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I. Introduction

This paper gives a self-contained representation of the Fredholm theory of one- and multi-
dimensional integral equations

λϕ(x)−
∫

|y|<a

k(x, y)ϕ(y) dy , x ∈ Rn, |x| < a , 0 < a ≤ ∞ , (1.1)

with the homogeneous kernel of degree −n, that is,

k(tx, ty) = t−nk(x, y) , x, y ∈ Rn , t > 0.

Although known long ago, this theory was not exposed in its complete form anywhere,
its initial results being presented in separate original papers L.Mikhailov [1]-[4]. In the
one-dimensional case such equations (Mellin convolution equations ) are well known as
tightly connected with convolution type equations (Fourier convolution equations). In the
multi-dimensional case the equations (1.1) may be effectively studied under the rotation
invariance condition:

k (ω(x), ω(y)) = k(x, y) , x, y ∈ Rn , (1.2)

where ω(x)) is an arbitrary rotation in Rn,
Under this assumption the Fredholmness conditions in an explicit form can be given,

as well as the formula for index. Using the apparatus of spherical harmonics, we reduce the
equation (1.1) to a finite system of one-dimensional integral equations with a homogeneous
kernel. This is the key moment of the investigation.

We present in a unified way both the known and new results, which is realized in
terms of rigorous algebraic identities. This allows to consider also some kernels which do
not satisfy the rotation invariance condition.

In Section 2 we treat separately the one-dimensional case. The main results on Fred-
holmness in the multi-dimensional case are presented in Section 3 , while Section 4 con-
tains some further development for the multi-dimensional case (algebras, pseudospectra,
projection method).



II. On operators with homogeneous kernels;

the one-dimensional case

Integral operators

Kϕ : ≡
∫ a

0

k(x, y)ϕ(y) dy , 0 < x < a , 0 < a ≤ ∞ , (2.1)

with the kernel homogeneous of degree −1, that is,

k(tx, ty) = t−1k(x, y) , x, y ∈ R1
+ , t > 0, (2.2)

may be considered as some counterparts of convolution operators. These operators in
case of a = ∞, are invariant with respect to dilatations, not translations as convolutions
are .

2.1. Connection with convolution operators; Lp-boundedness

A simple exponential change of variables establishes a direct correspondence between
convolution type operators and operators (2.1). To show this, we introduce the notation
for the following mapping which is an isometry between the Lp-spaces on [0, a], 0 < a <
∞, and R1

+ (or on [0,∞] and R1 in the case a = ∞) :

(Wpϕ)(t) = e−
t
p ϕ(ae−t) , 0 < t < ∞ , (2.3)

in the case a < ∞ and

(Wpϕ)(t) = e−
t
p ϕ(e−t) , −∞ < t < ∞ , (2.4)

in the case a = ∞. It is easy to see that

(W−1
p ψ)(x) =

(x

a

)− 1
p
ψ

(
− ln

x

a

)
, 0 < x < a, (2.5)

in the case 0 < a < ∞, and

(W−1
p ψ)(x) = x−

1
p ψ (− ln x) , 0 < x < ∞, (2.6)

in the case a = ∞.
Lemma 2.1. The operator Wp is an isometry of Lp(0, a), 1 ≤ p ≤ ∞, onto Lp(R

1
+),

when 0 < a < ∞ and onto Lp(R
1), when a = ∞, and

WpW
−1
p = I, W−1

p Wp = I . (2.7)

Proof is obvious.
For a given kernel k(x, y), homogeneous of degree −1, we define

h(t) = e
t

p
′ k(1, et) . (2.8)
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Let

Hϕ =

∫ ∞

−∞
h(x− t)ϕ(t)dt , x ∈ R1 ,

and

Hϕ =

∫ ∞

0

h(x− t)ϕ(t)dt , x ∈ R1
+

be the convolution operators. The following relation provides a direct connection between
the operator K and these operators:

WpKW−1
p = H, if a = ∞ , and WpKW−1

p = H, if a < ∞ , (2.9)

which can be verified directly.
We assume that

κ : =

∫ ∞

0

|k(1, y)|y− 1
p dy =

∫ ∞

0

|k(x, 1)|x− 1
p′ dx < ∞ . (2.10)

Theorem 2.2. Let the kernel k(x, y) be homogeneous of degree −1 and satisfy the
condition (2.10). Then the operator K is bounded in Lp(0, a), 1 ≤ p ≤ ∞, 0 < a ≤ ∞,
with ‖K‖ ≤ κ and ‖K‖ = κ in the case when k(x, y) ≥ 0.

Theorem 2.2 is known as Hardy-Littlewood theorem (see Hardy and Littlewood and
Pólya [1]). We wish to remark that Theorem 2.2 is an immediate consequence of the
relation (2.9).

Theorem 2.2 is easily extended to the case of weighted spaces

Lp ([0, a], xγ) =

{
f(x) :

∫ a

0

|f(x)|pxγdx < ∞
}

, 0 < a ≤ ∞ , (2.11)

with a power weight. In this case an isometry similar to that of Lemma 2.1 is valid, if

we replace 1
p

in (2.3) by 1+γ
p

. Since
(

x
y

) γ
p
k(x, y) is again a homogeneous kernel, we easily

obtain the following result as a consequence of Theorem 2.2.
Theorem 2.3. Let the kernel k(x, y), homogeneous of degree −1, satisfy the condition

κγ : =

∫ ∞

0

|k(1, y)|y− 1+γ
p dy < ∞ . (2.12)

Then the operator K is bounded in the space (2.11) with ‖K‖ ≤ κγ and ‖K‖ = κγ in the
case when k(x, y) ≥ 0.

Remark 2.4. In the case of the operator

∫ b

−a

k(x, y)ϕ(y)dy, −a < x < b,

there holds a similar boundedness in the space Lp ([−a, b]; |x|γ) with 0 < a ≤ ∞, 0 < b ≤
∞, if instead of (2.10) we require that

∫ ∞

−∞
|k(±1, y)|y− 1+γ

p dy < ∞ . (2.13)
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2.2. On Fredholmness of the operators λI −K

a) The case of the equation on the half-axis. The equation

(λI −K)ϕ : ≡ λϕ(x)−
∫ ∞

0

k(x, y)ϕ(y) dy , 0 < x < ∞ , (2.14)

by (2.9) is reduced to a convolution equation over the whole real line, which leads to the
following theorem.

Theorem 2.5. Let the kernel k(x, y) satisfy the assumptions (2.2) and (2.10). Then
the operator λI − K is Fredholm in Lp

(
R1

+, xγ
)

if and only if it is invertible, and a
necessary and sufficient condition for that is

σK

(
ix + 1− 1 + γ

p

)
6= 0, x ∈ Ṙ1 , (2.15)

where the symbol σK(z) is defined by the Mellin transform of k(1, y):

σK(z) = λ −
∫ ∞

0

k(1, y)yz−1dy . (2.16)

b) The case of a finite interval [0, a]. For a similar equation

(λI −K)ϕ : ≡ λϕ(x)−
∫ a

0

k(x, y)ϕ(y) dy , 0 < x < a, 0 < a < ∞ , (2.17)

on a finite interval, due to the connection (2.9) with a Wiener-Hopf operators we have
the following theorem.

Theorem 2.6. Let k(x, y) satisfy the assumptions (2.2) and (2.10). Then the oper-
ator λI −K is Fredholm in Lp([0, a], xγ) , if and only if the condition (2.15) is satisfied,
where σK(z) is the same as in (2.16), and then

Ind (λI −K) = −ind σK =: κ

and α(λI −K) = max(0,κ) and β(λI −K) = max(0,−κ).
c) The case of the whole line. For the equation

Kϕ : ≡ λϕ(x)−
∫ ∞

−∞
k(x, y)ϕ(y) dy = f(x) , x ∈ R1,

where
k(tx, ty) = t−1k(x, y) , x, y ∈ R1 , t > 0, (2.18)

the following theorem is valid.
Theorem 2.7. Let k(x, y) satisfy the assumptions (2.18) and (2.13). Then the

operator λI −K is Fredholm in the space Lp (R1, |x|γ) if and only if it is invertible, and
a necessary and sufficient condition for that is

det σK

(
ix + 1− 1 + γ

p

)
6= 0, x ∈ Ṙ1 , (2.19)
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where

σK(z) =

(
λ−K++(z ) − K+−(z )
− K−+(z ) λ−K−−(z )

)
(2.20)

and

K±±(z ) =

∫ ∞

0

k(±1 ,±y)yz−1dy . (2.21)

Proof. Theorem 2.7 is obtained by passing to the half-axes and using Theorem 2.5
relating to the half-axis. The justification of this passage is easily done by means of the
relation (

θ+I θ−I
θ−I θ+I

)(
λI −K 0

0 λI

)(
θ+I θ−I
θ−I θ+I

)
=

=

(
λI − θ+Kθ+ −θ+Kθ−
−θ−Kθ+ λI − θ−Kθ−

)
,

where θ± = 1
2
(1± sign x) is the Heaviside function and the matrix operator

(
θ+I θ−I
θ−I θ+I

)

is invertible: Q2 = I. ¥
d) The case of [−a, b]. For the equation

Kϕ : ≡ λϕ(x)−
∫ b

−a

k(x, y)ϕ(y) dy = f(x) , x ∈ [−a, b], (2.22)

where 0 < a < ∞, 0 < b < ∞, the following theorem is valid.
Theorem 2.8. Let k(x, y) satisfy the assumptions (2.18) and (2.13). Then the

operator λI − K is Fredholm in Lp([−a, b], |x|γ) , if and only if the condition (2.19) is
satisfied, where σK(z) is the same as in (2.20) and then

Ind (λI −K) = −ind (det σK) .

We note some cases of Theorem 2.8, when we can give also an information about the
deficiency numbers α(λI−K) and β(λI−K). These are the cases when the kernel k(x, y)
is odd or even in one or both variables:
1) k(x, y) is even in x : k(x, y) = k(−x, y);
2) k(x, y) is even in y : k(x, y) = k(x,−y);
3) k(x, y) is odd in x : k(x, y) = −k(−x, y);
4) k(x, y) is odd in y : k(x, y) = −k(x,−y);
5) k(x, y) is even in x and y simultaneously : k(x, y) = k(−x,−y) .

In the cases 1)-5) the matrix symbol (2.20) can be reduced to a triangular or even
diagonal form.

We illustrate what happens in the case 1). In this case we have

(
1 −1
1 1

)
σK(z)

(
1 1
−1 1

)
=
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= 2

(
λ 0

−K++(z) +K+−(z) λ−K++(z)−K+−(z)

)
.

Therefore, the necessary and sufficient conditions for Fredholmness of the operator

λI −K are given by λ
(
λ−K++(z)−K+−(z)

)
6= 0 for z = iξ + 1− 1+γ

p
, ξ ∈ Ṙ1. From the

above matrix relation, we also derive immediately that

α(λI −K) = max(0,κ) and β(λI −K) = max(0,−κ) ,

where κ = −ind
(
λ−K++

(
iξ + 1− 1+γ

p

)
−K+−

(
iξ + 1− 1+γ

p

))
.

It should be noted that the matrix equality generates also an analogous operator
equality.

In the case 5), for example, the matrix symbol (2.20) has a circulant form and we
have the equality (

1 −1
1 1

)
σK(z)

(
1 1
−1 1

)
=

= 2

(
λ−K++(z) +K+−(z) 0

0 λ−K++(z)−K+−(z)

)
.

with the diagonal matrix in the right-hand side. As a consequence from here we can easily
calculate the deficiency numbers.

We note that the case
6) k(x, y) is odd in x and y simultaneously : k(x, y) = −k(−x,−y)
is more difficult. In this case the reduction to a triangle matrix is also possible, but the
resulting operator will include powers of operators over [0, a], which disables us to derive
an information about the deficiency numbers.

e) Compactness theorem. Let

Tϕ : ≡
∫ a

0

c(x, y)k(x, y)ϕ(y) dy = f(x) , x > 0, 0 < a ≤ ∞, (2.23)

where the homogeneous kernel k(x, y) satisfies the assumptions (2.2) and (2.12).
Theorem 2.9. Let c(x, y) ∈ L∞([0, a]× [0, a]) and c(+0, +0) = c(+∞, +∞) = 0 in

the case a = ∞ and c(+0, +0) = 0 in the case 0 < a < ∞, where the values c(+0, +0)
and c(+∞, +∞) are understood in the sense

c(+0, +0) = lim
N→∞

esssup
0<x< 1

N
0<y< 1

N

|c(x, y)| , c(+∞, +∞) = lim
N→∞

esssup
x>N
y>N

|c(x, y)| , (2.24)

then the operator T is compact in Lp([0, a], |x|γ) .
Example 2.10. The equation

Kmϕ : = ϕ(x) + b(x)

∫ 1

0

c(y)ϕ(y)

xm + ym
ϕ(y)dy , 0 < x < 1 , m = 1, 2, ... (2.25)
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is known as the Dixon equation in the case b(x) ≡ c(y) ≡ const and m = 1 (see Mikhailov
[1] and the original paper Dixon [1]-[2]).

To be able to apply Theorems 2.6 and 2.9 to the equation (2.25), we assume that the
functions x1−mb(x) and c(x) have a finite limit as x → 0 in the sense similar to (2.24).
We denote

µ = lim
x→0
y→0

[
d(y)c(x)x1−m

]
.

Considering Fredholmness of the operator (2.25), we may replace b(x)c(y) by µxm−1 in
view of Theorem 2.9, and thereby arrive at a kernel homogeneous of degree −1. By
Theorem 2.6 the symbol of the obtained operator is

σ(z) = 1 + µ
π

m
cosec

π

m
z .

By Theorem 2.6, the operator Km is Fredholm in the space Lp([0, 1], xγ), 1 < p <
∞, −p(m − 1) − 1 < γ < p − 1, if µ > −m

π
, when 1+γ

p
= 1 − m

2
, and if µ 6=

−m
π

sin
[

π
m

(
1− 1+γ

p

)]
when 1+γ

p
6= 1− m

2
.

In the case 1+γ
p

= 1− m
2
, always Ind Km = 0.

In the case 1+γ
p
6= 1− m

2
, to calculate the index we note that the range of the function

σ
(
iξ + 1− 1+γ

p

)
, when ξ runs R1, is a closed loop in the right half-plane with the ”end

points” 0 and cosec
[

π
m

(
1− 1+γ

p

)]
∈ R1

+ . This loop runs in the positive direction, if
m
2

< 1− 1+γ
p

< m and in the negative one, if 0 < 1− 1+γ
p

< m
2
.

Therefore,

Ind Km = 0 if µ > − m

π
sin

[
π

m

(
1− 1 + γ

p

)]
.

In the case µ < − m
π

sin
[

π
m

(
1− 1+γ

p

)]
we obtain

ind Km =





1 , if 0 < 1− 1+γ
p

< m
2

−1 , if m
2

< 1− 1+γ
p

< m .

III. On operators with homogeneous kernels;

the multi-dimensional case

The multi-dimensional version of the operator (2.1) has the form

Kϕ =

∫

Ba

k(x, y)ϕ(y) dy, x ∈ Ba, (3.1)
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where
Ba = {y ∈ Rn : |y| ≤ a}

is the ball in Rn of the radius a, where 0 < a ≤ ∞.
In the case n > 1 we have no any simple connection between integral operators with

homogeneous kernel and convolution operators, as we had in the one-dimensional case in
the previous section. Such a connection may be, however, written for some other types
of homegeneity, see Subsection 3.5 below.

We shall deal in the main with the following assumptions on the kernel k(x, y):
10. k(x, y) is homogeneous of degree−n, i.e.

k(tx, ty) = t−nk(x, y), ∀t > 0; (3.2)

20. k(x, y) is invariant under the rotation group SO(n), i.e.

k(ω(x), ω(y)) = k(x, y), ∀ω ∈ SO(n). (3.3)

But some of the results below will be given also in the case when we give up the
rotation invariance condition (3.3).

Lemma 3.1. Any function k(x, y), defined on Rn × Rn and satisfying the rotation
invariance condition 20 depends only on three scalar variables: |x|, |y| and x · y:

k(x, y) = `(|x|2, |y|2, x · y). (3.4)

We refer the reader for the proof of Lemma 3.1 to Müller [1] or Samko [11], p.36, see
also Weyl [1].

3.1. Lp-boundedness

We shall use the following summation condition

κ =

∫

Rn

|k(e1, y)| |y|−n
p dy < +∞, (3.5)

where
e1 = (1, 0, . . . , 0).

The following are examples of homogeneous kernels satisfying the above assumptions
(3.2)-(3.3):

k1(x, y) =
1

|x|α|x− y|n−α
, 0 < α < n;

k2(x, y) =
1

|x|n + |y|n a

(
x · y
|x| |y|

)
.

These examples satisfy the condition (3.5) for p ∈ (
1, n

α

)
in the first case and for p > 1

in the second one for any a(σ) ∈ L1(S
n−1).

Theorem 3.4 below gives the result on Lp-boundedness. To prove Theorem 3.3 we
need the following auxiliary lemmas.
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Lemma 3.2. Under the assumptions (3.2)-(3.3) the integrals

κ =

∫

Rn

|k(σ, y)| |y|−n
p dy , σ ∈ Sn−1, (3.6)

and

κ1 =

∫

Rn

|k(y, θ)| |y|− n
p′ dy , θ ∈ Sn−1 , (3.7)

where 0 < p ≤ ∞, do not depend on σ ∈ Sn−1 and θ ∈ Sn−1, respectively.
Proof. By

ωx(η) , η ∈ Rn , (3.8)

we denote any rotation in Rn which transforms Rn onto itself so that

ωx(e1) =
x

|x| , (3.9)

where x is a fixed vector in Rn. Evidently, such a rotation is unique in the case n = 2; in
the case n ≥ 3 there exist many such rotations and we choose any one of them. Obviously,
for ξ = ωx(η) we have

|ξ| = |η| and ξ · x

|x | = η · e1 = η1 . (3.10)

Making the rotation change of variables y = ωσ(τ) in (3.6), using the above properties
of this rotation and the fact that dy = dτ , we obtain the first statement of the lemma,
since k(σ, y) is rotation invariant. Similarly the change of variables x = ωθ(τ), leads to
the second statement. ¥

Lemma 3.3. Under the assumptions (3.2)-(3.3), κ = κ1 .
Proof. By Lemma 3.2 the integral (3.6) does not depend on σ ∈ Sn−1. Therefore,

κ =
1

|Sn−1|
∫

Sn−1

dσ

∫

Sn−1

dθ

∫ ∞

0

|k(σ, ρθ)|ρn−1−n
p dρ .

Making use of the homogeneity property of the kernel k(x, y) and changing the variable
ρ = 1

r
, we get

κ =
1

|Sn−1|
∫

Sn−1

dσ

∫

Sn−1

dθ

∫ ∞

0

|k(rσ, θ)|rn−1− n
p′ dr .

Changing the order of integration in σ and θ by Fubini theorem, we see that the obtained
inner integral is equal to the integral defined in (3.7). Taking Lemma 3.2 into account,
we arrive at the equality κ = κ1 . ¥

Theorem 3.4. Let the kernel k(x, y) satisfy the conditions 10 − 20 and (3.5). Then
the operator K is bounded in Lp(Ba), 1 ≤ p ≤ ∞, 0 < a ≤ ∞ and

‖Kϕ‖p ≤ κ‖ϕ‖p. (3.11)

If k(x, y) ≥ 0, the condition (3.5) is necessary for boundedness and ‖K‖Lp→Lp = κ.
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Proof. We assume for simplicity that a = ∞ (if a < ∞, we may continue ϕ(x) as zero
beyond the ball Ba).

1). Sufficiency part. Applying the Hölder inequality, we obtain

|(Kϕ)(x)| ≤
{∫

Rn

|y|−n
p |k(x, y)|dy

} 1
p′

{∫

Rn

|y| n
p′ |k(x, y)| · |ϕ(y)|pdy

} 1
p

.

Making the change of variables y → |x|y in the first integral, taking the homogeneity
property of the kernel k(x, y) and Lemma 3.2 into account, we obtain

|(Kϕ)(x)| ≤ κ
1
p′

|x| n
pp′

{∫

Rn

|y| n
p′ |k(x, y)| · |ϕ(y)|pdy

} 1
p

.

Then

‖Kϕ‖p ≤ κ
1
p′

{∫

Rn

|ϕ(y)|p|y| n
p′ dy

∫

Rn

|k(x, y)| · |x|− n
p′ dx

} 1
p

= κ
1
p′

{∫

Rn

|ϕ(y)|pdy

∫

Rn

|k
(

x,
y

|y|
)
| · |x|− n

p′ dx

} 1
p

= κ
1
p′ κ

1
p

1 ‖ϕ‖p

due to the same Lemma 3.2. Taking Lemma 3.3 into account, we arrive at the estimate
(3.11).

2). Necessity part and calculation of the norm. Let now the kernel be non-negative.
Suppose that the operator K is bounded. Then

∣∣∣∣
∫

Rn

(Kϕ)(x)ψ(x)dx

∣∣∣∣ ≤ ‖K‖ · ‖ϕ‖p‖ψ‖p′ (3.12)

for all ϕ(x) ∈ Lp(R
n) and ψ(x) ∈ Lp′(R

n). We choose

ϕ(x) = 0, if |x| < 1, and ϕ(x) = |x|−ε−n
p , if |x| ≥ 1,

and ψ(x) = [ϕ(x)]p−1.
Substituting this into (3.10), we get

∫

Sn−1

dσ

∫

Rn

k(σ, y)|y|−ε−n
p dy

∫

r>max(1,|y|−1)

r−pε−1dr ≤ ‖K‖ · ‖ϕ‖p
p . (3.13)

Direct calculation yields

‖ϕ‖p
p =

|Sn−1|
pε

,

∫

r>max(1,|y|−1)

r−pε−1dr =
1

pε

[
max(1, |y|−1

]−pε
,

so that the inequality (3.13) takes the form

1

|Sn−1|
∫

Sn−1

dσ

∫

Rn

k(σ, y)|y|−ε−n
p
[
max(1, |y|−1

]−pε
dy ≤ ‖K‖ . (3.14)
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By Lemma 3.2 the inner integral in the left-hand side does not depend on σ, so that
∫

Rn

k(e1, y)|y|−ε−n
p
[
max(1, |y|−1

]−pε
dy ≤ ‖K‖. (3.15)

Applying the Fatou theorem (see, e.g. Natanson [1] or Stein and Weiss [1]), we may pass
to the limit as ε → 0, which yields the inequality κ ≤ ‖K‖. Together with the inverse
inequality proved in the sufficiency part, this gives the equality ‖K‖ = κ . ¥

The analysis of the proof of Theorem 3.4 shows that it may extended to the case when
we have no the rotation invariance property (3.2). We may also consider the weighted
case with the power weight w(x) = |x|γ, γ ∈ R1. Instead of (3.5), see also (3.6)-(3.7), we
have to deal now with the constants

κ = esssup
σ∈Sn−1

κ(σ), and κ1 = esssup
θ∈Sn−1

κ1(θ) , (3.16)

where

κ(σ) =

∫

Rn

|k(σ, y)| |y|−n+γ
p dy , σ ∈ Sn−1, (3.17)

and

κ1(θ) =

∫

Rn

|k(y, θ)| |y|− n
p′+

γ
p dy , θ ∈ Sn−1 . (3.18)

The following result holds
Theorem 3.5. Let the kernel k(x, y) satisfy the homogeneity condition (3.2). If

κ < ∞ and κ1 < ∞, then the operator K is bounded in the space Lp(Ba, |x|γ), 1 ≤ p ≤ ∞
and

‖K‖ ≤ κ
1
p′ κ

1
p

1 ,

where κ and κ1 are defined in (3.16).
The interested reader can find the details of the proof of Theorem 3.5 in Karapetiants

[1].
Remark 3.6. Now, when the kernel k(x, y) is not necessarily rotation invariant, the

functions κ(σ) and κ(σ) may not coincide, as we had in Lemma 3.3, but their spherical
means do coincide, that is,

∫

Sn−1

κ(σ)dσ =

∫

Sn−1

κ1(σ)dσ,

see the proof of Lemma 3.3. In the case when k(x, y) is non-negative, the conditions

κ(σ), κ1(σ) ∈ L1(S
n−1)

are necessary for the operator K to be bounded in the space e Lp(Ba, |x|γ), 1 ≤ p ≤ ∞

3.2. On spherical harmonics

We refer the reader to Müller [1], Stein [1], Stein and Weiss [1] for basics on spherical
harmonics and remind here only the basic formulas we need to study the multi-dimensional
equation (3.32), the Funk-Hekke formula being the most important for our goals.
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Definition 3.7. A polynomial Ym(x), x ∈ Rn, of order m is called harmonic if
∆Ym ≡ 0 , ∆ being the Laplace operator. By Hm we denote the set of all homogeneous
harmonic polynomials Ym.

A spherical harmonic Ym(σ), σ ∈ Sn−1, of order m is defined as the restriction to the
unit sphere Sn−1 of a harmonic polynomial Ym ∈ Hm.

Everywhere below we denote x′ = x
|x| .

The dimension dn(m) = dim Hm of the space of spherical harmonics of order m is
known to be equal to

dn(m) = (n + 2m− 2)
(n + m− 3)!

m!(n− 2)!
, (3.19)

so that dn(m) = 2 in the case n = 2 and dn(m) ∼ c mn−2 as m →∞ , with c = 2
(n−2)!

.
Spherical harmonics of different orders are known to be orthogonal with respect to

the scalar product

(u, v) =

∫

Sn−1

u(σ)v(σ)dσ .

The Fourier-Laplace decomposition of a function f(σ) defined on Sn−1 is given by

f(σ) ∼
∞∑

m=0

Ym(f, σ) , (3.20)

where

Ym(f, σ) =

dn(m)∑
µ=1

fmµYmµ(σ) (3.21)

is the ”m-th harmonic component” of the function f(x). Here

fmµ =

∫

Sn−1

f(σ)Ymµ(σ)dσ ,

Ymµ(σ) being any fixed orthonormal basis of spherical harmonics of order m. This com-
ponent can be calculated by the formula

Ym(f, x) = cm

∫

Sn−1

f(σ)Pm(x · σ)dσ, |x| = 1 , (3.22)

where

cm =
dn(m)

|Sn−1| , (3.23)

and Pm(t) = Pm(n, t) are the generalized Legendre polynomials normed by the condition
Pm(1) = 1. We remind that

Pm(t) =

(
m + n− 3

m

)−1

C
n−2

2
m if n ≥ 3 and Pm(t) = Tm(t) if n = 2 ,

where Cλ
m(t), λ = n−2

2
, and Tm(t) are the Gegenbauer and Chebyshev polynomials,

respectively. We remark that
|Pm(t)| ≤ 1 (3.24)
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for all m ∈ N0 and t ∈ [−1, 1].
The formula (3.25) below is known as the Funk-Hekke formula, see e.g. Müller [1].

Theorem 3.8. Let a(t)(1 − t2)
n−3

2 ∈ L1([−1, 1]). Then for any spherical harmonic
Ym(x), the formula holds

∫

Sn−1

a(x · σ)Ym(σ)dσ = λm Ym(x) , |x| = 1 , (3.25)

where

λm = |Sn−2|
∫ 1

−1

a(t)Pm(t)(1− t2)
n−3

2 dt . (3.26)

The integral operators on the sphere with a kernel depending on the inner product of
arguments:

Af =

∫

Sn−1

a(x · σ)f(σ) dσ , x ∈ Sn−1. (3.27)

usually are referred to as spherical convolution operators ( Calderon and Zygmund [1]).
The operator (3.27) is well defined, for example, in the case

∫ 1

−1

|a(t)|(1− t2)
n−3

2 dt < ∞ . (3.28)

Since ω(x) · ω(σ) = x · σ, for any rotation, the operator (3.27) commutes with any
rotation operator Rf = f [ω(σ)], that is, KR = RK.

In view of the Funk-Hekke formula (3.25), any spherical harmonic Ym is an eigen-
function of the operator (3.27), say, under the assumption (3.28),

AYm = λmYm (3.29)

with λm given in (3.26).
Therefore, the operator A can be represented as

Af =
∞∑

m=0

λmYm(f, x) (3.30)

for nice functions f(x), with Ym(f, x) defined in (3.21).
The spectrum {λm}∞k=0 of the operator K is called its spherical multiplier.
Lemma 3.9. Let (3.28) be satisfied. Then

lim
m→∞

λm = 0. (3.31)

3.3. Formal reduction to a system of one-dimensional equations
with homogeneous kernels

We study the integral equation

λϕ(x) =

∫

Ba

k(x, y)ϕ(y)dy + f(x), x ∈ Ba, (3.32)

13



in the space Lp(Ba), 1 ≤ p ≤ ∞, where k(x, y) satisfies the conditions (3.2)-(3.3), (3.5).
The case a = ∞ is easier than the case of a < ∞, so we consider the case a < ∞. In view
of Lemma 5.1, this equation has the form

λϕ(x) =

∫

Ba

`(|x|2, |y|2, x · y)ϕ(y)dy + f(x), x ∈ Ba, (3.33)

where the kernel `(r2, ρ2, rρt), r > 0, ρ > 0, t ∈ [−1, 1], satisfies the condition

L : =

∫ ∞

0

∫ 1

−1

∣∣`(1, ρ2, ρt)
∣∣ ρ

n
p′−1

(1− t2)
n−3

2 dρdt < ∞ ,L =
κ

|Sn−2| , (3.34)

which is easily derived from (3.5) by passing to polar coordinates.
We wish to show that the equation (3.32) is reduced to an infinite system of one-

dimensional equations (with a diagonal matrix) via the Funk-Hekke formula. We present
some formalism of such a reduction in this subsection, and in the next subsection give a
justification of this formalism.

We formally decompose the functions ϕ(x) = ϕ(rσ) and f(x) = f(rσ) into the
Fourier-Laplace series (3.20) for a fixed value of r:

ϕ(x) = ϕ(rσ) =
∞∑
m

dn(m)∑
µ=1

ϕmµ(r)Ymµ(σ) , f(x) = f(rσ) =
∞∑
m

dn(m)∑
µ=1

fmµ(r)Ymµ(σ) ,

(3.35)
where {Ymµ(σ)} is any fixed orthonormal basis of spherical harmonics of order m and

ϕmµ =

∫

Sn−1

ϕ(σ)Ymµ(σ)dσ and fmµ =

∫

Sn−1

f(σ)Ymµ(σ)dσ ,

are the Fourier-Laplace coefficients of the functions ϕ(rσ) and f(rσ) for a fixed value of
r > 0.

We rewrite (3.33) in polar coordinates:

λϕ(rσ) =

∫ a

0

∫

Sn−1

`(r2, ρ2, rρσ · θ)ρn−1ϕ(ρθ) dρ dθ + f(rσ). (3.36)

Substituting the expansions (3.35) into (3.36) and applying the Funk-Hekke formula
(3.25), after equalizing the coefficients in front of the spherical harmonics Ymµ(σ), we
arrive at the relations

λϕmµ(r)−
∫ a

0

km(r, ρ)ϕmµ(ρ)dρ = fmµ(r), (3.37)

m = 0, 1, 2, · · · and µ = 1, 2, · · · , dn(m) ,

where

km(r, ρ) = |Sn−2| ρn−1

∫ 1

−1

`(r2, ρ2, rρt)Pm(t)(1− t2)
n−3

2 dt =

14



=
|Sn−2|

ρ

(ρ

r

)n
∫ 1

−1

`

(
1,

ρ2

r2
,

ρ

r
t

)
Pm(t)(1− t2)

n−3
2 dt , (3.38)

the latter relation being obtained due to the fact that the function `(u, v, t) is a homo-
geneous function of its arguments: `(λu, λv, λt) = λ−

n
2 `(u, v, t), which follows from the

homegeneity of the kernel k(x, y) and the equality k(x, y) = `(|x|2, |y|2, x · y).
Let us consider the one-dimensional integral operator

(Kmψ)(r) =

∫ a

0

km(r, ρ)ψ(ρ)dρ, (3.39)

occurred in (3.37). Its kernel is homogeneous of order −1, as is seen from (3.38). Oper-
ators and equations with such operators were studied in the one-dimensional case in the
preceding section.

It is clear via passage to polar coordinates, that if we study the initial multi-dimensional
operator K in the space Lp(Ba), the one-dimensional operators Km must be considered
in the weighted space Lp([0, a], rn−1).

Lemma 3.10. Let k(x, y) satisfy the conditions (3.2)-(3.3), (3.5) and let Km be
the operators (3.39) with the kernel (3.38) related to the initial kernel k(x, y) via the
connection (3.4). Then

‖Km‖ : = ‖Km‖Lp([0,a],rn−1)→Lp([0,a],rn−1)
→ 0 as →∞, 1 ≤ p ≤ ∞. (3.40)

Proof. By Theorem 2.3 we have

‖Km‖ ≤
∫ ∞

0

|km(1, ρ)|ρ−n
p dρ . (3.41)

It is clear that

km(1, ρ) = |Sn−2| ρn−1

∫ 1

−1

`
(
1, ρ2, ρt

)
Pm(t)(1− t2)

n−3
2 dt .

To prove (3.40), we apply the Lebesgue dominated convergence theorem. By (3.24) and
(3.34), the function integrated in (3.41) has an integrable majorant not depending on m.
Hence by the Lebesgue theorem it remains to show that km(1, ρ) → 0 as m → ∞ for
almost all ρ ∈ (0,∞) . Obviously, for any fixed ρ, the number km(1, ρ), is nothing else
but the multiplier (3.26) for the kernel

a(t) = |Sn−2| ρn−1`
(
1, ρ2 ρt

)
.

Then this multiplier tends to zero by Lemma 3.9, the assumption (3.28) of that lemma
being fulfilled due to (3.34) and Fubini’s theorem. ¥

Corollary. There exists a number M0 ∈ N such that the equation (λI − Km)ψ =
g, λ 6= 0, with g(r) ∈ Lp([0, a], rn−1), 1 ≤ p ≤ ∞ , has the unique solution in Lp([0, a], rn−1)
for any m > M0.

3.4. Justification of the reduction and
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the main result for rotation invariant homogeneous kernels

To the integral operator

(λI −K)ϕ = λϕ(x)−
∫

Ba

k(x, y)ϕ(y)dy,

generated by the equation (5.32), we relate the following function sequence

σm(ξ) = λ−
∫

Rn

k(e1, y)Pm(e1 · y′)|y|−n/p+iξdy, m ∈ Z+ , ξ ∈ Ṙ1 , (3.42)

which may be also represented in the form

σm(ξ) = λ−
∫ ∞

0

∫ 1

−1

`(1, ρ2, ρt)ρ
n
p′−1+iξ

Pm(t)(1− t2)
n−3

2 dρdt . (3.43)

In the case when σm(ξ) 6= 0, ∀ξ ∈ Ṙ1 we denote

κm = − ind σm(ξ) = − 1

2π
∆

[
arg σm(ξ)

]∣∣∣
∞

−∞
.

We introduce also the following numbers

α =
∑
{m>0

dn(m)κm , β = −
∑
{m<0

dn(m)κm . (3.44)

Remark 3.11. The series in (3.44) are, in fact,finite sums under the assumptions
(3.2)-(3.3),(3.5) since κm = 0 for large m by Lemma 3.10.

Theorem 3.12. The operator λI − K is Fredholm in the space Lp(Ba), 0 < a <
∞, 1 ≤ p ≤ ∞, if and only if

σm(ξ) 6= 0 m ∈ Z+, ξ ∈ Ṙ1. (3.45)

Under these conditions, the deficiency numbers α = α(λI−K) and β = β(λI−K) of the
operators λI − K are computed by the formulas (3.44). In the case Ba = Rn, the word
”Fredholm” may be replaced by the word ”invertible” (with α = β = 0).

Proof. 1) Passage to the matrix operator. To justify the reduction to the system of
one-dimensional equations (3.37), we introduce the following projectors.

Pmµϕ = ϕmµ(r)Ymµ(σ) , Pmϕ =

dn(m)∑
µ=1

ϕmµ(r)Ymµ(σ) , (3.46)

and

Pmϕ =
m∑

j=0

dn(j)∑
µ=1

ϕjµ(r)Yjµ(σ) , (3.47)
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where ϕmµ are the Fourier-Laplace coefficients of the function ϕ(rσ). They map the space
Lp(Ba) onto finite-dimensional subspaces in Lp(Ba); in the case of the projector Pm, for
example, this subspace consists of functions of the form

m∑
j=0

dn(j)∑
µ=1

ϕjµ(|x|)Yjµ

(
x

|x|
)

.

Evidently, ϕjµ(r) ∈ Lp ([0, a], rn−1) . In the case m = 0, all the three projectors coincide
and map Lp(Ba) onto its subspace of radial functions.

Our justification will be based on the matrix identity
(

P+ P−
P− P+

)(
A 0
0 B

)(
P+ P−
P− P+

)
=

(
P+AP+ + P−BP− P+AP− + P−BP+

P−AP+ + P+BP− P−AP− + P+BP+

)
,

(3.48)
where P+, P−, A and B are arbitrary operators. The particular case of such matrix identity
was already used in the proof of Theorem 2.7. In the case when the operators P+ and P−

in (3.48) are projectors, we have P+ + P− = I, and the matrix operator

(
P+ P−
P− P+

)
is

invertible.
According to (3.48) we have

( P I − P
I −P P

)(
λI −K 0

0 λI

)( P I − P
I − P P

)
=

=

(
λI − PKP P(λI −K)(I − P)

(I − P)(λI −K)P λI − (I − P)K(I −P)

)
, (3.49)

where P is any projector and K is any operator.
2) Action of K on Pm(Lp(Ba)) and commutation relation. We apply the matrix

relation (3.49) to the projector P = Pm, defined in (3.47) and the operator K involved in
(3.36), that is,

Kϕ =

∫ a

0

∫

Sn−1

`(r2, ρ2, rρσ · θ)ρn−1ϕ(ρθ) dρ dθ , x = rσ , (3.50)

or, which is the same,

Kϕ =

∫ a

0

∫

Sn−1

1

ρ
L

(ρ

r
, σ · θ

)
ϕ(ρθ) dρ dθ , x = rσ , (3.51)

where
L (ρ, t) = ρn`(1, ρ2, ρt) . (3.52)

We have
KPmµϕ = KmPmµϕ (3.53)

and
PmµKϕ = KmPmµϕ, (3.54)

17



where Km is the operator, the action of which on the subspace Pmµ is reduced to the
application of the operator Km, introduced in (3.39), to the radial factor, that is,

Km (ϕmµYmµ) = (Kmϕmµ) (r)Ymµ(σ) . (3.55)

Let us prove, for example, the formula (3.54):

PmµKϕ = (Kϕ)mµYmµ(σ) = Ymµ(σ)

∫ a

0

ρn−1dρ

∫

Sn−1

ϕ(ρθ)dθ

∫

Sn−1

`(r2, ρ2, rρθ·ξ)Ymµ(ξ)dξ .

Applying the Funk-Hekke formula (3.25), we get

PmµKϕ = Ymµ(σ)

∫ a

0

km(r, ρ)ϕmµ(ρ)dρ = KmPmµϕ .

Similarly the formula (3.53) can be proved.
Obviously, the commutation relations (3.53)-(3.54) hold for the projectors Pm as well.

We note also that for Pm instead (3.53)-(3.54) we have

KPmϕ =
m∑

j=1

KjPjϕ and PmKϕ =
m∑

j=1

KjPjϕ

Therefore, we have

PmK(I − Pm) = 0 and (I −Pm)KPm = 0 . (3.56)

This means that the matrix identity (3.49) takes the form

( Pm I −Pm

I − Pm Pm

)(
λI −K 0

0 λI

)( Pm I −Pm

I − Pm Pm

)
=

=

(
λI − PmKPm 0

0 λI − (I −Pm)K(I − Pm)

)
. (3.57)

3) Invertibility of the lower diagonal term. We wish to show that the operator λI −
(I − Pm)K(I − Pm) is invertible for large m. To this end, we intend to approximate
the operator K by finite-dimensional ones under the operator norm. For the half-strip
Π = {(ρ, t) : 0 < ρ < ∞, −1 < t < 1}, where the kernel L(ρ, t) of the operator K is
defined, we consider the space

L1(Π, w) =
{

f(ρ, t) :

∫

Π

|f(ρ, t)|ρ−n
p
−1(1− t2)

n−3
2 dt < ∞

}
, w = ρ−

n
p
−1(1− t2)

n−3
2 ,

generated by the condition (3.34). Let C∞
0 (Π) be the space of C∞-functions with a

compact support supp f ⊂ Π. It is well known that C∞
0 is dense on L1(Π, w).

Therefore, we may approximate the kernel L(ρ, t) in the norm of the space L1(Π, w)
by a C∞

0 -function b(ρ, t) so that

‖L − b‖
L1(Π,w)

< ε . (3.58)
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Let

b(ρ, t) =
∞∑

m=0

bm(ρ)Pm(t) ∈ C∞
0 (Π) (3.59)

be the expansion of b(ρ, t) into the series of Legendre polynomials Pm(t), which converges
in the norm of the space L1(Π, w), since the coefficients

bm(ρ) = dn(m)
|Sn−2|
|Sn−1|

∫ 1

−1

b(ρ, t)Pm(t)(1− t2)
n−3

2 dt , (3.60)

having the compact support supp bm ⊂ [δ,N ], with 0 < δ < N < ∞ not depending on
m, admit the estimate

|bm(ρ)| ≤ C

mq
, (3.61)

for any q = 1, 2, 3, ... with C not depending on m and ρ. The estimate (3.61) is easily
derived from (3.60) via integration by parts due to the formula

P ′
m(n, t) =

m(m + n− 2)

n− 1
Pm−1(n + 2, t) (3.62)

for the Legendre polynomials Pm(t) = Pm(n, t).
Then we may choose M so that

‖b(ρ, t)− bM(ρ, t)‖
L1(Π,w)

< ε , (3.63)

where bm(ρ, t) =
∑M

m=0 bm(ρ)Pm(t). Using the notation K = KL for the operator K in
dependence on its kernel, we consider the difference of operators

K −KbM
= KL −KbM

.

For the norm ‖K‖ = ‖K‖
Lp(Ba)→Lp(Ba)

we have

‖K‖ ≤ κ = |Sn−1| · ‖L‖
L1(Π,w)

(3.64)

by (3.11) and (3.34). Therefore, from (3.58) and (3.63) we get

‖K −KbM
‖

Lp(Ba)→Lp(Ba)
≤ |Sn−1| · ‖L − bM‖L1(Π,w)

< 2|Sn−1|ε .

Then the operator (I − Pm)K(I − Pm) involved in (3.57) may be represented as

(I − Pm)K(I − Pm) = (I −Pm)(K −KbM
)(I − Pm) + (I −Pm)KbM

(I −Pm).

If we choose
m ≥ M ,

then
(I − Pm)KbM

(I − Pm) = 0 . (3.65)
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This is obvious, in fact, but may be also justified rigorously in the operator form, since

KbM
=

M∑
j=0

BjPj,

where Pj are the projectors (3.46) and the operators Bjψ are similar to those appeared in
(3.53)-(3.54) and are treated as in (3.55) with Kj replaced by Bjψ = cj

∫ a

0
bj

(
ρ
r

)
1
ρ
ψ(ρ)dρ,

with the constant cj defined in (3.23). Then (3.65) becomes obvious due to the commu-
tation relation (3.54).

In view of the formula (3.65), the matrix operator in the right-hand side of (3.57) is
equal to

K : =

(
λI −PmKPm 0

0 λI − (I −Pm)(K −KbM
)(I − Pm)

)
, (3.66)

where ‖K−KbM
‖ < ε . Choosing ε < |λ|

2|Sn−1| , we see that the operator λI− (I−Pm)(K−
KbM

)(I −Pm) is invertible in the space Lp(Ba), if m ≥ M.
4) The final part. Because of the invertibility of the lower diagonal term in (3.57), we

conclude from (3.57) and (3.66), that the operator K is Fredholm (or invertible) if the
operator λI −PmKPm is Fredholm (invertible, respectively).

The Fredholmness properties of the operator λI − PmKPm are defined by those of
the operator

Pm(λI −K)
∣∣∣
Pm(Lp(Ba)

(3.67)

The matrix operator (3.67) is reduced to a finite system of the equations (3.37) with
m = 0, 1, ...,M. Applying the one-dimensional results given in Theorems 2.6 and 2.5 to
each of the equations in (3.37), we arrive at the statement of the theorem. ¥

3.5. Some cases of non-rotation invariant kernels and other types of homogeneity

a) The case of a kernel radial in x. Let now k(x, y) in (3.32) be a radial function
in x, but arbitrary in y, such that

k(x, y) = `(|x|, y) .

We introduce the symbol

A(ξ) = λ−
∫

Rn

`(1, y)|y|−n/p+iξdy, ξ ∈ Ṙ1. (3.68)

Let in (3.32) a < ∞ for definiteness.
Theorem 3.13. Let the function k(x, y) = `(|x|, y) satisfy the homogeneity condition

(3.2) and the condition
esssup
θ∈Sn−1

κ1(θ) < ∞ , (3.69)

where k1(θ) has the form (3.18) with γ = 0. Then the operator λI − K is Fredholm in
Lp(Ba), 1 ≤ p ≤ ∞, if and only if σ(ξ) 6= 0, ξ ∈ Ṙ1, and Ind (λI −K) = −ind A(ξ).
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Proof. First of all we note that the operator K is bounded in the space Lp(Ba)
under the assumptions of the theorem. Indeed, the boundedness conditions are given by
Theorem 3.5. The function κ(σ) introduced in (3.17) is constant in this case and similarly
to the proof of Lemma 3.3, it can be shown that the condition κ(σ) = κ < ∞ follows
automatically from the condition (3.69).

Let P0 = P0 be the projector defined in (3.46) mapping Lp(Ba) onto its subspace of
radial functions. Evidently,

(I −P0)K = 0 , (3.70)

because of which the matrix identity (3.49) in this case takes a simpler form

( P0 I − P0

I − P0 P0

)(
λI −K 0

0 λI

)( P0 I − P0

I − P0 P0

)
=

=

(
λI − P0KP0 −P0K(I − P0)

0 λI

)
.

This matrix identity immediately yields the statement of the theorem in view of the
one-dimensional result presented in Theorem 2.6. ¥

The case of the kernel radial in y may be treated similarly.
b) The case of coordinate-wise homogeneity.
Saying that k(x, y) is a coordinate-wise homogeneous kernel of vector degree −1 =

(−1,−1, ...,−1), we mean that

k(λ ◦ x, λ ◦ y) = λ−1k(x, y) ,

where λ ∈ Rn, λ > 0 and we denote

λ ◦ x = (λ1x1, λ2x2, ..., λnxn) ,

λ−1 = λ−1
1 · λ−1

2 ... · λ−1
n .

Let ju, u = 1, 2, ..., 2n, be the vertices of the cube |x| ≤ 1 and Γu the corresponding
octant in Rn containing a vertex ju.

Theorem 3.14. Let k(x, y) be coordinate-wise homogeneous kernel and let

ku,v =

∫

Γv

|k(ju, τ)|
n∏

j=1

|τj|−
1
p dτ < ∞, u, v = 1, 2, . . . , 2n. (3.71)

Then the operator K is bounded in Lp(R
n), 1 ≤ p ≤ ∞ .

We refer to Karapetiants [2] for the proof of Theorem 3.14.
Integral equations with coordinate-wise homogeneous kernels can be treated by means

of the Lemma below on operators with projectors.
Let P1, P2, ..., Pn be mutually orthogonal projectors in the Banach space X:

P1 + P2 + · · ·+ Pn = I; P 2
j = Pj; PiPj = 0, i 6= j, i, j = 1, 2, ..., n ,
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Aj be bounded linear operators in X, j = 1, 2, ..., n and

Π =
n∑

j=1

PjAj .

Lemma 3.15. The operator Π is Fredholm (invertible) in X if and only if the matrix
operator

W =
(
PjAjPr + δrj(I − Pj)

)n

j,r=1
(3.72)

is Fredholm (invertible, resp.) in Xn = X × X × · · · × X , where δrj = 1, if r = j and
δrj = 0 otherwise.

Proof. Let

V = (Pr+j−1)
n
j,r=1, Pn+j = Pj and U =

(
Π 0
0 In−1

)
,

where In−1 is the identity operator in Xn−1. We have W = VUV. Hence the lemma’s
statement follows, since V2 = I. ¥

Applying this Lemma, for example, to the equation

λϕ(x)−
∫

Rn

k(x, y)ϕ(y)dy = f(x), x ∈ Rn, (3.73)

we obtain the following theorem.
Theorem 3.16. Let k(x, y) be coordinate-wise homogeneous kernel of vector degree

−1 and let the conditions (3.70) be satisfied. For the operator λI −K to be invertible in
the space Lp(R

n), 1 ≤ p ≤ ∞, it is necessary and sufficient that

det

{
λE −

(
Mu,v(iξ +

1

p′
j1)

)2n

u,v=1

}
6= 0, ξ ∈ Rn, (3.74)

where M(z) is the Mellin transform

Mu,v(z) =

∫

Γ1

k(ju, jv ◦ y)yz−1dy, u, v = 1, 2, . . . , 2n.

and Γ1 = {x ∈ Rn : x1 > 0, ..., xn > 0}, j1 = 1, yz−1 = yz1−1
1 · · · yzn−1

n .

IV. Some further developments

4.1. The algebra of multi-dimensional integral operators
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with homogeneous kernels

According to Theorem 3.12 we can relate, with any operator λI −K, where K is of the
form (3.32), the function

σ(m, ξ) = λ−
∫

Rn

k(e1, y)Pm(e1 · y)|y|−n
p
+iξdy, (4.1)

defined on the set Z+×̇R. The function (4.1) is called the symbol of the operator λI −K.
The following is the reformulation of Theorem 3.12.
Theorem 4.1. The operator λI−K is Fredholm in Lp(Bn) if and only if the function

σ(m, ξ) is nonvanishing, i.e.

σ(m, ξ) 6= 0, ∀(m, ξ) ∈ Z+×̇R. (4.2)

If the condition (4.2) is satisfied, then the index of λI−K can be computed by the formula:

Ind (λI −K) = −
∞∑

m=0

dn(m) indξ σ(m, ξ), (4.3)

where indξσ(m, ξ) is the winding number of the function σ(m, ξ) with fixed m.
Let K be the smallest closed subalgebra of the Banach algebra L(Lp) containing all

operators of the form λI −K, with λ ∈ C. It represents the closure in the operator norm
of the set

K0 =

{∑
i

∏
j

(λijI −Kij)

}
,

where the sum and the products are finite. Let T be the set of compact operators
containing in the algebra K. Clearly, T is a closed two-sided ideal of K. So we may
consider the quotient algebra K\T . It is obvious, that every element of K\T , containing
at least one element of K0, has actually the form λI −K + T and the set

(K\T )0 = {λI −K + T }

is dense in the algebra K\T .
It is easy to see that the algebra K\T is commutative. Indeed, using the known

results on compactness, one can show that if K1 and K2 are of the form (3.6), then
[K1, K2] = K1K2 −K2K1 ∈ T .

Now let us study the invertibility in the algebra K\T . With every element λI −K +
T ∈ (K\T )0 we connect the function, defined by (4.1). We call this function the symbol
of the element λI −K + T . It is easy to prove, that the sum and the product of symbols
correspond to the sum and the product of elements of (K\K)0, respectively. The following
proposition will be used below.

Lemma 4.2. For every λI −K + T ∈ (K\T )0 and its symbol σ(m, ξ) the inequality

sup
Z+×̇R1

|σ(m, ξ)| ≤ ‖λI −K + T ‖K\T
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holds.
Proof can be obtained from Theorem 4.1 by standart arguments.
Let C

(
Z+×̇R1

)
be the Banach space of all continuous functions defined on the com-

pact Z+×̇R1 with the norm

‖f(m, ξ)‖C = sup
Z+×̇R1

|f(m, ξ)| .

Let us associate with every element of K\T a certain function of
C

(
Z+×̇R1

)
.

Theorem 4.3 Let A+T ∈ K\T . The element A+T is invertible in the algebra K\T
if and only if its symbol is non-degenerate, i.e.

σ(m, ξ) 6= 0, ∀(m, ξ) ∈ Z+×̇R1.

Definition 4.4. The symbol of the operator A ∈ K is a function σA(m, ξ) which is
the symbol of the coset {A + T } ∈ K\T .

From Theorem 4.3 we easy derive the following result.
Theorem 4.5. Let A ∈ K. The operator A is a Fredholm operator if and only if

σA(m, ξ) 6= 0, ∀(m, ξ) ∈ Z+×̇R1. (4.4)

If (4.4) holds, then the index of A can be computed by the formula

Ind A = −
∞∑

m=0

dn(m) indξ σA(m, ξ). (4.5)

4.2. Finite section method

Let X be a Banach space and A ∈ L(X). Suppose {Pτ}τ∈(0,1) ⊂ L(X) and {Qτ}τ∈(0,1) ⊂
L(X) are families of projections with the property that Pτ → I and Qτ → I in the strong
sense as τ → 0. Now consider the equation

QτAPτx = Qτy. (4.6)

Definition 4.6. They say that the finite section method is applicable to an operator
A if
1) there exists a number τ0 ∈ (0, 1) such that for each y ∈ X the equation (4.6) has the
unique solution x ∈ PτX for all τ < τ0;
2) xτ converges in the norm of X to a solution x ∈ X of the equation Ax = y as τ → 0.

If the finite section method is applicable to A then we write A ∈ Π{Pτ}. For details
about the finite section method see Gohberg and Fel’dman [1], Böttcher and Silbermann
[1] and Prössdorf and Silbermann [1].

Now let us consider the projection on Lp(Bn), 1 ≤ p < ∞, defined by

(Pτϕ) (x) =

{
ϕ(x) , τ < |x| ≤ 1
0 , |x| ≤ τ

.
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We are interested in answering the question: whether the finite section method is
applicable to the operator λI−K. The following proposition provides the desired answer.

Theorem 4.7. Let the operator λI − K be bounded in Lp(Bn), 1 ≤ p < ∞. Then
λI −K ∈ Π{Pτ} if and only if λI −K is invertible.

The operator Kτ = PτKPτ is called the truncated operator. Let Rτ be the operator
defined by the formula

(Rτϕ) (x) =





(
τ

|x|2
)n/p

ϕ

(
τ

x

|x|2
)

, τ < |x| ≤ 1

0 , |x| ≤ τ

.

It is easy to prove the following properties of Rτ :
1) for every τ ∈ (0, 1) we have R2

τ = Pτ and RτPτ = PτRτ = Rτ ;
2) ‖Rτ‖ = 1 for every τ ∈ (0, 1);
3) if 1 < p < ∞ then Rτ and R∗

τ tend weakly to zero as τ → 0.
Theorem 4.8. Let K1 and K2 be integral operators with homogeneous kernels over

the ball Bn and K1τ and K2τ be the corresponding truncated operators. Then

K1τK2τ = Kτ + PτTPτ + RτLRτ ,

where K is also an operator with a homogeneous kernel and T and L are compact operators
in Lp(Bn).

The proof can be obtained by direct arguments.
Corollary The commutator of K1τ and K2τ satisfies to equality

[K1τ , K2τ ] : = K1τK2τ −K2τK1τ = PτTPτ + RτLRτ ,

where T and L are compact operators on Lp(Bn).

4.3. Pseudospectra

From now on we work in L2(Bn)-space only. Our aim is to establish the relationship
between spectral properties of the truncated operator Kτ and spectral properties of the
original operator K. The notion of pseudospectrum for Wiener-Hopf operators was studied
by Böttcher [1], see also Böttcher and Wolf [1].

Definition 4.9. Let {Eτ}τ∈(0,1) be a family of sets Eτ ⊂ C. We denote by limτ→0 Eτ

the set of all λ ∈ C for which there are τ1, τ2, . . . and λ1, λ2, . . . such that

τ1 > τ2 > . . . > τn → 0, λn ∈ Eτn , λn → λ.

Definition 4.10. For ε > 0, ε-pseudospectrum of an operator A is the set

Λε(A) =
{
λ ∈ C :

∥∥(A− λI)−1
∥∥ ≥ 1/ε

}
.

It is known that the inclusion

Λε(K) ⊂ lim
τ→0

Λε(Kτ ) (4.7)
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holds for every ε > 0. (In the general form this proposition was established in Böttcher
[1].

The main result on the pseudospectra is given by the following theorem.
Theorem 4.11. For each ε > 0, the relation is valid

lim
τ→0

Λε(Kτ ) = Λε(K).

The following theorem contains the conditions on the kernel k(x, y) which guarantee
the convergence of the usual spectra of the truncated operator Kτ to the spectra Ω0(K)
of the limiting operator K.

Theorem 4.12. Let k(x, y) satisfy the conditions 10−30 and: 1) k(x, y) = a(|x|, |y|)b(x′·
y′); 2) a(1, ρ) = a(ρ, 1); 3) b(t) = b(t). Then lim

τ→0
Λ0(Kτ ) = Λ0(K).

For the proofs of the results of this Section we refer to Avsyankin and Karapetiants
[1]-[2].
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Berlin: Birkhäuser-Verlag, 1991.
S. Samko
[1] Hypersingular integrals and their applications (Russian). Rostov-na-Donu: Izdat.

Rostov Univ., 1984, 208 p.
E. Stein

27



[1] Singular Integrals and Differentialiability Properties of functions. Princeton Univ.
Press, 1970, 342 p.

E. Stein, and G. Weiss,
[1] Introduction to Fourier Analysis on Euclidean Space. Princeton Univ. Press,

1971, 334 p.
G.Weyl
[1] Classical groups, invariants and representations (Russian). Moscow: Gostekhiz-

dat, 1947.

Nikolai K.Karapetiants
Rostov State Unversity, Math. Department
ul.Zorge, 5, Rostov-na-Donu
344104, Russia
e-mail: nkarapet@ns.math.rsu.ru

Stefan G. Samko
Universidade do Algarve
Unidade de Ciencias Exactas e Humanas
Campus de Gambelas, Faro, 8000, Portugal
e-mail: ssamko@ualg.pt

28


