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FRACTIONAL POWERS OF OPERATORS
VIA HYPERSINGULAR INTEGRALS

Introduction

The well known Balakrishnan formula represents the fractional power (—A)“
in case of the generator A of a semigroup T3,t > 0, in terms of a (hyper)-singular
integral with respect to the variable ¢ € R}r, that is,

1 > —a—1 _
F(—a)/o ==Y, — I) fdt

where 0 < a < 1, ¢ € D(A) , and I is the identity operator. In the case a > 1,

this formula can be written with the usage of " finite differences” (T, — I)" , ¢ =
1,2,3,...0>a :

(=A)%f =

(~Ayf =

%(;’g) /Ooo NI =T fdt > a, (1)

with s(a, ) = —T'(—a) A, (£) , where A, (¢) = Zizo(—l)’“*1 (i) . In particular,
the fractional power of the Laplace operator is given by (1) with T; = P, where
P, is the Poisson semigroup of operators:

_ tf(z —y)
Ptf_anTL (|w|2+t2)(n+1)/2dy, t>0

On the other hand, positive fractional powers of the Laplace operator can
be given also in the form

¢ X
(-8t = [ &)@, @
ly|>e

dn,¢(r) e=0 ly|te



see [23], p.56, which is also known as the Riesz fractional derivative and denoted
as D*f = (—=A)% f. Here d,, ¢(c) is the known normalizing constant and the
finite difference (Aéf)(x)7 generated by the standard shift 7,f = f(z —y),
may be centered one and then 0 < a < ¢, see [15], or a non-centered and then
0<a<?2 [é] , where [%] stands for the entire part of §, see [23], Ch.3, Section
1.

Hypersingular constructions of the type (2) can be used for an effective
realization of fractional powers of some differential operators of mathematical
physics, such as fractional powers (I — A)Z , A being the Laplace operator;
fractional powers (—A, + £)% of parabolic (heat) operator or (I — A, + £)%,
the Laplace operator being applied in the spatial variable = (x1,---,2,) ;
fractional powers of the wave operator, of Schrodinger operatorand others.

What follows is a brief survey of some of the results on application of hy-
persingular integrals to the realization of fractional powers of these and other
differential operators in partial derivatives. Details of some of the presented
results, as well as further applications, may be found in the book [23].

1. The fractional powers (I — A)Z.

According to the Balakrishnan formula, the fractional power (I — A)% f
may be represented as

1
#(a, 0)

(I-A)Zf = / tie(I —e tP)fdt, (> a.
0

Keeping applications in mind, we wish to give a construction of this fractional
power directly in terms of multidimensional hypersingular integrals.

a) The idea of the construction. We start with the negative power

(I — A)~ =, which is the Bessel potential represented by the convolution

_a N wa (|z)
(I-A)"2p=B% = e ¥ a>0, (3)
where
21_713(1 n—a 1 o0 n—a_ 4 \J:\z
o = Twm < 2 Kn—a s a— t 2 —t= 4t dt.
allol) = Zpay 15 Kga (2 = o | ‘

Since the operators B® form a semigroup, it is natural to expect that the
inverse operator should be formally given by

o)ty = el (1)

‘x|n+a

under the appropriate interpretation of this convolution.



We note that the function w_,(|z|) is differentiable, exponentially decays

a—1 n+ao
at infinity and stabilizes at the origin to w_,(0) = %((i)) We also observe
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that formally w_q(|z|) = 0 for o = 2,4,6,-- -, but \zl’%’ as a distribution, has
poles at the same points o = 2,4,6,--- . We describe an effective realization

of the convolution (4) with the distribution ﬂ;r(m) :

b) The operator (I — A)% as the convolution (4).
Theorem 1. Let f(z) € S(R™) and Ra >0 . Then

(=]
L(L’ED* _ Y a/2 & f(x—y)—Tmil(x’y)w
fp ||t f ’;)( 1) ( 1 )A f+ - [ _o(lyDdy ,

()
where m > Ra and Trn (2, Y) = 3 j1<m (Z—Z{V(Djf)(x) is the Taylor polynomial.
We refer to [23], p.274, for the proof of Theorem 1,
Basing on (3), we may write

(7]
(I-2)2f =) (-1)*

k=0

w_a(lyNdy ,
(6)

where m > a. We remind that w_,(Jy|) = 0 in the case when o = 2,4,6,--- ,
so that in this case the right-hand side of (6) turns into just an integer power
of I — A . Now, having obtained the exact expression for the fractional power,
we may justify it directly, firstly for nice function again.

c¢) Direct justification of the formula (6) in case of nice functions.
Let B0 = F~1(1+ [£|))"2Fp, a >0, be the Bessel potential operator. A
justification of the formula (6) may be given in the following form.

Theorem 2. Let f(x) € S(R™). Then

(a/2>Akf+ fle—y) = Tn-1(z,y)

k Rn |y| e

(I-A)EBYf = BXI-A)%f = f, a>0.

We consider specially the case 0 < a < 2. Let 0 < a < 1 first. The formula
(6) turns into

flz—y) — f(=)

|y|te

a

(I=A4):f :=flz) + w-a(lyl)dy - (7)

Rn

The integral here converges absolutely, for example, for f € S(R™) if 0 < a < 1.
It converges as the limit of truncated integrals over {y € R" : |y| > ¢} for all
0 < o < 2. Indeed, since w_q(|y|) is even, this follows from the relation:

flz—y) = f(=)

lim w—o(|y|)dy
TS (Iyl)

e—0 ly|>e



ygc L[ EED, ey
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W—allYy dy_f
|y|n+oc (| |) 2 |y‘n+o<

So, we arrive at the following theorem.

Theorem 3. Let 0 < o < 2. The fractional power (I — A)% f , interpreted
as (6), or which is the same, as the operator, inverse to the Bessel potential
operator B within the framework of the space S, has the form,

flz—y) — fz)

|y‘n+a w*a(|y|)dy ) (9)

(I-=2)Ff = f(x) +
RTL
where the integral converges absolutely in the case 0 < a < 1 and conditionally
in the case 1 < a < 2.
Corollary. The corresponding realization of (\2I — A)% with A > 0 is

flz—y) — fl@)

(>‘2[ - A)%f L= )‘af(x) + |y|n+a

woa(Alydy , 0<a<2.
R’Vl

In the case a = 1 , we arrive at the following interpretation of the square

root vVAI — A

VRIZAf =) — ot [ e O ks iy - ()

This operator is well known under the name of square root Klein-Gordon op-
erator in mathematical aspects of quantum physics, see e.g. [26], [11] and [22].

In particular, in the planar case n = 2 we have K (z) = \/g%e_z and
z2

the formula (10) turns into

VX - A f = M(2) ! f@=9) = @) 1 _ ypypyeMolgy |

2N e lyl?

In the case 1 < Ra < 2 we may also use the form (6) which is

I=8)Ff = f@) + | f(x_y)_ff;),;y'gmd 1@ by . ()

Here the integral is already absolutely convergent (in case of nice functions).
The following lemma presents another version of the construction (11).
Lemma 4. Let 1 < Ra < 2. The construction (11) may be represented in

terms of hypersingular integral

(x) = 2f(x —y) + f(z —2y)

(I_A)%f = f(m) + ntl Ma('yl)dy (12)
R" ly| 2

where po(r) = 2300 20=ky_ (2Fr) .



n+Ra—1
2

We note that pu(r) < cr e 2 r>1, and |pa(r) — pa(0)] <
er? , 0<r <1, where € (0,Ra — 1), the constant ¢ not depending on 7.

d) Justification of the formula within the framework of the spaces
L,; the cases 0 < Ra < 1 and 1 < Ra < 2. For nice functions f(x)
the operator (I — A)% was obtained in (7) which implies a non-absolutely
convergent integral in the case 1 < Ra < 2, even in the case of "nice” functions
f(z). To deal with "not so nice” functions f(z) in the range B*(L,), we shall
use only absolutely convergent constructions, that is, the construction (7) in
the case 0 < faw < 1 and the construction (12) in the case 1 < Ra < 2. But
on the whole range B¥(L,,) they will not already be absolutely convergent and
will be treated as

(I=2)3FF = f@) + lm T2f (13)
(Lp)
. o Aff T .
with 70f = [, G ually)dy . where € = 2 and  pa(ly) s a

function from (12), if 1 < Ra < 2,and £ =1 and  pa(ly|) = w-a(ly|) if
0<Ra<l .
Theorem 5. Let f(z) = B%p, ¢ € Ly(R"),1 < p < 00,0 < Ra <1 or
1<Ra<2. Then
(I-2)3f = ¢ (14)
with (I — A)% f interpreted according to (13).

2. Parabolic (heat) hypersingular integrals

We consider the fractional powers (% — Am)f introduced via the corre-
sponding Fourier multipliers. The negative fractional powers are known as
parabolic fractional integrals. The positive fractional powers will be realized as
hypersingular integrals. We refer to original papers [17] and [18], see also [23],
Chapter 9, Section 2.

a) Parabolic fractional potentials. The fractional parabolic potentials
H%yp are introduced via Fourier transforms by the relations

F(HY) = (¢ —ir) " p(¢, ), (15)
where
B(E) = (Fo)(6,r) = / T g iy (16)
Rn+1

and (‘f|2 - ’L‘T)f% = (|§|4 + 7_2),%6,%@ arg(|€)2—iT) under the choice arg(|£|2 -

i) € (~5.3).
The potentials H“y which are, in fact, negative fractional powers of parabolic

differential operators (£ — A,) 2, were introduced in [13] and [25]. It is
known that the convolution operator H® has the form

@0 = gy [T W@ty ()
2 +



n z|?
where W(y,n) = (47rt)*5e*% is the Gauss-Weierstrass kernel.

Remark 6. The fractional parabolic potential H*p may be interpreted as a
result of the one-dimensional fractional integration applied in the time variable
t to the Gauss-Weierstrass operator Wyp, that is ,

o0
(Hp)(z,1) = L/ P (Wop) (@, t— 7)dr . (18)
I (5) Jo

These formulas evidently generate the corresponding Balakrishnan formula
when we pass to positive fractional powers. But we remind that we are now
interested in the realization of positive powers in terms of multidimensional
hypersingular type integrals.

b) Positive fractional powers (% - Ax) % o > 0. These powers may be
constructed effectively as some hypersingular integral operators inverse to the
parabolic potential operators H*. They will contain non-standard finite differ-
ences which take into account different behaviour of potentials with respect to
the space variable x € R™ and the time variable t € R!.

To arrive at the idea of the construction of these fractional powers, we
apply the Fourier transform F), in x to both parts of the equality f(z,t) =
(H*p)(x,t) . We get

15 | (Fp) e m)] = e (E @)

where I¢ is the one-dimensional fractional integration operator applied in the
time variable. Inverting the operator I? according to the well known Marchaud
formula for fractional derivatives, we get
‘
2 1 o V4 _ 2 dt
P = gy [ S ) () otk
#(5.0) Jo =

T2

—t]z|?

Multiplying this by e and then applying the inverse Fourier transform in

T, we arrive at

1 > Lt dr
w(m»t)—%(g’é)/o [f(wat)Jrkz_:o(—l) (k> . f(w—y,t—kT)W(y,kT)dy] -

Hence, after the change of variables y — vk7y and easy transformations, we
arrive at the following

Conclusion 7. The formal solution of the equation (H*p)(z,t) = f(z,t)
is given by the formula

N 1 (A )(@,t) w2 (0 g
AN = G e = (o)
(19)




where

4
l @
S e = SV (e —kn oG eo)

0

In particular, in the case 0 < a < 2 we have

0 3 B 1 flz,t) = fla —y/T,t—7) _ly?
(at—Ax> [ = WWLTI s e dydr.

(21)

Remark 8. The constructions (19) and (22) were obtained formally. The
question which arise naturally, is whether the integrals in (19) and (22) con-
verge. For f € S it is not hard to show that they converge absolutely if we take
£ > a. In the case £ > & they converge non absolutely, as the limits of the

2
corresponding truncated integrals:

Hf = liH(l)HE_af (22)
where (AZ o t)
1 (e, t) w2
H “f = - CEEES 1 dyd 23
ST P N /Rsf g ©  ddr o (9)

and R ={(y,7):y € R",7 > ¢}, > 0.

c¢) Justification of the inversion in case of nice functions. Below ®
is the Lizorkin test function space, invariant with respect to fractional powers
of the Laplace operator, see [23], p.39. The following auxiliary statement is a
matter of direct verification, from which Theorem 10 follows.

Lemma 9. Let f = H%p, o > 0 where ¢ € ® . For the truncated
construction H-“f the representation

Hf= | Wi, 7K o (T)¢ (z — Vey, t/eT)dydr) (24)

is wvalid, where ICZQ(T) is some integrable kernel of the type of the identity
approximation.
Theorem 10. Let f = H*p, a >0, where ¢ € ® . Then

0 2 .
(&—Az) fi=lmHf =0 (25)
d) The case of functions in L,.
Theorem 11. Let 0 < a < ”T‘fz, 1 <p<oo, and f = H% with
¢ € Ly(R™ ). Then
lim H-*f = ¢.

e—0
(Lp)



e) The spaces of parabolic potentials. Let
HY(L,) = {f cf=H%,p € LP(R"+1)}, 1<p<oo, a>0.

The range H*(L,) is understood in the usual sense only in the case 0 < a <

"TfQ. In the case a > "TfQ the potential H“p, with ¢ € L, , is understood as

& _q

the convolution with the kernel ?(—Q)W(y,f) in the Lizorkin space ®'(R"T1)
2

of distributions. The space H*(L,) is a Banach space with respect to the norm
1l = Il

Theorem 12 below provides a characterization of the range H*(L,). Natu-
rally, this range can be described in terms of convergence of the hypersingular
integral H~“f. But the heat operator is a quasihomogeneous operator with a
non-degenerate symbol. Therefore, it is also natural to expect that the range
H®(L,) may be also characterized in terms of convergence of the anisotropic hy-
persingular integral. The corresponding anisotropic distance may be obtained
in terms of elementary functions in this case:

n+2
)=V [yt + A2 + Jy* )
y .

p=ply,n) =

Let
. (A28 f)(,t) !
@ f)et) = lim e dydy (> S
m TGRS 2
(Lp(rrt1y) Lp(ym)>e [p(y,n)]" T e

n+2 1 _ 1 _ o
Theorem 12. Let0<a<T,1<p<oo,a—5 sk Then

H*(Ly,) ={feLy: HfecL,} ={f€Ly: T*fe€L,}. (26)

For the proof of this theorem we refer to [17] for the first of the equalities
in (26) and [10] for the second one.

3. Fractional powers of the Schrédinger operator
The results shown below represent a slight modification of what was ob-
tained in [20]. The Schrodinger operator S = A, + i% , TER", tcR!
has the symbol 7 — [£|?, so that its fractional power may be defined via Fourier
transforms as

STe=F 1 [(r =l (Fe)E )] (27)
at least, formally. We should make sense to the construction (27).

a) Fractional Schrédinger potential operator. Negative fractional
powers are realized as integral operators

Igp=8"2p= / sa(y,m)e(z —y,t —n)dydn , (28)

n+1
R’y



where R = {(y,n) € R"*!:y € R",n € R'} and

mi(nta)
- a—n—2 lﬁ R . 2 -t
R T Ren = -0t e

N

sa(y,m) =

The integral (28) may be referred to as the Schrdodinger fractional potential.
The integral in (64) exists in the usual sense only when Ra > n. If Ra < n, the
kernel s,(y,n) has a non integrable singularity in n at 7 = 0. We shall treat
the Shrodinger fractional potential with 0 < Ra < n as analytical continuation
in . But before that we wish to justify the passage of the type (27), even if
in the case of nice functions ¢.

Let

P={(r)eR": ¢eR",Te R, 7=|¢*}

be the paraboloid surface at which the symbol 7 — |£[> of the Schrédinger
operator vanishes, and let ®p be the Lizorkin test function space generated by
the set P, so that it is invariant with respect to the operator I¢ ..

For functions in ®p the passage to Fourier transforms may be justified.
Namely, the following lemma is valid.

Lemma 13. Let Ra > n,p € ®p. Then

F T
(FIGchrp) (&5 7) = (T(_Iz);i_l())); :

To deal with the operator Ig,, . in the case 0 < Ra < n, when it does
not exist under the direct approach (28), we shall use its analytic continuation
which is constructively realized from the half-space R®a > n into the strip
—2¢ < Ra < n with an arbitrary £ € N except for some points in this strip,
where it may have poles.

b) Analytical continuation of the Schrédinger fractional potential.
Let o(x,t) € S(R™1). To organize convergence in (28) for Ra < n by the
familiar usage of finite differences, it is convenient to single out the factor

nli% from s, (y,n), and we introduce the following hypersingular construction

o e (AL ,0) (1)
IScthD - ;1_1’)% m /Ri‘*'l WM(yaT)dydT (30)

where erfel ={(y,n) e Ry e R"n>¢e},e>0,

_nmi

e 4 Jyl?

e
(4mn)

M(y,n) =

)

N3

and Ag’ngo is the Marchaud type generalized difference (see [23], p. 78) with
different kind of steps in y and 7, which reflects the non-homogeneity of the



Schrédinger operator:

¢ _ _
(A o)1) =3 (1) Cp(x — aty,t —a'n), (€N,
j=0

where a > 1 may be chosen arbitrarily. Here the C’j@) are given by the formulas

¢
(1 —0) imnria(a® = 1)

c® — i+ [ i=1,2,....0—1 31
(3 a Zl;l(ak _ 1) ?7’ < b ) ( )
L k
oW = (-0 H’“iﬁ@“(a ) i=1,2,..,0—1, (32)
! k;1(ak -1)

with m; = min(¢,¢ — i) and M; = max(é,£ — ) and the normalizing constant
in (30) is equal to

4

dpo(—a) =T (%) Z(—l)jCj(-Z)a_%j .

Jj=0

Lemma 14. Let o(z,t) € S(R"). The limit in (30) exists and represents
the analytical continuation of the Schrodinger fractional potential I, from
the half-plane o > n to the half-plane Ra > —2¢, except, probadbly, for the
points

m=0,1,2,...0 —1, ke Z\{0}.

Ina’

c) Positive fractional powers of the Schréodinger operator. Lemma
14 already represents such positive powers since Ra may be negative in the
construction (30). So we define it as

AN o

(Am + Z(‘)L‘) f=Jdgg.f
and rewrite this in the convenient way, assuming that ¢ > %:

A 40 $ s (Ag,n f) (x,t)M . N

* +Z& f - dn[(@) ‘/}%i+1 771—&-% (y’n) yamn , ( )

where the finite difference is defined by a > 1 such that

Ak
o #2m+ o m=01,2,...0—-1, keZ\{0}. (34)
na
In particular,
B
Ay +ie f= 35
tig f (35)

10



M((y,n)dydn ,

e

&/ flx—y,t—n)— flz —/ay,t —an)
(1) Jup .

where a > 1 may be arbitrary.

The following theorem states that the positive fractional power of the Schrédinger
operator is the inverse operator to the Schrodinger fractional potential opera-
tor, at least on "nice” functions.

Theorem 15. Let ¢ € ®p,Ra > 0. Then

(Am + Zat) ISchrSO = IS'chr (AI + Zm) ¥ =¥ (36)

where (Ag + i%)% is the operator (33) constructed under the choice of a > 1,
satisfying the condition (34) and IS, is defined by (27) in the case Ra > n
and treated as its analytical continuation (30) when 0 < Ra < n.

5. Fractional powers of some other differential operators

We give some brief indications on investigations of fractional powers of dif-
ferential operators with homogeneous non-constant coefficients (which thereby
are not invariant with respect to the translation operator) or of some non-
homogeneous differential operators.

The fractional powers

3
2

[z(;‘)] @)

1

were studied in [7] - [10].
The negative powers are realized as the Riesz-type potential operator

ax—n

Iny dy ,

(&% — 1 T o
z w—%(a)/Riw( y)

where In y = (In yi,...,In y,) and R} = {y € R" : y1 > 0,...,y, > 0}
The positive fractional powers are realized as the corresponding modification
of hypersingular integrals, adjusted to the n-tant R’}, but with a non-standard
truncation of the hypersingular integral when it is interpreted on "not very
nice” functions.

The fractional powers of the type

=3
2

o oras
k=0 k

11



were considered in [1] with the realization I$ ¢ = [4. ia(t)¢ (%) dt, where
+

afmw(ﬁ
™\ 2

Positive powers were realized by means of weighted hypersingular integrals.
Another dilatation-invariant version

(-ves)

was considered in [5] with the corresponding realization as potentials in case
of negative powers and in the form of non-standard hypersingular integrals in
case of positive powers.

The following fractional powers of the operator with constant coefficients,
but non-homogeneous one,

n—a
n 4

=— |Int
“ ()"

(1)

—

oo \E
(—P(D, D)+ “’“axk> , a=(a1,..,an) € R" (39)
k=0

where P(z,x) is an arbitrary positive quadratic form with real coefficients, were
treated in [2] but in case of positive fractional powers, instead of the method
of hypersingular integrals, there was used a modification of this method in the
form of the limit of approximative inverse operators (AIO).

By the same method in [3] and [4] the complex powers (39) were constructed
under a weaker assumption that P(z,x) —ia - x is hypoelliptic; a more general
case when 1 < rang P < n — 1 was also treated there.

The case of complex a; in (39) has a different nature in comparison with
that of real coefficients, because the symbol of the operator —P(D, D) +a- D
with complex a degenerates on some ellipsoid if oo = 0 and on the intersection
of the ellipsoid and a hyperplane, if Ra = 0. This more difficult case was treated
in [14].

Negative fractional powers (—A — T )_% are known as fractional acoustic
potentials. They have the form

1
i 92— "%* Hglg)a (lyl)
B / (T —y)dy ,

(-A-1) P p=
lyl

™

where 0 < o < n + 1 and Hﬁl) is the Hankel function of the first kind. The
positive powers can be realized by means of AIO. Fractional powers

82 82 82 Pl
(83:% - aim% T oeee T ar?b) (40)

12



of the wave operator by the method of AIO were constructed in [19].
The powers of the Klein-Gordon-Fock operator

82 32 82 2
Ut -5 — = >0 41
<m * ozr?  Ox3 0z2 men (41)
were treated in [20] and the powers
o PP 9°\*? 1
i <m< -
<m I+ x4 - or?  Ox3 8$%> y 0sm< 2 (42)

including the case of the telegraph operator (m = 0) were dealt with in [16].
The negative fractional power (o < 0) in (42) proves to be the following
potential type operator

Y1

e 2 Lazn (Ar(y))
(Hi)(@) = ennle) [ ——22 (e )y,
)
K+
with r?(y) = 97 —y3 — - —y2 and A = £ —2m?, 0 < m < %, and the

Bessel function replaced by 1 in the case m = %, ¢n,m (@) is some constant.
The kernel of this potential has locally the same behaviour as the kernel of the
Riesz hyperbolic potential I&¢, but exponentially decreases at infinity.
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