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1. Introduction

We study Fredholmness (= Noetherity) of the operators of the form

Kaϕ : ≡ λϕ(x) − P+aP−Qϕ = f(x) , x ∈ R1,(1.1)

in the space Lp(R
1, |x|γ), 1 < p <∞, −1 < γ < p− 1, where

Sϕ =
1

πi

∫ ∞

−∞

ϕ(t)

t− x
dt, P± =

1

2
(I ± S),

a = a(x) is a piece-wise continuous function and Qϕ = ϕ(−x). In the case p = 2, γ = 0
and a(∞) = 0 , these equations are reduced to

λψ(x) −
∫ ∞

0

k(x+ t)ψ(t)dt = g(x), x > 0,(1.2)

where ψ = F−1ϕ, g = F−1f and k = F−1a, F−1 being the inverse Fourier transform.
Equations of the form (1.2) arise in applications in diffraction theory. They were
treated in L2(R1

+) in the paper by F.Teixeira [?]. More general equations including
also a Wiener-Hopf term in (1.2) were studied in L2(R1

+) in [?], [17], [3], [20], [1],[?].
The papers [4], [2] are also relevant.

The operators (1.1) can be considered as a particular case of operators from the al-
gebra generated by the operators of multiplication by piece-wise continuous functions,
the singular operator S and the Carleman shift operator Q [?], [7],[8],[16]. Therefore,
they can be covered by the general Gohberg-Krupnik theorem on Fredholmness of
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operators in this algebra which, as is well known, requires the construction of some
matrix symbol, the latter being rather complicated just in the case when coefficients
are discontinuous at the fixed points of the shift. On the other hand, such operators
in the case when coefficients are continuous at the fixed points, can be easily treated
by means of some general abstract theorem given by the authors [11], [12], [13], [14],
[15], see also [?] and presented below as Theorem 2.16, which allows to obtain the
Fredholmness conditions and a formula for the calculation of the index in effective
terms.

We show that in case of the operators (1.1), the essential spectrum in Lp(R
1, |x|γ)

(which is the set of those λ in(1.1), for which Ka is not Fredholm) is described precisely
and in simple terms of the so-called standard 1+γ

p −lemniscates, which are unilateral

in case of a jump of a(x) at the origin or infinity and bilateral in case of jumps at other
points. The main result is given in Theorem A below and the main tools used are
Theorem 2.16, Theorems 2.1-2.3, the Poincaré-Bertrand formula and the compactness
Theorem 2.4.

The authors are thankful to Prof. Francisco Teixeira for his encouragement of this
research and valuable discussions.

2. Preliminaries

2.1. Operators with a homogeneous kernel

We remind some well-known results for the equations

Kϕ : ≡ λϕ(x) −
∫ ∞

0

k(x, y)ϕ(y) dy = f(x) , 0 < x <∞ ,(2.1)

with a homogeneous kernel k(x, y) of degree -1 :

k(tx, ty) = t−1k(x, y), x, y ∈ R1
+ , t > 0,(2.2)

in the space

Lp

(

R1
+, x

γ
)

=

{

f(x) :

∫ ∞

0

|f(x)|pxγdx <∞
}

(2.3)

and for the equation similar to (2.1) but over the whole line R1 or over the interval
[−1, 1].

a) The case of the equation (2.1). We shall often refer to the assumption

∫ ∞

0

|k(1, y)|y−
1+γ

p dy <∞ .(2.4)
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Theorem 2.1. [18],[19] Let the kernel k(x, y) satisfy the assumptions (2.2) and
(2.4). Then the operator K is Fredholm in Lp

(

R1
+, x

γ
)

if and only if it is invertible,

and a necessary and sufficient condition for that is iff σK

(

ix+ 1 − 1+γ
p

)

6= 0, x ∈ Ṙ1,

where

σK(z) = λ −
∫ ∞

0

k(1, y)yz−1dy .(2.5)

b) The case of the whole line. For the equation

Kϕ : ≡ λϕ(x) −
∫ ∞

−∞

k(x, y)ϕ(y) dy = f(x) , x ∈ R1,

where
k(tx, ty) = t−1k(x, y) , x, y ∈ R1 , t > 0,(2.6)

we assume that
∫ ∞

−∞

|k(±1, y)| · |y|−
1+γ

p dy < ∞ .(2.7)

Theorem 2.2. [18],[19] Let k(x, y) satisfy the assumptions (2.6)-(2.7). Then the
operator K is Fredholm in the space Lp

(

R1, |x|γ
)

if and only if it is invertible, and a
necessary and sufficient condition for that is

detσK

(

ix+ 1 − 1 + γ

p

)

6= 0, x ∈ Ṙ1 ,(2.8)

where

σK(z) =

(

λ−K++(z ) − K+−(z )
− K−+(z ) λ−K−−(z )

)

(2.9)

and

K±±(z ) =

∫ ∞

0

k(±1 ,±y)yz−1dy .(2.10)

c) The case of [−1, 1]. For the equation

Kϕ : ≡ λϕ(x) −
∫ 1

−1

k(x, y)ϕ(y) dy = f(x) , |x| ≤ 1,(2.11)

the following theorem is valid.

Theorem 2.3. [18],[19] Let k(x, y) satisfy the assumptions (2.6)-(2.7). Then the
operator (2.11) is Fredholm in Lp([−1, 1], |x|γ) , iff the condition (2.8) is satisfied and
then

Ind K = −w (detσK)

where

w (detσK) =
1

2π
arg det σK

(

ix+ 1 − 1 + γ

p

)∣

∣

∣

∣

∞

−∞

,
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is the winding number of the function detσK .
d) Compactness theorem. Let

Tϕ : ≡
∫ ∞

0

a(x, y)k(x, y)ϕ(y) dy = f(x) , x > 0,(2.12)

where the homogeneous kernel k(x, y) satisfies the assumptions (2.2) and (2.4).

Theorem 2.4. [10] Let a(x, y) ∈ L∞(R2) and a(+0,+0) = a(+∞,+∞) = 0 in the
sense that

lim
N→∞

esssup0<x< 1
N
esssup0<y< 1

N
|a(x, y)| = lim

N→∞
esssupx>N esssupy>N |a(x, y)| = 0 ,

then the operator T is compact in Lp(R
1
+, |x|γ) .

e) The Carleman equation. The equation

Kϕ : ≡ λϕ(x) − 1

π

∫ ∞

0

ϕ(y) dy

x+ y
= f(x) , 0 < x <∞ ,(2.13)

known as the Carleman equation, is immediately covered by Theorem 2.1. In this case
the condition (2.4) gives −1 < γ < p− 1 . We have

σK(z) = λ− 1

π

∫ ∞

0

yz−1dy

1 + y
= λ− 1

sinπz
, <z > 0 ,

see [9], 3.222.2 , so that

σK

(

ix+ 1 − 1 + γ

p

)

= λ− 1

sin
(

1+γ
p − ix

)

π
, 0 <

1 + γ

p
< 1 .(2.14)

Lemma 2.5. The range of the function gα(x) = 1
sin(α−ix)π , x ∈ R1, with 0 < α < 1,

is the interval [0, 1] in the case α = 1
2 and the lemniscate

Eα =

{

z = reiϕ : r2 =
4

sin2 2απ
cos(ϕ+ πα) cos(ϕ− πα)

}

(2.15)

in the case α 6= 1
2 , or

( u

sinαπ

)2

+
( v

cosαπ

)2

= (u2 + v2)2, u > 0; u+ iv = z(2.16)

in cartezian coordinates.

Proof. The case α = 1
2 is obvious since g1/2(x) = 1

chπx . In the general case we have

u = <gα(x) =
Aξ

(Aξ)2 + (Bη)2
> 0 , v = =gα(x) =

Bη

(Aξ)2 + (Bη)2
,(2.17)
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where A = sinπα , B = cosπα, ξ = chπx and η = shπx. Hence u2+v2 = 1
(Aξ)2+(Bη)2 .

Then from (2.17) we obtain ξ = 1
A

u
u2+v2 , η = 1

B
v

u2+v2 . Since ξ2 − η2 ≡ 1 , this yields
(2.16), which is easily transformed to the equation in polar coordinates in (2.15). 2

The direct application of Theorem 2.1 to (2.13) with Lemma 2.5 taken into account
gives the following result.

Theorem 2.6. The operator (2.13) is Fredholm (invertible) in Lp(R
1
+, x

γ), −1 <
γ < p− 1, iff λ /∈ E 1+γ

p
.

2.2. The standard α-lemniscate.

In the previous subsection we arrived at the lemniscate Eα given by the equation in
polar coordinates

r2 =
4

sin2 2απ
cos(ϕ+ πα) cos(ϕ− πα)(2.18)

which can be also rewritten as

cos2 ϕ =
sin2 2απ

4
r2 + sin2 απ.(2.19)

It will play a crucial role in the formulation of our main result. By this reason we give
the following definition.

Definition 2.7. We call the curve (2.18) the standard α-lemniscate.
We need some more information about this curve. The following lemmas are valid.

Lemma 2.8. The lemniscate Eα, 0 < α < 1, is symmetrtic with respect to the
half-axis R1

+ , has the ”vertex”
(

1
sin απ , 0

)

and lies within the sector

−π
∣

∣

∣

∣

1

2
− α

∣

∣

∣

∣

≤ ϕ ≤ π

∣

∣

∣

∣

1

2
− α

∣

∣

∣

∣

.(2.20)

Proof. The symmetry is obvious, while (2.20) is seen from (2.17), because (2.17)

implies v2

u2 =
(

Bη
Aξ

)2

≤ ctg2απ , that is, tg2ϕ ≤ tg2
(

π
2 − απ

)

. The ”vertex” is

obtained at ϕ = 0, which gives maxϕ r = 1
sin απ . 2

Corollary 2.9. The standard lemniscate Eβ , 0 < β < 1, lies inside of the leaf
bounded by another lemniscate Eα, 0 < α < 1, iff

min(α, 1 − α) < β < max(α, 1 − α) .

Indeed, we observe that the lemniscates Eα and Eβ , α 6= β, have no common points
except for the origin, which can be easily derived from the equation (2.19). So, it
suffices to determine when the ”vertex” of Eβ lies inside of the leaf of Eα, that is,
sinβπ > sinαπ. The latter is equivalent to the above inequalities for β .
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Corollary 2.10. A point λ ∈ C lies inside of the leaf of the standard lemniscate
Eα,
0 < α < 1, iff

| arg λ| < π|1
2
− α|

and for such values of ϕ = arg λ

|λ| < 2
√

cos(ϕ+ πα) cos(ϕ− πα)

| sin 2απ| .

Lemma 2.11. The lemniscate Eα, 0 < α < 1 , can be represented in the parametric
form

z = `α(t) =
2iteαπ

e2απi − t2
= u(t) + iv(t), 0 < t <∞,(2.21)

where

u(t) =
2t(1 + t2) sinαπ

t4 − 2t2 cos 2απ + 1
, v(t) =

2t(1 − t2) cosαπ

t4 − 2t2 cos 2απ + 1
,(2.22)

the connection between t and ϕ being given by

t2 =
ctgαπ − tgϕ

ctgαπ + tgϕ
.(2.23)

Proof. It is easier to derive (2.18) from (2.21) than vice versa. The idea of arriving
at (2.21) will become clear later, see (5.29). To derive (2.18) from (2.21)-(2.22), we
first observe that from (2.22)

tg ϕ =
v(t)

u(t)
=

1 − t2

1 + t2
ctgαπ.

Hence the connection (2.23) follows. From (2.21)-(2.22) we also have

r2 = |z|2 =
4t2

t4 − 2t2 cos 2απ + 1
.(2.24)

Substituting (2.23) into (2.24) we arrive at the equation in (2.18) after easy calcula-
tions. 2

2.3. Fredholmness of some ”composite” singular operators and their rep-
resentation as a composition of ”usual” singular operators.

Let Γ be a closed smooth curve and let

Sϕ =
1

πi

∫

Γ

ϕ(τ)

τ − t
dτ

be the singular operator. Let P± = 1
2 (I ± S). We consider the ”composite” operator

of the special type:

M = P+mP+nP+ + P+rP+sP+ + P−,(2.25)
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where m(t), n(t), r(t) and s(t) are piece-wise continuous functions on Γ . Operators of
the form (2.25) and, in general, operators in the algebra generated by S and the oper-
ators of multiplication by piece-wise continuous functions were studied by I.Gohberg
and N.Krupnik [6], [5], see also [7]-[8]. The criterion of such operators to be Fredholm
in Lp or in Lp with the power weight is known to be given in terms of the matrix
symbol. In case of operators (2.25) the final result can be given in usual terms of
jumps of the argument of some scalar functions. This is given in Theorem 2.12 below
and is based on some simple represenation given by Lemma 2.13.

By t1, · · · , tm we denote the discontinuity points of the coefficients m(t), n(t), r(t)
and s(t) . We introduce the following notations

∆(t) = m(t)n(t) + r(t)s(t),(2.26)

h(t) = m(t− 0)n(t+ 0) + m(t+ 0)n(t− 0) + r(t− 0)s(t+ 0) + r(t+ 0)s(t− 0) ,

ν±k =
h(tk) ±

√

h2(tk) − 4∆(tk − 0)∆(tk + 0)

2∆(tk − 0)
, k = 1, 2, · · · ,m,(2.27)

where any one of two possible values of the square root is chosen.
Let

ω(t) =

m
∏

k=1

(t− z0)
− 1

2πi
ln ν+

k ,(2.28)

where z0 is any point inside the domain bounded by Γ and the choice of a branch for
ln ν+

k = ln |ν+
k | + i arg ν+

k will be indicated in Theorem 2.12 below, formula (2.29).

Theorem 2.12. The operator (2.25) is Fredholm in Lp(Γ), 1 < p <∞, iff

1) inf
t∈Γ

|∆(t)| 6= 0 ,

2) arg ν+
k 6= 2π

p′
(mod 2π) , arg ν−k 6= 2π

p′
(mod 2π) .

Then under the choice

−2π

p
< arg ν+

k <
2π

p′
(2.29)

the index of the operator (2.25) is calculated as

Ind M = −indp
∆

ω
,(2.30)

where ω(t) is the function (2.28).
Theorem 2.12 is a consequence of the following lemma.

Lemma 2.13. Let ∆(tk ± 0) 6= 0. Then the operator M is representable as

M = (P+
∆

ω
P+ + P−)(P+ωP+ + P−) + T1 = (P+ωP+ + P−)(P+

∆

ω
P+ + P−) + T2 ,
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where T1 and T2 are compact operators in Lp(Γ) and the operator P+ωP+ + P− is
invertible under the choice − 2π

p < arg ν+
k < 2π

p′
, k = 1, · · · ,m.

Lemma 2.13 and Theorem 2.12 were proved in [13]-[14], see also [?], Section 1.3.

Remark 2.14. We note that indp in (2.30) stands for the p-index [6] which can be
calculated by the formula [?]

indp a(t) =
1

2π

m
∑

k=1

(θk − βk) ,

θk =

∫ tk+1−0

tk+0

darg a(t) , (tm+1 = t1); βk = arg
a(tk − 0)

a(tk + 0)
∈
(

−2π

p′
,

2π

p

)

.

Remark 2.15. Theorem 2.12 is valid also in the case Γ = R1 , if a(x) ∈ PC(R1)
has discontinuities at a finite number of points x1, · · · , xm, |xj | < ∞, j = 1, · · · ,m,
and ω(x) in (2.28) is defined as

ω(x) =

m
∏

k=1

(

x− i

x+ i

)− 1
2πi

ln ν+

k

xk

,(2.31)

where ωk(z) =
(

z−i
z+i

)βk

xk

denotes the choice of the branch of the power function

defined by the cut joining the points i and −i and passing through the point xk. For
real values z = x it may be represented as

ωk(x) =

(

x− i

x+ i

)βk

xk

= θk(x)e−2iβk arctg 1
x ,

where θk(x) = 1 if x ∈ [0, xk] and θk(x) = e2βkπi if x /∈ [0, xk] and θk(x) ≡ 1 in the
case xk = 0 . So,

ω(xk − 0)

ω(xk + 0)
= e2βkπi

and the function ωk(x) is p-non-singular (in the terminology of [6]) if <βk 6= 1
p (mod 1)

and

indp ωk(x) =

[

<βk +
1

p′

]

.(2.32)

2.4. Some general theorems on Fredholmness of equations with an invo-
lutive operator

Let X be a Banach space and Q a bounded linear operator satisfying the relation
Q2 = I , Q 6= ±I, and thereby called involutive. Let A and B be linear bounded
operators, acting in X . We denote

A1 = QAQ , B1 = QBQ .
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In applications it usually turs out that the operators A1 and B1 ”do not contain” the
involution Q in the sense that they are of the same nature as the initially considered
operators A and B up to a compact additive term.

We say that two operators on X quasicommute if their commutator is compact in
X .

Axiom 1. The operator A quasicommutes with the operators B,A1 and B1.
Axiom 2. The operator A may be approximated, in the operator topology, by

Fredholm operators Aε which quasicommute with B.
Axiom 3. There exists a (bounded linear) Fredholm operator U which quasicom-

mutes with A and B but anti-quasicommutes with Q , that is

UQ +QU is compact .

Theorem 2.16. Let A and B satisfy Axioms 1-3. Then the operator K = A+QB
is Fredholm in X iff the operator

M = AA1 − BB1

is Fredholm in X and

Ind K =
1

2
Ind M.(2.33)

This theorem was proved in [11], [13]-[14], see also its presentation in [?]. We give
its proof here for completeness, since we slightly modified the system of axioms in
comparison with that in [11], [13]-[14] and [?].

Proof.
1) We first note that the operatorsK = A+QB andK ′ = A−QB are simultaneously

Fredholm and have equal indices:

Ind K = Ind K ′ .

Indeed, by Axiom 3 we have U(A+QB) = (A−QB)U + T, where T is a compact
operator.

2). Sufficiency. Let K̃ = A1 − QB. By Axiom 1 we have

KK̃ = AA1 − BB1 + T1,(2.34)

K̃K = AA1 − BB1 + T2,(2.35)

where T1 and T2 are compact operators. Then Fredholmness of M implies that of K.
3) Formula for the index. It suffices to show that

Ind K = Ind K̃

since in this case (2.34) yields (2.33). To this end, we write

A1(A+QB) = AA1 +QAB + T3 ,(2.36)

(A1 −QB)A = AA1 −QAB + T4 .(2.37)
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Suppose that A is Fredholm. Then A1 is the same. Then the righthand sides in
(2.36)-(2.37) are operators of the type K and K ′ and by the part 1) of the proof with
Axiom 1 taken into account, we get Ind (AA1 + QAB) = Ind (AA1 − QAB) and
then

Ind (A+QB) = Ind (A−OB).

If A is not Fredholm, it just suffices to make use of Axiom 2.
4) Necessity. Let K be Fredholm. Then by the part 1) of the proof, K ′ is Fredholm

as well. Let RK and RK′ be their regularizers. Obviously

1

2
(RK +RK′)A +

1

2
(RK −RK′)QB = I + T5 ,(2.38)

1

2
(RK −RK′)A +

1

2
(RK +RK′)QB = T6 .(2.39)

Now, we multiply (2.38) first by 1
2Q(RK − RK′) from the left and by B1 from the

right and then by 1
2 (RK + RK′)Q from the left and by QA from the right. Similarly

we multiply (2.39) first by 1
2 (RK + RK′)Q from the left and by −B1 from the right

and then by 1
2Q(RK − RK′) from the left and by −QA from the right. Summing all

the four results, we arrive at

R(AA1 − BB1) =
1

2
[fQ(RK −RK′)B1 + (RK +RK′)A] + T7 ,(2.40)

where

R =
1

4

[

f(RK +RK′)Q(RK +RK′)Q−Q(RK −RK′)2Q
]

.

Multiplying (2.40) by Q both from the left and from the right and summing the results,
we obtain after easy calculations

(R+QRQ)(AA1 −BB1) = 2I + T8 .

Therefore, the operator 1
2 (R + QRQ) is the left regularizer of AA1 − BB1. Similarly

it is checked that it is also a right regularizer. Consequently, AA1 −BB1 is Fredholm.
2

Remark 2.17. Axiom 2 was used only for the proof of the formula (2.33) for the
index.

3. The main results and approaches

3.1. Formulation of the main result.

We need the following notations

s0 = a(+0) − a(−0) , s∞ = a(+∞) − a(−∞),
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sk =
√

[a(xk + 0) − a(xk − 0)][a(−xk + 0) − a(−xk − 0)](3.1)

where xk are the discontinuity points of the function a(x) ∈ PC(R1) . We observe that
we follow here the notation from the paper [?], but the notation s∞ has the opposite
sign.

We introduce also the notation

Eα(z0) = z0 · Eα = {ζ ∈ C : ζ = z0 · w ,w ∈ Eα}, z0 ∈ C,

for the rotated and dilated standard α-lemniscate (see Subsection 2.2) with the ”ver-
tex” at the point z

sin απ . In particular, E 1
2
(z0) = [0, z0], z0 ∈ C.

Let
Ωint

k = Ωint
k,+

⋃

Ωint
k,− , k = 1, · · · ,m,

be the union of the interiors of the leafs of two lemniscates:

Ωint
k,± = interior of E 1

p

(

± isk

2

)

.

Similarly by
Ωint

0 and Ω int
∞

we denote the interior of the unilateral lemniscates

E 1+γ
p

(−is0
2

)

and E 1+γ
p

(−is∞
2

)

,

respectively. We remark that the sets Ωint
k and Ωint

k , k = 1, · · · ,m, are empty in the
case p = 2 , while Ωint

0 and Ωint
∞ are empty in the case γ = p

2 − 1. By

χk(λ) = χΩint
k

(λ), k = 0, 1, · · · ,m,

we denote the characteristic function of the leaf Ωint
k . Similarly, χ∞(λ) = χΩint

∞

(λ) .

Theorem A. Let a(x) ∈ PC(R1). The operator Ka is Fredholm in the space
Lp(R

1, |x|γ), 1 < p <∞ ,−1 < γ < p− 1, iff

λ /∈ E 1+γ
p

(−is0
2

)

⋃

E 1+γ
p

(−is∞
2

) m
⋃

j=1

(

E 1
p

(−isj

2

)

⋃

E 1
p

(

isj

2

) )

.(3.2)

Under the condition (3.2)

Ind Ka = −sign (p− 2)

m
∑

k=1

χk(λ) + sign(p− 2 − 2γ) [χ∞(λ) − χ0(λ)] .(3.3)

Theorem A shows that the contribution of the jumps s0 and s∞ of the function a(x)
at the fixed points of the shift into the essential spectrum of the operator Ka consists
of the unilateral lemniscates, while the contribution of the jumps at the points ±xj 6= 0
lead to the bilateral lemniscates, see the figure representing the essential spectrum,
where
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p =
12

5
, γ =

3

5
, m = 3

s1 = 8 + 10i, s2 = 2 + 4i, s3 = −4 + 12i

s0 = −8 + 12i, s∞ = 30 − 6i
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Corollary. We have Ind Ka = 0 if one of the following conditions 1) or 2) is
satisfied:

1) |λ| > max

{

max1≤k≤m |sk|
2 sin π

p

,
max(|s0|, |s∞|)

2 sin π(1+γ)
p

}

;

or

2)

∣

∣

∣

∣

arg

(

iλ

sk

)∣

∣

∣

∣

> π

∣

∣

∣

∣

1

2
− 1

p

∣

∣

∣

∣

, k = 1, · · · ,m, and

∣

∣

∣

∣

arg

(

iλ

s0

)∣

∣

∣

∣

> π

∣

∣

∣

∣

1

2
− 1 + γ

p

∣

∣

∣

∣

,

∣

∣

∣

∣

(

arg
iλ

s∞

)∣

∣

∣

∣

> π

∣

∣

∣

∣

1

2
− 1 + γ

p

∣

∣

∣

∣

,

each of 1) or 2) separately meaning that λ lies outside of every lemniscate participating
in (3.2).

Theorem A is proved in Section 5. To obtain its corollary, it suffices to refer to
Corollary 2.10.

Remark 3.1. For simplicity we restricted ourselves to the case of the weight ρ(x) =
|x|γ . However, the results can be easily extended to the case of the weight function of
the form

ρ(x) = |x|γ0

m
∏

j=1

|x2 − x2
j |γj .

Instead of (3.2) in this case one gets

λ /∈ E 1+γ0
p

(−is0
2

)

⋃

E 1+γ∞

p

(−is∞
2

) m
⋃

j=1

(

E 1+γj
p

(−isj

2

)

⋃

E 1+γj
p

(

isj

2

) )

,

where

γ∞ = γ0 + 2
m
∑

j=1

γj ,

−1 < γj < p− 1 , j = 0, · · · ,m; −1 < γ∞ < p− 1 and

Ind Ka = −
m
∑

k=0

sign (p− 2 − 2γk)χk(λ) + sign(p− 2 − 2γ∞)χ∞(λ)

with χk(λ), k = 1, · · · ,m, defined as before, but by the lemniscates E 1+γk
p

(

± isk

2

)

and

similarly, by E 1+γ∞

p

(

−is∞

2

)

for χ∞(λ).
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3.2. The scheme of the proof and some basic ideas.

a) The scheme of the proof. The proof of Theorem A is splitted into the following
main steps:

1. We separate the discontinuity points so that it suffices to study separately the
operator with a jump of the function a(x) either at the origin, or at infinity or
at the pair of symmetric points ±xj 6= 0 only, see Lemma 3.2 below.

2. The case of a discontinuity at ±xj 6= 0 is covered by the general Theorem 2.16,
see Subsection 5.4.

3. The case of a discontinuity at the origin is treated through the direct calculation
of the composition P+aP−Q by means of the Poincaré-Bertrand formula and
application of the results on Fredholmness of the operators with homogeneous
kernels presented in Subsection 2.1, see Subsection 5.2.

4. The case of a jump at infinity is immediately reduced to the case of a jump at
the origin.

Because of applications connected with the case p = 2, γ = 0 we treat this case
separately in Section 4, which yields simpler proofs.

b) Separation of singularities. We introduce the partition of the unity:

1 ≡ ψ0(x) + ψ∞(x) +

m
∑

k=1

ψk(x) ,

where ψk(x) ∈ C∞
0 (R1), k = 0, 1, · · · ,m; ψ∞(x) ∈ C∞(R1) and ψk(x) ≡ 1 in a

neighbourhood of both points +xk and −xk, k = 1, · · · ,m, and ψk(x) ≡ 0 in a neigh-
bourhood of both points ±xj , j 6= k, and at a neighbourhood of the points x0 = 0 and
x∞ = ∞ . Similarly ψ0(x) and ψ∞(x) are described.

We have

a(x) ≡ a0(x) + a∞(x) +

m
∑

k=1

ak(x) ,(3.4)

where ak(x) = a(x)ψk(x) ( k = 0, 1, · · · ,m) and a∞(x) = a(x)ψ∞(x) have a jump
only at ±xk and x∞, respectively. We denote by Kak

, k = 0, 1, · · · ,m, the operators
of the form (1.1) with ak(x) instead of a(x) and similarly for Ka∞

Lemma 3.2. The operator Ka is Fredholm in the space Lp(R
1, |x|γ), 1 < p <

∞ ,−1 < γ < p− 1, iff the operators

Ka0
, Ka1

, · · · ,Kam
, Ka∞

are Fredholm in this space. Besides this

Ind Ka = Ind Ka∞
+

m
∑

j=0

Ind Kaj
.(3.5)
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Proof. The representation is valid

Ka = λ−n−2Ka0
Ka∞

m
∏

j=1

Kaj
+ T ,(3.6)

where T is a compact operator in Lp(R
1, |x|γ) and all the factors in the product

commute up to a compact operator. To see the validity of (3.6), it suffices to consider
the product of two operators Ku and Kv where u(x) and v(x) have jumps at different
points. We have

KuKv = λ2Ku+v + P+uP−v̄P+ .(3.7)

Here and everywhere below we use the notation

v̄(x) = v(−x).

By the Gohberg-Krupnik criterion on compactness of ”composite” singular operators
[5],[7]-[8], the operator P+uP−v̄P+ is compact in Lp(R

1, |x|γ) . Therefore, from (3.7)
we get (3.6) in view of (3.4). This gives the lemma’s assertion. 2

Thus, Lemma 3.2 shows that we are to study separately the following three ”model”
operators:

1. the operator Ka0
with a0(x) having a jump only at the origin;

2. the operator Ka∞
with a∞(x) having a jump only at infinity;

3. the operator Kak
with ak(x) having a jump only at the pair of the points ±xk 6=

0 , k = 1, · · · ,m.
We find it convenient to single out another ”model” case tightly connected with
1) and 2), although in view of Lemma 3.2 it reduces to these cases:

4. the operator Ka with a(x) having a jump only at the origin and infinity (of the
type of sign x) with equal jumps : a(+∞) − a(−∞) = a(+0) − a(−0), that is
so = s∞.

c) Symmetrizer. We shall see below that the case 3) is covered by Theorem 2.16.
As regards the cases 1) and 2) , an important role in their investigation is played by
the direct connection between such cases realized by means of the operator which we
call symmetrizer.

We denote

a∗(x) = − a

(

− 1

x

)

so that

a∗∗(x) ≡ a(x).

It is clear that if a(x) has a jump only at infinity, then a∗(x) has a jump only at the
origin and vice versa .
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Definition 3.3. The operator

Ka∗ = λI − P+a
∗(x)P−Q

will be called symmetrizer of the operator Ka.
The reason for the above definition becomes clear in view of the following lemma.

Lemma 3.4. Let a(x) have a jump only at the origin (or only at infinity). Then
the relation holds

KaKa∗ = Ka∗Ka = λ2Kω + T ,

where T is a compact operator in the space Lp(R
1, |x|γ),

ω(x) = a(x) + a∗(x) = a(x) − a

(

− 1

x

)

and
ω(+∞) − ω(−∞) = ω(+0) − ω(−0)(3.8)

Proof. It suffices to refer to the general relation (3.7) and to the fact that a(x) and
a∗(x) have jumps at different points which yields compactness of the last term in (3.7).

2

Lemma 3.5. Let a(x) ∈ C(R1) and have a jump only at infinity. The operators Ka

and Ka∗ are simultaneously Fredholm (invertible) in L2(R
1) and

Ind Ka = Ind Ka∗ .

Proof. Let

(Rϕ)(x) =
1

x
ϕ

(

1

x

)

, R2 = I.(3.9)

The following relations are easily checked:

RS = −SR , RQ = −QR ,

RP+ = P−R , RP− = P+R .

Using these relations we verify the following connection between the operators Ka and
Ka∗ :

RQKaQR = Ka∗ .(3.10)

The lemma’s assertion follows immediately from (3.10). 2

Thus, in the case p = 2, γ = 0 , the symmetrizer allows to reduce the consideration
of the ”model” cases 1) and 2) to the ”symmetric” case 4). In the case p 6= 2 the
connection (3.10) does not work since the operator R is not bounded in the space
Lp(R

1, |x|γ) except for the special case γ = p
2 − 1 . By this reason for p 6= 2 we shall

use another approach which is based on the exact calculation of the ”main part” of
the operator Ka in the cases 1), 2) and 4).
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3.3. Remarks (on invertibility).

We want to observe that the problem of precise describing of the exact spectrum
instead of the essential spectrum of the operator Ka is a hopeless affair in the sense
that this problem includes as a particular case a problem of characterization of the
spectrum of compact operators, although of a special form (with a kernel depending
on a sum of arguments). To show this we give an example

Kβϕ : ≡ λϕ(x) − c

π

∫ ∞

0

ϕ(y) dy

x+ y
+ β

∫ ∞

0

e−(x+y)ϕ(y) dy , x > 0 , c ≥ 0.(3.11)

By Theorem 2.6, the Carleman operator which is obtained from (3.11) in the case
β = 0, is invertible (Fredholm) in L2(R

1
+) iff λ /∈ [0, c]. It is easily shown that for any

λ0 > c there exists a value of β such that the operator Kβ is not invertible, having
the deficiency numbers (1,1). Thus, the operator Kβ with this β has the spectrum
containing not only the continual part [0, c], but also the point λ0 > c .

Now, it is clear that taking e−(x+y)Pm(x+y) instead of e−(x+y) in (3.11), Pm being a
polynomial, we may obtain in addition to the continual spectrum [0, c] a finite number
of isolated points of the spectrum.

4. Proof of Theorem A. The case p = 2, γ = 0.

4.1. The ”model” operators 1) and 2).

The case 2) is covered by the following theorem.

Theorem 4.1. Let a(x) ∈ C(R1) and a(+∞) 6= a(−∞). The operator Ka is
Fredholm in the space L2(R

1) iff

λ /∈ [0,−s∞i
2

],(4.1)

and then Ind Ka = 0.

Proof. By Lemmas 3.4 and 3.5 the operator Ka is simultaneously Fredholm with the
operator Kω and Ind Ka = 1

2 Ind Kω . The function ω(x) has already equal jumps
at the origin and infinity which allows to reduce the consideration of the operator Kω

to that of the Carleman operator (2.13). Indeed, we can put

ω(x) =
(

ω(x) − s∞
2

sign x
)

+
s∞
2

sign x = ω1(x) + ω2(x),

so that the function ω1(x) is continuous at Ṙ1. In the notation (1.1) we write

Kω = Kω2
− P+ω1P−Q
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where P+ω1P−Q is obviously compact. As regards the operator Kω2
, this is nothing

else but the Carleman operator (2.13) with 1
π replaced by s∞

2πi . Applying Theorem
2.6, we get (4.1) and the formula for the index. 2

The case 1) immediately follows from Theorem 4.1 and Lemma 3.5 if we take into
account that a∗∗(x) = a(x) and s∞(a∗) = s0(a) . Instead of (4.1) we shall obtain

λ /∈
[

0,− is0
2

]

.

4.2. The ”model” operator 3).

This case is studied by means of Theorem 2.16.

Theorem 4.2. Let a(x) ∈ PC(R1) and have a jump only at a pair of symmetric
points ±xk 6= 0. Then the operator Ka is Fredholm in the space L2(R1) iff

λ /∈
[

− isk

2
,
isk

2

]

,(4.2)

and then Ind Ka = 0.
To prove Theorem 4.2 we need the following lemma.

Lemma 4.3. Let a(x) ∈ PC(R1) and have a jump only at a pair of symmetric
points ±xk 6= 0. Then the operator Ka is Fredholm in the space Lp(R1) , 1 < p < ∞
iff the operator

M = λ2I − P+aP−āP+(4.3)

is Fredholm in Lp(R
1) and then

Ind Ka =
1

2
Ind M .(4.4)

Proof. We apply Theorem 2.16. In our case A = λ2I, B = −P+aP− and Qϕ =
ϕ(−x) and the validity of Axioms 1-3 is well known. The operator U required by
Axiom 4 can be constructed as

Uϕ = u(x)ϕ(x) + i v(x)Sϕ ,

where

u(x) =
x

1 + x2
, v(x) =

|x2 − x2
j |

1 + x2
.

It is Fredholm in Lp(R
1) and satisfies the condition UQ + QU = 0. Consequently,

Lemma 4.3 follows from Theorem 2.16. 2

Proof. (of Theorem 4.2.). By Lemma 4.3 it suffices to study the operator M . The
latter is covered by Theorem 2.12. We observe that ∆(x) ≡ 1 in our case and by (2.27)
we have

h(xk) = h(−xk) = 2 +
1

λ2
[a(xk + 0) − a(xk − 0)] [a(−xk + 0) − a(−xk − 0)]
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= 2 +
(sk

λ

)2

(4.5)

and

ν+
k =

h(xk) +
√

h2(xk) − 4

2
.(4.6)

We apply Lemma 2.13 to the operator M . The function ω(x) arising in this lemma
has now the following form

ω(x) =

(

x− i

x+ i

)− i
2πi

ln ν+

k

xk

(

x− i

x+ i

)− i
2πi

ln ν+

k

−xk

(4.7)

in accordance with Remark 2.15. The operators P+ω
±1P+ + P− are Fredholm if

arg ν+
k 6= π(mod 2π) and even invertible if −π < arg ν+

k < π . From (4.5)-(4.6) it
follows that the last inequalities are nothing else but the condition (4.2). Under this
condition, taking the invertibility of the operators P+ω

±1P+ + P− into account, we
obtain Ind M = 0 and then Ind K = 0. 2

5. Proof of Theorem A. The general case

5.1. The special case a(x) = sign x.

We find it convenient to consider this special case, which essentially illustrates the
situation. The operator

Ka = λI − P+ sign x P−Q(5.1)

which formally corresponds to the Carleman operator (2.13), can be calculated im-
plicitly as an integral operator with a homogeneous kernel of degree - 1 . Indeed, the
following lemma is valid.

Lemma 5.1. The operator (5.1) can be represented as

Kaϕ = λϕ(x) −
∫ ∞

−∞

k(x, y)ϕ(y)dy , x ∈ R1,(5.2)

where

k(x, y) =
1
πi (sign x + sign y) − 2

π2 ln
∣

∣

y
x

∣

∣

4(x+ y)
.(5.3)

Proof. We have

Ka = λI − 1

4
[(S sign x − sign x S) + (sign x I − S sign x S)]Q.
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It remains to use the formula

S sign x Sϕ = sign x ϕ(x) − 2

π2

∫ ∞

−∞

ln|t| − ln|x|
t− x

ϕ(t) dt(5.4)

which is a corollary of the Poincaré-Bertrand formula. 2

Theorem 5.2. The operator Ka = λI − P+ sign x P−Q is Fredholm (invertible
) in the space Lp

(

R1, |x|γ
)

, −1 < γ < p− 1 iff

λ /∈ E 1+γ
p

(−i) .(5.5)

Proof. We apply Lemma 5.1 and Theorem 2.2. It is easy to check that the kernel
(5.3) satisfies the summability conditions (2.7). Calculating the elements of the matrix
(2.9), we have

K++(z ) =
1

2πi
A(z ) − 1

2π2
A′(z ) ,

K+−(z ) = −K−+(z ) =
1

2π2
B(z ) ,(5.6)

K−−(z ) =
1

2πi
A(z ) +

1

2π2
A′(z ) ,

where

A(z) =

∫ ∞

0

yz−1 dy

y + 1
=

π

sinπz
(see [9], 3.222.2) ,

A′(z) =

∫ ∞

0

yz−1 ln y dy

y + 1
= −π

2 cosπz

sin2 πz
,(5.7)

B(z) =

∫ ∞

0

yz−1 ln y dy

y − 1
=

π2

sin2 πz
, (see [9], 4.251.2) .

Therefore, detσ(z) = λ
(

λ + i
sin πz

)

and

detσ

(

ix+ 1 − 1 + γ

p

)

= λ

(

λ+
i

sinπ( 1+γ
p − ix)

)

.(5.8)

and then the condition (2.8) is nothing else but (5.5) in view of Lemma 2.5. Under
this condition the operator Ka is invertible by Theorem 2.2. 2

5.2. The case of jump only at the origin

The idea of the direct calculation of the composition P+aP−Q as in the case a(x) =
sign x , may be applied in this case as well.
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Theorem 5.3. Let a(x) ∈ C(Ṙ1\{0}). The operator Ka is representable in the
form

Kaϕ = λϕ(x) − χ(x)

∫ 1

−1

k(x, y)ϕ(y)dy + Tϕ , x ∈ R1,(5.9)

where T is a compact operator in Lp

(

R1, |x|γ
)

, χ(x) = χ[−1,1](x), and

k(x, y) = s0

1
πi (sign x + sign y) + 2

π2 ln
∣

∣

y
x

∣

∣

8(x+ y)
.(5.10)

Proof. 1. Without loosing generality we may assume that a(x) is an odd function
such that

a(+0) = − a(−0) , a(∞) = 0

(for this it suffices to observe that Ka −Kb is compact if a− b is continuous on Ṙ1).
2. Obviously, Ka = λI − 1

4 [(Sa−aS) + S(Sa−aS)]Q. By the Poincaré-Bertrand
formula we have

SaSϕ = a(x) ϕ(x) − 1

πi

∫ ∞

−∞

A(x ) −A(t)

x− t
ϕ(t) dt ,

where

A(x ) =
1

πi

∫ ∞

−∞

a(t)

t − x
dt .(5.11)

By the assumptions on a(x), the singular integral A(x ) is well defined and is an even
function with a logarithmic singularity at the origin :

A(x ) ∼ 2a(+0 )

πi
ln

1

|x | , x → 0 .(5.12)

We denote for convenience

Aϕ =
1

4π

∫ ∞

−∞

a(x) − a(−y)
x+ y

ϕ(y) dy ,

Bϕ =
1

4π

∫ ∞

−∞

A(x ) −A(−y)

x+ y
ϕ(y) dy ,

so that
Ka = λϕ+Aϕ − Bϕ .(5.13)

3. We shall show that the operators A and B admit the representation

Aϕ =
a(+0)

4πi
χ(x)

∫ 1

−1

sign x + sign y

x + y
ϕ(y) dy + T1ϕ(5.14)

Bϕ =
a(+0)

2π2
χ(x)

∫ 1

−1

ln
∣

∣

∣

x
y

∣

∣

∣

x + y
ϕ(y) dy + T2ϕ ,(5.15)
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where T1 and T2 are compact operators in Lp

(

R1, |x|γ
)

. Then from (5.13)-(5.15) the
theorem’s assertion will follow if we take into account that s0 = 2a(+0). To show
(5.14)-(5.15) we observe that by the compactness of bS − Sb in Lp

(

R1
+, x

γ
)

in case of
a function b(x) continuous on [0,∞] , the operator A can be represented as

Aϕ =
θ+(x)a(x)

2πi

∫ ∞

0

ϕ(y)

x + y
dy +

θ−(x)a(x)

2πi

∫ ∞

0

ϕ(−y)
x − y

dy + T3ϕ

where θ±(x) = 1
2 (1 ± sign x). Applying Theorem 2.4 with a(∞) = 0 taken into

account, we represent the operator A as

Aϕ =
χ+(x)a(+0)

2πi

∫ 1

0

ϕ(y)

x + y
dy +

χ−(x)a(−0)

2πi

∫ 1

0

ϕ(−y)
x − y

dy + T4ϕ

where χ±(x) = χ[0,±1] . This representation is nothing else but (5.14).
Passing to the operator B , by (5.12) we have

A(x ) =
2a(+0 )

πi
ln

1

|x | + β(x ) ,(5.16)

where β(x) ∈ C(Ṙ1), β(∞) = 0 and β(x) is an even function. Since the operator
βS − Sβ is compact, the operator B is reduced to

Bϕ =
a(+0)

2π2

∫ ∞

−∞

χ(x) ln |x| − χ(y) ln |y|
x + y

ϕ(y) dy + T5ϕ ,

or

Bϕ =
a(+0)

2π2
χ(x)

∫ ∞

−∞

ln
∣

∣

∣

x
y

∣

∣

∣

x + y
ϕ(y) dy + Tbϕ + T6ϕ ,(5.17)

where

Tbϕ =

∫ ∞

−∞

b(x, y)k(x, y)ϕ(y) dy,

with

b(x, y) =
χ(x) − χ(y)

ln
∣

∣

∣

x
y

∣

∣

∣

ln |y| , k(x, y) =
ln
∣

∣

∣

x
y

∣

∣

∣

x + y
.

Here k(x, y) is homogeneous and b(x, y) is even in each variable, |b(x, y)| ≤ 1 every-
where and b(x, y) ≡ 0 if |x| ≤ 1, |y| ≤ 1 or |x| ≥ 1, |y| ≥ 1. Therefore, the operator Tb

is compact by Theorem 2.4. 2

Theorem 5.4. Let a(x) ∈ C(Ṙ1\{0}) . The operator Ka is Fredholm in
Lp

(

R1, |x|γ
)

,
1 < p <∞, −1 < γ < p− 1, iff

λ /∈ E 1+γ
p

(−is0
2

)

(5.18)
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and

Ind Ka =

{

0, λ ∈ Ωext
0 = exterior of E 1+γ

p

(

−is0

2

)

− sign (p− 2 − 2γ) , λ ∈ Ωint
0 = interior of E 1+γ

p

(

−is0

2

)(5.19)

the set Ωint
0 being empty in the case γ = p

2 − 1.

Proof. In view of the representation (5.9)-(5.10), the operator Ka can be treated
by Theorem 2.3. We observe that the operator (5.9)-(5.10) has the same form as the
operator (5.2), the difference being only in the sign inside the kernel. Therefore, to
calculate σ(z) in our case, we have only to change the sign in front of A′(z) in (5.6),
which gives

detσ

(

ix+ 1 − 1 + γ

p

)

= λ

(

λ+
is0

2 sinπ( 1+γ
p − ix)

)

.(5.20)

Hence the condition (5.18) follows.
The formula for the index is obvious for λ ∈ Ωext

0 because Ωext
0 is connected and Ka

is invertible for large values of |λ| . Let λ ∈ Ω0 . By Theorem 2.3 applied to (5.9)
with (5.20) taken into account we have

Ind Ka = − w (λ − fα(x)) , α =
1 + γ

p
,(5.21)

where w stands for the winding number and fα(x) = is0

2 sin(α−ix)π . For λ ∈ Ωint
0 the

curve
z = λ− fα(x) , x ∈ R1 ,(5.22)

is the shifted lemniscate with 0 in its interior. Therefore, Ind Ka = ± 1 . From
(2.17) it is clear that the curve (5.22) is running in the positive (negative) direction
if B > 0(B < 0, resp.), that is, γ < p

2 − 1(γ > p
2 − 1, resp.). Hence, by (5.21)

Ind Ka = ± 1 correspondingly to the cases γ < p
2 − 1 and γ > p

2 − 1 , which yields
(5.19). 2

5.3. The case of a jump only at infinity

We modify the relationship (3.10) so that it would work within the frameworks of
weighted Lp-spaces. However, this modified connection will lead to the consideration
of the operator Ka and its symmetrizer Ka∗ in spaces with different weights.

We denote

Rβϕ =
sign x

|x|β ϕ

(

1

x

)

, R2
β = I,

Kν
a = |x|1−νKa|x|ν−1 .

Lemma 5.5. The operator Rβ is bounded in Lp

(

R1, |x|γ
)

, −∞ < γ <∞, if

β =
2

p
(1 + γ)
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and Kν
a , −∞ < ν <∞, is bounded in Lp

(

R1, |x|γ
)

, if

pν − 1 − p < γ < pν − 1 .(5.23)

Proof is direct.

Corollary 5.6. Under the choice

ν =
1 + β

2
=

1

2
+

1 + γ

p

(

β =
2

p
(1 + γ)

)

(5.24)

the operators Rβ and K
1+β
2

a are both bounded in Lp

(

R1, |x|γ
)

for any γ ∈ (−∞,∞).
Indeed, in the case (5.24) the condition (5.23) is satisfied automatically.

Lemma 5.7. The relationship

RβQK
ν
aQRβ = K1+β−ν

a∗(5.25)

is valid.

Proof. The formula of the ”quasicommutation” is known:

RβP± = P β−1
∓ Rβ(5.26)

where P β−1
± Rβ = |x|1−βP±|x|1−β , see [?] , formula (24.6). Using (5.26) and taking

into account that

Rβ aI = a

(

1

x

)

Rβ , QRβ = − RβQ ,

we check (5.25) directly. 2

Corollary 5.8. The relation

RβQK
1+β
2

a QRβ = K
1+β
2

a∗

holds where both Rβ and K
1+β
2

a are bounded in the same space Lp

(

R1, |x|γ
)

, if −∞ <
γ <∞ and β = 2

p (1 + γ).

Theorem 5.9. Let a(x) ∈ C(R1) and have a jump only at infinity. The operator
Ka is Fredholm in Lp

(

R1, |x|γ
)

, 1 < p <∞, −1 < γ < p− 1, iff

λ /∈ E 1+γ
p

(

− is∞
2

)

(5.27)

and

Ind Ka =

{

0, λ ∈ Ωext
∞ = exterior of E 1+γ

p

(

− is∞

2

)

sign (p− 2 − 2γ) , λ ∈ Ωint
∞ = interior of E 1+γ

p

(

− is∞

2

)
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the set Ω∞ being empty in the case when γ = p
2 − 1.

Proof. From (5.25) we have

RβQKaQRβ = Kβ
a∗ , β =

2

p
(1 + γ).(5.28)

Since Lemma 5.5 provides the boundedness of Rβ in Lp

(

R1, |x|γ
)

, we observe from

(5.28) that the operators Ka and Kβ
a∗ are simultaneously bounded (Fredholm, invert-

ible) in Lp

(

R1, |x|γ
)

. The operator Ka is bounded if −1 < γ < p− 1. Therefore, Kβ
a∗

is bounded in Lp

(

R1, |x|γ
)

, or, which is the same, Ka∗ is bounded in Lp

(

R1, |x|γ∗
)

,
where

γ∗ = p− 2 − γ .

Obviously, γ ∈ (−1, p− 1) is equivalent to γ∗ ∈ (−1, p− 1) .
Since a∗(x) has already a jump only at the origin with a∗(+0) − a∗(−0) = s∞, the

Fredholmnes of Ka∗ in Lp

(

R1, |x|γ∗
)

can be obtained from Theorem 5.4. According
to (5.20)

detσ

(

ix+ 1 − 1 + γ∗

p

)

= λ

(

λ+
is∞

2 sinπ(ix+ 1+γ
p )

)

.(5.29)

whence (5.27) follows. Observing that in (5.29) we have −x instead of x as we had
in (5.20), we arrive at the formula for the index with the opposite sign in comparison
with Theorem 5.4. 2

5.4. The case of jumps only at a pair of points ±xj 6= 0 .

In this case Fredholmness of the operatorKa does not depend on the weight exponent
γ. Namely, the following lemma is valid.

Lemma 5.10. Let a(x) ∈ PC(R1) have jumps only at a pair of symmetric
points ±xj 6= 0 . The Fredholmness conditions and the index of the operator Ka in
Lp

(

R1, |x|γ
)

, −1 < γ < p− 1, do not depend on γ.

Proof.

1. We may choose b(x) ∈ PC(R1) with the same jumps that a(x) has, so that
a(x)− b(x) is continuous on Ṙ1 and b(0) = b(∞) = 0. Then Ka −Kb is compact
in Lp

(

R1, |x|γ
)

.

2. Considering Kb , we have for ρ = |x|
γ
p :

ρKbρ
−1 − Kb = (ρP+bρ

−1 − P+b)ρP−Qρ
−1 + P+(bρP−ρ

−1 − bP−)Q .

Here the differences in the parentheses are compact operators in Lp(R
1) . Indeed,

(ρP+bρ
−1 − P+b)ϕ =

1

2πi

∫ ∞

−∞

(

|x|
|y|

)
γ
p − 1

y − x
b(y)ϕ(y) dy .



, 27

Since b(0) = b(∞) = 0, the desired compactness follows from Theorem 2.4.
Similarly, by means of Theorem 2.4, the second parentheses is treated.

Therefore, the operatorsKa,Kb and ρKbρ
−1 are simultaneously Fredholm in Lp(R

1),
which proves the lemma. 2

We shall treat the operator Ka in Lp(R
1) by means of Lemma 4.3 and the decompo-

sition given in Lemma 2.13. Before that we need the following technical but important
lemma on the connection between the values of λ and arg ν+

k , where ν+
k are the num-

bers arising in the decomposition of Lemma 2.13. The domains Ωint
k , k = 1, · · · ,m,

were defined in Subsection 3.1. Let Ωext
k be its exterior, that is the exterior of the two

symmetrical lemniscates

E 1
p

(

− isk

2

)

⋃

E 1
p

(

isk

2

)

.

Lemma 5.11. Let ν+
k = ν+

k (λ) be the numbers (4.6) with arg ν+
k chosen according

to (2.29). Then the condition

∣

∣arg ν+
k

∣

∣ <
2π

max(p, p′)
(5.30)

is equivalent to the statement that

λ ∈ Ωext
k

while the condition

2π

max(p, p′)
<
∣

∣arg ν+
k

∣

∣ <
2π

min(p, p′)
(5.31)

is equivalent to λ ∈ Ωint
k .

Proof. From (4.6) we observe that ν+
k is the root of the equation ν+

k + 1
ν+

k

= h(xk).

According to (4.5) this yields ν+
k + 1

ν+

k

− 2 =
(

sk

2

)2
or

sk

λ
= ±





√

ν+
k − 1

√

ν+
k



 .

Putting ν+
k = reiθ , θ = arg ν+

k , we arrive at the relation

λ = ±sk
te

iθ
2

t2eiθ − 1
, t =

√
r > 0.

In the notation (2.21) this is

λ = ± isk

2
` θ

2π
(t) ,

(

`−α(t) = −`α(
1

t
)

)

.
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In other words, given the fixed value of arg ν+
k = θ, this is equivalent to saying that

λ belongs to

E θ
2π

(

− isk

2

)

⋃

E θ
2π

(

isk

2

)

.

According to Corollary 2.10, the above union lies inside of the leaves of

E 1
p

(

− isk

2

)

⋃

E 1
p

(

isk

2

)

just under the condition (5.31). 2

Theorem 5.12. Let a(x) ∈ PC(R1) and have a jump only at a pair of symmetric
points ±xk 6= 0. Then the operator Ka is Fredholm in the space Lp

(

R1, |x|γ
)

iff

λ /∈ E 1
p

(−isk

2

)

⋃

E 1
p

(

isk

2

)

(5.32)

and then

Ind Ka =

{

0 , λ ∈ Ωext
k

sign (2 − p) , λ ∈ Ωint
k

(5.33)

Proof. In view of Lemma 5.10 we may take γ = 0 and use then Lemma 4.3. The
operator M arising in Lemma 4.3 is decomposed according to Lemma 2.13 (with
Remark 2.15 taken into account) :

M = (P+
1

ω
P+ + P−)(P+ωP+ + P−) + T(5.34)

because ∆(x) ≡ 1 in our case. Here ω(x) has the form (4.7).
The operators P+

1
ωP+ + P− and P+ωP+ + P− are Fredholm in Lp(R

1) if

arg ν+
k 6= 2π

p (mod 2π) and arg ν+
k 6= 2π

p′
(mod 2π) . Hence the essential spectrum of the

operator M or, which is the same, of the operator Ka, is defined by the equality

ν+
k = reiθ ,(5.35)

where r > 0 , θ = 2π
p or θ = 2π

p′
. Similarly to the proof of Lemma 5.11 we have

λ = ±sk
te

iθ
2

t2eiθ − 1
, θ =

2π

p
,(5.36)

where t =
√
r > 0. In the notation (2.21), this is

λ = ± isk

2
` 1

p
(t) , t ∈ R1

+.

in case of θ = 2π
p . By Lemma 2.11 we get two loops of the lemniscate, that is

E 1
p

(

− isk

2

)
⋃

E 1
p

(

isk

2

)

. As regards the second possibility θ = 2π
p′

, it gives the same

loops, because these lemniscates are symmetric with respect to p and p′ , see (2.18),
where nothing changes if we replace α = 1

p by 1 − α.
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Hence, the essential spectrum of the operator Ka is exactly E 1
p

(

− isk

2

)
⋃

E 1
p

(

isk

2

)

.

It remains to calculate the index of Ka for λ /∈ E 1
p

(

− isk

2

)
⋃

E 1
p

(

isk

2

)

. By Lemma

4.3 and the decomposition (5.34) we have

Ind Ka =
1

2
Ind M = −1

2
indp ω − 1

2
indp

1

ω
.

To calculate the p-index of ω and 1
ω , where ω is the function (4.7), we observe that

the points x ∈ R1 and t = x−i
x+i run through the real axis R1 and the circumference

|t| = 1 , respectively, both in positive direction. Therefore,

indp

(

x− i

x+ i

)β

= indpt
β
∣

∣

along |t|=1
=

[

<β +
1

p′

]

,

where [ ] stands for the integer part of the number, see [?], pp. 17-18, Example
2.1. Consequently, for the function (4.7) we get

indp ω = 2

[

1

p′
− arg ν+

k

2π

]

,

indp
1

ω
= 2

[

1

p′
+

arg ν+
k

2π

]

.

Under the choice (2.29) we obtain

indp ω = 0 , indp
1

ω
=

{

0, if | arg ν+
k | < 2π

max(p,p′)

2sign (p− 2) otherwise

after easy calculations. Therefore,

Ind Ka = indp
1

ω
=

{

0, if | arg ν+
k | < 2π

max(p,p′)

−sign (p− 2) otherwise
(5.37)

It remains to refer to Lemma 5.11 to convert (5.37) into (5.36). 2

Unifying Theorems 5.4, 5.9 and 5.12 on the basis of Lemma 3.2, we arrive at Theorem
A .

Acknowledgements. This work was partially supported by JNICT under the grant
PRAXIS/2/2.1/MAT/441/94 during the first author’s visit to Centro de Matemática
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