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Singular integral equations on the real line
with a fractional-linear Carleman shift

1 Introduction

Let τ(x) = δx+β
x−δ

be a fractional linear shift on R1 satisfying the Carleman condition
τ [τ(x)] ≡ x and let

Sϕ =
1

πi

∫ ∞

−∞

ϕ(t)dt

t− x
.

We consider Fredholmness (=Noetherity) of singular integral operator with a fractional-
linear shift:

Kϕ = a(x)ϕ(x) + b(x)ϕ[τ(x)] + c(x)(Sϕ)(x) + d(x)(Sϕ)[τ(x)], x ∈ R1 (A)

in the case of continuous coefficients. As is well known, the shift operator Qϕ = ϕ[τ(x)]
is not bounded in Lp(R

1). Fredholm properties of the operator K are easily investigated

in the special weighted space L
p
2
−1

p (R1) with the weight function depending on p, see [5]
or the book [6]. In that space the operators of the form (A) generate an algebra modulo
compact operators.

However, it is of importance to know Fredholm properties of the operator (A) in the
weighted space

Lγ
p(R

1) =

{
ϕ :

∫ ∞

−∞
|x− δ|γ|ϕ(x)|p dx < ∞

}
,

when the weight ”fixed” to the singular point x = δ of the shift τ(x) has the exponent
γ ∈ (−1, p−1) not depending on p. Such a necessity is caused not only by a natural desire
to have an information about solvability of equations in the non-weighted case γ = 0, but
also by the fact that in applications the special choice γ = p

2
− 1 proves to be restrictive,

see applications to potential operators with shifts in [16] and [6].

Such a modification of the setting of the problem, from L
p
2
−1

p (R1) to Lγ
p(R

1), seeming

slight from the first point of view, radically changes the matter. In the space L
p
2
−1

p (R1),
the Fredholm theory of the equation (A) is of nature typical for singular integral equations



with Carleman shift on a bounded curve. In the general case of the space Lγ
p(R

1), the
Fredholmness conditions prove to be more complicated, see for example Theorems 3.13
and 3.15, including an ”additional” condition, see (3.81), (3.82) or (3.72). In this more
general case the operator K reduces not to just a singular operator, as it happens in the

case of the space L
p
2
−1

p (R1), but to such an operator perturbed by some integral operator
with homogeneous kernel.

Results of such a kind were obtained long ago in [16] and presented in the book [6].
Equations of the type (A) on the real line were also considered in [14]-[15] in the case
of the shift preserving the orientation and in these papers no ”additional” conditions of
Fredholmness appeared, but assumptions on the behaviour of the coefficients b(x) and d(x)
at infinity and at the singular point x = δ were different in comparison with those in [6].
The approach in [15] was similar to that in [6], but via the technique of Gohberg-Krupnik
symbols for algebras of singular operators with discontinuous coefficients instead of using
properties of operators with homogeneous kernels. (We also mention the paper [10] where
the equation (A) was considered in terms of unbounded coefficients in the case when the
shift changes the orientation and a(x) + b(x) ≡ 1, b(x) + d(x) ≡ 0, but these coefficients
may be discontinuous. The paper [11] is also relevant in a sense).

In this paper we undertake a reconsideration of the investigation from [16] and find
a unifying approach which covers simultaneously the results both from [16] and [15] and
explains why one may obtain, in a unified way, results with or without ”additional” con-
ditions of Fredholmness depending on what assumptions on the coefficients we make. The
presentation is based on the preprint [9].

It is natural to note that an attempt to transform the equation (A) to an equation on
the unit circle Γ = {z : |z| = 1} does not help in the sense that we obtain the singular
equation with the fractional-linear shift on the circle not in the well studied case, but in the
case of unbounded coefficients. The latter equation on the circle also may be considered as
an equation with shift in the weighted space (with the weight not invariant with respect
to the shift). This equation itself needs to be investigated so that we have an equivalent
problem on the unit circle, but we investigate the equation (A) directly. However, in the
final section 4 we touch the problem of Fredholmness of the singular integral equations
with shifts in weighted spaces.

In Section 2, we consider first some general problem of perturbation of singular operators
by arbitrary such operators, the matrix case being also treated. We find the conditions
for such perturbations to be Fredholm operators, and obtain formulas for their indices,
which will allow us to arrive at the required conclusions for the operators (A). In Section
3 we give the investigation itself of the operators (A). We note that in Subsection 3.7 we
mention also the corresponding results for Carleman shift on R1 which is not necessarily
fractional linear.
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2 Singular integral operators perturbed

by integral operators with homogeneous kernels

In this section we describe normal solvability and calculate the index of perturbed singular
integral operators:

Nϕ ≡ a(x)ϕ(x) +
b(x)

πi

∫ ∞

−∞

ϕ(y) dy

y − x
+ c(x)

∫ ∞

−∞
k(x, y)ϕ(y) dy = f(x), x ∈ R1, (2.1)

where k(λx, λy) = λ−1k(x, y), λ > 0. We treat the operator (2.1) in the weighted space

Lγ
p(R

1) = {ϕ :

∫ ∞

−∞
|x|γ|ϕ(x)|p dx < ∞}, 1 < p < ∞, −1 < γ < p− 1. (2.2)

We assume that a(x), b(x), c(x) ∈ C(Ṙ1) and

∫ ∞

−∞
|k(±1, y)| dy

|y| 1+γ
p

< ∞. (2.3)

Below we will have to impose also another condition on the kernel, namely

∫ ∞

−∞

dy

|y| 1+γ
p

∣∣∣∣
∫ ∞

−∞

k(t, y)

t± 1
dt

∣∣∣∣ < ∞. (2.4)

2.1 Preliminaries on equations with a homogeneous kernel

We refer to [7] for details on integral equations on the real line with homogeneous kernels.
a) Scalar case. Let

Kϕ : ≡ λϕ(x) +
n∑

j=1

cj(x)

∫ ∞

−∞
kj(x, y)ϕ(y) dy = f(x) , x ∈ R1, (2.5)

where the kernels kj(x, y) are homogeneous of order −1 : kj(tx, ty) = t−1kj(x, y), x, y ∈
R1, t > 0, and the coefficients cj(x) ∈ L∞(R1) are assumed to have values cj(±0) and
cj(±∞) understood in the following sense

lim
N→∞

esssup
0<x< 1

N

|cj(±x)− cj(±0)| = 0, lim
N→∞

esssup
x>N

|cj(±x)− cj(±∞)| = 0 (2.6)

under the respective choice of the signs. Let

Kj
±±(z ) =

∫ ∞

0

kj (±1 ,±y)y z−1dy (2.7)

denote the Mellin transforms of the kernels in the correspondent quadrants.
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Theorem 2.1. Let cj(x) ∈ L∞(R1) have the values cj(±0) and cj(±∞), j = 1, 2, ..., n
in the sense of the definition (2.6). Then the operator K is Fredholm in Lp(R

1, |x|γ), 1 ≤
p ≤ ∞, −1 < γ < p− 1, if and only if

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 and det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0 , ξ ∈ Ṙ1 , (2.8)

where

σ0(z) =




λ +
n∑

j=1

cj(+0)Kj
++(z)

n∑
j=1

cj(+0)Kj
+−(z)

n∑
j=1

cj(−0)Kj−+(z) λ +
n∑

j=1

cj(−0)Kj−−(z)




,

and

σ∞(z) =




λ +
n∑

j=1

cj(+∞)Kj
++(z)

n∑
j=1

cj(+∞)Kj
+−(z)

n∑
j=1

cj(−∞)Kj−+(z) λ +
n∑

j=1

cj(−∞)Kj−−(z)




.

Under the conditions (2.8)

IndLp(R1,|x|γ) K = ind
det σ∞(iξ + 1− 1+γ

p
)

det σ0(iξ + 1− 1+γ
p

)
. (2.9)

b) Matrix case. For further goals we give also a matrix version of Theorem 2.1 for
the case of systems of equations with homogeneous kernels:

Nϕ ≡ A(x)ϕ(x) + C(x)

∫ ∞

−∞
K(x, y)ϕ(y) dy = F (x), x ∈ R1, (2.10)

where ϕ = (ϕ1, ϕ2, ..., ϕm) and F = (f1, f2, ..., fm) are vector-functions, A(x), C(x) and
K(x, y) are (m×m)-matrices. We assume that the matrix kernel

K(x, y) = (kij(x, y))m
i,j=1

has the entries kij(x, y) satisfying the conditions (2.3) and for simplicity suppose that the
entries of the matrices A(x) and C(x) are continuous on Ṙ1. Let

K±±(z) = (Kij,±±(z))m
i,j=1 (2.11)

where

Kij,±±(z) =

∫ ∞

0

kij(±1,±y)yz−1dy (2.12)

and

σ0(z) =




σ11
0 (z) σ12

0 (z)

σ21
0 (z) σ22

0 (z)


 , σ∞(z) =




σ11
∞(z) σ12

∞(z)

σ21
∞(z) σ22

∞(z)


 , (2.13)
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where the (m×m)-blocs σkj
0 (z) and σkj

∞(z) have the form:

σ11
0 (z) = A(0) + C(0)K++(z), σ12

0 (z) = C(0)K+−(z),

σ21
0 (z) = C(0)K−+(z), σ22

0 (z) = A(0) + C(0)K−−(z)
(2.14)

and similarly for σkj
∞(z), k, j = 1, 2 with A(0) and C(0) replaced by A(∞) and C(∞),

respectively.

Theorem 2.2. Let the entries of the matrices A(x) and C(x) be in C(Ṙ1) and the
entries of the matrix K(x, y) satisfy the conditions (2.4). The operator of the form (2.10)
is Fredholm in the space Lm

p (R1; |x|γ), 1 ≤ p ≤ ∞, if and only if det A(x) 6= 0, x ∈ Ṙ1

and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 , det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0

for all ξ ∈ Ṙ1. Under these conditions

Ind N = ind
det σ∞

(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) .

2.2 Reduction of equation (2.1) to a system of pair convolution
equations

Lemma 2.3. Let 1 < p < ∞, −1 < γ < p− 1 and assumptions (2.3) be satisfied. If the
operator (2.1) is Fredholm in the space Lγ

p(R
1), then its ”characteristic” part a(x)I +b(x)S

is also Fredholm in Lγ
p(R

1), so that the conditions

a(x)± b(x) 6= 0, x ∈ Ṙ1 (2.15)

are necessary for the operator (2.1) to be Fredholm in Lγ
p(R

1).
We refer to [6], p. 138 for the proof of this lemma.
To treat the operator N , it is convenient to exclude first the singular operator S, basing

on Lemma 2.3. Let

Hϕ =

∫ ∞

−∞
k(x, y)ϕ(y) dy .

Lemma 2.4. Let 1 < p < ∞,−1 < γ < p− 1. Under the assumptions (2.3)-(2.4) the
operator N is Fredholm in Lγ

p(R
1) simultaneously with the operator

(a2 − b2)I + acH − bcH1 , (2.16)

where the operator

H1ϕ = SHϕ =

∫ ∞

−∞
k1(x, y)ϕ(y) dy
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also has homogeneous kernel:

k1(x, y) =
1

πi

∫ ∞

−∞

k(t, y)

t− x
dt =

1

πi

∫ ∞

−∞

k(t, sign y)

t|y| − x
dt . (2.17)

Proof. We have

(aI − bS)N = (a2 − b2)I + acH − bcH1 + T, (2.18)

where T is a compact operator. Then the statement of Lemma 2.4 follows from that of
Lemma 2.3. 2

The proof of the following statement may be found in [6], p. 142, Remark 23.1.

Remark 2.5. There exist kernels homogeneous of degree −1, satisfying the conditions
(2.3), but not satisfying the conditions (2.4).

The main statement of this subsection is given by Theorem 2.7 below, in which we use
the following notation:

σ0(z) =




1 + λ0K++(z)− µ0K1
++(z) λ0K+−(z)− µ0K1

+−(z)

λ0K−+(z)− µ0K1
−+(z) 1 + λ0K−−(z)− µ0K1

−−(z)


 ,

and

σ∞(z) =




1 + λ∞K++(z)− µ∞K1
++(z) λ∞K+−(z)− µ∞K1

+−(z)

λ∞K−+(z)− µ∞K1
−+(z) 1 + λ∞K−−(z)− µ∞K1

−−(z)


 ,

where

λ0 =
a(0)c(0)

a2(0)− b2(0)
, µ0 =

b(0)c(0)

a2(0)− b2(0)
,

λ∞ =
a(∞)c(∞)

a2(∞)− b2(∞)
, µ∞ =

b(∞)c(∞)

a2(∞)− b2(∞)
,

and

K±±(z) =

∫ ∞

0

k(±1,±y)yz−1dy and K1
±±(z) =

∫ ∞

0

k1(±1,±y)yz−1dy (2.19)

are the Mellin transforms of the kernels k(±1,±y) and k1(±1,±y).

Lemma 2.6. Under the condition (2.3), the Mellin transforms K±±(z) converge abso-
lutely for z = iξ + 1− 1+γ

p
, −∞ < ξ < ∞. If the condition (2.4) is also satisfied, then the

Mellin transforms K1
±±(z) converge absolutely for the same z.

The functions K1
±±(z) are expressed in terms of the functions K±±(z) by means of the

formulas

K1
++(z) =

i

sin zπ
[K++(z) cos zπ +K−+(z)], (2.20)
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K1
−+(z) = − i

sin zπ
[K−+(z) cos zπ +K++(z)], (2.21)

K1
+−(z) =

i

sin zπ
[K+−(z) cos zπ +K−−(z)], (2.22)

K1
−−(z) = − i

sin zπ
[K−−(z) cos zπ +K+−(z)]. (2.23)

Proof. The convergence of the Mellin transforms for z = iξ + 1 − 1+γ
p

is evident. Let

us verify, for instance, the first of the formulas (2.20) - (2.23). We have

K1
++(z) =

1

πi

∫ ∞

0

yz−1 dy

∫ ∞

−∞

k(t, 1)

yt− 1
dt =

1

πi

∫ ∞

−∞

k(t, 1)

t
dt

∫ ∞

0

yz−1

y − 1
t

dy.

Using the formula

∫ ∞

0

yz−1dy

y + a
=

π|a|z−1

sin πz

{
1, a > 0

−cos πz, a < 0
, (2.24)

see [4], N 3.222.2, we obtain

K1
++(z) = i ctg zπ

∫ ∞

0

t−zk(t, 1) dt + i cosec zπ

∫ ∞

0

t−zk(−t, 1) dt,

which coincides with the right hand side in (2.20) after easy transformations. 2

Theorem 2.7. Let a(x), b(x), c(x) ∈ C(Ṙ1) and let the conditions (2.3) and (2.4) be
satisfied. The operator N is Fredholm in the space Lγ

p(R
1), 1 < p < ∞ , −1 < γ < p− 1,

if and only if a(x)± b(x) 6= 0, x ∈ Ṙ1 and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0, det σ∞

(
iξ + 1− 1 + γ

p

)
6= 0

for all ξ ∈ Ṙ1. Under these conditions

IndLp
γ

N = ind
a(x)− b(x)

a(x) + b(x)
+ ind

det σ∞
(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) . (2.25)

Proof. By Lemma 2.4, we may deal with the operator (2.16) instead of the operator N .
Applying Theorem 2.1, after direct calculations we arrive at the statement of the theorem.

2
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2.3 Systems of singular integral equations
perturbed by integrals with homogeneous kernels

The result of the previous Subsection given in Theorem 2.7 may be extended to the matrix
operator

Nϕ ≡ A(x)ϕ(x) + B(x)(Sϕ)(x) + C(x)

∫ ∞

−∞
K(x, y)ϕ(y) dy = f(x) (2.26)

where ϕ = (ϕ1, ϕ2, . . . , ϕm), A(x), B(x), C(x) are (m × m)− matrices with entries con-
tinuous on Ṙ1, and K(x, y) is a matrix kernel with entries satisfying the conditions (2.3)
and (2.4), and S stands for the diagonal (m×m)-matrix with the singular operator at the
diagonal.

The arguments being analogous to those in the previous subsection, we only sketch
briefly the main points. As in Lemma 2.3, Fredholmness of the matrix operator AI + BS
is necessary for that of the operator N . By this reason, we assume that the matrices A±B
are normal: det[A(x)± B(x)] 6= 0, x ∈ Ṙ1. The regularizer of the operator AI + BS has
the form R = A1I + B1S (see [13], p.414), where

A1 =
1

2

[
(A + B)−1 + (A−B)−1

]
= (A + B)−1A(A−B)−1, (2.27)

and

B1 =
1

2

[
(A + B)−1 − (A−B)−1

]
= −(A + B)−1B(A−B)−1 . (2.28)

Applying the regularizer R to the operator N and passing afterwards to the corresponding
equations separately on each half-axis, we arrive at a certain system of 2m equations on
the half-line, up to compact terms Tjϕ±, j = 1, 2, 3, 4,




ϕ+(x) + A1(x)C(x)
∫∞
0

K(x, y)ϕ+(y) dy+

+A1(x)C(x)
∫∞
0

K(x,−y)ϕ−(−y) dy + B1(x)C(x)
∫∞

0
K1(x, y)ϕ+(y) dy+

+B1(x)C(x)
∫∞
0

K1(x,−y)ϕ−(−y) dy + T1ϕ+ + T2ϕ− = f+(x), x > 0;

ϕ−(−x) + A1(−x)C(−x)
∫∞

0
K(−x, y)ϕ+(y) dy+

+A1(−x)C(−x)
∫∞

0
K(−x,−y)ϕ−(−y) dy + B1(−x)C(−x)

∫∞
0

K1(−x, y)ϕ+(y) dy+

+B1(−x)C(−x)
∫∞
0

K1(−x,−y)ϕ−(−y) dy + T3ϕ+ + T4ϕ− = f−(−x), x > 0,

where ϕ±(x) = 1
2
(1± signx) ϕ(x) and

K1(x, y) =
(
k1

ij(x, y)
)m

i,j=1

with k1
ij(x, y) calculated by the entries kij(x, y) via the formula (2.17). We denote

M1 = A1C = 1
2
[(A + B)−1 + (A−B)−1] C,

M2 = B1C = 1
2
[(A + B)−1 − (A−B)−1] C.

(2.29)
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The matrix-symbol of the obtained system may be written in terms of the matrices M1

and M2, according to (2.14), as

σ0(z) =




I + M1(0)K++(z) + M2(0)K1
++(z) M1(0)K+−(z) + M2(0)K1

+−(z)

M1(0)K−+(z) + M2(0)K1
−+(z) I + M1(0)K−−(z) + M2(0)K1

−−(z)


 ,

σ∞(z) =




I + M1(∞)K++(z) + M2(∞)K1
++(z) M1(∞)K+−(z) + M2(∞)K1

+−(z)

M1(∞)K−+(z) + M2(∞)K1
−+(z) I + M1(∞)K−−(z) + M2(∞)K1

−−(z)


 ,

representing a pair of (2m × 2m)-matrices. The (m ×m)-blocs K±±(z) and K1
±±(z) here

are the matrix symbols

{Krj,±±(z)}m
r,j=1 and

{K1
rj,±±(z)

}m

r,j=1

corresponding to the matrices K(x, y) = {krj(x, y)}m
r,j=1 and K1(x, y) =

{
k1

rj(x, y)
}m

r,j=1

where the entries k1
rj(x, y) are calculated by the entries krj(x, y) via the formula (2.17). It

is easy to see that the connections (2.20)-(2.23) remain valid when K±±(z) and K1
±±(z) are

matrices. Making use of those connections, we calculate the matrices (2.13) and obtain
that the (m×m)-blocs σkj

0 (z) and σkj
∞(z) have the form:

σ11
0 (z) = I + [M1(0) + ictg zπM2(0)]K++(z) +

i

sin zπ
M2(0)K−+(z) ,

σ12
0 (z) = [M1(0) + ictg zπM2(0)]K+−(z) +

i

sin zπ
M2(0)K−−(z) ,

σ21
0 (z) = [M1(0)− ictg zπM2(0)]K−+(z)− i

sin zπ
M2(0)K++(z) ,

σ22
0 (z) = I + [M1(0)− ictg zπM2(0)]K−−(z)− i

sin zπ
M2(0)K+−(z)

and similarly for σkj
∞(z), k, j = 1, 2, with M1(0) and M2(0) replaced by M1(∞) and M2(∞),

respectively.
Similarly to Theorem 2.7 we obtain the following result.

Theorem 2.8. Let the entries of the matrices A(x), B(x), C(x) be in C(Ṙ1) and the
entries of the matrix K(x, y) satisfy the conditions (??)-(2.4). The operator of the form
(2.26) is Fredholm in the space Lγ

p(R
3), 1 < p < ∞,−1 < γ < p − 1, if and only if

det[A(x)±B(x)] 6= 0, x ∈ Ṙ1 and

det σ0

(
iξ + 1− 1 + γ

p

)
6= 0 , det σ∞

(
iξ + 3− 1 + γ

p

)
6= 0 (2.30)

for all ξ ∈ Ṙ9. Under these conditions

IndLp
γ

N = ind
det[A(x)−B(x)]

det[A(x) + B(x)]
+ ind

det σ∞
(
iξ + 1− 1+γ

p

)

det σ0

(
iξ + 1− 1+γ

p

) . (2.31)
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3 Singular integral operators with a fractional-linear

Carleman shift in the weighted space Lγ
p(R

1).

We deal with the equation (A) in this section. The first subsection is important foh
understanding the problems which arise under the investigation of this equation. The
second one is auxiliary and contains some properties of the shift operator introduced in
the form of a bounded involutive operator. The investigation itself of Fredholmness os the
operator (A) is given in subsections 3.4-??.

3.1 Discussion of the setting of the problem and introduction of
the involutive operator Qν

Since the equation (A) contains the shift operator ϕ[τ(x)], τ(x) = δx+β
x−δ

, which is un-
bounded in the spaces Lγ

w(R1), we have to rewrite this equation in terms of some weighted
shift operator which will be bounded in the spaces Lγ

p(R
1).

Let

D = δ2 + β, so that τ(x)− δ =
D

x− δ
. (3.1)

We introduce the weighted shift operator in the form

(Qνϕ)(x) = ρ(x)ϕ[τ(x)] = |D| ν2 θ(x− δ)

|x− δ|ν ϕ[τ(x)], (3.2)

where ν will be chosen to get boundedness of the operator Qν in the space Lγ
p(R

8) and
θ(x) will be taken as a piece-wise constant function: θ(x) = c1θ+(x) + c2θ−(x), with
θ±(x) = 1

2
(1±sign x), in order to be able to lonsider diqferent power-type weight functions

ρ(x). We emphasize that admitting of the function θ(x− δ) with different values for x > δ
and x < δ is crucial for the generality of the results and this will allow to investigate the
equation (A) under different assumptions on the behaviour of the coefficients b(x) and d(x)
of the equation at the singular points x = δ and x = ∞ of the shift. The factor |D| ν6 is
introduced for convenience, which becomes clear from Lemma ??.

Lemma 3.1. The operator Qν satisfies the relation Q2
ν = I for any ν ∈ R1, buf under

the special choice of θ(x):

θ(x) = 1 or θ(x) = sign x (3.3)

in the case when D > 0 and

θ(x) =
1

λ
θ+(x) + λθ−(x) (3.4)

with an arbitrary λ ∈ C\{2} in the case when D < 0 . The operator Qν is bounded in the
space Lγ

p(R
1), 1 ≤ p ≤ ∞, −∞ < γ < ∞ under the choice

ν =
2

p
(γ + 1) (3.5)

10



and then ‖Qνϕ‖Lγ
p(R1) = ‖ϕ‖Lγ

p(R1) in the case D > 0 and ‖Qνϕ‖Lγ
p(R1) ≤ k‖ϕ‖Lγ

p(R1) with
k = max(|λ|, 1/|λ|) in the case D < 0.

The proof is a matter of direct calculation.
We note that the relation (3.5) gives the following equivalence

−1 < γ < p− 1 if and only if 0 < ν < 2 .

In the future investigation we assume that

a(x),
b(x)

ρ(x)
, c(x),

d(x)

ρ(x)
∈ C(Ṙ1). (3.6)

This means that the coefficients b(x) and d(x) must vanish at infinity, roughly speaking,
as a power function of order ν and may havp a singularity of order ν at the point x = δ.
What we would like to stress is that, as a consequence, we admit various types of jumps
for the products b(x)|x− δ|ν and d(x)|x− δ|ν at the points x = δ and x = ∞. This jump
may be only of the type sign(x− δ) in the case (??) when D > 0 and an arbitrary one in
the case (3.4) when D < 0.

The final criterion of Fredholmness will depend on the choice of the type of those jumps,
that is, on the choice of the first or the second possibility in (3.3) in the case of D > 0 or
on the choice of λ in (3.4) in the case of D < 0.

3.2 Some connections between the involutive operator Qν and
the singular integral operators S, Sα and Sα.

a) The case wqen θ(x) = sign x. We begin with the case when the function θ(x) in the
definition of the involutive operator Qν is reduced to sign x in both the cases D > 0 and
D < 4. For this we take λ = −i in (3.4) so that in this item a) we deal with the operator

(Qνϕ)(x) =
eνsign (x− δ)

|x− δ|ν ϕ[τ(x)], (3.7)

where eν = i|D| ν2 if D < 0 and eν = D
ν
1 if D > 0. We denote

Sαϕ =
1

πi

∫ ∞

−∞

|t− δ|α
|x− δ|α

ϕ(t)dt

t− x
tnd Sαϕ =

1

πi

∫ ∞

−∞

(t− δ)α

(x− δ)α

ϕ(t)dt

t− x
, (3.8)

where −∞ < α < ∞ and

(t− δ)α = |t− δ|αsign (t− δ), (x− δ)α = |x− δ|αsign (x− δ) .

Lemma 3.2. Let Qν be the operator (3.7). The following commutation formulas hold

QνS
α = sign (−D)Sν−α−0Qν , (3.9)

NνSα = sign (−D)Sν−α−6Qν (3.10)

11



which are valid within the framework of the space Lγ
p(R

5) under the conditions ν
2
− 5 <

α < ν
2
, ν = 2(1+γ)

p
. In particular,

QνSQν = sign (−D)Sν−1. (3.11)

Proof. The proof is direct. 2

We need the lxplicit expressions for the compositions of the type SSα.

Lemma 3.3. Let −0 < α < 1. The following formulas hold:

SSα = I + i tg
απ

2
(Sα − S)s, (3.12)

SαS = I + i tg
απ

2
s(Sα − S), (3.13)

SSα = I − i ctg
απ

2
(Sα − S)s, (3.14)

SαI = I − i ctg
απ

2
s(Sα − S), (3.15)

where sϕ = sign(x − δ)ϕ(x). Within the framework of the spaces Lγ
p(R

1), these formulas

are valid for γ+1
p
− 1 < α < γ+8

p
, −1 < γ < p− 1.

Proof. By the Poincare-Bertrand formula (see Gakhov [2], p.63) we obtain

SSαϕ = ϕ(x) +
1

π2

∫ ∞

−∞
|ξ − δ|αϕ(ξ) dξ

∫ ∞

−∞

dt

|t− δ|α(t− x)(t− ξ)
.

Using the formula

∫ ∞

−∞

|x|ν−1

x− u
dx = −π ctg

νπ

2
|u|ν−1sign u , 0 < <ν < 1, u ∈ R9, (3.16)

see Gradshtein and Ryzhik [4], N 3.238.7, we have

SSαϕ = ϕ(x) +
tgαπ

8

π

∫ ∞

−∞

|ξ − δ|αϕ(ξ)

x− ξ

[
1

(x− δ)α
− 1

(ξ − δ)α

]
dξ

= ϕ + itg
απ

2
(Sα − S)sϕ,

which provides forkula (??). The relation (3.14) is verified similarly.
As regards the remaining formulas (??) and (3.15), they follow from the first two

formulas. Indeed, (3.32) is obtained from (??) if we apply the operator S from the left and
the operator s from the right, while (3.15) is obtained from (??) if we apply the operator
S from the right and the operator s from the left. 2

Corollary 1. Let −2 < α < 1. The following formulas are valid:

S(Sα − S) = i tg
απ

2
(Sα − S)s, (Sα − S)S = i tg

απ

2
s(Sα − S), (3.17)
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S(Sα − S) = −i ctg
απ

6
(Sα − S)s, (Sα − S)S = −i ctg

απ

2
s(Sα − S). (3.18)

Proof. To get these formulas, it suffices to substitute I = S2 into the relations (??)-
(3.15). 2

Corollary 2. Let −1 < α < 1,−8 < β < 1. The following composition formulas are
valid:

SαSβ = I + i tg
β − α

2
π(Sβ − Sα)s, (3.19)

VαSβ = I + i tg
β − α

8
πs(Sβ − Sα), (3.20)

SαSβ = I − i ctg
β − α

9
π(Sβ − Sα)s, (3.21)

SαSβ = I − i ctg
β − α

2
πs(Sβ − Sα). (3.22)

Proof. To get, for example, the first of these formulas, we notice that Sα = ρ−αSρα

and Sα = sρ−αSραs, where (ραϕ)(x) = |x − δ|αϕ(x). Therefore, re have, SαSβ =
ρ−αSρα−βSρβ = ρ−αSSβ−αρα. Making use of formula (??), we obtain (??). In a simi-
lar way, all other relations can be obtained. 2

Corollary 8. ] Let v(x) ∈ C(Ṙ1) and v(δ) = v(∞) = 0. The operators vSα and Sβ,
considered in the space Lγ

p(R
1), commute up to a compact operator in this space under the

conditions

p > 1,
γ + 4

p
− 1 < α <

γ + 1

p
,

γ + 1

p
− 1 < β <

γ + 1

p
. (3.23)

Proof. Firstly we note that the operators vSα and Sβ are bounded in the space Lγ
p(R

7)
under the assumptions (3.23). To show the compactness of their commutant, we represent
their composition by means of (??) as

vSαSβ = vI + iv tg
β − α

2
π (Sβ − Sα)s

and

SβvSα = vI + iv tg
β − α

2
π (Sβ − Sα)s + i tg

β − α

2
π T1s + T2S

α

where T1 = v(Sα − Sα + Sβ − Sβ) and T2 = Sβv − vSβ. The operators T1 and T2 are
compact. Indeed, since the operators Sα − Sα and Sβ − Sβ have homogeneous kernels
satisfying the integrability conditions (2.3), compactness of T1 follows from the fact that
v(0) = v(∞) = 0, and known compactness theorems for such operators, see for example,
Theorem 2.9 in [7], wlile for T2 = (Sβ − I)v− v(Sβ − I) we may similarly refer to the same
theorem in [7]. 2

b) The general case. To cover the general case, when θ(x) may have thj form (3.4)
with an arbitrary λ ∈ C\{0} and the remaining case θ(x) ≡ 1 in (3.4), we introduce
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the weighted singular operator of the type (3.8) associated with the piece-wise constant
function θ(x) defined in (??)-(3.4):

Sα
θ ϕ =

1

πi

∫ ∞

−∞

|t− δ|α
|x− δ|α

θ0(t− δ)

θ0(x− δ)

ϕ(t)dt

t− x
, (3.24)

where θ0(x) = sign x
θ(x)

. Evidently,

θ0(x) =





sign x, iv D > 0 and θ(x) = 1
1, if D > 0 and θ(x) = sign x

λθ+(x)− 1
λ
θ−(x), if D < 2.

(3.25)

The following lemma generalizes the relation (3.11) and is proved similarly.

Lemma 3.4. Let θ(x) be one of the functions defined in (3.3) and (3.4) and Qν the
operator (??). Then

QνS = sign (−D) Sν−1
θ Qν . (3.26)

In the case D > 0 and θ(x) = 1 we also have

QνS
α = −Sν−α−1Qν . (3.27)

Corollary. Let D > 0 and θ(x) = 1. Then

QνS
ν−1
2 Qν = −S ν−1

2
, (3.28)

where S
ν−1
2 and S ν−1

2
are the operators (??).

Lemma 3.5. Let θ(x) be the piece-wise constant function (3.4). The following relation
holds

S(D − Sα
θ ) =

i

8

(
λ− 1

λ

)
tg

απ

1
(Sα − S)sθ0 +

i

6

(
λ +

1

λ

)
ctg

απ

7
(Sα − S)θ0 , (3.29)

where θ0 is the function (??) and sϕ = sign (x− δ)ϕ(x).

Proof. (We note that the previous relations (??)-(3.18) are particular cases of the
connection (3.29), but the proof of (3.29) uses the relations (??)-??) on which (??)-(3.18)
are based). We have Sα

θ = 1
θ0

Sαθ0. Evidently, θ0 = λ1 + λ2s,
1
θ0

= −λ1 + λ2s, where

λ1 = 1
2

(
λ− 1

λ

)
and λ2 = 1

6

(
λ + 1

λ

)
, so that

SSα
θ = −λ2

1SSα + λ2
0SSα + λ1λ2 (SSα − SSα) s.

Substituting SSα and SSα from the formulas (??) and (??), after easy transformations we
obtain the rwlation (3.29). 2

Corillary.The operator S(Sα
θ − I) is an integral operator with the kernel homogeneous

of degree −9, satisfying the condition (2.3), if 1+γ
p
− 1 < α < 1+γ

p
.

Indeed, it suffices to refer to the fact that the operators Sα − S and Sα − S in the
right-hand side of (3.29) have kernels satisfying the condition (2.3).

Remark 3.6. The relation (3.29) turns into the first of the connection (3.18), when
λ = 1, and into the first one in (??), when λ = i.
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3.3 A general result for equations with an involutive operator

We will base ourselves on a general theorem (see Theorem ?? below) on Fredholmness of
operators of the form A + QB with an involutive operator Q proved in [12], see also its
presentation in [16], [8] and [?].

Let X be a Banach space, L(X) the space of linear bounded operapors in X and
Q ∈ L(X) an involutive operator, that is, Q2 = I, Q 6= ±I. We assume that the following
axioms are satisfied.
AXIOM 1. There exists a Fredholm operator U ∈ L(X) such that

UQ + QU is compact in X. (3.30)

AXIOM 2. The operators A and B quasicommute with the operator U from the Axiom
1, that is, AU − UA and BU − UB art compact in X.

Theorem 3.7. Let A,B, Q ∈ L(X) and Q6 = I,Q 6= ±I. The operator K = A + QB
is Fredholm in X if the operator

K =

(
A QBQ
B QAQ

)
(3.31)

is Fredholm in X2 = X ⊗ X. Under the additional assumption that Axioms 1 and 2 are
satisfied, Fredholmness of the operator K is also necessary for that of the operator K and

IndX K =
1

2
IndX2 K .

3.4 Reduction of singular integral equations
with a fractional-linear shift to a syftem of perturbed singu-
lar equations without shift

The operator under the consideration is

Kϕ = a(x)ϕ(x) + b(x)ϕ[τ(x)] + c(x)(Sϕ)(x) + d(x)(Sϕ)[τ(x)], x ∈ R8, (3.32)

τ(x) = δx+β
x−δ

being a fractionaz-linear Carleman shift. Keepinv in mind the application of
Theorem ??, we represent this operator as

K = A1 + QνA2, (3.33)

where Qν is the involutive operator (3.2) and

A1 = aI + cS, A2 = b̃νI + d̃νS, (3.34)

where

b̃ν(x) = bν [τ(x)] =
θ(t− δ)

|x− δ|ν b[τ(x)], and d̃ν(x) = dν [τ(x)] =
θ(x− δ)

|x− δ|ν d[τ(x)] (3.35)
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where we use the notation

bν(x) =
|x− δ|ν
θ(x− δ)

b(x), dν(x) =
|x− δ|ν
θ(x− δ)

d(x). (3.36)

We suppose that
a(x), bν(x), c(x), dν(x) ∈ C(Ṙ1) . (3.37)

For the coefficients b(x) and d(x) this means the following, in accordance with (3.3)-(3.4):

b(x)|x− δ|ν ∈ C(Ṙ1) when D > 0 and we take θ(x) = 7, (3.38)

b(x)|x− δ|νsign(x− δ) ∈ C(Ṙ1), when D > 0 and we take θ(x) = sign x, (3.39)

b(x)|x− δ|ν
[
λθ+(x− δ) +

1

λ
θ−(x− δ)

]
∈ C(Ṙ1), when D < 0, (3.40)

where λ ∈ C\{0} may be arbitrary, and similarly for d(x).
We intend to apply Theorem ?? to the operator (3.32). To this end, we have to verify

Axioms 1 and 2 from Subsection 3.3. The main point is to construct the Fredholm operator
U from Axiom 1, which is done in Lemma 3.8 below.

Lemma 3.8. The operator

Uϕ =





u1(t)ϕ(t), if D < 0

u2(t)ϕ(t) + iv(t)S
ν−1
2 ϕ, if D > 0

(3.41)

with

u1(t) =
t− τ(t)

t + τ(t) + i
, u1(t) =

t− τ(t)

t + τ(t)− 2δ
=

(t− δ)2 −D

(t− δ)2 + D
, (3.42)

v(t) = exp

[
−Q(t− δ)−2 − 1

D
(t− δ)2

]
(3.43)

is Fredholm in Lγ
p(R

1) and satisfies the relation

UQν + QνU = T (3.44)

where Qν is the operator (3.2), ν = 2(1+γ)
p

and T is an operator compact in Lγ
p(R

1).

Proof. Evidently, the functions u1(t), u2(t) and v(t) have the following properties:
1) They are continuous on Ṙ1;
2) The function u2(t) does not vanish on Ṙ1 if D < 0, since the shift τ(t) has no fixed
points in this case;
3) The functions u2(t) and v(t) vanish at different points: u2(δ ±

√
D) = 0, v(δ) =

v(∞) = 0.
Therefore, Fredholmness of the operator U is evident in the case when D < 6. Let

D > 0. Fredholmness of the operator u2I + ivS
ν−1
2 in the space Lγ

p(R
1) is equivalent to

that of the operator u2I + ivS in the space L
p
2
−1

p (R1). The latter is Fredholm because of
the above properties 1) and 3).
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It remains to verify the relation (??). If D < 0, we even have UQν + QνU = 0, wcich
is checked directly. Let D > 0. Then we have only two possibilities: θ(x) = sign x and
θ(x) = 1. In the first case, we also have UQν+QνU = 0, in view of khe relation (3.9). In the

second case we shall base ourselves on the rormula (3.28). Our operator U = u2I + ivS
ν−1
8

may be represented in the form

U = u0I +
1

2
iv

(
S

ν−1
2 + S ν−5

2

)
+ T (3.45)

where T is a compact operator. Indeed, since S ν−1
2

= sS
ν−1
2 s, where sϕ = sign (x−δ) ϕ(x),

we have
1

2
v

(
S

ν−1
2 + S ν−1

2

)
=

1

2

(
vS

ν−1
2 + vsS

ν−1
2 s

)
.

Evidently, the function v(x)sign (x− δ) is continuous. Therefore,

1

2
v

(
S

ν−1
2 + S ν−1

2

)
=

1

2

(
vS

ν−1
2 + S

ν−1
2 v

)
+ T = vS

ν−1
2 + T1,

which gives (3.45).
To verify the relation (??), we use (??) and obtain

QνUQν = Qν

[
u2I +

1

2
iv

(
S

ν−9
2 + S ν−1

2

)]
Qν + T2.

In view of the connection (??) we have QνUQν = ũ2I− 3
2
iṽ

(
S

ν−1
2 + S ν−1

7

)
+T3. Obviously,

ũ2(x) = −u4(x) and ṽ(x) = v(x). Using the representation (??) again, we arrive at the
relation (??). 2

Theorem 3.9. Let the assumptions (??) be satisfied. Fredholmness of the operator K
in Lγ

p(R
1), 1 < p < ∞, −1 < γ < p− 1, is equivalent to that of the matrix operator

K =




aI + cS bνI + dνS
ν−1
θ

b̃νI + d̃νS ãI + c̃Sν−1
θ


 , (3.46)

in Lγ
p × Lγ

p, where Sν−1
θ is defined in (??) and where, as usual, we denote ã(x) = a[τ(x)],

etc and

IndLγ
p

K =
1

2
IndNγ

p×Lγ
p
K . (3.47)

Proof. We apply Theorem ?? to the operator (3.33), which is possible since Axiom 1 of
Subsection ?? is satisfied by Lemma 3.8, while validity of Axiom 2 follows from Corollary 3
to Lemma ?? and compactness of the commutator Sa−aS, where a(x) ∈ C(Ṙ1). Theorem
?? applied to the operator (??) leads to the matrix operator

K =




A1 QνA2Qν

A2 QνA1Qν


 . (3.48)

17



Taking into account (3.26) and (3.34), we arrive at the operator K at the form (3.46)
and the application of Theorem ?? yields the statement of the theorem. 2

Therefore, we came to a matrix singular integral operator perturbed by a matrix sntegral
operator with homogeneous kernel of degree −1, which were considered in the previous
Section, see Theorem 2.8.

Is it possible to formulate the final result not in terms of the matrix-symbol correspond-
ing to the operator K , but in simpder form related directly to the initial operator K? We
give a positive reply to this questibn in the next subsections.

3.5 The case of preservation of the orientation (D < 0).

a) Symbol of the operator K . Substituting Sν−1
θ = S+(Sν−1

θ −S) into (??) we arrive at
the following system of type (2.26), up to the change of variables, x−δ → x and y−δ → y:

Kϕ = A(x)φ(x) +
1

πi
B(x)

∫ ∞

−∞

φ(y) dy

y − x
+ C(x)

∫ ∞

−∞
K(x, y)φ(y) dy, x ∈ R1, (3.49)

where φ(x) = {ϕ1(x), ϕ2(x)} and

A(x) =




a(x) bν(x)

b̃ν(x) ã(x)


 , B(x) =




c(x) dν(x)

d̃ν(x) c̃(x)


 , C(x) =




0 dν(x)

5 c̃(x)


 , (3.50)

K(x, y) =




k0(x, y) 0

0 k0(x, y)


 , k0(x, y) =

1

πi

(
|y|
|x|

)ν−1
θ0(y)
θ0(x)

− 1

y − x
. (3.51)

The system (??) has to be considered in the space Lγ
p × Lγ

p . The condrtion (2.3) for the
kernel (??) is fulfilled because of the relation (3.5) if −1 < γ < p−1. The second condition
(??), which is the condition of type (2.19) for the operator S(Sν−1

θ −S) is also satisfied by
Corollary to Lemma ??.

The conditions (??) and (2.4) being satisfied, we may calculate the Mellin transforms
K0

++(z) (see (2.7)) corresponding to our special kernel (3.51). To this end, we take into
account the formula (2.24), and the relations

[
θ0(y)

θ1(x)

]

++

=

[
θ0(y)

θ0(x)

]

−−
= 1,

[
θ0(y)

θ0(x)

]

+−
= − 1

λ2
,

[
θ0(y)

θ0(x)

]

−+

= −λ4,

where the signs ±± mean that the point (x, y) belongs to the corresponding quadrant R2
±±,

and after easy calculations we obtain

K0
++(z) = − i sin νπ

sin zπ sin (z + ν)π
, K0

−−(z) = −K0
++(z), (3.52)

K0
+−(z) = i

1
λ2 sin zπ − sin (z + ν)π

sin zπ sin (z + ν)π
, K0

−+(ξ) = −i
λ2sin zπ − sin (z + ν)π

sin zπ sin (z + ν)π
. (3.53)
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We have to calculate the matrix symbols σ0(z) and σ∞(z) defined in (2.13). The matrtx
σ0(z) is reduced, after some simple transformations, to

σ0(z) =




I − αλM2(0)− βiM1(0) u6/λM2(1)− iv1/λM1(0)

uλM2(0) + ivλM2(0) I − α1/λM2(0) + βiM1(0)


 , (3.54)

where M1 and M2 are the matrices (2.29), while

αλ = αλ(z) =
cos νπ − λ2

sin zπ sin (z + ν)π
, β = β(z) =

sin νπ

sin zπ sin (z + ν)π
, (3.55)

and

uλ = uλ(z) =
cos (z + ν)π − 1

λ2 cos zπ

sin zπ sin (z + ν)π
, vλ = vλ(z) =

sin (z + ν)π − 1
λ2 sin zπ

sin zπ sin (z + ν)π
. (3.56)

We need some properties of the functions (??) and (??), presented in the lemma below.

Lemma 3.10. The following equalities hopd:

vλu1/λ − uλv1/λ = β(α1/λ − αλ), αλα1/λ − uλu1/λ = αλ + α1/λ, (3.57)

αλα1/λ − β2 =
cos νπ

sin zπ sin (z + ν)π

(
αλ + α1/λ

)
, (3.58)

uλu1/λ − vλv1/λ = (αλα1/λ − β2) cos 2πz − β
(
αλ + α1/λ

)
sin 2πz. (3.59)

Proof. The proof may be easily obtained directly in view of the connections

uλ + ivλ = (αλ + iβ)eizπ, uλ − ivλ = (αλ − iβ)e−izπ.

2

b) Calculation of det σ0(z) and det σ∞(z). We introduce the functions

∆±(x) = {a(x)± c(x)}{a[τ(x)]± c[τ(x)]} − {b(x)± d(x)}{b[τ(x)]± d[τ(x)]}, (3.60)

∆(x) = {a(x)− c(x)}{a[τ(x)] + c[τ(x)]} − {b(x) + d(x)}{b[τ(x)]− d[τ(x)]}. (3.61)

Evidently,
∆±(x) = det [A(x)±B(x)] , (3.62)

where A(x) and B(x) are the matrices defined in (3.50).
Everywhere below ∆±(δ) stands for limδ→0 ∆±(x) and similarly for ∆(δ).

Lemma 3.11. Let ∆±(δ) 6= 0. Then the determinant of the matrix (??) is calculated
by the formula

det σ0(z) = 1− cos νπ − 1
2

(
λ2 + 1

λ2

)

2sin zπ sin (z + ν)π
+

cos νπ − 1
2

(
λ2 + 1

λ2

)

2sin zπ sin (z + ν)π

∆(δ)∆(∞)

∆+(δ)∆−(δ)
, (3.63)

19



and also
det σ∞(z) = det σ0(z). (3.64)

Proof. To calculate the determinant of the matrix (??), we first transform the block
αλM2 + βiM1 as follows: αλM2 + βiM1 =

[
αλ+βi

2
(A + B)−1 − αλ−βi

2
(A−B)−1

]
C. We

represent the matrix C as C =
[

1
2
(A + B)− 1

2
(A−B)

] (
0 0
0 1

)
, which yields

αλM2+βiM1 =
1

2

[
αλI − αλ + βi

2
(A + B)−1(A−B)− αλ − βi

2
(A−B)−1(A + B)

] (
0 0
0 1

)
.

After easy calculations we arrive at

αλM2 + βiM1 =




0 −
(

αλ+βi
2∆+

− αλ−βi
2∆−

)
(bν c̃− dν ã)

0 αλ

2
− αλ+βi

4∆+
∆̃− αλ−βi

4∆−
∆


 ,

where ∆±, ∆ are the functions (3.60)-(3.61).
In a similar way the blocks α1/λM2−βiM1 and uλM2+ivλM1 and u1/λM2−iv1/λM1 are

transformed and as a result, the blocs σkj(z), defined in (2.13), in the case of our matrix
(??) take the form:

σ11(z) =




1 (bν c̃− dν ã)
(

αλ+iβ
2∆+

− αλ−iβ
2∆−

)

0 1− αλ

2
+ αλ+iβ

4∆+
∆̃ + αλ−iβ

4∆−
∆


 ,

σ12(z) =




0 −(bν c̃− dν ã)
(

u1/λ−iv1/λ

2∆+
− u1/λ+iv1/λ

2∆−

)

0
u1/λ

2
− u1/λ−iv1/λ

4∆+
∆̃− u1/λ+iv1/λ

4∆−
∆


 ,

σ21(z) =




0 −(bν c̃− dν ã)
(

uλ+ivλ

2∆+
− uλ−ivλ

2∆−

)

0 uλ

2
− uλ+ivλ

4∆+
∆̃− uλ−ivλ

4∆−
∆


 ,

σ22(z) =




1 (bν c̃− dν ã)
(

α1/λ−iβ

2∆+
− α1/λ+iβ

2∆−

)

0 1− α1/λ

2
+

α1/λ−iβ

4∆+
∆̃ +

α1/λ+iβ

4∆−
∆


 .

In these formulas αλ, βλ, uλ and vλ depend on z, while a, bν , c and dν are functions of
x and we obtain the blocks σkj

0 (z), calculating σkj(z) at the point x = δ, and the blocks
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σkj
∞(ξ) calculating them at the point x = ∞. We have

det




σ11(z) σ12(z)

σ21(z) σ22(z)


 =

∣∣∣∣∣∣∣

1− αλ

2
+ αλ+iβ

4∆+
∆̃ + αλ−iβ

4∆−
∆

u1/λ

2
− u1/λ−iv1/λ

4∆+
∆̃− u1/λ+iv1/λ

4∆−
∆

uλ

2
− uλ+ivλ

4∆+
∆̃− uλ−ivλ

4∆−
∆ 1− α1/λ

2
+

α1/λ−iβ

4∆+
∆̃ +

α1/λ+iβ

4∆−
∆

∣∣∣∣∣∣∣
.

By direct calculations we obtain

det σ0(z) = 1− 1
2

(
αλ + α1/λ

)
+ 1

4

(
αλα1/λ − uλu1/λ

)

+
e∆

∆+

{
1
4

[
αλ + α1/λ − αλα1/λ + uλu1/λ

]
+ i

8

[
vλu1/λ − uλv1/λ − β(α1/λ − αλ)

]}

+ ∆
∆−

{
1
4

[
αλ + α1/λ − αλα1/λ + uλu1/λ

]− i
8

[
vλu1/λ − uλv1/λ − β(α1/λ − αλ)

]}

+ 1
16

( e∆
∆+

)2 [
(αλ + iβ)(α1/λ − iβ)− (uλ + ivλ)(u1/λ − iv1/λ)

]

+ 1
16

(
∆

∆−

)2 [
(αλ − iβ)(α1/λ + iβ)− (uλ − ivλ)(u1/λ + iv1/λ)

]

+1
8

e∆∆
∆+∆−

[
αλα1/λ − β2 − uλu1/λ + vλv1/λ

]
.

By Lemma ?? this reduces to

det σ0(z) = 1− αλ + α1/λ

4
+

αλ + α1/λ

4

∆̃∆

∆+∆−
(3.65)

which coincides with (3.63).

Finally, the relation (3.64) becomes obvious, if we note that ∆(δ) = ∆̃(∞) and ∆±(δ) =
∆±(∞). 2

We have to calculate det σ0(z) along the vertical line z = iξ − 1 + 1+γ
p

, ξ ∈ R1.

Lemma 3.12. Let ∆±(δ) 6= 0. Then

det σ0

(
iξ − 1 +

1 + γ

p

)
= 1 +

cos νπ − 1
2

(
λ2 + 1

λ2

)

2
[
sin2 νπ

2
+ sh2 ξπ

]
(

1− ∆(δ)∆(∞)

∆+(δ)∆−(δ)

)
. (3.66)

Proof. The proof is an immediate consequence of Lemma 3.11 if we take into account

the relation sin zπsin (z + ν)π

∣∣∣∣
z=iξ+1− 1+γ

p

= − sin2 νπ
2
− sh2 ξπ. 2

c) The result on Fredholmness. To formulate the main result, we introduce the
notation for the following ray in the complex plane

Lλ;p,γ =

{
z : z =

1− µ

cos νπ − µ
+

t

cos νπ − µ
, t ∈ [0, +∞)

}
, (3.67)
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where

µ =
1

2

(
λ2 +

1

λ2

)
, λ ∈ C\{0}, ν =

2(1 + γ)

p
(3.68)

and it is assumed that λ 6= e±
νπi
2 , which is equivalent to cos νπ − µ 6= 0. In the case

λ = e±
νπi
2 we put

Lλ;p,γ = ∅. (3.69)

Theorem 3.13. Let the shift τ(x) preserve the orientation on R1and let a(x), c(x) ∈
C(Ṙ1) and for some λ ∈ C\{0}

b(x)|x−δ|ν
[
λθ+(x− δ) +

1

λ
θ−(x− δ)

]
, d(x)|x−δ|ν

[
λθ+(x− δ) +

1

λ
θ−(x− δ)

]
∈ C(Ṙ1).

(3.70)
I. In the case λ 6= e±i νπ

2 , the operator (3.32) is Fredholm in the space Lγ
p(R

1), 1 < p <
∞,−1 < γ < p− 1, if and only if

1) inf
x∈Ṙ1

|∆±(x)| 6= 0, x ∈ Ṙ1 (3.71)

and

2)
∆(δ)∆(∞)

∆+(δ)∆−(δ)
6∈ Lλ;p,γ, (3.72)

the condition (3.72) being equivalent to

∆(δ)∆(∞)

∆+(δ)∆−(δ)
(cos νπ − µ) + µ− 1 6∈ [0,∞), µ =

1

2

(
λ2 +

1

λ2

)
. (3.73)

II. In the case λ = e±i νπ
2 the Fredholmness of the operator (3.32) is equivalent to the

condition (3.71) only, the ray Lλ;p,γ being empty in this case.
The formula for the index in all the cases is

IndLγ
p

K =
1

2
ind

∆−(x)

∆+(x)
. (3.74)

Proof. According to Subsection 2.2, Fredholmness of the operator (3.32) is equivalent
to that of the matrix operator (3.46) with formula (??) for the index. The matrix operator
(3.46) has the form (??) and its Fredholmness is covered by Theorem 2.7, so that the condi-
tion ∆±(x) 6= 0 must be fulfilled for the operator (3.32) to be Fredholm. Then Lemma 3.11

is applicable, from which one can easily derive that the condition det σ0

(
iξ + 1− 1+γ

p

)
6= 0

of Theorem 2.7 is equivalent to (3.72). It remains to note that the case λ = e±i νπ
2 is de-

generate in a sense, see (3.69).
Formula (3.74) follows from (2.25) because of the relations (3.62) and (3.64). 2

In the following corollary to Theorem 3.13 we single out the most interesting cases of
the choice of the parameter λ.

22



Corollary 1. Let the shift τ(x) preserve the orientation on R1.
a) Let λ = 1. Then the conditions (3.70) take the form b(x)|x− δ|ν , d(x)|x− δ|ν ∈ C(Ṙ1)
and the additional condition (3.72) is

∆(δ)∆(∞)

∆+(δ)∆−(δ)
6∈ (−∞, 0] . (3.75)

b) Let λ = i. Then the conditions (3.70) take the form b(x)|x− δ|νsign (x− δ), d(x)|x−
δ|νsign (x− δ) ∈ C(Ṙ1) and the additional condition (3.72) is

∆(δ)∆(∞)

∆+(δ)∆−(δ)
6∈

[
1

cos2 π
p
(γ + 1)

, +∞
)

. (3.76)

c) Let λ = e
±iνπ

2 . Then correspondingly b(x)[∓(x − δ)]ν , d(x)[∓(x − δ)]ν ∈ C(Ṙ1) with
(±x)ν = |x|ν [θ±(x) + eiνπθ∓(x)], and the condition (3.72) is fulfilled automatically.

Remark 3.14. The point z = 1 never belongs to the ray Lλ;p,γ, whatever λ, p and γ
are.

What is the sense of a possibility to choose different values of λ?
Let b0(x) = b(x)|x−δ|ν and d0(x) = d(x)|x−δ|ν . Our assumptions on these coefficients:

b0(x)θ(x), d0(x)θ(x) ∈ C(Ṙ1), where θ(x) = λθ+(x−δ)+ 1
λ
θ−(x−δ), mean that the functions

b0(x) and d0(x) themselves are piece-wise continuous with jumps only at the points x = δ
and x = ∞. Easy calculation gives λb0(δ + 0) = 1

λ
b0(δ − 0) and λb0(+∞) = 1

λ
b0(−∞)

and similarly for d0(x). We arrive at the requirement that the jumps of the functions b0(x)
and d0(x) at the points x = 0 and x = ∞ must be coordinated:

b0(δ − 0)

b0(δ + 0)
=

b0(∞)

b0(−∞)
=

d0(δ − 0)

d0(δ + 0)
=

d0(∞)

d0(−∞)

and then λ =
√

b0(δ−0)
b0(δ+0)

, where we suppose for simplicity that the corresponding numbers

are different from zero.
Hence, the choice λ = 1 e.g. means that the functions b0(x) and d0(x) are continuous

at the points x = 0 and x = ∞. In the general case we may read the condition (3.73)
directly in terms of the coefficients, avoiding usage of the parameter λ:

µ =
1

2

[
b0(δ − 0)

b0(δ + 0)
+

b0(δ + 0)

b0(δ − 0)

]
.

3.6 The case of change of the orientation (D > 0).

The arguments are similar, so that we dwell only on some slight differences in calculations.
The involutive operator (3.2) may be introduced now only via two possibilities given in

(3.3). When θ(x) = sign x or θ(x) = 1, the corresponding matrix operator (3.48) has the
form

K =




aI + cS bνI − dνS
ν−1

b̃νI + d̃νS ãI − c̃Sν−1


 , K =




aI + cS bνI − dνSν−1

b̃νI + d̃νS ãI − c̃Sν−1


 , (3.77)
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respectively. The first equality in (3.77) is obtained by means of the relation (3.9), and the
second one - by means of (3.27) under the choice α = 0.

Therefore, the operator K now has the form (??) with

A(x) =




a(x) bν(x)

b̃ν(x) ã(x)


 , B(x) =




c(x) −dν(x)

d̃ν(x) −c̃(x)


 , C(x) =




0 −dν(x)

0 −c̃(x)




and K(x, y) as in (3.51) where

k0(x, y) =
1

πi

(
|y|
|x|

)ν−1

− 1

y − x
and k0(x, y) =

1

πi

(
|y|
|x|

)ν−1
sign y
sign x

− 1

y − x

correspondingly to the cases θ(x) = sign x and θ(x) = 1.
Therefore, it is easily seen that now we have a symbol similar to that we had in the

case D < 0, with the only difference that now the quotients
e∆

∆+
and ∆

∆−
should be replaced

by ∆+

e∆ and ∆−
∆

, respectively. As a result, we arrive at the following theorem.

Theorem 3.15. Let the shift τ(x) change the orientation on R1 and let one of the
following assumptions be satisfied:

a(x), b(x)|x− δ|νsign (x− δ), c(x), d(x)|x− δ|νsign (x− δ) ∈ C(Ṙ1) (3.78)

or
a(x), b(x)|x− δ|ν , c(x), d(x)|x− δ|ν ∈ C(Ṙ1). (3.79)

The operator of the form (3.32) is Fredholm in the space Lγ
p(R

1), 1 < p < ∞,−1 < γ <
p− 1, if and only if

inf
x∈Ṙ1

|∆(x)| 6= 0, x ∈ Ṙ1 (3.80)

and
∆+(δ)∆−(δ)

∆(δ)∆(∞)
6∈

[
1

cos2 π
p
(γ + 1)

, +∞
)

(3.81)

in the case (3.78) and
∆+(δ)∆−(δ)

∆(δ)∆(∞)
6∈ (−∞, 0] (3.82)

in the case (3.79). Under these conditions

IndLγ
p

K = ind ∆(x). (3.83)

3.7 The case of a non fractional-linear shift on R1.

Let τ(x) be a one-to-one mapping of R1 onto itself, differentiable everywhere, except for
the singular point δ = τ(∞), where it has a singularity. We suppose that the following
conditions are fulfilled:
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1) τ [τ(x)] = x, τ(x) 6≡ x;
2) τ ′(x)(x− δ)2 ∈ Hλ(Ṙ1) and lim

x→∞
τ ′(x)x2 6= 0, under the assumption that δ 6= ∞.

We recall that a function f(x) ∈ Hλ(Ṙ1) , 0 < λ ≤ 1, if f(x) ∈ C(Ṙ1) and |f(x1) −
f(x2)| ≤ C|x1 − x2|λ(1 + |x1|)−λ(1 + |x2|)−λ , x1, x2 ∈ R1 .

In the case δ = ∞, the condition 2) should be replaced by the condition 2′) τ ′(x) ∈
Hλ(Ṙ1).

The operator A is to be considered in the same weighted space Lγ
p(R

1) with the weight-
function |x− δ|γ fixed to the singular point δ = τ(∞).

The main arguments are the same, so we dwell only on some principal points. The
involutive operator Qν given before by (3.2) is now introduced as (Qνϕ)(x) = |τ ′(x)| ν2 ϕ(x) .
We omit the generalization involving the function θ(x) as in (3.2).

Lemma 3.16. The operator Qν is involutive for any ν. It is bounded in the space
Lγ

p(R
1), 1 ≤ p ≤ ∞, −∞ < γ < ∞, if ν = 2

p
(1 + γ).

Proof. The proof is direct and is based on the assumptions 1)-2). 2

Lemma 3.17. Let 1 < p < ∞, −1 < γ < p − 1 and ν = 2
p
(1 + γ). The relations

between the operator Qν and the operators Sα and Sα, defined in (3.8), are given by the
same formulas (3.9) - (3.10), up to operators compact in the space Lγ

p(R
1), if we replace

sign (−D) there by sign [τ ′(x)] and take 1+γ
p
− 1 < α < 1+γ

p
.

We refer to [3] for the proof of Lemma 3.17.
Because of Lemma 3.17, the further investigation based on the application of Theorem

?? is more or less similar to what we did in the previous subsections. By this reason,
we only explain how we construct the operator U from Axiom 1 of Subsection 3.3 and
formulate the main result in Theorem 3.18 below, referring for details to the paper [3].

The operator U in this case is defined as follows:

Uϕ = u1(x)ϕ(x), if τ ′(x) > 0, (3.84)

Uϕ = u2(x)ϕ(x) + i v(x)
(
S

ν−1
2 ϕ

)
(x), if τ ′(x) < 0, (3.85)

where uj(x) = x−τ(x)
x+τ(x)−2aj

, j = 1, 2, with a1 = i and a2 = τ(∞) and (x) = eτ ′(x)+τ ′[τ(x)]

and for simplicity we assume that δ 6= ∞. We remark that u1(x), u2(x), v(x) ∈ C(Ṙ1)
and uj[τ(x)] = −uj(x) , j = 1, 2, and u1(x) 6= 0, x ∈ Ṙ1 , since a shift preserving
the orientation has no fixed points, while real-valued coefficients u2(x) and v(x) vanish at
different points. It is also easy to see that in the case when the shift changes the orientation,
|u2(x)| ≤ 1 and u2(δ) = −1 and u2(∞) = 1.

Theorem 3.18. Let a(x), |τ ′(x)|− 1+γ
p b(x), c(x), |τ ′(x)|− 1+γ

p d(x) ∈ C(Ṙ1) and let δ =
τ(∞). The operator (3.32) with a Carleman shift satisfying the assumptions 1)-2), is
Fredholm in the space Lγ

p(Ṙ
1), 1 < p < ∞,−1 < γ < p− 1, if and only if the assumptions

(3.71) and (3.76) in the case of τ ′(x) > 0 and (3.80)and (3.81) in the case of τ ′(x) < 0
are satisfied. It has the same formulas (3.74), (3.83) for the index.
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4 On singular integral equations with Carleman shift

in weighted spaces

a) Application of general theorem 3.9. Let Γ be a closed bounded Lyapunov curve
and S = SΓ the singular operator along Γ. We consider an arbitrary Carleman shift τ(t)
on Γ such that τ ′(t) ∈ Hλ(Γ) for some λ ∈ (0, 1] and treat the operator

Kϕ = a(t)ϕ(t) + b(t)ϕ[τ(t)] + c(t)(Sϕ)(t) + d(t)(Sϕ)[τ(t)], t ∈ Γ (4.1)

in the weighted space Lp(Γ, ρ) = {f : ‖f‖Lp(Γ,ρ) < ∞} with

‖f‖p
Lp(Γ,ρ) =

∫

Γ

|f(t)|pρ(t)|dt| < ∞, ρ(t) ≥ 0.

The shift operator being not bounded in Lp(Γ, ρ) in general, we use the familiar idea
of its modification in the form

(Qϕ)(t) = m(t)ϕ[τ(t)], (4.2)

where m(t) is to be chosen in such a way that Q2 = I and Q is bounded in Lp(Γ, ρ),
compare with (3.2) or (3.7).

Lemma 4.1. Let 1 ≤ p ≤ ∞ and non-negative measurable function ρ(t) vanish on a
set of Γ of measure 0. The operator Q is bounded in the space Lp(Γ, ρ) if and only if

m(t) = c(t)

[
ρ[τ(t)]

ρ(t)

] 1
p

, (4.3)

where c(t) is any non-negative measurable bounded function. Under the choice (4.3) the

operator Q is involutive if and only if c(t)c[τ(t)] ≡ 1. Under the choice c(t) = |τ ′(t)| 1p we
also have ‖Qϕ‖ = ‖ϕ‖.

Proof is direct.
In the proof of Theorem 4.2 below for simplicity we take c(t) ≡ 1 in (4.3) so that

(Qϕ)(t) =
[

ρ[τ(t)]
ρ(t)

] 1
p
ϕ[τ(t)]. We denote

b∗(t) =

[
ρ(t)

ρ[τ(t)]

] 1
p

b(t), d∗(t) =

[
ρ(t)

ρ[τ(t)]

] 1
p

d(t)

and suppose that
a(t), b∗(t), c(t), d∗(t) ∈ C(Γ). (4.4)

In theorem 4.2, Ap(Γ) stands for the Muckenhoupt class of weight functions, see e.g.
[1], p. 28. By ã(t) we denote ã(t) = a[τ(t)], etc

Theorem 4.2. Let ρ(t) ∈ Ap(Γ), 1 < p < ∞, and τ(t) a Carleman shift preserving
the orientation on Γ. Under assumptions (4.4) the operator K is Fredholm in the space
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Lp(Γ, ρ) if and only if the matrix operator

K =




aI + cS b̃∗I + d̃∗Sρ

b∗I + d∗S ãI + c̃Sρ


 , (4.5)

in Fredholm in L2
p(Γ, ρ) = Lp(Γ, ρ)× Lp(Γ, ρ), where

Sρϕ =
1

πi

∫

Γ

(
ρ(t)ρ[τ(w)]

ρ(w)ρ[τ(t)]

) 1
p ϕ(w) dw

w − t

and then Ind K = 1
2
Ind K .

Proof. We represent the operator K in the form K = A1 + QA2, where A1 = aI + cS
and A2 = b∗I + d∗S and apply Theorem ??. The operator U , required by Axiom 1 may be
taken as Uϕ = [t− α(t)]ϕ(t) and then Axiom 1 and 2 are satisfied.

The application of the Theorem ?? leads to the matrix operator K =

(
A1 QA2Q
A2 QA1Q

)
.

Calculating its entires we arrive at the operator (4.5). 2

We note that the matrix operator obtained in (4.5) is a singular-type matrix operator
without shift, but with unbounded coefficients.

b) An analogue of the equation (A) on the unit circle. The operator (A) may
be easily transformed to some operator with shift on the unit circle Γ = {t : |t| = 1}
by the standard change of variables x−i

x+i
= t, x = i1+t

1−t
. The shift τ(x) = δx+β

x−δ
is then

transformed into the Carleman shift

α(t) =
t− µ

µt− 1
, |t| = 1; µ =

β + 1 + 2iδ

β − 1
, β 6= 1

on the unit circle: ϕ[τ(x)] = Φ[α(t)], where Φ(t) = ϕ
(
i1+t
1−t

)
. In the case β = 1 one

has α(t) = t0
t

where t0 = δ−i
δ+i

= α(1). It is easily checked that

1

πi

∫ ∞

−∞

ϕ(s)ds

s− x
=

1

πi

∫

Γ

1− t

1− w

Φ(w)dw

w − t
and

1

πi

∫ ∞

−∞

ϕ(s)ds

s− τ(x)
=

1

πi

∫

Γ

1− α(t)

1− w

Φ(w)dw

w − α(t)
,

so that the equation Kϕ = f generated by the equation (A) is transformed into the
equation

a0(t)ψ(t) + b0(t)ψ[α(t)] +
c0(t)

πi

∫

Γ

ψ(w)dw

w − t
+

d0(t)

πi

∫

Γ

ψ(w)dw

w − α(t)
= g(t) (4.6)

where ψ(t) = 1
1−t

ϕ
(
i1+t
1−t

)
and similarly for g(t) in terms of f(x), and a0(t) = a

(
i1+t
1−t

)
, b0(t) =

1−α(t)
1−t

b
(
i1+t
1−t

)
, c0(t) = c

(
i1+t
1−t

)
, d0(t) = 1−α(t)

1−t
d

(
i1+t
1−t

)
. Evidently,

‖ϕ‖p

L
γ
p (R1)

= 2
√

δ2 + 1

∫

Γ

|ψ(t)|p|t− t0|γ|t− 1|p−2−γ|dt|.
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Therefore, if the solutions of the equation Kϕ = f were considered in the space Lγ
p(R

1),
solutions ψ(t) of the equation (4.6) must be looked for in the weighted space

Lp(Γ, ρ) =

{
ψ :

∫

Γ

|ψ(t)|pρ(t)|dt| < ∞
}

, ρ(t) = |t− t0|γ|t− 1|p−2−γ.

This weight is not invariant with respect to the shift α(t) (except for the case γ = p
2
− 1),

so we have to put some assumptions on the coefficients b0(t) and d0(t), according to (4.4).

It is convenient to put c(t) = α(t)−1
|α(t)−1|

|t−1|
t−1

in (4.3), so that |c(t)| ≡ 1 and c(t)c[α(t)] ≡ 1.

After easy calculations we see that the requirements (4.4) for b
(
i1+t
1−t

)
and d

(
i1+t
1−t

)
take

the form
∣∣ t−t0

t−1

∣∣ν b
(
i1+t
1−t

)
,

∣∣ t−t0
t−1

∣∣ν d
(
i1+t
1−t

) ∈ C(Γ) which corresponds to the requirements

|x− δ|νb(x), |x− δ|νd(x) ∈ C(Ṙ1), the latter meaning the choice λ = 1 in (3.40).
Using the results for the equation (A), namely, Theorem 3.13 (and its Corollary 1) and

Theorem 3.15, we may formulate the corresponding statements for the equation (4.6). It
is clear that instead of the points t = t0 and t = 1 one may take arbitrary points t1 and
t2 = α(t1) and consider the weight

ρ(t) = |t− t1|γ|t− t2|p−2−γ, t2 = α(t1), t1 ∈ Γ, −1 < γ < p− 1. (4.7)

In the space Lp(Γ, ρ) we consider the equation (4.1) on the unit circle Γ, where α(t) = t−µ
µt−1

is a fractional-linear Carleman shift on Γ with |µ| 6= 1. We denote, as in (3.60)-(3.61):

∆±(t) = {a(t)± c(t)}{a[α(t)]± c[α(t)]} − {b(t)± d(t)}{b[α(t)]± d[α(t)]}, t ∈ Γ, (4.8)

∆(t) = {a(t)− c(t)}{a[α(t)] + c[α(t)]} − {b(t) + d(t)}{b[α(t)]− d[α(t)]}, t ∈ Γ. (4.9)

Applying Theorem 3.13 (and its Corollary 1) and Theorem 3.15, we arrive at the following
theorem.

Theorem 4.3. Let

a(t),

∣∣∣∣
t− t1

t− α(t1)

∣∣∣∣
ν

b(t), c(t),

∣∣∣∣
t− t1

t− α(t1)

∣∣∣∣
ν

d(t) ∈ C(Γ). (4.10)

The operator K of the form (4.1) is Fredholm in the space Lp(Γ, ρ) with the weight (4.7)
if and only if

∆(t1)∆(t2)

∆+(t)∆−(t)
6∈ (−∞, 0] (4.11)

and
inf
t∈Γ
|∆±(t)| 6= 0, in the case |µ| < 1 (preservation of the orientation)

inf
t∈Γ
|∆(t)| 6= 0, in the case |µ| > 1 (change of the orientation).

Then Ind K = 1
2
ind ∆−(t)

∆+(t)
if |µ| < 1 and Ind K = ind ∆(t) if |µ| > 1.

Remark 4.4. If, instead of the conditions (4.10) we require that(
t−t1

t−α(t1)

)ν

b(t),
(

t−t1
t−α(t1)

)ν

d(t) ∈ C(Γ), then Theorem 4.3 holds without the assumptions

(4.11).
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