directly.
We assume that

K :/ |k(1,y)|y_%dy :/ |k (z, 1)|x_§dx < 00 . (2.10)
0 0

Theorem 2.2. Let the kernel k(x,y) be homogeneous of degree —1 and satisfy the
condition (2.10). Then the operator K is bounded in L,(0,a),1 < p < 0o, 0 < a < o0,
with ||K|| < k and ||K|| = &k in the case when k(z,y) > 0.

Theorem 2.2 is known as Hardy-Littlewood theorem (see Hardy and Littlewood and
Pélya [1]). We wish to remark that Theorem 2.2 is an immediate consequence of the
relation (2.9).

Theorem 2.2 is easily extended to the case of weighted spaces

L, ([0,a],27) = {f(x) ; /0 f(2)[P2da < oo} C0<a<oo.  (211)

with a power weight. In this case an isometry similar to that of Lemma 2.1 is valid, if
0

we replace 110 in (2.3) by HT'Y. Since (5) v k(z,y) is again a homogeneous kernel, we easily

obtain the following result as a consequence of Theorem 2.2.
Theorem 2.3. Let the kernel k(z,y), homogeneous of degree —1, satisfy the condition

> 1y
Koy :/ E(Ly)y » dy < oo . (2.12)
0

Then the operator K is bounded in the space (2.11) with | K|| < ky and ||K|| = &, in the
case when k(x,y) > 0.
Remark 2.4. In the case of the operator

b
/ k(z,y)e(y)dy, —a<z<b,

—a

there holds a similar boundedness in the space L, ([—a,b]; |x|7) with 0 < a < 00,0 < b <
00, if instead of (2.10) we require that

/ k(L y)ly ™7 dy < oo (2.13)

o0



2.2. On Fredholmness of the operators A\ — K

a) The case of the equation on the half-axis. The equation

M —-K)p : = lp(z) — /000 kE(xz,y)p(y) dy ,0 <z < o0, (2.14)

by (2.9) is reduced to a convolution equation over the whole real line, which leads to the
following theorem.

Theorem 2.5. Let the kernel k(z,y) satisfy the assumptions (2.2) and (2.10). Then
the operator \I — K is Fredholm in L, (R}Hx”) if and only if it is invertible, and a
necessary and sufficient condition for that is

1 .
OK (m+1—%)7&0, v € R, (2.15)
where the symbol ok (z) is defined by the Mellin transform of k(1,y):

ox(z) = A — /000 k(1,y)y" 'dy . (2.16)

b) The case of a finite interval [0,a]. For a similar equation
M = K)p : = lp(x) —/ k(x,y)p(y) dy ,0 <z <a, 0<a<oo, (2.17)
0

on a finite interval, due to the connection (2.9) with a Wiener-Hopf operators we have
the following theorem.

Theorem 2.6. Let k(z,y) satisfy the assumptions (2.2) and (2.10). Then the oper-
ator \I — K is Fredholm in L,([0,al,z7) , if and only if the condition (2.15) is satisfied,

where ok (2) is the same as in (2.16), and then
Ind (M — K) = —ind o =: »

and a(A — K) = max(0, ) and [(A — K) = max(0, —).
c) The case of the whole line. For the equation

Ko o= xelo) - [ " keyely) dy = f(@), v e R

[e.9]

where
k(tz,ty) = t'k(z,y), z,y€ R*, t>0, (2.18)
the following theorem is valid.
Theorem 2.7. Let k(x,y) satisfy the assumptions (2.18) and (2.13). Then the
operator \XI — K is Fredholm in the space L, (R, |x|") if and only if it is invertible, and
a necessary and sufficient condition for that is

1 .
det ok <Z.T +1-— ﬂ) £0, ve€R', (2.19)
p



where

A=Kii(z) — Ki(2)
ox(z) = ( K (2) A—K_(2) ) (2.20)

and

Kii(z) = /000 k(£1,+y)y* Ldy . (2.21)

Proof. Theorem 2.7 is obtained by passing to the half-axes and using Theorem 2.5
relating to the half-axis. The justification of this passage is easily done by means of the

relation
0.1 0_1 M—-—K 0 0.1 01\
01 6.1 0 Vi 0_1 6,1 )

(N —-0.K0, —0,K0_
“\ —0.K0, MN-6_Ko_ )

where 0, = %( 1 £ sign z) is the Heaviside function and the matrix operator

0.1 0_1
0.1 0,1
is invertible: Q% = I. |
d) The case of [—a,b]. For the equation

b
Ko: = dpla) = [ kawe) dy= f@), vel-ab, (22
where 0 <a < 00,0 <b< oo, the following theorem is valid.

Theorem 2.8. Let k(x,y) satisfy the assumptions (2.18) and (2.13). Then the
operator \I — K is Fredholm in L,([—a,b],|x|") , if and only if the condition (2.19) is
satisfied, where o (z) is the same as in (2.20) and then

Ind (M — K) = —ind (detog) .

We note some cases of Theorem 2.8, when we can give also an information about the
deficiency numbers a(A] — K') and F(A — K). These are the cases when the kernel k(z, y)
is odd or even in one or both variables:

1) k(x,y) is even in z : k(x,y) = k(—z,y);
2) k(z,y) is even iny : k(x,y) = k(z, —y);
3) k(x,y) is odd in x : k(z,y) = —k(—z,y);
4) k(x,y) is odd iny : k(x,y) = —k(z, —y);
5) k(z,y) is even in x and y simultaneously : k(x,y) = k(—x,—y) .

In the cases 1)-5) the matrix symbol (2.20) can be reduced to a triangular or even
diagonal form.

We illustrate what happens in the case 1). In this case we have

(7)o (4=
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A 0
( —Kii(2) + K (2) A= Kyi(2) = Ko (2) )
Therefore, the necessary and sufficient conditions for Fredholmness of the operator
M — K are given by )\()\ —Kii(2)— ICJF,(Z)) #£0for z =i +1—12 ¢ € R'. From the

P J
above matrix relation, we also derive immediately that

a(A — K) =max(0,») and B(A — K) = max(0, —») ,

)
It should be noted that the matrix equality generates also an analogous operator

equality.
In the case 5), for example, the matrix symbol (2.20) has a circulant form and we

have the equality
1 -1 (2) 1 1\
11 )RS 11 )T

L, ( A= Kot () + Ky (2) 0 )

where » = —ind </\—IC++ <i§+1—1+77> — K- <i§+1—H—7>>.

0 A= Kii(2) = K (2)

with the diagonal matrix in the right-hand side. As a consequence from here we can easily
calculate the deficiency numbers.

We note that the case
6) k(x,y) is odd in x and y simultaneously : k(x,y) = —k(—xz, —y)
is more difficult. In this case the reduction to a triangle matrix is also possible, but the
resulting operator will include powers of operators over [0, a], which disables us to derive
an information about the deficiency numbers.

e) Compactness theorem. Let

Ty : = /Oa clx,y)k(z,y)e(y) dy = f(x) , x>0, 0<a< oo, (2.23)

where the homogeneous kernel k(z,y) satisfies the assumptions (2.2) and (2.12).

Theorem 2.9. Let ¢(x,y) € Loo([0,a] x [0,a]) and ¢(40,+0) = ¢(+00, +00) =0 in
the case a = oo and ¢(+0,40) = 0 in the case 0 < a < oo, where the values c(+0,+0)
and c¢(400,+00) are understood in the sense

c(+0,40) = lim esssup |c(z,y)|, c(+o00,+00)= lim esssup |c(z,y)|, (2.24)

N—oo O<w<$ N—oo ;;%
0<y<gy
then the operator T is compact in L,([0,al, |z|) .
Example 2.10. The equation
1
Ko =p(x) +b(33)/ jﬂ%)—ﬁz oy)dy , 0<z<l, m=1,2,.. (2.25)
0



is known as the Dizon equation in the case b(x) = c(y) = const and m = 1 (see Mikhailov
[1] and the original paper Dizon [1]-[2]).

To be able to apply Theorems 2.6 and 2.9 to the equation (2.25), we assume that the
functions z'~™b(z) and c(z) have a finite limit as x — 0 in the sense similar to (2.24).
We denote

= lim [d(y)c(z)z"™™] .

z—0
y—0

Considering Fredholmness of the operator (2.25), we may replace b(z)c(y) by pz™!
view of Theorem 2.9, and thereby arrive at a kernel homogeneous of degree —1. By
Theorem 2.6 the symbol of the obtained operator is

o(z) =1+ ,ulcosec T,
m m

By Theorem 2.6, the operator K,, is Fredholm in the space L,([0,1],27),1 < p <

0, —pm—1)—-1< vy <p—1if g > -2, when HT”:l %, and if p #
m o; b 1+ 1+ m

—2sin [— (1 — T”)] when T'Y #1- 3.

In the case =+ =1— 7%, always Ind K,, = 0.

In the case 1;7 #1-7,

o (15 +1-— H—V>, when £ runs R!, is a closed loop in the right half-plane with the ”"end

to calculate the index we note that the range of the function

points” 0 and cosec [% (1 — 1%)] S R}F . This loop runs in the positive direction, if

%<1—%7<mandinthenegativeone,if0<1—1+TV<%
Therefore,
1
Ind K,,, =0 if u>——sm{ (l—ﬂ)} .
T m D
In the case p < — 2 sin [% <1 — HTVH we obtain

1 if 0<1-— “;7<ﬂ

ind K, =

-1, if Z<1-<m.
p

III. On operators with homogeneous kernels;
the multi-dimensional case

The multi-dimensional version of the operator (2.1) has the form

Ky =/ k(x,y)eo(y) dy, x € B, (3.1)

a



where
Ba:{yERn:|y|§a}

is the ball in R™ of the radius a, where 0 < a < cc.

In the case n > 1 we have no any simple connection between integral operators with
homogeneous kernel and convolution operators, as we had in the one-dimensional case in
the previous section. Such a connection may be, however, written for some other types
of homegeneity, see Subsection 3.5 below.

We shall deal in the main with the following assumptions on the kernel k(z,y):

19 k(x,y) is homogeneous of degree—n, i.e.

k(te,ty) =t "k(x,y), Vt>O0; (3.2)
20, k(z,y) is invariant under the rotation group SO(n), i.e.
k(w(z),w(y)) = k(z,y), Yw e SO(n). (3:3)

But some of the results below will be given also in the case when we give up the
rotation invariance condition (3.3).

Lemma 3.1. Any function k(x,y), defined on R™ x R™ and satisfying the rotation
invariance condition 2° depends only on three scalar variables: |z|, |y| and x - y:

k(z,y) = (2, [yl @ - y). (3.4)

We refer the reader for the proof of Lemma 3.1 to Miiller [1] or Samko [11], p.36, see
also Weyl [1].

3.1. L,-boundedness

We shall use the following summation condition

5= / Ik(ex, )] Jy] 5 dy < +oo, (35)

where

61:<1,0,...,0).

The following are examples of homogeneous kernels satisfying the above assumptions
(3.2)-(3.3):
1

/ﬁ(ﬂ?,y):W7 0<a<n;

1 -y
kQ(x7y) = a < ) '
" + [yl \ |l ly]

These examples satisfy the condition (3.5) for p € (1, g) in the first case and for p > 1
in the second one for any a(c) € Li(S™™!).

Theorem 3.4 below gives the result on L,-boundedness. To prove Theorem 3.3 we
need the following auxiliary lemmas.




Lemma 3.2. Under the assumptions (3.2)-(3.3) the integrals

5= / ko) Iyl Sy o € 57, (36)

and

o = / k(. 0)| [y dy , 6e S, (3.7

where 0 < p < 00, do not depend on o € S™1 and 6 € S™ 1, respectively.
Proof. By

we denote any rotation in R™ which transforms R" onto itself so that

T

we(er) = m , (3.9)

where z is a fixed vector in R". Evidently, such a rotation is unique in the case n = 2; in
the case n > 3 there exist many such rotations and we choose any one of them. Obviously,
for £ = w,(n) we have

x

l=1Inl and & [=e = (3.10)

|z

Making the rotation change of variables y = w,(7) in (3.6), using the above properties
of this rotation and the fact that dy = dr, we obtain the first statement of the lemma,
since k(o,y) is rotation invariant. Similarly the change of variables © = wy(7), leads to
the second statement. |

Lemma 3.3. Under the assumptions (3.2)-(3.3), k = k1 .

Proof. By Lemma 3.2 the integral (3.6) does not depend on o € S™~!. Therefore,

1 o n
K= o1 do/ d@/ \k(o, p8)|p" o dp .
|S7’L | Sn—1 Sn—1 0

Making use of the homogeneity property of the kernel k(x,y) and changing the variable
1
p =, we get

1 o 1_n
K= o da/ d@/ k(ro, 0)|r" " dr .
[SPH S gna sn-1 Jo

Changing the order of integration in o and 6 by Fubini theorem, we see that the obtained
inner integral is equal to the integral defined in (3.7). Taking Lemma 3.2 into account,
we arrive at the equality Kk = k1 . [ |

Theorem 3.4. Let the kernel k(z,y) satisfy the conditions 1° —2° and (3.5). Then
the operator K is bounded in L,(B,),1 <p < oo, 0 <a < oo and

1K@l < &llellp (3.11)

If k(x,y) > 0, the condition (8.5) is necessary for boundedness and | K|\, -1, = k.
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Proof. We assume for simplicity that a = oo (if a < 0o, we may continue ¢(x) as zero
beyond the ball B,).
1). Sufficiency part. Applying the Holder inequality, we obtain

(Ke) ()] < {/R |y|_z|k’($,y)|dy}; {/R |7 k(2. y)] - |¢(y)|pdy}’l’

Making the change of variables y — |z|y in the first integral, taking the homogeneity
property of the kernel k(x,y) and Lemma 3.2 into account, we obtain

(o) < 2 {] w1 <y>|ﬂ“dy}’i

|| »r”

Kl < &7 {/ Iw(y)lplylp’dy/ |k($,y)|'|x|_’“d$}
R" Rn
1
1 -5 7 L v
=t { [ tetwpay [ k(s L) el Fael” = bt

due to the same Lemma 3.2. Taking Lemma 3.3 into account, we arrive at the estimate
(3.11).

2). Necessity part and calculation of the norm. Let now the kernel be non-negative.
Suppose that the operator K is bounded. Then

Then

< [T Hlspllp o1l (3.12)

| mo@us

for all p(x) € L,(R") and ¢(x) € Ly(R™). We choose
p(x) =0, if o] <1, and o(x)=|z|77, if [z >1,

and ¢(z) = [p(z)"".
Substituting this into (3.10), we get

[ [ ot [ ea< gy 6
Snf n
r>max(1,[y|~1)

Direct calculation yields

S / —pe—1 1 _17-pe
p_ Pl = 1
ol : r r= [max(1,[y[~'] ™,

pe

r>max(1,ly| 1)
so that the inequality (3.13) takes the form

1

e Lo [ kel (L < UK (4
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By Lemma 3.2 the inner integral in the left-hand side does not depend on o, so that

L/“ ke, )y =5 [max(1, |y "] ™ dy < [|IK]. (3.15)

Applying the Fatou theorem (see, e.g. Natanson [1] or Stein and Weiss [1]), we may pass
to the limit as ¢ — 0, which yields the inequality x < ||K||. Together with the inverse
inequality proved in the sufficiency part, this gives the equality || K| = & . [ |

The analysis of the proof of Theorem 3.4 shows that it may extended to the case when
we have no the rotation invariance property (3.2). We may also consider the weighted
case with the power weight w(x) = |z|?,7 € R'. Instead of (3.5), see also (3.6)-(3.7), we
have to deal now with the constants

Kk =esssup k(o), and k1 = esssup Ki(0) (3.16)
oesn—1 fesn—1
where
o) = [ Kol dy o€ s, (317)
and
k1(0) = / k(y,0)| [y| 7 rdy, 65", (3.18)

The following result holds

Theorem 3.5. Let the kernel k(x,y) satisfy the homogeneity condition (3.2). If
Kk < 00 and Ky < 00, then the operator K is bounded in the space L,(By, |z|"), 1 <p < o0
and

1
K| < kv sf
where k and Ky are defined in (3.16).
The interested reader can find the details of the proof of Theorem 3.5 in Karapetiants
[1]

Remark 3.6. Now, when the kernel k(x,y) is not necessarily rotation invariant, the
functions k(o) and k(o) may not coincide, as we had in Lemma 3.3, but their spherical

means do coincide, that is,
/ k(o)do :/ k1(o)do,
Snfl Snfl

see the proof of Lemma 3.5. In the case when k(z,y) is non-negative, the conditions
k(0), k1(0) € Li(S")
are necessary for the operator K to be bounded in the space e L,(By,|z]7), 1 <p < oo
3.2. On spherical harmonics
We refer the reader to Miiller [1], Stein [1], Stein and Weiss [1] for basics on spherical

harmonics and remind here only the basic formulas we need to study the multi-dimensional
equation (3.32), the Funk-Hekke formula being the most important for our goals.
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Definition 3.7. A polynomial Y,,(z),x € R", of order m is called harmonic if
AY,, =0, A being the Laplace operator. By H,, we denote the set of all homogeneous
harmonic polynomaials Y,,.

A spherical harmonic Yy, (0),0 € S"™Y, of order m is defined as the restriction to the
unit sphere S*™1 of a harmonic polynomial Y. € H,.

Everywhere below we denote z’ = ﬁ i

The dimension d,,(m) = dim H,, of the space of spherical harmonics of order m is
known to be equal to

B (n+m — 3)!
so that d,(m) = 2 in the case n = 2 and d,,(m) ~ ¢ m" 2 as m — oo , with ¢ = ﬁ

Spherical harmonics of different orders are known to be orthogonal with respect to
the scalar product

(u, v) = /S ulo)elo)do

The Fourier-Laplace decomposition of a function f(c) defined on S™~! is given by

o)~ > Yulfio), (3.20)

where
dn(m)

Z Fonp Yo (3.21)

is the "m-th harmonic component” of the functlon f(z). Here
Sy = f(0)Ymu(o)do
Sn—1

Y, (0) being any fixed orthonormal basis of spherical harmonics of order m. This com-
ponent can be calculated by the formula

Yo (f,z) = cm f(o)Pp(x - o)do, lz] =1, (3.22)
Sn— 1
where 0, (m)
n(m
m = T, 3.23
¢ |Sn—1’ ( )
and P, (t) = P,(n,t) are the generalized Legendre polynomials normed by the condition
P, (1) = 1. We remind that

1 .
Po(t) = ("””‘3) CoF if n>3 and Po(t) = Tu(t) if n=2

m

where C (1), \ = ; , and T,,(t) are the Gegenbauer and Chebyshev polynomials,

respectively. We remark that
|Pn(t)] <1 (3.24)

12



for all m € Ny and t € [-1,1].
The formula (3.25) below is known as the Funk-Hekke formula, see e.g. Miiller [1].

n—3

Theorem 3.8. Let a(t)(1 —t*)"2 € Ly([-1,1]). Then for any spherical harmonic
Yo (), the formula holds

/S”_l a(x - o0)Yy(o)do = Ny, Yiu(x) , || =1, (3.25)
where 1
Am = \S"2|/ a(t) P () (1 — £2)" 2 dt . (3.26)

The integral operators on the sphere with a kernel depending on the inner product of
arguments:

Af = /S a(x-o)f(o) do, xe€S* (3.27)

usually are referred to as spherical convolution operators ( Calderon and Zygmund [1]).
The operator (3.27) is well defined, for example, in the case

/1 la()[(1 — 3T dt < oo . (3.28)

Since w(z) - w(o) = x - o, for any rotation, the operator (3.27) commutes with any
rotation operator Rf = fw(c)], that is, KR = RK.

In view of the Funk-Hekke formula (3.25), any spherical harmonic Y;, is an eigen-
function of the operator (3.27), say, under the assumption (3.28),

AY,, =\ Yo (3.29)
with A, given in (3.26).
Therefore, the operator A can be represented as

m=0

for nice functions f(x), with Y,,(f, z) defined in (3.21).
The spectrum {\,,}32, of the operator K is called its spherical multiplier.
Lemma 3.9. Let (3.28) be satisfied. Then

lm A, = 0. (3.31)

m—0o0

3.3. Formal reduction to a system of one-dimensional equations
with homogeneous kernels

We study the integral equation
Mo(@) = [ b))y + f(), o B, (3.32)
Bq

13



in the space L,(B,), 1 < p < oo, where k(z,y) satisfies the conditions (3.2)-(3.3), (3.5).
The case a = oo is easier than the case of a < 0o, so we consider the case a < co. In view
of Lemma 5.1, this equation has the form

Mplz) = / o, 1y 2 - y)o(y)dy + f(x), € Ba, (3.33)

where the kernel £(r?, p* rpt), r > 0,p > 0,t € [—1, 1], satisfies the condition

K

_ 3.34
|Sn—2| ( )

[e%e) 1 .
— [ [l on] o a2y Fapdt <00 2=
0 —1

which is easily derived from (3.5) by passing to polar coordinates.

We wish to show that the equation (3.32) is reduced to an infinite system of one-
dimensional equations (with a diagonal matrix) via the Funk-Hekke formula. We present
some formalism of such a reduction in this subsection, and in the next subsection give a
justification of this formalism.

We formally decompose the functions ¢(z) = ¢(ro) and f(z) = f(ro) into the
Fourier-Laplace series (3.20) for a fixed value of r:

oo dn(m) oo dn(m)
(@) =D > em)Youlo) . fl@) =D > Sua(1)Yaulo)
m  pu=1 m  u=1
(3.35)
where {Y,,,(c)} is any fixed orthonormal basis of spherical harmonics of order m and
Oy :/s B o(0)Ypu(o)do and  fp,, = . f(o)Ynu(o)do ,

are the Fourier-Laplace coefficients of the functions ¢(ro) and f(ro) for a fixed value of
r > 0.
We rewrite (3.33) in polar coordinates:

Ap(ro) = /o / 0(r?, p? rpo - 0)p" tp(pd) dp dO + f(ro). (3.36)

Substituting the expansions (3.35) into (3.36) and applying the Funk-Hekke formula
(3.25), after equalizing the coefficients in front of the spherical harmonics Y,,,(0), we
arrive at the relations

APmu(T) — /0 ) K (7, 0)@mu(p)dp = finu(T), (3.37)

m=0,1,2,--- and p=1,2,---,d,(m),
where

1
bl p) = Sucal 70 [ 462 oot Pat) 1 = )75t =
—1
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_ [Sn2| <B)"/1£(1, r gt) Pu(t)(1— )" dt | (3.38)

P r -1 r?’

the latter relation being obtained due to the fact that the function ¢(u,v,t) is a homo-
geneous function of its arguments: £(Au, \v, \t) = A~2{(u,v,t), which follows from the
homegeneity of the kernel k(z,y) and the equality k(z,y) = £(|z|?, |y|*, = - y).

Let us consider the one-dimensional integral operator

(Kuth)(r) = / k(. )0 (p)p, (3.39)

occurred in (3.37). Its kernel is homogeneous of order —1, as is seen from (3.38). Oper-
ators and equations with such operators were studied in the one-dimensional case in the
preceding section.

It is clear via passage to polar coordinates, that if we study the initial multi-dimensional
operator K in the space L,(B,), the one-dimensional operators K,, must be considered
in the weighted space L,([0,a], 7" ").

Lemma 3.10. Let k(z,y) satisfy the conditions (3.2)-(3.3), (3.5) and let K,, be
the operators (3.39) with the kernel (3.38) related to the initial kernel k(x,y) via the
connection (3.4). Then

| Kl - = HKm”quo,a],rnflpr([o,a],Tnfl) —0 as — o0, 1<p<oo. (3.40)
Proof. By Theorem 2.3 we have
|l < / (1, p)lp 3 dp (3.41)
0

It is clear that

1

bnl1.p) = [Sual o [ (L A pt) Pal)(1 £)'Fde
-1
To prove (3.40), we apply the Lebesgue dominated convergence theorem. By (3.24) and
(3.34), the function integrated in (3.41) has an integrable majorant not depending on m.
Hence by the Lebesgue theorem it remains to show that k,,(1,p) — 0 as m — oo for
almost all p € (0,00) . Obviously, for any fixed p, the number k,,(1, p), is nothing else
but the multiplier (3.26) for the kernel

a(t) = [Sucel 7 (1. 77 pt) |

Then this multiplier tends to zero by Lemma 3.9, the assumption (3.28) of that lemma
being fulfilled due to (3.34) and Fubini’s theorem. |

Corollary. There exists a number My € N such that the equation (M — K,)) =
g, N # 0, with g(r) € L,([0,a],7"™ "), 1 < p < 00, has the unique solution in L,([0,a], 7" ")
for any m > M.

3.4. Justification of the reduction and
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the main result for rotation invariant homogeneous kernels

To the integral operator

(A — K)p = Aplx) — / ke, )o(y)dy,

a

generated by the equation (5.32), we relate the following function sequence

om(€) =X — / k(er,y)Pr(er - o)y P %dy, meZ,, E€RY, (3.42)

which may be also represented in the form
0o 1 ) e
om(§) = A= / / 01, p%, pt)pr TP (H)(1 = £2) "2 dpdt . (3.43)
0o J-1

In the case when 0,,(§) # 0, V¢ € R! we denote

[e.9]

= — ind 0,(§) = —%A[argam(@} ‘

—00

We introduce also the following numbers

a= Y dym)x,, B=-Y_ di(m)m, . (3.44)

{Lm>0 {m<0

Remark 3.11. The series in (3.44) are, in fact,finite sums under the assumptions
(3.2)-(3.8),(3.5) since »,, =0 for large m by Lemma 3.10.

Theorem 3.12. The operator \XI — K is Fredholm in the space L,(B,), 0 < a <
0o, 1<p<oo, if and only if

om(€) #0 meZy, &cRh. (3.45)

Under these conditions, the deficiency numbers o = a(AN — K) and = (A — K) of the
operators N\ — K are computed by the formulas (3.44). In the case B, = R", the word
"Fredholm” may be replaced by the word "invertible” (with o = 3 =10).

Proof. 1) Passage to the matriz operator. To justify the reduction to the system of
one-dimensional equations (3.37), we introduce the following projectors.

dn(m)
Pyt = 0o (1) Yiri(0) . P = > @unu(r) Y (0) (3.46)
pn=1
and
m dn(j)
,ngo = Z Z ngM(T‘)Y}M<O') ’ (347)
7=0 p=1
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where ¢,,,, are the Fourier-Laplace coefficients of the function ¢(ro). They map the space
L,(B,) onto finite-dimensional subspaces in L,(B,); in the case of the projector P,,, for
example, this subspace consists of functions of the form

S )Y, (5)

j=0 p=1

Evidently, ¢;,(r) € L, ([0,a],r"1). In the case m = 0, all the three projectors coincide
and map L,(B,) onto its subspace of radial functions.
Our justification will be based on the matrix identity

P, P A O p. P\ (PAP,+P_BP. P.,AP_+ P _BP,
( P P ) < 0 B ) ( P P, ) a ( P AP, +P,BP. P_AP + P,BP, ) ’
(3.48)

where P,, P_, A and B are arbitrary operators. The particular case of such matrix identity
was already used in the proof of Theorem 2.7. In the case when the operators P, and P_

in (3.48) are projectors, we have P, + P_ = I, and the matrix operator ( ?r ]ij ) is
- Iy

invertible.
According to (3.48) we have

P I-P\[(M-K 0 P I-P\
I-P P 0o M J)\1-P P )~

:<( M —PKP PN — K)(I —P) )

[—PYM —KYP M —(I—P)K(I—P) (3.49)

where P is any projector and K is any operator.

2) Action of K on P, (L,(B,)) and commutation relation. We apply the matrix
relation (3.49) to the projector P = P,,, defined in (3.47) and the operator K involved in
(3.36), that is,

Ky = / /S 0?0, rpo - )" p(pf) dp db . w=r0 (3:50)
0 n—1

or, which is the same,

a 1 ./p
K(,p—/o /Sn1 pﬁ(r,aﬁ)gp(w) dp df , z=ro, (3.51)
where
L(p,t)=p™(1,p° pt) . (3.52)
We have
KPyup = RnPrpp (3.53)
and
P Ko = Ry Prup, (3.54)
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where K, is the operator, the action of which on the subspace P, is reduced to the
application of the operator K,,, introduced in (3.39), to the radial factor, that is,

R (OmpYmp) = (Kinpmp) (r)Ymu(o) - (3.55)

Let us prove, for example, the formula (3.54):
P = (K Q) Vopl0) = Vilo) [ 5o [ olp0)ao [ e% 2 b Vo (61
0 n—1 n—1

Applying the Funk-Hekke formula (3.25), we get

PmuKQO = Ymu(0> / km(r7 p)gomu(p)dp = ﬁvnpmu(p .
0

Similarly the formula (3.53) can be proved.
Obviously, the commutation relations (3.53)-(3.54) hold for the projectors P, as well.
We note also that for P, instead (3.53)-(3.54) we have

KPnp=Y &P and P,Kp=Y &P

j=1 j=1
Therefore, we have
PunK( —Pp)=0 and (I —P,)KP,=0. (3.56)

This means that the matrix identity (3.49) takes the form

Pm I=Pn\[(M-K 0 P I—Pn\ _
[=Pn  Pn o X )\I1-Pn P. )

_ ( M — P, KP, 0 )

0 N — (I —P)K(I —P,) (3.57)

3) Invertibility of the lower diagonal term. We wish to show that the operator A\I —
(I —Pn)K(I —P,,) is invertible for large m. To this end, we intend to approximate
the operator K by finite-dimensional ones under the operator norm. For the half-strip
II={(pt): 0<p<oo, —1<t< 1}, where the kernel L(p,t) of the operator K is
defined, we consider the space

Ly(IL,w) = { f(p, 1) / o0l 37 (1= )% dt < oo, w=p (1 -1

generated by the condition (3.34). Let C§°(Il) be the space of C™°-functions with a
compact support supp f C II. It is well known that C§° is dense on L, (II, w).

Therefore, we may approximate the kernel L£(p,t) in the norm of the space L;(II, w)
by a Cg°-function b(p,t) so that

1L — b <e. (3.58)

L1 (IT,w)
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Let
b(p,t) =D bm(p)Pu(t) € C5(I0) (3.59)

be the expansion of b(p, t) into the series of Legendre polynomials P,,(t), which converges
in the norm of the space L;(II, w), since the coefficients

52
|Sm=1 ),

b (p) = din(m) b(p, t) Pu(t)(1 — 3" dt | (3.60)

having the compact support supp b,, C [0, N], with 0 < 6 < N < oo not depending on
m, admit the estimate

bu(p)] < =

ma

: (3.61)

for any ¢ = 1,2,3,... with C' not depending on m and p. The estimate (3.61) is easily
derived from (3.60) via integration by parts due to the formula

m(m +n — 2)

Pl (n,t) =

Pp_1(n+2,1) (3.62)

for the Legendre polynomials P,,(t) = P,,(n,t).
Then we may choose M so that

16Co,8) = bar (0, )y a1y <€ (3.63)

where by, (p,t) = S0 by(p)P(t). Using the notation K = K for the operator K in
dependence on its kernel, we consider the difference of operators

K- Ky, = K — Ky,

For the norm | K|| = || K|| we have

Lp(Ba)—Lp(Ba)

1K) < & =[5"] - 1I£]] (3.64)

L1 (IL,w)

by (3.11) and (3.34). Therefore, from (3.58) and (3.63) we get

1K = Kby, |l 5™ L = ball,y g,y < 215" e

Lp(Ba)—Lp(Ba) S
Then the operator (I — P,,,)K (I — Py,) involved in (3.57) may be represented as
(= P = Py) = (1= P ) (K — Ky (T = Py) (1 = Py )y (5~ ).

If we choose

then
(I —Pn)Kp,,(I —=Pp)=0. (3.65)
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This is obvious, in fact, but may be also justified rigorously in the operator form, since
M
Ky = Z SBJ' F)j?
§=0

where P; are the projectors (3.46) and the operators B ;1 are similar to those appeared in
(3.53)-(3.54) and are treated as in (3.55) with K; replaced by By = ¢; [5 b; (£) %w(p)dp,
with the constant ¢; defined in (3.23). Then (3.65) becomes obvious due to the commu-
tation relation (3.54).

In view of the formula (3.65), the matrix operator in the right-hand side of (3.57) is
equal to

K: =

( M — P, KP,, 0 ) ’ (3.66)

0 M — (I —=Pp)(K — Ky, ) (I —Py)
where || K — K3,,|| < €. Choosing € < %, we see that the operator A\[ — (I —P,,) (K —
Ky,,)(I —P,,) is invertible in the space L,(B,), if m > M.

4) The final part. Because of the invertibility of the lower diagonal term in (3.57), we
conclude from (3.57) and (3.66), that the operator K is Fredholm (or invertible) if the
operator Al — P,,, K'P,, is Fredholm (invertible, respectively).

The Fredholmness properties of the operator \I — P,, K'P,, are defined by those of
the operator

Po(M — K) (3.67)

P (Lp(Ba)

The matrix operator (3.67) is reduced to a finite system of the equations (3.37) with
m = 0,1, ..., M. Applying the one-dimensional results given in Theorems 2.6 and 2.5 to
each of the equations in (3.37), we arrive at the statement of the theorem. |

3.5. Some cases of non-rotation invariant kernels and other types of homogeneity

a) The case of a kernel radial in x. Let now k(x,y) in (3.32) be a radial function
in x, but arbitrary in y, such that

k(x,y) = ((|z],y) .

We introduce the symbol

AQ =A~ [ Lyl e R (3.68)

Let in (3.32) a < oo for definiteness.

Theorem 3.13. Let the function k(x,y) = £(|x|,y) satisfy the homogeneity condition
(3.2) and the condition

esssup r1(6) < oo, (3.69)
fesSn—1
where k1(6) has the form (3.18) with v = 0. Then the operator X\l — K is Fredholm in
L,(B,),1 <p<oo,ifand only if o(§) #0, &€ R, and Ind (\] — K) = —ind A(§).
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Proof. First of all we note that the operator K is bounded in the space L,(B,)
under the assumptions of the theorem. Indeed, the boundedness conditions are given by
Theorem 3.5. The function k(o) introduced in (3.17) is constant in this case and similarly
to the proof of Lemma 3.3, it can be shown that the condition k(o) = k < oo follows
automatically from the condition (3.69).

Let Py = Py be the projector defined in (3.46) mapping L,(B,) onto its subspace of
radial functions. Evidently,

(I —Py)K =0, (3.70)

because of which the matrix identity (3.49) in this case takes a simpler form

Po I—-Py\(M-K 0 Po I—-Po\
I-Py Py o N )\I1-P0 Py )~

B ( M = PoKPy —PoK (I —P) )

0 A
This matrix identity immediately yields the statement of the theorem in view of the
one-dimensional result presented in Theorem 2.6. |

The case of the kernel radial in y may be treated similarly.

b) The case of coordinate-wise homogeneity.

Saying that k(z,y) is a coordinate-wise homogeneous kernel of vector degree —1 =
(—=1,—1,...,—1), we mean that

k(Aoxz, Aoy) =A""k(z,y) ,
where A € R", A > 0 and we denote
Aox = ()\1.1’1,)\21'2, ---7)\nxn> )

A= 0

Let j,, u=1,2,...,2" be the vertices of the cube |z| < 1 and I',, the corresponding
octant in R" containing a vertex 7j,.
Theorem 3.14. Let k(z,y) be coordinate-wise homogeneous kernel and let

kzu,v=/lk(ju,T)IHIle‘idT<oo, w=12...2" (3.71)
Iy j=1

Then the operator K is bounded in L,(R"),1 <p < oo .

We refer to Karapetiants [2] for the proof of Theorem 3.14.

Integral equations with coordinate-wise homogeneous kernels can be treated by means
of the Lemma below on operators with projectors.

Let Py, P, ..., P, be mutually orthogonal projectors in the Banach space X:

Pi+ P4+ P, =1, PP=P; PP;=0,i#j, i,j=12.,n,
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A; be bounded linear operators in X, j =1,2,...,n and

j=1

Lemma 3.15. The operator I1 is Fredholm (invertible) in X if and only if the matrix

operator
n

W= (PjAjPr + 61— Pj)) (3.72)

jr=1

is Fredholm (invertible, resp.) in X" = X x X x --- x X , where 6,; =1, if r = j and
0,; = 0 otherwise.
Proof. Let

II 0
VZ(PrJrj—l);L,r:la Pnyj =P and UZ(O ]I_1> ’

where I,,_; is the identity operator in X" '. We have W = VUV. Hence the lemma’s
statement follows, since V? = 1. [ |
Applying this Lemma, for example, to the equation

Mo(o) — [ kol = fa).x € B 5.7
Rn
we obtain the following theorem.
Theorem 3.16. Let k(x,y) be coordinate-wise homogeneous kernel of vector degree

—1 and let the conditions (3.70) be satisfied. For the operator \I — K to be invertible in
the space L,(R™), 1 <p < o0, it is necessary and sufficient that

271

det {)\E - (Mu,v(ig + %jl)) } £0, ¢€Rm (3.74)
1

where M(z) is the Mellin transform

MU,U(Z) - /k(ju7jvoy)y21dy7 UJ/U - ]‘727“'72n'

Iy

z1—1 .

and I'y = {x ER":x21>0,...,2, > 0}’ j1 = 1’yz71 =y

zZn—1

--yn

IV. Some further developments

4.1. The algebra of multi-dimensional integral operators
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with homogeneous kernels

According to Theorem 3.12 we can relate, with any operator A\ — K, where K is of the
form (3.32), the function

a(m,&) = A — /k(euy)Pm(el )|y dy, (4.1)

Rn

defined on the set Z, x R. The function (4.1) is called the symbol of the operator Al — K.
The following is the reformulation of Theorem 3.12.
Theorem 4.1. The operator \I — K is Fredholm in L,(B,,) if and only if the function
o(m, &) is nonvanishing, i.e.

o(m,§) #0, V(m,§) € Z. X R. (4.2)

If the condition (4.2) is satisfied, then the index of N\ — K can be computed by the formula:

Ind (\I = K) == dy(m) ind; a(m,), (4.3)

=0

where indgo(m, ) is the winding number of the function o(m,§) with fived m.
Let K be the smallest closed subalgebra of the Banach algebra £(L,) containing all
operators of the form A\l — K, with A\ € C. It represents the closure in the operator norm

of the set
Ko = { E H (Aig I — Kij)} ;
i g

where the sum and the products are finite. Let 7 be the set of compact operators
containing in the algebra IC. Clearly, 7 is a closed two-sided ideal of . So we may
consider the quotient algebra IC\7 . It is obvious, that every element of C\7, containing
at least one element of ICy, has actually the form A\l — K + 7 and the set

(K\T), = {\ — K +T}

is dense in the algebra K\7.

It is easy to see that the algebra K\7 is commutative. Indeed, using the known
results on compactness, one can show that if K; and K, are of the form (3.6), then
(K1, Ko] = K1 Ky — KoKy €T

Now let us study the invertibility in the algebra KC\7. With every element \[ — K +
7 € (K\T)o we connect the function, defined by (4.1). We call this function the symbol
of the element A\l — K + 7. It is easy to prove, that the sum and the product of symbols
correspond to the sum and the product of elements of (IC\K)g, respectively. The following
proposition will be used below.

Lemma 4.2. For every A\l — K +7 € (K\T)o and its symbol o(m, &) the inequality

sup |o(m,§)| < |IM = K +Tll\r

Z+><R1
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holds.

Proof can be obtained from Theorem 4.1 by standart arguments.

Let C (Z+ §<R1) be the Banach space of all continuous functions defined on the com-
pact Z, x R' with the norm

Z+ x R1

Let us associate with every element of K\7 a certain function of
C(ZyxR').

Theorem 4.3 Let A+7T € K\7T. The element A+T is invertible in the algebra K\T
if and only if its symbol is non-degenerate, i.e.

o(m,&) #0, VY(m,§) € Zo xR

Definition 4.4. The symbol of the operator A € K is a function o4(m,§) which is
the symbol of the coset {A+ T} € K\T.

From Theorem 4.3 we easy derive the following result.
Theorem 4.5. Let A € K. The operator A is a Fredholm operator if and only if

oalm, &) #0, V(m,§&) € Z, xR (4.4)

If (4.4) holds, then the index of A can be computed by the formula

Ind A= — i dn(m) indg o4(m,§). (4.5)
m=0

4.2. Finite section method

Let X be a Banach space and A € L(X). Suppose { P} ¢(0,1) C £(X) and {Q;}re(0,1) C
L(X) are families of projections with the property that P, — I and ), — I in the strong
sense as 7 — 0. Now consider the equation

QTAPT‘T = QTy' (46>

Definition 4.6. They say that the finite section method is applicable to an operator
Aif
1) there ezists a number 7y € (0,1) such that for each y € X the equation (4.6) has the
unique solution x € P X for all T < 1y;
2) x. converges in the norm of X to a solution x € X of the equation Ax =y as 7 — 0.

If the finite section method is applicable to A then we write A € II{P,}. For details
about the finite section method see Gohberg and Fel’dman [1], Bottcher and Silbermann
[1] and Prossdorf and Silbermann [1].

Now let us consider the projection on L,(B,), 1 < p < oo, defined by

(Prg) () ={ A ol =t
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We are interested in answering the question: whether the finite section method is
applicable to the operator A\I — K. The following proposition provides the desired answer.

Theorem 4.7. Let the operator \I — K be bounded in L,(B,), 1 < p < oco. Then
M — K € TI{P;} if and only if \I — K is invertible.

The operator K, = P.K P, is called the truncated operator. Let R, be the operator
defined by the formula

() () = (_>/0¢(i)  Teldst

.zl <7

It is easy to prove the following properties of R, :
1) for every 7 € (0,1) we have R?2 = P, and R, P, = P,R, = R;;
2) ||R.|| =1 for every T € (0, 1);
3) if 1 < p < oo then R, and R’ tend weakly to zero as 7 — 0.
Theorem 4.8. Let Ky and K5 be integral operators with homogeneous kernels over
the ball B, and Ky, and K, be the corresponding truncated operators. Then

KITKQT - KT + PTTPT + R’TLRTJ
where K is also an operator with a homogeneous kernel and T and L are compact operators
in L,(By).
The proof can be obtained by direct arguments.
Corollary The commutator of Ky, and Ko, satisfies to equality
[Kl‘ra KQT] = KlTKZT - KQTKlT = PTTPT + RTLRTa

where T' and L are compact operators on L,(B,).

4.3. Pseudospectra

From now on we work in Lq(B,,)-space only. Our aim is to establish the relationship
between spectral properties of the truncated operator K, and spectral properties of the
original operator K. The notion of pseudospectrum for Wiener-Hopf operators was studied
by Bottcher [1], see also Bottcher and Wolf [1].

Definition 4.9. Let {E;},c01) be a family of sets E. C C. We denote by lim,_o E;
the set of all X € C for which there are T, 7o, ... and Ay, Ag, ... such that

m>m>...>17,—0, \yeb., A\ — A\
Definition 4.10. For ¢ > 0, e-pseudospectrum of an operator A is the set
A(A)={reC: |(A=X)"|=1/e}.
It is known that the inclusion

AK) € i AL (K) (@)

25



holds for every € > 0. (In the general form this proposition was established in Bottcher
[1].

The main result on the pseudospectra is given by the following theorem.

Theorem 4.11. For each € > 0, the relation s valid

lin% A(K;) = Ad(K).

The following theorem contains the conditions on the kernel k(x,y) which guarantee
the convergence of the usual spectra of the truncated operator K, to the spectra Qq(K)
of the limiting operator K.

Theorem 4.12. Let k(z,y) satisfy the conditions 1°—3" and: 1) k(zx,y) = a(|z], |y|)b(z’-
y'); 2)a(l,p) =a(p,1); 3)b(t)=0b(t). Then lin%AO(KT) = Ao(K).

For the proofs of the results of this Section we refer to Avsyankin and Karapetiants

[1]-[2]-
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