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FRACTIONAL POWERS OF OPERATORS
VIA HYPERSINGULAR INTEGRALS

Introduction

The well known Balakrishnan formula represents the fractional power (−A)α

in case of the generator A of a semigroup Tt, t > 0, in terms of a (hyper)-singular
integral with respect to the variable t ∈ R1

+, that is,

(−A)αf =
1

Γ(−α)

∫ ∞

0

t−α−1 (Tt − I) fdt ,

where 0 < α < 1, ϕ ∈ D(A) , and I is the identity operator. In the case α > 1,
this formula can be written with the usage of ”finite differences” (Tt − I)`

, ` =
1, 2, 3, ..., ` > α :

(−A)αf =
1

κ(α, `)

∫ ∞

0

t−α−1 (I − Tt)
`
fdt , ` > α, (1)

with κ(α, `) = −Γ(−α)Aα(`) , where Aα(`) =
∑`

k=0(−1)k−1
(

`
k

)
. In particular,

the fractional power of the Laplace operator is given by (1) with Tt = Pt where
Pt is the Poisson semigroup of operators:

Ptf = cn

∫

Rn

tf(x− y)
(|x|2 + t2)(n+1)/2

dy , t > 0.

On the other hand, positive fractional powers of the Laplace operator can
be given also in the form

(−∆)
α
2 f =

1
dn,`(α)

lim
ε→0

∫

|y|>ε

(∆`
yf)(x)
|y|n+α

dy , (2)
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see [23], p.56, which is also known as the Riesz fractional derivative and denoted
as Dαf = (−∆)

α
2 f. Here dn,`(α) is the known normalizing constant and the

finite difference (∆`
yf)(x), generated by the standard shift τyf = f(x − y),

may be centered one and then 0 < α < `, see [15], or a non-centered and then
0 < α < 2

[
`
2

]
, where

[
α
2

]
stands for the entire part of α

2 , see [23], Ch.3, Section
1.

Hypersingular constructions of the type (2) can be used for an effective
realization of fractional powers of some differential operators of mathematical
physics, such as fractional powers (I − ∆)

α
2 , ∆ being the Laplace operator;

fractional powers (−∆x + ∂
∂t )

α
2 of parabolic (heat) operator or (I −∆x + ∂

∂t )
α
2 ,

the Laplace operator being applied in the spatial variable x = (x1, · · · , xn) ;
fractional powers of the wave operator, of Schrödinger operatorand others.

What follows is a brief survey of some of the results on application of hy-
persingular integrals to the realization of fractional powers of these and other
differential operators in partial derivatives. Details of some of the presented
results, as well as further applications, may be found in the book [23].

1. The fractional powers (I −∆)
α
2 .

According to the Balakrishnan formula, the fractional power (I − ∆)
α
2 f

may be represented as

(I −∆)
α
2 f =

1
κ(α, `)

∫ ∞

0

t−1−α(I − e−tPt)`fdt , ` > α .

Keeping applications in mind, we wish to give a construction of this fractional
power directly in terms of multidimensional hypersingular integrals.

a) The idea of the construction. We start with the negative power
(I −∆)−

α
2 , which is the Bessel potential represented by the convolution

(I −∆)−
α
2 ϕ = Bαϕ =

ωα(|x|)
|x|n−α

∗ ϕ, α > 0, (3)

where

ωα(|x|) =
21−n+α

2

π
n
2 Γ(α

2 )
|x|n−α

2 Kn−α
2

(|x|) =
1

π
n
2 2αΓ(α

2 )

∫ ∞

0

t
n−α

2 −1e−t− |x|24t dt.

Since the operators Bα form a semigroup, it is natural to expect that the
inverse operator should be formally given by

(Bα)−1f =
ω−α(|x|)
|x|n+α

∗ f , (4)

under the appropriate interpretation of this convolution.
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We note that the function ω−α(|x|) is differentiable, exponentially decays

at infinity and stabilizes at the origin to ω−α(0) = 2α−1Γ( n+α
4 )

π
n
2 Γ(−α

2 )
. We also observe

that formally ω−α(|x|) ≡ 0 for α = 2, 4, 6, · · · , but 1
|x|n+α , as a distribution, has

poles at the same points α = 2, 4, 6, · · · . We describe an effective realization
of the convolution (4) with the distribution ω−α(|x|)

|x|n+α .
b) The operator (I −∆)

α
2 as the convolution (4).

Theorem 1. Let f(x) ∈ S(Rn) and <α > 0 . Then

f.p.
ω−α(|x|)
|x|n+α

∗f =
[m−1

2 ]∑

k=0

(−1)k

(
α/2
k

)
∆kf+

∫

Rn

f(x− y)− Tm−1(x, y)
|y|n+α

ω−α(|y|)dy ,

(5)
where m > <α and Tm(x, y) =

∑
|j|≤m

(−y)j

j! (Djf)(x) is the Taylor polynomial.
We refer to [23], p.274, for the proof of Theorem 1,
Basing on (3), we may write

(I−∆)
α
2 f =

[m−1
2 ]∑

k=0

(−1)k

(
α/2
k

)
∆kf +

∫

Rn

f(x− y)− Tm−1(x, y)
|y|n+α

ω−α(|y|)dy ,

(6)
where m > α. We remind that ω−α(|y|) ≡ 0 in the case when α = 2, 4, 6, · · · ,
so that in this case the right-hand side of (6) turns into just an integer power
of I −∆ . Now, having obtained the exact expression for the fractional power,
we may justify it directly, firstly for nice function again.

c) Direct justification of the formula (6) in case of nice functions.
Let Bαϕ = F−1(1 + |ξ|2)−α

2 Fϕ , α > 0 , be the Bessel potential operator. A
justification of the formula (6) may be given in the following form.

Theorem 2. Let f(x) ∈ S(Rn). Then

(I −∆)
α
2 Bαf = Bα(I −∆)

α
2 f = f , α > 0 .

We consider specially the case 0 < α < 2. Let 0 < α < 1 first. The formula
(6) turns into

(I −∆)
α
2 f : = f(x) +

∫

Rn

f(x− y)− f(x)
|y|n+α

ω−α(|y|)dy . (7)

The integral here converges absolutely, for example, for f ∈ S(Rn) if 0 < α < 1.
It converges as the limit of truncated integrals over {y ∈ Rn : |y| > ε} for all
0 < α < 2 . Indeed, since ω−α(|y|) is even, this follows from the relation:

lim
ε→0

∫

|y|>ε

f(x− y)− f(x)
|y|n+α

ω−α(|y|)dy
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= −
∫

Rn

(∆2
yf)(x)
|y|n+α

ω−α(|y|)dy − 1
2

∫

Rn

(∆2
yf)(x + y)
|y|n+α

ω−α(|y|)dy (8)

So, we arrive at the following theorem.
Theorem 3. Let 0 < α < 2. The fractional power (I −∆)

α
2 f , interpreted

as (6), or which is the same, as the operator, inverse to the Bessel potential
operator Bα within the framework of the space S, has the form,

(I −∆)
α
2 f : = f(x) +

∫

Rn

f(x− y)− f(x)
|y|n+α

ω−α(|y|)dy , (9)

where the integral converges absolutely in the case 0 < α < 1 and conditionally
in the case 1 ≤ α < 2.

Corollary. The corresponding realization of (λ2I −∆)
α
2 with λ > 0 is

(λ2I −∆)
α
2 f : = λαf(x) +

∫

Rn

f(x− y)− f(x)
|y|n+α

ω−α(λ|y|)dy , 0 < α < 2 .

In the case α = 1 , we arrive at the following interpretation of the square
root

√
λI −∆ :

√
λ2I −∆ f = λf(x) − 2

(2π)
n+1

2

∫

Rn

f(x− y)− f(x)

|y|n+1
2

Kn+1
2

(λ|y|)dy . (10)

This operator is well known under the name of square root Klein-Gordon op-
erator in mathematical aspects of quantum physics, see e.g. [26], [11] and [22].

In particular, in the planar case n = 2 we have K 3
2
(z) =

√
π
2

z−1

z
3
2

e−z and
the formula (10) turns into

√
λ2I −∆ f = λf(x) − 1

2πλ3/2

∫

R2

f(x− y)− f(x)
|y|3 (1− λ|y|)e−λ|y|dy .

In the case 1 ≤ <α < 2 we may also use the form (6) which is

(I −∆)
α
2 f = f(x) +

∫

Rn

f(x− y)− f(x) + y · grad f(x)

|y|n+1
2

ω−α(|y|)dy . (11)

Here the integral is already absolutely convergent (in case of nice functions).
The following lemma presents another version of the construction (11).
Lemma 4. Let 1 < <α < 2. The construction (11) may be represented in

terms of hypersingular integral

(I −∆)
α
2 f = f(x) +

∫

Rn

f(x)− 2f(x− y) + f(x− 2y)

|y|n+1
2

µα(|y|)dy (12)

where µα(r) = 1
2

∑∞
k=1 2(1−α)kω−α(2kr) .

4



We note that µα(r) ≤ cr
n+<α−1

2 e−2r , r ≥ 1 , and |µα(r) − µα(0)| ≤
crβ , 0 < r ≤ 1, where β ∈ (0,<α− 1) , the constant c not depending on r.

d) Justification of the formula within the framework of the spaces
Lp; the cases 0 < <α < 1 and 1 < <α < 2. For nice functions f(x)
the operator (I − ∆)

α
2 was obtained in (7) which implies a non-absolutely

convergent integral in the case 1 ≤ <α < 2, even in the case of ”nice” functions
f(x). To deal with ”not so nice” functions f(x) in the range Bα(Lp), we shall
use only absolutely convergent constructions, that is, the construction (7) in
the case 0 < <α < 1 and the construction (12) in the case 1 < <α < 2. But
on the whole range Bα(Lp) they will not already be absolutely convergent and
will be treated as

(I −∆)
α
2 f = f(x) + lim

ε→0
(Lp)

Tα
ε f (13)

with Tα
ε f =

∫
|y|>ε

(∆`
yf)(x)

|y|n+α µα(|y|)dy , where ` = 2 and µα(|y|) is a
function from (12), if 1 < <α < 2, and ` = 1 and µα(|y|) = ω−α(|y|) if
0 < <α < 1 .

Theorem 5. Let f(x) = Bαϕ, ϕ ∈ Lp(Rn), 1 < p < ∞, 0 < <α < 1 or
1 < <α < 2 . Then

(I −∆)
α
2 f = ϕ (14)

with (I −∆)
α
2 f interpreted according to (13).

2. Parabolic (heat) hypersingular integrals

We consider the fractional powers
(

∂
∂t −∆x

)α
2 introduced via the corre-

sponding Fourier multipliers. The negative fractional powers are known as
parabolic fractional integrals. The positive fractional powers will be realized as
hypersingular integrals. We refer to original papers [17] and [18], see also [23],
Chapter 9, Section 2.

a) Parabolic fractional potentials. The fractional parabolic potentials
Hαϕ are introduced via Fourier transforms by the relations

F (Hαϕ) =
(|ξ|2 − iτ

)−α
2 ϕ̂(ξ, τ), (15)

where
ϕ̂(ξ, τ) = (Fϕ)(ξ, τ) =

∫

Rn+1
eiξx+iτtdxdt (16)

and (|ξ|2 − iτ)−
α
2 := (|ξ|4 + τ2)−

α
4 e−

iα
2 arg(|ξ|2−iτ) under the choice arg(|ξ|2 −

iτ) ∈ (−π
2 , π

2

)
.

The potentials Hαϕ which are, in fact, negative fractional powers of parabolic
differential operators

(
∂
∂t −∆x

)−α
2 , were introduced in [13] and [25]. It is

known that the convolution operator Hα has the form

(Hαϕ)(x, t) =
1

Γ
(

α
2

)
∫

Rn+1
+

τ
α
2−1W (y, τ)ϕ(x− y, t− τ)dydτ , (17)
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where W (y, η) = (4πt)−
n
2 e−

|x|2
4t is the Gauss-Weierstrass kernel.

Remark 6. The fractional parabolic potential Hαϕ may be interpreted as a
result of the one-dimensional fractional integration applied in the time variable
t to the Gauss-Weierstrass operator Wtϕ, that is ,

(Hαϕ)(x, t) =
1

Γ
(

α
2

)
∫ ∞

0

τ
α
2−1(Wτϕ)(x, t− τ)dτ . (18)

These formulas evidently generate the corresponding Balakrishnan formula
when we pass to positive fractional powers. But we remind that we are now
interested in the realization of positive powers in terms of multidimensional
hypersingular type integrals.

b) Positive fractional powers
(

∂
∂t −∆x

)α
2 , α > 0. These powers may be

constructed effectively as some hypersingular integral operators inverse to the
parabolic potential operators Hα. They will contain non-standard finite differ-
ences which take into account different behaviour of potentials with respect to
the space variable x ∈ Rn and the time variable t ∈ R1.

To arrive at the idea of the construction of these fractional powers, we
apply the Fourier transform Fx in x to both parts of the equality f(x, t) =
(Hαϕ)(x, t) . We get

I
α
2
+

[
eτ |x|2(Fxϕ)(x, τ)

]
= et|x|2(Fxf)(x, t) ,

where Iα
+ is the one-dimensional fractional integration operator applied in the

time variable. Inverting the operator I
α
2
+ according to the well known Marchaud

formula for fractional derivatives, we get

et|x|2(Fxϕ)(x, t) =
1

κ
(

α
2 , `

)
∫ ∞

0

∑̀

k=0

(−1)k

(
`

k

)
(Fxf)(x, t−kτ)e(t−kτ)|x|2 dτ

τ1+ α
2

.

Multiplying this by e−t|x|2 and then applying the inverse Fourier transform in
x, we arrive at

ϕ(x, t) =
1

κ
(

α
2 , `

)
∫ ∞

0

[
f(x, t) +

∑̀

k=0

(−1)k

(
`

k

) ∫

Rn

f(x− y, t− kτ)W (y, kτ)dy

]
dτ

τ1+ α
2

.

Hence, after the change of variables y →
√

kτy and easy transformations, we
arrive at the following

Conclusion 7. The formal solution of the equation (Hαϕ)(x, t) = f(x, t)
is given by the formula

ϕ(x, t) =
1

(4π)
n
2 κ

(
α
2 , `

)
∫

Rn+1
+

(∆`
y,τf)(x, t)
τ1+ α

2
e−

|y|2
4 dydτ =

(
∂

∂t
−∆x

)α
2

f ,

(19)
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where

(∆`
y,τf)(x, t) =

∑̀

k=0

(−1)k

(
`

k

)
f(x− y

√
kτ, t− kτ) , ` >

α

2
. (20)

In particular, in the case 0 < α < 2 we have

(
∂

∂t
−∆x

)α
2

f =
1

(4π)
n
2 Γ

(−α
2

)
∫

Rn+1
+

f(x, t)− f(x− y
√

τ , t− τ)
τ1+ α

2
e−

|y|2
4 dydτ.

(21)
Remark 8. The constructions (19) and (22) were obtained formally. The

question which arise naturally, is whether the integrals in (19) and (22) con-
verge. For f ∈ S it is not hard to show that they converge absolutely if we take
` > α. In the case ` > α

2 they converge non absolutely, as the limits of the
corresponding truncated integrals:

H−αf = lim
ε→0

H−α
ε f (22)

where

H−α
ε f =

1
(4π)

n
2 κ

(
α
2 , `

)
∫

Rn+1
ε+

(∆`
y,τf)(x, t)
τ1+ α

2
e−

|y|2
4 dydτ (23)

and Rn+1
ε+ = {(y, τ) : y ∈ Rn, τ > ε}, ε > 0 .

c) Justification of the inversion in case of nice functions. Below Φ
is the Lizorkin test function space, invariant with respect to fractional powers
of the Laplace operator, see [23], p.39. The following auxiliary statement is a
matter of direct verification, from which Theorem 10 follows.

Lemma 9. Let f = Hαϕ, α > 0 where ϕ ∈ Φ . For the truncated
construction H−α

ε f the representation

H−α
ε f =

∫

Rn

W (y, τ)K+
`, α

2
(τ)ϕ

(
x−√εy, t/ετ)dydτ

)
(24)

is valid, where K+
`,α(τ) is some integrable kernel of the type of the identity

approximation.
Theorem 10. Let f = Hαϕ, α > 0 , where ϕ ∈ Φ . Then

(
∂

∂t
−∆x

)α
2

f : = lim
ε→0

H−α
ε f = ϕ . (25)

d) The case of functions in Lp.
Theorem 11. Let 0 < α < n+2

p , 1 < p < ∞ , and f = Hαϕ with
ϕ ∈ Lp(Rn+1). Then

lim
ε→0
(Lp)

H−α
ε f = ϕ .
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e) The spaces of parabolic potentials. Let

Hα(Lp) =
{

f : f = Hαϕ,ϕ ∈ Lp(Rn+1)
}

, 1 ≤ p < ∞ , α > 0.

The range Hα(Lp) is understood in the usual sense only in the case 0 < α <
n+2

p . In the case α ≥ n+2
p the potential Hαϕ, with ϕ ∈ Lp , is understood as

the convolution with the kernel
τ

α
2 −1

+

Γ(α
2 ) W (y, τ) in the Lizorkin space Φ′(Rn+1)

of distributions. The space Hα(Lp) is a Banach space with respect to the norm
‖f‖Hα(Lp) = ‖ϕ‖p.

Theorem 12 below provides a characterization of the range Hα(Lp). Natu-
rally, this range can be described in terms of convergence of the hypersingular
integral H−αf . But the heat operator is a quasihomogeneous operator with a
non-degenerate symbol. Therefore, it is also natural to expect that the range
Hα(Lp) may be also characterized in terms of convergence of the anisotropic hy-
persingular integral. The corresponding anisotropic distance may be obtained
in terms of elementary functions in this case:

ρ = ρ(y, η) =

(√
|y|4 + 4|η|2 + |y|2

2

) n+2
2(n+1)

.

Let

(Tαf)(x, t) = lim
ε→0

(Lp(Rn+1))

∫

ρ(y,η)>ε

(∆2`
y,ηf)(x, t)

[ρ(y, η)]n+
α(n+1)

n+2

dydη , ` >
α

2
.

Theorem 12. Let 0 < α < n+2
p , 1 < p < ∞, 1

q = 1
p − α

n+2 . Then

Hα(Lp) = {f ∈ Lq : H−αf ∈ Lp} = {f ∈ Lq : Tαf ∈ Lp} . (26)

For the proof of this theorem we refer to [17] for the first of the equalities
in (26) and [10] for the second one.

3. Fractional powers of the Schrödinger operator
The results shown below represent a slight modification of what was ob-

tained in [20]. The Schrödinger operator S = ∆x + i ∂
∂t , x ∈ Rn , t ∈ R1

has the symbol τ −|ξ|2, so that its fractional power may be defined via Fourier
transforms as

S
α
2 ϕ = F−1

[
(τ − |ξ|2)α

2 (Fϕ)(ξ, τ)
]

, (27)

at least, formally. We should make sense to the construction (27).
a) Fractional Schrödinger potential operator. Negative fractional

powers are realized as integral operators

Iα
Schrϕ = S−

α
2 ϕ =

∫

Rn+1
+

sα(y, η)ϕ(x− y, t− η)dydη , (28)
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where Rn+1
+ = {(y, η) ∈ Rn+1 : y ∈ Rn, η ∈ R1

+} and

sα(y, η) =
e−

πi(n+α)
4

(4π)
n
2 Γ

(
α
2

)η
α−n−2

2 ei
|y|2
4η , ŝα(ξ, τ) = (τ − |ξ|2 + i0)−

α
2 . (29)

The integral (28) may be referred to as the Schrödinger fractional potential.
The integral in (64) exists in the usual sense only when <α > n. If <α ≤ n, the
kernel sα(y, η) has a non integrable singularity in η at η = 0. We shall treat
the Shrödinger fractional potential with 0 < <α ≤ n as analytical continuation
in α. But before that we wish to justify the passage of the type (27), even if
in the case of nice functions ϕ.

Let
P = {(ξ, τ) ∈ Rn+1 : ξ ∈ Rn, τ ∈ R1

+, τ = |ξ|2}
be the paraboloid surface at which the symbol τ − |ξ|2 of the Schrödinger
operator vanishes, and let ΦP be the Lizorkin test function space generated by
the set P , so that it is invariant with respect to the operator Iα

Schr.
For functions in ΦP the passage to Fourier transforms may be justified.

Namely, the following lemma is valid.
Lemma 13. Let <α > n, ϕ ∈ ΦP . Then

(FIα
Schrϕ)(ξ, τ) =

(Fϕ)(ξ, τ)
(τ − |ξ|2 + i0)

α
2

.

To deal with the operator Iα
Schr in the case 0 < <α ≤ n, when it does

not exist under the direct approach (28), we shall use its analytic continuation
which is constructively realized from the half-space <α > n into the strip
−2` < <α ≤ n with an arbitrary ` ∈ N except for some points in this strip,
where it may have poles.

b) Analytical continuation of the Schrödinger fractional potential.
Let ϕ(x, t) ∈ S(Rn+1). To organize convergence in (28) for <α ≤ n by the
familiar usage of finite differences, it is convenient to single out the factor

1

η1−α
2

from sα(y, η), and we introduce the following hypersingular construction

Iα
Schrϕ = lim

ε→0

e−
απi
4

dn,`(−α)

∫

Rn+1
+,ε

(∆̃`
y,ηϕ)(x, t)
η1−α

2
M(y, τ)dydτ (30)

where Rn+1
+,ε = {(y, η) ∈ Rn+1 : y ∈ Rn, η > ε}, ε > 0 ,

M(y, η) =
e−

nπi
4

(4πη)
n
2

ei
|y|2
4η ,

and ∆̃`
y,ηϕ is the Marchaud type generalized difference (see [23], p. 78) with

different kind of steps in y and η, which reflects the non-homogeneity of the

9



Schrödinger operator:

(∆̃`
y,ηϕ)(x, t) =

∑̀

j=0

(−1)jC
(`)
j ϕ(x− a

j
2 y, t− ajη) , ` ∈ N ,

where a > 1 may be chosen arbitrarily. Here the C
(`)
j are given by the formulas

C
(`)
i = ai( i+1

2 −`)
∏`

k=Mi+1(a
k − 1)∏mi

k=1(ak − 1)
, i = 1, 2, ..., `− 1, (31)

C
(`)
i = ai( i+1

2 −`)
∏`

k=Mi+1(a
k − 1)∏mi

k=1(ak − 1)
, i = 1, 2, ..., `− 1, (32)

with mi = min(i, ` − i) and Mi = max(i, ` − i) and the normalizing constant
in (30) is equal to

dn,`(−α) = Γ
(α

2

) ∑̀

j=0

(−1)jC
(`)
j a−

α
2 j .

Lemma 14. Let ϕ(x, t) ∈ S(Rn+1). The limit in (30) exists and represents
the analytical continuation of the Schrödinger fractional potential Iα

Schrϕ from
the half-plane <α > n to the half-plane <α > −2`, except, probably, for the
points

α = −2m +
4kπi

ln a
, m = 0, 1, 2, ..., `− 1, k ∈ Z\{0}.

c) Positive fractional powers of the Schrödinger operator. Lemma
14 already represents such positive powers since <α may be negative in the
construction (30). So we define it as

(
∆x + i

∂

∂t

)α
2

f = J−α
Schrf

and rewrite this in the convenient way, assuming that ` > <α
2 :

(
∆x + i

∂

∂t

)α
2

f =
e

απi
4

dn,`(α)

∫

Rn+1
+

(
∆̃`

y,ηf
)

(x, t)

η1+ α
2

M(y, η)dydη , (33)

where the finite difference is defined by a > 1 such that

α 6= 2m +
4kπi

ln a
, m = 0, 1, 2, ..., `− 1, k ∈ Z\{0}. (34)

In particular, √
∆x + i

∂

∂t
f = (35)

10



1 + i

2
√

2π(
√

a− 1)

∫

Rn+1
+

f(x− y, t− η)− f(x−√ay, t− aη)
η

3
2

M(y, η)dydη ,

where a > 1 may be arbitrary.
The following theorem states that the positive fractional power of the Schrödinger

operator is the inverse operator to the Schrödinger fractional potential opera-
tor, at least on ”nice” functions.

Theorem 15. Let ϕ ∈ ΦP ,<α > 0. Then

(
∆x + i

∂

∂t

)α
2

Iα
Schrϕ = Iα

Schr

(
∆x + i

∂

∂t

)α
2

ϕ = ϕ, (36)

where
(
∆x + i ∂

∂t

)α
2 is the operator (33) constructed under the choice of a > 1,

satisfying the condition (34) and Iα
Schrϕ is defined by (27) in the case <α > n

and treated as its analytical continuation (30) when 0 < <α ≤ n.

5. Fractional powers of some other differential operators

We give some brief indications on investigations of fractional powers of dif-
ferential operators with homogeneous non-constant coefficients (which thereby
are not invariant with respect to the translation operator) or of some non-
homogeneous differential operators.

The fractional powers

[
−

n∑

k=1

(
xk

∂

∂xk

)2
]α

2

(37)

were studied in [7] - [10].
The negative powers are realized as the Riesz-type potential operator

Iαϕ =
1

γn(α)

∫

Rn
+

ϕ(x ◦ y)
∣∣∣∣
−→
ln y

∣∣∣∣
α−n

dy ,

where −→ln y = (ln y1, ..., ln yn) and Rn
+ = {y ∈ Rn : y1 > 0, ..., yn > 0}.

The positive fractional powers are realized as the corresponding modification
of hypersingular integrals, adjusted to the n-tant Rn

+, but with a non-standard
truncation of the hypersingular integral when it is interpreted on ”not very
nice” functions.

The fractional powers of the type

Iα±ϕ =

[
±

n∑

k=0

x2
k

∂2

∂x2
k

]−α
2

, <α > 0, (38)
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were considered in [1] with the realization Iα±ϕ =
∫

Rn
+

iα(t)ϕ
(

x
t

)
dt, where

iα(t) =
n

n−α
4

2n−1π
n
2 Γ

(
α
2

)
∣∣∣∣
−→
ln t

∣∣∣∣
α−n

4

Kn−α
4

(√
n

2

∣∣∣∣
−→
ln t

∣∣∣∣
)√

t1...tn.

Positive powers were realized by means of weighted hypersingular integrals.
Another dilatation-invariant version

(
− |x|2∆

)α
2

was considered in [5] with the corresponding realization as potentials in case
of negative powers and in the form of non-standard hypersingular integrals in
case of positive powers.

The following fractional powers of the operator with constant coefficients,
but non-homogeneous one,

(
−P (D, D) +

n∑

k=0

ak
∂

∂xk

)α
2

, a = (a1, ..., an) ∈ Rn , (39)

where P (x, x) is an arbitrary positive quadratic form with real coefficients, were
treated in [2] but in case of positive fractional powers, instead of the method
of hypersingular integrals, there was used a modification of this method in the
form of the limit of approximative inverse operators (AIO).

By the same method in [3] and [4] the complex powers (39) were constructed
under a weaker assumption that P (x, x)− ia · x is hypoelliptic; a more general
case when 1 ≤ rang P ≤ n− 1 was also treated there.

The case of complex ak in (39) has a different nature in comparison with
that of real coefficients, because the symbol of the operator −P (D, D) + a ·D
with complex a degenerates on some ellipsoid if <α = 0 and on the intersection
of the ellipsoid and a hyperplane, if <α = 0. This more difficult case was treated
in [14].

Negative fractional powers (−∆− I)−
α
2 are known as fractional acoustic

potentials. They have the form

(−∆− I)−
α
2 ϕ =

i 2−
n+α

2

π
α
2

∫

Rn

H
(1)
n−α

2
(|y|)

|y|n−α
2

ϕ(x− y)dy ,

where 0 < <α < n + 1 and H
(1)
ν is the Hankel function of the first kind. The

positive powers can be realized by means of AIO. Fractional powers

(
∂2

∂x2
1

− ∂2

∂x2
2

− ...− ∂2

∂x2
n

)α
2

(40)
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of the wave operator by the method of AIO were constructed in [19].
The powers of the Klein-Gordon-Fock operator

(
m2I +

∂2

∂x2
1

− ∂2

∂x2
2

− ...− ∂2

∂x2
n

)α
2

, m > 0, (41)

were treated in [20] and the powers
(

m2I +
∂

∂x1
+

∂2

∂x2
1

− ∂2

∂x2
2

− ...− ∂2

∂x2
n

)α
2

, 0 ≤ m ≤ 1
2

(42)

including the case of the telegraph operator (m = 0) were dealt with in [16].
The negative fractional power (<α < 0) in (42) proves to be the following
potential type operator

(Hα
mϕ)(x) = cn,m(α)

∫

K+
+

e−
y1
2 Iα−n

2
(λr(y))

r
n−α

2 (y)
ϕ(x− y)dy,

with r2(y) = y2
1 − y2

2 − · · · − y2
n and λ = 1

2 − 2m2, 0 ≤ m < 1
2 , and the

Bessel function replaced by 1 in the case m = 1
2 , cn,m(α) is some constant.

The kernel of this potential has locally the same behaviour as the kernel of the
Riesz hyperbolic potential Iα

�ϕ, but exponentially decreases at infinity.
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