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1. Introduction

We study Fredholmness (= Noetherity) of the operators of the form
(1.1) K.p 1= Mp(x) — PraP-Qp = f(x), z € R,

in the space L,(R',|z|7), 1 <p<oo, -1 <5 <p—1, where

1 > 1
Sgpz—/ ot) 4y Pr= (I+8),

) _t—2x
a = a(z) is a piece-wise continuous function and Q¢ = ¢(—=). In the case p =2,y =0
and a(oo) = 0, these equations are reduced to

(12) wita) = [ ke + 00t = ), w0,

where ¢ = F~ 1o, g = F~!'f and k = F~'a, ! being the inverse Fourier transform.
Equations of the form (1.2) arise in applications in diffraction theory. They were
treated in L?(R}) in the paper by F.Teixeira [?]. More general equations including
also a Wiener-Hopf term in (1.2) were studied in L?(RY) in [?], [17], 3], [20], [1],[?].
The papers [4], [2] are also relevant.

The operators (1.1) can be considered as a particular case of operators from the al-
gebra generated by the operators of multiplication by piece-wise continuous functions,
the singular operator S and the Carleman shift operator @ [?], [7],[8],[16]. Therefore,
they can be covered by the general Gohberg-Krupnik theorem on Fredholmness of
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operators in this algebra which, as is well known, requires the construction of some
matrix symbol, the latter being rather complicated just in the case when coefficients
are discontinuous at the fixed points of the shift. On the other hand, such operators
in the case when coefficients are continuous at the fixed points, can be easily treated
by means of some general abstract theorem given by the authors [11], [12], [13], [14],
[15], see also [?] and presented below as Theorem 2.16, which allows to obtain the
Fredholmness conditions and a formula for the calculation of the index in effective
terms.

We show that in case of the operators (1.1), the essential spectrum in L,(R', |z|7)
(which is the set of those A in(1.1), for which K|, is not Fredholm) is described precisely
and in simple terms of the so-called standard HTWflemniscates, which are unilateral
in case of a jump of a(z) at the origin or infinity and bilateral in case of jumps at other
points. The main result is given in Theorem A below and the main tools used are
Theorem 2.16, Theorems 2.1-2.3, the Poincaré-Bertrand formula and the compactness
Theorem 2.4.

The authors are thankful to Prof. Francisco Teixeira for his encouragement of this
research and valuable discussions.

2. Preliminaries

2.1. Operators with a homogeneous kernel

We remind some well-known results for the equations

@1 Ko = el - [ Keaew) dy= f@) 0 < <o,
with a homogeneous kernel k(z,y) of degree -1 :

(2.2) k(te,ty) = t 'k(x,y), 2,y € Ri_ , >0,

in the space

(23) Ly (#hat) ={1@: [ Ipsds <o

and for the equation similar to (2.1) but over the whole line R! or over the interval
[—1,1].

a) The case of the equation (2.1). We shall often refer to the assumption

> _itn
(2.4) |kl g <o
0
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Theorem 2.1. [18],[19] Let the kernel k(x,y) satisfy the assumptions (2.2) and
(2.4). Then the operator K is Fredholm in L, (R}Hx”f) if and only if it is invertible,

and a necessary and sufficient condition for that is iff o i (zx +1-— 1-1-77) £0, r € R,

where

(2.5) ox(z) = A — /000 k(l,y)yzfldy.

b) The case of the whole line. For the equation

Ko 1= Xelo) - [ " ke y)ely) dy= fl@), v R,

where
(2.6) k(te,ty) = t 'k(z,y) ,2,y € R* | t >0,
we assume that
* e
(2.7 | L)l ay < oo

Theorem 2.2. [18],[19] Let k(x,y) satisfy the assumptions (2.6)-(2.7). Then the
operator K is Fredholm in the space L, (Rl, |9:|'Y) if and only if it is invertible, and a
necessary and sufficient condition for that is

(2.8) detox <ix+1—1—;’y) 40, reRt,
where

@9 o = (0 WD)
and -

(2.10) Kasle) = [T kL2 dy

c) The case of [—1,1]. For the equation

1
QL) Ke = M) - [ kaale) dy= f@), L6 <1,
-1
the following theorem is valid.

Theorem 2.3. [18],[19] Let k(x,y) satisfy the assumptions (2.6)-(2.7). Then the
operator (2.11) is Fredholm in L,([—1,1],|z|) , iff the condition (2.8) is satisfied and
then

Ind K = —w (detok)

where
1 1 o
w(detog) = — arg det ok (ix+1+7>‘ ,
27 P

— 00
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18 the winding number of the function detoy .
d) Compactness theorem. Let

(2.12) Ty : = / T awyk(@y)e(y) dy = fz) o> 0,

where the homogeneous kernel k(z,y) satisfies the assumptions (2.2) and (2.4).

Theorem 2.4. [10] Let a(x,y) € Loo(R?) and a(+0, +0) = a(+00, +00) = 0 in the
sense that

lim  esssupg.,« 1 esssupgc,< 1 |a(z,y)| = lim esssup,>n esssupysn la(z,y)| = 0,
N —o0 N N N —o00

then the operator T is compact in L,(RY,|z|7) .
e) The Carleman equation. The equation

(2.13) Kp : = A@(x)—/OOOSmJ:f(JU),O<x<OO,

known as the Carleman equation, is immediately covered by Theorem 2.1. In this case
the condition (2.4) gives —1 <y <p—1. We have

1 [y td 1
UK(Z):)\——/ Y LA - , Rz>0,
0

s 14y sinz

see [9], 3.222.2 , so that

1 1 1
(2.14) aK(ixH—”):A— L 0< Yo
p sin(H'T'yfix)ﬂ p

Lemma 2.5. The range of the function g, (x) = r € RY with0 <a <1,

1
sin(a—iz)m?
is the interval [0,1] in the case o = § and the lemniscate

(2.15) E, = {z =re" 1 1? = ———— cos(ip + ma) cos(p — 71'04)}
sin” 2am

in the case o # % , or

(2.16) ( “ )2 +( ! )2 = (W +0?)% u>0; utiv=z

sin ar Ccos
in cartezian coordinates.

1

——. In the general case we have
chrx

Proof. The case a = % is obvious since gy /2(x) =

Ag
(A8)? + (Bn)?

Bn

(217)  u=Rga(z) = (A€)2+ (Bn)?’

>0, v="S¢g.(x)=
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where A = sinma, B = cosma, £ = chmx and ) = shrx. Hence u?+v? = m.
Then from (2.17) we obtain £ = %uzq—;vz,n = %MLW . Since €2 —n? = 1, this yields
(2.16), which is easily transformed to the equation in polar coordinates in (2.15). O

The direct application of Theorem 2.1 to (2.13) with Lemma 2.5 taken into account
gives the following result.

Theorem 2.6. The operator (2.13) is Fredholm (invertible) in Ly(RY,27), —1 <
v<p—1,iff \¢ Eitn.
P

2.2. The standard a-lemniscate.

In the previous subsection we arrived at the lemniscate E,, given by the equation in
polar coordinates

4
(2.18) r? = —5—— cos(p + Ta) cos(p — mar)
sin® 2o

which can be also rewritten as
. 2
sin” 2am 2

(2.19) cos? p = — + sin® o,

It will play a crucial role in the formulation of our main result. By this reason we give
the following definition.

Definition 2.7. We call the curve (2.18) the standard a-lemniscate.
We need some more information about this curve. The following lemmas are valid.

Lemma 2.8. The lemniscate Ey, 0 < a < 1, is symmetrtic with respect to the
half-axis Rl+ , has the "vertex” ( L 0) and lies within the sector

1 1
(2.20) -7 5—04_<p§7r i—a

Proof. The symmetry is obvious, while (2.20) is seen from (2.17), because (2.17)

2
implies Z—z = (%) < ctg’am , that is, tg2p < tg? (% —om'). The "vertex” is

O

obtained at ¢ = 0, which gives max,r = ——.
Corollary 2.9. The standard lemniscate Fg,0 < B3 < 1, lies inside of the leaf
bounded by another lemniscate Fo,0 < a < 1, iff

min(a,1 —«a) << max(o,1—a) .

Indeed, we observe that the lemniscates E, and Eg , o # (3, have no common points
except for the origin, which can be easily derived from the equation (2.19). So, it
suffices to determine when the ”vertex” of Ejs lies inside of the leaf of E,, that is,
sin B > sinaw. The latter is equivalent to the above inequalities for 3 .
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Corollary 2.10. A point A € C lies inside of the leaf of the standard lemniscate
E.,
0<a<l,iff

1
|arg A| < 7r|§ —a

and for such values of p = arg A

2/cos(p + ma) cos(p — ma)
| sin 2| '

Al <

Lemma 2.11. The lemniscate E,, 0 < o < 1, can be represented in the parametric

form
2ite®™ .
where )
2t(1 + t#) si
(2.22) u(ty = A+ E)sinar

t4 — 2t2cos2am + 1’
the connection between t and ¢ being given by

2t(1 —t?) cos am
t4 — 2t2cos2am + 1’

ctgam —tgp

(2.23) t? = :
ctgam +tgp

Proof. It is easier to derive (2.18) from (2.21) than vice versa. The idea of arriving
at (2.21) will become clear later, see (5.29). To derive (2.18) from (2.21)-(2.22), we
first observe that from (2.22)

Hence the connection (2.23) follows. From (2.21)-(2.22) we also have

2 42

2.24 2 = = )
( ) " E t4 — 2t2 cos 2o + 1

Substituting (2.23) into (2.24) we arrive at the equation in (2.18) after easy calcula-
tions. o

2.3. Fredholmness of some ”composite” singular operators and their rep-
resentation as a composition of ”usual” singular operators.

Let I" be a closed smooth curve and let

1

m JpT—1
be the singular operator. Let Py =
of the special type:

1(I+£S). We consider the ”composite” operator

(225) M = P+mP+nP+ + P+7”P+SP+ + P)_7
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where m(t),n(t), r(t) and s(t) are piece-wise continuous functions on I' . Operators of
the form (2.25) and, in general, operators in the algebra generated by S and the oper-
ators of multiplication by piece-wise continuous functions were studied by I.Gohberg
and N.Krupnik [6], [5], see also [7]-[8]. The criterion of such operators to be Fredholm
in L, or in L, with the power weight is known to be given in terms of the matrix
symbol. In case of operators (2.25) the final result can be given in usual terms of
jumps of the argument of some scalar functions. This is given in Theorem 2.12 below
and is based on some simple represenation given by Lemma 2.13.

By t1,---,tm we denote the discontinuity points of the coefficients m(t),n(t), r(t)
and s(t) . We introduce the following notations

(2.26) A(t) = m(t)n(t) + r(t)s(t),
h(t) = m(t—0)n(t+0) + mE+0)n(t—0) + r(t—0)s(t+0) + r({t+0)s(t—0),

where any one of two possible values of the square root is chosen.
Let
4

(2.28) w(t) = [t —z0)" =" ",
k=1

where zq is any point inside the domain bounded by I' and the choice of a branch for
In v =1In || +iargy; will be indicated in Theorem 2.12 below, formula (2.29).

Theorem 2.12. The operator (2.25) is Fredholm in L,(T'), 1 < p < oo, iff

1) infJA@)] 40

2 2
2)  argy) # p—ir (mod 2m) , argy, # p—ir (mod 27) .

Then under the choice

2m 2m
2.29 - <argy < =
( ) P k p/
the index of the operator (2.25) is calculated as
A
(2.30) Ind M = —ind, — ,
w

where w(t) is the function (2.28).
Theorem 2.12 is a consequence of the following lemma.

Lemma 2.13. Let A(ty £0) # 0. Then the operator M is representable as

A A
M= (Py—Py + P_)(PrwPy + P-) +Th = (PrwPy + P)(Py—Pp + P_) + T3,
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where Th and Ty are compact operators in Ly(I') and the operator PywP, + P_ is

invertible under the choice —27” < arg V]j < 2—?, k=1,---.m
Lemma 2.13 and Theorem 2.12 were proved in [13]-[14], see also [?], Section 1.3.

Remark 2.14. We note that ind, in (2.30) stands for the p-index [6] which can be
calculated by the formula [?]

1 m
d = — 0 —
indy a(t 5 kEZI k= Bk) s

Bet1=0 a(t —0) 2 2mw
0, = / darg a(t) , (tye1 = t1); = arg ———= € (——, —) .
k o ga(t), (tme1=t); Bk g a(tr +0) 7 p

Remark 2.15. Theorem 2.12 is valid also in the case I' = R! | if a(x) € PC(R!)

has discontinuities at a finite number of points x1,- -, &y, |z;| < o0, 7 =1,---,m,
and w(z) in (2.28) is defined as

m N —s=In vl
T —i prr k
(2.31) w(r) = ( ) ;
(=)

-\ Bk
where wi(z) = (i—:) denotes the choice of the branch of the power function
Tk

defined by the cut joining the points ¢ and —i and passing through the point ;. For
real values z = = it may be represented as

w (x) _ r—1 o -0 (x)672iﬁk arctgt
k = z+1 o — Vk )
where 0y, (z) = 1 if x € [0,2;] and Oy (z) = €25+™ if 2 ¢ [0, 2] and x(x) = 1 in the
case rr, = 0 . So,

w(zy —0) — 20Bkmi

w(zy +0)
and the function wy(x) is p-non-singular (in the terminology of [6]) if RB) # %(mod 1)
and

(2.32) ind, wi(z) = [&eﬁﬁﬂ .

2.4. Some general theorems on Fredholmness of equations with an invo-
lutive operator

Let X be a Banach space and ) a bounded linear operator satisfying the relation
Q%> =1, Q # +I, and thereby called involutive. Let A and B be linear bounded
operators, acting in X . We denote

= QAQ, B1 = QBQ.
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In applications it usually turs out that the operators A; and B; ”do not contain” the
involution @ in the sense that they are of the same nature as the initially considered
operators A and B up to a compact additive term.

We say that two operators on X quasicommute if their commutator is compact in
X .

Aziom 1. The operator A quasicommutes with the operators B, A; and B;.

Axiom 2. The operator A may be approximated, in the operator topology, by
Fredholm operators A, which quasicommute with B.

Aziom 3. There exists a (bounded linear) Fredholm operator U which quasicom-
mutes with A and B but anti-quasicommutes with @ , that is

UQ + QU is compact.

Theorem 2.16. Let A and B satisfy Axioms 1-3. Then the operator K = A+ QB
s Fredholm in X iff the operator

M = AA, — BB

is Fredholm in X and .
(2.33) Ind K = 3 Ind M.

This theorem was proved in [11], [13]-[14], see also its presentation in [?]. We give
its proof here for completeness, since we slightly modified the system of axioms in
comparison with that in [11], [13]-[14] and [?].

Proof.
1) We first note that the operators K = A+QB and K’ = A—Q B are simultaneously
Fredholm and have equal indices:

Ind K = Ind K' .

Indeed, by Axiom 3 we have U(A+ QB) = (A—QB)U + T, where T is a compact
operator. ~
2). Sufficiency. Let K = A; — @QB. By Axiom 1 we have

(2.34) KK = AA, — BB, + 1T,

(2.35) KK = AA; — BB, + T,

where T} and T, are compact operators. Then Fredholmness of M implies that of K.
3) Formula for the index. Tt suffices to show that

Ind K = Ind K
since in this case (2.34) yields (2.33). To this end, we write
(2.36) A1(A+QB) = AA+QAB+ T3,

(2.37) (A1 —QB)A = AA, —QAB+ Ty .
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Suppose that A is Fredholm. Then A; is the same. Then the righthand sides in
(2.36)-(2.37) are operators of the type K and K’ and by the part 1) of the proof with
Axiom 1 taken into account, we get Ind (AA; + QAB) = Ind (AA; — QAB) and
then

Ind (A+Q@QB) =Ind (A—OB).

If A is not Fredholm, it just suffices to make use of Axiom 2.
4) Necessity. Let K be Fredholm. Then by the part 1) of the proof, K’ is Fredholm
as well. Let Rx and Ry be their regularizers. Obviously

1 1
(2.38) i(RK+RK’)A + §(RK—RK/)QB =1+ Ts,

1 1
(2.39) §(RK — Rg)A + §(RK +Rg)QB = T .

Now, we multiply (2.38) first by Q(Rx — Rk-) from the left and by By from the
right and then by %(RK + Ri/)Q from the left and by QA from the right. Similarly
we multiply (2.39) first by %(RK + Rk/)Q from the left and by —B; from the right
and then by 1Q(Rx — Rk-) from the left and by —QA from the right. Summing all
the four results, we arrive at

(240) R(AA, — BB) — %[fQ(RK—RKr)Bl + (R +Ri)A] + Tv |

where

R = [/(Ri + Ri)QRk + Ricr)Q - Q(Ryc — Ric*Q)]

Multiplying (2.40) by @ both from the left and from the right and summing the results,
we obtain after easy calculations

(R+QRQ)(AA; — BBy) =21 +1Tg .
Therefore, the operator %(R + QRQ) is the left regularizer of AA; — BBj. Similarly

it is checked that it is also a right regularizer. Consequently, AA; — BBy is Fredholm.
O

Remark 2.17. Axiom 2 was used only for the proof of the formula (2.33) for the
index.

3. The main results and approaches

3.1. Formulation of the main result.

We need the following notations

so = a(+0) —a(=0), seo = a(+o0) —a(—o0),
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(3.1 sp = Vla(zy +0) —a(zy — 0)][a(—z +0) —a(—z) — 0)]

where z;, are the discontinuity points of the function a(x) € PC(R') . We observe that
we follow here the notation from the paper [?], but the notation s, has the opposite
sign.

We introduce also the notation

Eo(20) = 20 Ea={(€C:( = 2zp-w,we Ey}, 20€C,
for the rotated and dilated standard a-lemniscate (see Subsection 2.2) with the ”ver-

te)ﬁ” at the point —=—. In particular, E%(zo) = [0, zo], 20 € C.
et

Q;;nt = QZ}—?—UQZ#— ak = L"'ama
be the union of the interiors of the leafs of two lemniscates:
) 1S
Q"L = interior of E% (i%) .
Similarly by ' _
Qf)"t and Q;Zt

we denote the interior of the unilateral lemniscates

EHTW (_Z;O) and E% (_Z;OO) ,

respectively. We remark that the sets Q};”tand Q};’“&, k=1,---,m, are empty in the
case p = 2 , while Q" and QX' are empty in the case v = £ — 1. By

Xk()‘) = XQEnt(}\), k:0,1,~~~,m,

we denote the characteristic function of the leaf Q. Similarly, xoo(A) = Xqint(N) .
Theorem A. Let a(z) € PC(R'). The operator K, is Fredholm in the space
L,(RY|z|7), 1<p<oo,-1<vy<p-—1,iff

oo s () U (55) (5 () U ()

J=1

Under the condition (3.2)

(3.3Ynd K, = —sign (p—2) xk(A) + sign(p —2 = 27) [Xeo(A) — x0(N)] .
k=1

Theorem A shows that the contribution of the jumps sp and s, of the function a(z)
at the fixed points of the shift into the essential spectrum of the operator K, consists
of the unilateral lemniscates, while the contribution of the jumps at the points +x; # 0
lead to the bilateral lemniscates, see the figure representing the essential spectrum,
where
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51:8+1OZ, 82:2+4i,

s3 = —4+12i

so=—8+12i, 55, =30—-06¢

Math. Nachr.
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Corollary. We have Ind K, = 0 if one of the following conditions 1) or 2) is
satisfied:

max; <p<m 56| max(|sol [socl) } ,
b)

T ’ R
QSmE 9gin A+
P

1) |A| > max{

or

,k=1,---,m, and

(@) > k=57 ()
arg | — > |z — ——|, arg —
S0 2 P Soo
each of 1) or 2) separately meaning that X lies outside of every lemniscate participating

Theorem A is proved in Section 5. To obtain its corollary, it suffices to refer to
Corollary 2.10.

1 1479
2 D ’

Remark 3.1. For simplicity we restricted ourselves to the case of the weight p(z) =
|z|7. However, the results can be easily extended to the case of the weight function of

the form
m
x) = |z H |x2 _ x?ﬁj.
j=1

Instead of (3.2) in this case one gets

¢ E+_< “0) U From < Zs°°> 6 <E+ ( 'Sj) U B, <Z‘;ﬂ>> :

Jj=1

where

m
Yoo = 70+QZ%' ;
j=1

1<y <p—-1, j=0,---,m; —1 <7, <p-—1and
Ind K, = —Zsign (p—2—29)xx(A) + sign(p — 2 — 2950) Xoo (N)
k=0

with xx(X),k = 1,---,m, defined as before, but by the lemniscates E1+,, (£%+) and

similarly, by Fi14q0e ( ”°°) for Xoo(A).



, 15

3.2. The scheme of the proof and some basic ideas.

a) The scheme of the proof. The proof of Theorem A is splitted into the following
main steps:

1. We separate the discontinuity points so that it suffices to study separately the
operator with a jump of the function a(z) either at the origin, or at infinity or
at the pair of symmetric points +z; # 0 only, see Lemma 3.2 below.

2. The case of a discontinuity at +x; # 0 is covered by the general Theorem 2.16,
see Subsection 5.4.

3. The case of a discontinuity at the origin is treated through the direct calculation
of the composition PyaP_(Q by means of the Poincaré-Bertrand formula and
application of the results on Fredholmness of the operators with homogeneous
kernels presented in Subsection 2.1, see Subsection 5.2.

4. The case of a jump at infinity is immediately reduced to the case of a jump at
the origin.

Because of applications connected with the case p = 2,7 = 0 we treat this case
separately in Section 4, which yields simpler proofs.

b) Separation of singularities. We introduce the partition of the unity:
m
1= dol2) + vele) + 3 tu(a) ,
k=1

where ¥y (x) € CP(RY), k = 0,1,---,m; too(z) € C®(R') and Yp(zr) = 1 in a
neighbourhood of both points +zj and —xi,k =1, -+, m, and ¥, (x) = 0 in a neigh-
bourhood of both points £z, j # k, and at a neighbourhood of the points zo = 0 and
Too = 00 . Similarly ¥g(x) and .. (z) are described.

We have

(3.4) a(x) = ap(r) + as(z) + Y ax(x),
k=1

where ag(z) = a(x)Yr(z) (k=0,1,---,m) and ax(z) = a(x)(x) have a jump
only at +z} and x., respectively. We denote by K,,,k = 0,1, .-, m, the operators
of the form (1.1) with ax(x) instead of a(x) and similarly for K,__

Lemma 3.2. The operator K, is Fredholm in the space L,(R',|z|7), 1 < p <
0o ,—1 <y <p—1, iff the operators
Kao ) Ka1 P aKam 9 Ka

oo

are Fredholm in this space. Besides this

m
(3.5) Ind Ko = Ind Ko, + » Ind Ko, .
7=0



16 Math. Nachr. ()

Proof. The representation is valid

(3.6) Ky = X" Ko Ko [[ Koy + T,
j=1

where T is a compact operator in L,(R',|z|7) and all the factors in the product
commute up to a compact operator. To see the validity of (3.6), it suffices to consider
the product of two operators K, and K, where u(x) and v(z) have jumps at different
points. We have

(3.7) K.K, = MK,y, +P,uP_oP, .

Here and everywhere below we use the notation

By the Gohberg-Krupnik criterion on compactness of ”composite” singular operators
[5],[7]-[8], the operator PLuP_vPy is compact in L,(R!,|z|7) . Therefore, from (3.7)
we get (3.6) in view of (3.4). This gives the lemma’s assertion. O

Thus, Lemma 3.2 shows that we are to study separately the following three "model”
operators:

1. the operator K,, with ag(z) having a jump only at the origin;
2. the operator K, with as(x) having a jump only at infinity;

3. the operator K,, with a;(z) having a jump only at the pair of the points £z, #
0,k=1,---,m.

We find it convenient to single out another "model” case tightly connected with
1) and 2), although in view of Lemma 3.2 it reduces to these cases:

4. the operator K, with a(z) having a jump only at the origin and infinity (of the
type of sign x) with equal jumps : a(4+00) —a(—o00) = a(+0) — a(-0), that is

So = Seo-

¢) Symmetrizer. We shall see below that the case 3) is covered by Theorem 2.16.
As regards the cases 1) and 2) , an important role in their investigation is played by
the direct connection between such cases realized by means of the operator which we
call symmetrizer.

We denote

so that

It is clear that if a(x) has a jump only at infinity, then a*(x) has a jump only at the
origin and wvice versa .



Definition 3.3. The operator
Ka* = M\ — P_;,_(Z*(SC)P_Q

will be called symmetrizer of the operator K,.
The reason for the above definition becomes clear in view of the following lemma.

Lemma 3.4. Let a(x) have a jump only at the origin (or only at infinity). Then
the relation holds
K,Ky = KooK, = VK, + T,

where T is a compact operator in the space L,(R',|z|7),

w(@) = a(z) + a*(x) = a(z) — a<__>

and
(3.8) w(+0) —w(—0) = w(4+0) —w(-0)

Proof. It suffices to refer to the general relation (3.7) and to the fact that a(x) and
a*(x) have jumps at different points which yields compactness of the last term in (3.7).
O

Lemma 3.5. Let a(x) € C(R') and have a jump only at infinity. The operators K,
and K« are simultaneously Fredholm (invertible) in Lo(RY) and

Ind K, = Ind K, .

Proof. Let

(3.9) (Ro)@) = 1o (1) L E-

The following relations are easily checked:
RS = -SR , RQ = —QR,

RP, = P.R , RP_. = P,R.

Using these relations we verify the following connection between the operators K, and
Ka* :
(3.10) RQK,QR = Kg-.

The lemma’s assertion follows immediately from (3.10). 0

Thus, in the case p = 2,y = 0, the symmetrizer allows to reduce the consideration
of the "model” cases 1) and 2) to the ”symmetric” case 4). In the case p # 2 the
connection (3.10) does not work since the operator R is not bounded in the space
L, (R, |x|") except for the special case y = £ — 1. By this reason for p # 2 we shall
use another approach which is based on the exact calculation of the "main part” of

the operator K, in the cases 1), 2) and 4).
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3.3. Remarks (on invertibility).

We want to observe that the problem of precise describing of the exact spectrum
instead of the essential spectrum of the operator K, is a hopeless affair in the sense
that this problem includes as a particular case a problem of characterization of the
spectrum of compact operators, although of a special form (with a kernel depending
on a sum of arguments). To show this we give an example

< o(y) dy
Tty

C

(31KPp : = Ip(z) — 7/0

™

+ /3/ e Wp(y)dy , >0,c2>0.
0

By Theorem 2.6, the Carleman operator which is obtained from (3.11) in the case
B =0, is invertible (Fredholm) in La(RY) iff A ¢ [0, ¢]. It is easily shown that for any
Mo > c there exists a value of 3 such that the operator K7 is not invertible, having
the deficiency numbers (1,1). Thus, the operator K® with this 3 has the spectrum
containing not only the continual part [0, ¢], but also the point A\g > ¢ .

Now, it is clear that taking e ~(**%) P, (2 +v) instead of e~(**¥) in (3.11), P,, being a
polynomial, we may obtain in addition to the continual spectrum [0, ¢] a finite number
of isolated points of the spectrum.

4. Proof of Theorem A. The case p=2,7 = 0.

4.1. The ”model” operators 1) and 2).

The case 2) is covered by the following theorem.

Theorem 4.1. Let a(x) € C(R') and a(+00) # a(—o0). The operator K, is
Fredholm in the space Lo(R') iff

(4.1) N[0,
and then Ind K, = 0.

Proof. By Lemmas 3.4 and 3.5 the operator K, is simultaneously Fredholm with the
operator K, and Ind K, = % Ind K,, . The function w(z) has already equal jumps
at the origin and infinity which allows to reduce the consideration of the operator K,
to that of the Carleman operator (2.13). Indeed, we can put

w(x) = (w(m) - %o sign x) + %o sign © = wi(z) + wa(x),

so that the function wi (z) is continuous at R!. In the notation (1.1) we write

K, = Ko, — PrwP_Q
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where Prwi P_(Q 1is obviously compact. As regards the operator K,,, this is nothing
else but the Carleman operator (2.13) with % replaced by 52 . Applying Theorem
2.6, we get (4.1) and the formula for the index. O

The case 1) immediately follows from Theorem 4.1 and Lemma 3.5 if we take into
account that a**(x) = a(z) and sy (a*) = so(a) . Instead of (4.1) we shall obtain

iSO
A —— .
4.2. The ”"model” operator 3).

This case is studied by means of Theorem 2.16.

Theorem 4.2. Let a(x) € PC(RY) and have a jump only at a pair of symmetric
points +xy # 0. Then the operator K, is Fredholm in the space Lo(Ry) iff

(42) re -5 5.

and then Ind K, = 0.
To prove Theorem 4.2 we need the following lemma.

Lemma 4.3. Let a(x) € PC(R') and have a jump only at a pair of symmetric
points £xi, # 0. Then the operator K, is Fredholm in the space Ly(R1) ,1 < p < o0
iff the operator
(4.3) M = M1 - PiaP_aP,

is Fredholm in L,(R") and then
1
(4.4) Ind Ko = 5 Ind M .

Proof. We apply Theorem 2.16. In our case A = \2I, B = —P,aP_ and Qp =
p(—2z) and the validity of Axioms 1-3 is well known. The operator U required by
Axiom 4 can be constructed as

Up =u(x)p(z) + iv(z)Se,

where 2 2
€T xr~ — Ij
we) =1 v =
It is Fredholm in L,(R') and satisfies the condition UQ + QU = 0. Consequently,
Lemma 4.3 follows from Theorem 2.16. |

Proof. (of Theorem 4.2.). By Lemma 4.3 it suffices to study the operator M . The
latter is covered by Theorem 2.12. We observe that A(x) = 1 in our case and by (2.27)
we have

h(z) = h(-z) = 2 + % [a(zg +0) — a(zp — 0)] [a(—z + 0) — a(—xx — 0)]
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(4.5) =2+ (S—’“)2
and

(4.6) v =

h(zk) + /h?(zy) — 4
5 .

We apply Lemma 2.13 to the operator M . The function w(z) arising in this lemma
has now the following form

T —i 7#1.an: T —i 72%”.177,113
(4.7 w(z) = ( > ( )
T+ - r+1)_

Tk

in accordance with Remark 2.15. The operators Pyw®'P, + P_ are Fredholm if
argv # m(mod 27) and even invertible if —7 < argy; < 7 . From (4.5)-(4.6) it
follows that the last inequalities are nothing else but the condition (4.2). Under this
condition, taking the invertibility of the operators Pyw®' P, + P_ into account, we
obtain Ind M = 0 and then Ind K =0. O

5. Proof of Theorem A. The general case

5.1. The special case a(x) = sign x.

We find it convenient to consider this special case, which essentially illustrates the
situation. The operator
(5.1) K, =X — Py signz P_Q

which formally corresponds to the Carleman operator (2.13), can be calculated im-
plicitly as an integral operator with a homogeneous kernel of degree - 1 . Indeed, the
following lemma is valid.

Lemma 5.1. The operator (5.1) can be represented as

(5.2) Kap = Aola) — [ T ke y)el)dy . v e R,

where

L(sign x + sign — 2 Inl¥
(5.3) k(aj,y) = 7”( 9 9 y) w2 ’z‘ -

4(x +y)

Proof. We have

1
K, = M - Z[(S sign © —sign x S) + (signx I — S sign x S)] Q.
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It remains to use the formula

2 [ in|t| -1
(5.4) S sign x Sp = sign x p(x) — —2/ Mgp(t) dt
™ J_ o t—x
which is a corollary of the Poincaré-Bertrand formula. m|

Theorem 5.2. The operator K, =X — Py sign x P_Q 1is Fredholm (invertible
) in the space L, (R',|z]7), =1 <~y <p—1 iff

(5.5) N ¢ Bia(—i)

Proof. We apply Lemma 5.1 and Theorem 2.2. It is easy to check that the kernel
(5.3) satisfies the summability conditions (2.7). Calculating the elements of the matrix
(2.9), we have

1 1

= A(z) - —— A
Ki+(2) Dmi (2) D2 (),
1
(5.6) Kio() = K- 1(2) = 505 B(:)
™
Koo() = 5 AG) + 5oy A)
-\ = 27i ‘ 272 )
where
Fyhdy m
A(z) = / = - (see [9], 3.222.2) ,
o y+1 sinmz
*y*~tin y dy w2 cos Tz
(57 A = | L
0 y+1 sin® 7z
oy linydy w2
B(z) = / = —, (see [9],4.251.2) .
0 y—1 sin® 7z
Therefore, deto(z) = A (A + ) and
1 .
(5.8) deta(ix+1—ﬂ> A — .
P sinm (=7 — ix)
and then the condition (2.8) is nothing else but (5.5) in view of Lemma 2.5. Under
this condition the operator K, is invertible by Theorem 2.2. O

5.2. The case of jump only at the origin

The idea of the direct calculation of the composition P;aP_Q as in the case a(x) =
sign x , may be applied in this case as well.
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Theorem 5.3. Let a(z) € C(R'\{0}). The operator K, is representable in the

form
1

(5.9) Kwo:fww)*X@)[{M%wwwﬂy+7w,x€Rﬂ

where T is a compact operator in L, (R, |z[7), x(z) = x[-1,1(2), and

L(sign z + signy) + = ln’%‘

(5.10) k(xz,y) = so Sz 1)

Proof. 1. Without loosing generality we may assume that a(z) is an odd function
such that

a(+0) = —a(-0), a(c0) =0

(for this it suffices to observe that K, — K} is compact if a — b is continuous on R!).
2. Obviously, K, = A — 1[(Sa—aS) + S(Sa—aS)]Q. By the Poincaré-Bertrand
formula we have

sasp = ale) ola) — = [ A=A ar,
where

(5.11) Alz) = i/w alt) g

T _ ot —2

By the assumptions on a(x), the singular integral A(z) is well defined and is an even
function with a logarithmic singularity at the origin :

N 2a(+0) , 1

i ||

(5.12) A(z)

We denote for convenience

Ap = ﬁ/_oo %a;_y)w(y)dw

L[> Az) — A(—y)
Bo= — SR A 24 dy ,
= P o(y) dy
so that
(5.13) Ko = Ao+ Ap — Bo.

3. We shall show that the operators A and B admit the representation

a(+40) Usign z + signy
5.14 Ap = d T
(5.14) @ ym ><(f13)/_1 s e(y) dy + Ty
a(+0) /1 Inly
5.15 By = SEELAT d T:
(5.15) ® 5z X(@) ryn yw(y) y + Ty,
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where T} and T are compact operators in L, (R',|z|7). Then from (5.13)-(5.15) the
theorem’s assertion will follow if we take into account that so = 2a(+0). To show
(5.14)-(5.15) we observe that by the compactness of bS — Sb in L,, (R, 27) in case of
a function b(z) continuous on [0, 00| , the operator A can be represented as

Ap 0+ (z)a(x) /°° xw(y) &y + 0—(x)a(z) /°° e(=y)

- 27 + y 271 r — y

dy + T3p

where 04 (z) = 1(1 £ sign x). Applying Theorem 2.4 with a(cc) = 0 taken into
account, we represent the operator A as

ap = Xa(@ax0) /01 I‘P(j)y gy + X=()al=0) /01 2 gy 4 Ty

211 271 T — Yy

where x+(2) = X[o,+1] - This representation is nothing else but (5.14).
Passing to the operator B , by (5.12) we have

(5.16) Adz) = 280 L sy

i |z]

where 8(x) € C(R'), f(co) = 0 and 3(x) is an even function. Since the operator
S — Sf3 is compact, the operator B is reduced to

a(+0) [ x(z) In |z| = x(y) In |y|
By = T,
¢ ) /_oo z Ty o(y) dy + Tsp,
or
o In |Z
. (l(-i-O) y
Gan Be = S5 [ e d +Te + T
where -
Typ = [ Wek o) i,
with
In |£
x(x) — x(y) Y
b(x,y) = =—=—F1Inly|, k(z,y) = ——— .
(z,9) e lyl, k(zy) =~ Ty

Here k(x,y) is homogeneous and b(x,y) is even in each variable, |b(z,y)| < 1 every-
where and b(z,y) = 01if |z| < 1,]y| < 1or |z| > 1,|y| > 1. Therefore, the operator T,
is compact by Theorem 2.4. O

Theorem 5.4. Let a(zx) € C(R'"\{0}) . The operator K, is Fredholm in
Ly (R [2]")
l<p<oo, —1<y<p—1, iff

(5.18) A ¢ Bi (_;SO)
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and

0, A € Q8 = eaterior of Fity (71'250)

(5.10pd Ko = { —sign (p—2—27), A€ Qg = interior of Eiy (=io)

the set Qi being empty in the case v = 5— 1

Proof. In view of the representation (5.9)-(5.10), the operator K, can be treated
by Theorem 2.3. We observe that the operator (5.9)-(5.10) has the same form as the
operator (5.2), the difference being only in the sign inside the kernel. Therefore, to
calculate o(z) in our case, we have only to change the sign in front of A’(2) in (5.6),
which gives

) ,
(5.20) deto (zx +1- M) A —2 .
D 2sinm(=F — ix)

Hence the condition (5.18) follows.

The formula for the index is obvious for A € Q&% because Q§** is connected and K,
is invertible for large values of || . Let A € Qg . By Theorem 2.3 applied to (5.9)
with (5.20) taken into account we have

1
(5.21) mdKe = —wh — fulz)) , a=—1
p
where w stands for the winding number and f,(z) = 2sm(lci+mr)7r . For A € Qi the
curve
(5.22) 2=\~ fo(x) ,z € R,
is the shifted lemniscate with O in its interior. Therefore, Ind K, = =+ 1 . From

(2.17) it is clear that the curve (5.22) is running in the positive (negative) direction
if B > 0(B < 0, resp.), that is, v < £ —1(y > § — 1, resp.). Hence, by (5.21)
fnd I)(a = £ 1 correspondingly to the cases v < £ —1 and 7y > £ — 1, which yields
5.19). O

5.3. The case of a jump only at infinity

We modify the relationship (3.10) so that it would work within the frameworks of
weighted L,-spaces. However, this modified connection will lead to the consideration
of the operator K, and its symmetrizer K - in spaces with different weights.

We denote

Ky = |2 T Kola Tt

Lemma 5.5. The operator Rg is bounded in L, (Rl, |a:|7) , —00 <y < 00, if

B = 201+



25

and KY, —oo < v < 00, is bounded in L, (R*,|z|") , if
(5.23) pvr — 1—p <y < pr—1.

Proof is direct.

Corollary 5.6. Under the choice

_1+p8 1 14+~ 2
(5.24) V*Tfi + T <5p(1+’y)>

1+8

the operators Rg and Ko> are both bounded in L, (Rl, |x|“f) for any v € (—o0, 00).
Indeed, in the case (5.24) the condition (5.23) is satisfied automatically.

Lemma 5.7. The relationship
(5.25) R3QK'QRs = K7
is valid.

Proof. The formula of the ”quasicommutation” is known:
(5.26) RgPy = PI7'Rg

where P 'R = |z|'"PPy|z|'P | see [?] , formula (24.6). Using (5.26) and taking
into account that

1
R,@aI:a<E>R5, QRs = — RpQ ,
we check (5.25) directly. O

Corollary 5.8. The relation

148
holds where both Rg and K.* are bounded in the same space L, (R',|z|") , if —o0 <
v < oo and 3 = %(1—}—7).

Theorem 5.9. Let a(z) € C(RY) and have a jump only at infinity. The operator
K, is Fredholm in L, (R*,|z]7), 1<p<oo, =1 <y <p—1, iff

(5.27) A ¢ B <_”2°°)

and

0, A € Q% = exterior of Fiiy (7”2‘”)

Ind Ko = { sign (p—2—2v), X€ QI = interior of B, (—55=)
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the set Qo being empty in the case when v = 5§ —

Proof. From (5.25) we have
2
(5.28) RyQK.QRs = K. = (147

Since Lemma 5.5 provides the boundedness of Rg in L, (Rl, \x|7) , we observe from
(5.28) that the operators K, and K”. are simultancously bounded (Fredholm, invert-
ible) in Ly, (R',|z|7). The operator K, is bounded if —1 < v < p — 1. Therefore, KP,
is bounded in L, (R!,|z|”) , or, which is the same, K, is bounded in L, (R',|z|"") ,
where

v =p-2-7.
Obviously, v € (—=1,p — 1) is equivalent to v* € (—=1,p—1) .
Since a*(z) has already a jump only at the origin with a*(+0) — a*(—0) = s, the
Fredholmnes of K,- in L, (Rl, |:c\7) can be obtained from Theorem 5.4. According
to (5.20)

1 * S0
(5.29) deto<ix+1 +7) — A A=)
D 2sin(iz + =)
whence (5.27) follows. Observing that in (5.29) we have —x instead of = as we had

in (5.20), we arrive at the formula for the index with the opposite sign in comparison
with Theorem 5.4. m|

5.4. The case of jumps only at a pair of points +x; #0 .

In this case Fredholmness of the operator K, does not depend on the weight exponent
~. Namely, the following lemma is valid.

Lemma 5.10. Let a(xr) € PC(R') have jumps only at a pair of symmetric
points £x; # 0 . The Fredholmness conditions and the index of the operator K, in
L, (Rl, |x\7) , =1 <y <p-—1, do not depend on ~.

Proof.

1. We may choose b(z) € PC(R') with the same jumps that a(x) has, so that
a(z) — b(z) is continuous on R' and b(0) = b(0o) = 0. Then K, — K, is compact
in L, (R, |z|7) .

2. Considering K , we have for p = |x|% :
pKip~! — Ky = (pPrbp™' — Prb)pP-Qp~' + Py(bpP_p~' — bP_)Q .
Here the differences in the parentheses are compact operators in Lp(Rl) . Indeed,

o (l2)7 _
(pPrbp™' — Pib)p = i/ M b(y)e(y) dy
2m J_ o y—x
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Since b(0) = b(co) = 0, the desired compactness follows from Theorem 2.4.
Similarly, by means of Theorem 2.4, the second parentheses is treated.

Therefore, the operators K, K, and pKpp~! are simultaneously Fredholm in L, (R"),
which proves the lemma. O

We shall treat the operator K, in L,(R") by means of Lemma 4.3 and the decompo-
sition given in Lemma 2.13. Before that we need the following technical but important

lemma on the connection between the values of A\ and arg V]:_, where 1/,:' are the num-
bers arising in the decomposition of Lemma 2.13. The domains Q" k = 1,---,m,

were defined in Subsection 3.1. Let Q¢** be its exterior, that is the exterior of the two

symmetrical lemniscates
iSk iSk
B (-5)Um (%)

Lemma 5.11. Let v;7 = ;7 (\) be the numbers (4.6) with argv;” chosen according
to (2.29). Then the condition

(5.30) larg 7| < m
s equivalent to the statement that
A e Qert
while the condition
2m
(5.31) 7max(p,p’) |arg v, ‘ rm o)
is equivalent to X € Q" .
Proof. From (4.6) we observe that v;" is the root of the equation v, + % = h(xy).

According to (4.5) this yields ;7 + 4 —2= (%")2 or
Yk
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In other words, given the fixed value of arg l/k+ = 0, this is equivalent to saying that
A belongs to
isk iSk
pe (<5 )Ure (5)
According to Corollary 2.10, the above union lies inside of the leaves of

5 ()0 (4)

just under the condition (5.31). O

Theorem 5.12. Let a(z) € PC(R') and have a jump only at a pair of symmetric
points xy, # 0. Then the operator K, is Fredholm in the space L, (Rl, |x|7) iff

(5.32) r¢ By <—Z;k> U B, (z;k>

and then
(5.33) Ind K, = {

0, X € gt
sign (2—p), AeQnt

Proof. In view of Lemma 5.10 we may take v = 0 and use then Lemma 4.3. The

operator M arising in Lemma 4.3 is decomposed according to Lemma 2.13 (with
Remark 2.15 taken into account) :

because A(xz) =1 in our case. Here w(zx) has the form (4.7).
The operators Py =P, + P_ and PywP; + P_ are Fredholm in L,(R') if

argv # 2;“ (mod 27r) and arg vl # 2% (mod 27) . Hence the essential spectrum of the
operator M or, which is the same, 05 the operator K, is defined by the equality

(5.35) v = re?,

where r > 0,0 = 27” or § = 2p—7,7 . Similarly to the proof of Lemma 5.11 we have

5.36 A= s 55— 0=—
(5.36) % e o

where ¢t = 4/r > 0. In the notation (2.21), this is

ZSk

A:i—z (t), teRL.

1
P

in case of 0 = 2?” . By Lemma 2.11 we get two loops of the lemniscate, that is

( ”’“) U E (’s’“) . As regards the second possibility 6§ = i—? , it gives the same

loops because these lemniscates are symmetric with respect to p and p’ , see (2.18),
where nothing changes if we replace a = ]% by 1 — a.
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Hence, the essential spectrum of the operator K, is exactly E% (—’57’“) U E% (”7’“) .
k

It remains to calculate the index of K, for A ¢ E1 (—ZST") U E:x (%) . By Lemma
4.3 and the decomposition (5.34) we have

1 1 1 1
Ind K, = §IndM = —iindpwfiindp —
w

To calculate the p-index of w and % , where w is the function (4.7), we observe that
the points z € R and t = i;: run through the real axis R' and the circumference
[t| =1, respectively, both in positive direction. Therefore,

-\ B
. T—1 . 8 _ 1
indy <x+z> = indpt ’along =1 = [?RB + vl

where | | stands for the integer part of the number, see [?], pp. 17-18, Example
2.1. Consequently, for the function (4.7) we get

1 +
indpr{/argyk} ,
P 27

1 1 ;
ind, 2{,+arg”’“].
w P 2w
Under the choice (2.29) we obtain

0, if Jargyl| < 2%

1 _2r
ind, =0 nd, — = max(p,p’)
el & R { 2sign (p — 2) otherwise
after easy calculations. Therefore,
1 if < —2r
(5.37) Ind K, = ind, — = o it Jargvi| < s
w —sign (p —2) otherwise
It remains to refer to Lemma 5.11 to convert (5.37) into (5.36). O

Unifying Theorems 5.4, 5.9 and 5.12 on the basis of Lemma 3.2, we arrive at Theorem

A
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