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Singular integral equations on the real line
with a fractional-linear Carleman shift

1 Introduction

Let 7(x) = % be a fractional linear shift on R' satisfying the Carleman condition

Tlr(z)] = 2 and let
)
T ) oo 0 — X

We consider Fredholmness (=Noetherity) of singular integral operator with a fractional-
linear shift:

K¢ = a()p(x) + bz)e[r(2)] + c(2)(Se) (@) + d(z)(Sp)[r(2)], =€ R (4)

in the case of continuous coefficients. As is well known, the shift operator Q¢ = ¢[7(x)]
is not bounded in L,(R'). Fredholm properties of the operator K are easily investigated

in the special weighted space LE 71(R1) with the weight function depending on p, see [5]
or the book [6]. In that space the operators of the form (A) generate an algebra modulo
compact operators.

However, it is of importance to know Fredholm properties of the operator (A) in the
weighted space

L) ={e: [ le-orlplas < oo,

when the weight "fixed” to the singular point z = § of the shift 7(x) has the exponent
v € (—1,p—1) not depending on p. Such a necessity is caused not only by a natural desire
to have an information about solvability of equations in the non-weighted case v = 0, but
also by the fact that in applications the special choice v = § — 1 proves to be restrictive,
see applications to potential operators with shifts in [16] and [6].

Such a modification of the setting of the problem, from LE _I(Rl) to L)(R'"), seeming

p_
slight from the first point of view, radically changes the matter. In the space L2 1(Rl),
the Fredholm theory of the equation (A) is of nature typical for singular integral equations



with Carleman shift on a bounded curve. In the general case of the space Lg(Rl), the
Fredholmness conditions prove to be more complicated, see for example Theorems 3.13
and 3.15, including an ”additional” condition, see (3.81), (3.82) or (3.72). In this more
general case the operator K reduces not to just a singular operator, as it happens in the

case of the space L§ 71(R1), but to such an operator perturbed by some integral operator
with homogeneous kernel.

Results of such a kind were obtained long ago in [16] and presented in the book [6].
Equations of the type (A) on the real line were also considered in [14]-[15] in the case
of the shift preserving the orientation and in these papers no ”additional” conditions of
Fredholmness appeared, but assumptions on the behaviour of the coefficients b(z) and d(z)
at infinity and at the singular point z = § were different in comparison with those in [6].
The approach in [15] was similar to that in [6], but via the technique of Gohberg-Krupnik
symbols for algebras of singular operators with discontinuous coefficients instead of using
properties of operators with homogeneous kernels. (We also mention the paper [10] where
the equation (A) was considered in terms of unbounded coefficients in the case when the
shift changes the orientation and a(x) + b(x) = 1, b(x) 4+ d(z) = 0, but these coefficients
may be discontinuous. The paper [11] is also relevant in a sense).

In this paper we undertake a reconsideration of the investigation from [16] and find
a unifying approach which covers simultaneously the results both from [16] and [15] and
explains why one may obtain, in a unified way, results with or without ”additional” con-
ditions of Fredholmness depending on what assumptions on the coefficients we make. The
presentation is based on the preprint [9].

It is natural to note that an attempt to transform the equation (A) to an equation on
the unit circle I' = {z : |z| = 1} does not help in the sense that we obtain the singular
equation with the fractional-linear shift on the circle not in the well studied case, but in the
case of unbounded coefficients. The latter equation on the circle also may be considered as
an equation with shift in the weighted space (with the weight not invariant with respect
to the shift). This equation itself needs to be investigated so that we have an equivalent
problem on the unit circle, but we investigate the equation (A) directly. However, in the
final section 4 we touch the problem of Fredholmness of the singular integral equations
with shifts in weighted spaces.

In Section 2, we consider first some general problem of perturbation of singular operators
by arbitrary such operators, the matrix case being also treated. We find the conditions
for such perturbations to be Fredholm operators, and obtain formulas for their indices,
which will allow us to arrive at the required conclusions for the operators (A). In Section
3 we give the investigation itself of the operators (A). We note that in Subsection 3.7 we
mention also the corresponding results for Carleman shift on R! which is not necessarily
fractional linear.



2 Singular integral operators perturbed
by integral operators with homogeneous kernels

In this section we describe normal solvability and calculate the index of perturbed singular
integral operators:

N = ale)p(e) + 2 [ EDY o) [* kwoty) dy = 1), ve R, (21

! o Y— 9]

where k(Ax, \y) = A 'k(x,y), A > 0. We treat the operator (2.1) in the weighted space

LI(RY) ={¢: /_ |z|"|@(z)Pdx < o0}, 1<p<oo, —l<y<p-—1L1 (2.2)
We assume that a(z), b(z), ¢(z) € C(R') and
—00 y P

Below we will have to impose also another condition on the kernel, namely
< d > k(t
/ v / (ty) dt‘ < . (2.4)
oo [yl v

L tE1
2.1 Preliminaries on equations with a homogeneous kernel

We refer to [7] for details on integral equations on the real line with homogeneous kernels.
a) Scalar case. Let

Ko := \p(z) + ch(q:)/ ki(z,9)p(y) dy = f(z), x € R, (2.5)
=1 00
where the kernels k;(z,y) are homogeneous of order —1 : k;(tz,ty) = t 'k;j(x,y), z,y €

R, t > 0, and the coefficients ¢;(x) € Lo(R') are assumed to have values ¢;(£0) and
cj(£00) understood in the following sense

lim esssup |c;(£x) —¢;(£0)| =0, lm esssup|cj(£z) — cj(£oo)] =0 (2.6)

N—oo 0<m<% N—oo >N

under the respective choice of the signs. Let

Khuw:/ b (1, +g)y dy (2.7)
0

denote the Mellin transforms of the kernels in the correspondent quadrants.



Theorem 2.1. Let ¢;(z) € Loo(R') have the values ¢;j(£0) and ¢;(+o00), j =1,2,...,n
in the sense of the definition (2.6). Then the operator K is Fredholm in L,(R',|z|), §
p<oo, —1<~v<p-—1, ifand only if

detao<z£+1—17>7é0 and detooo<z£+1—17>7é0 EeR, (28)

where
M S GHORLE) 3 (0K (2)
oo(z) = i . ;
2%(—0)’@—42) A+ ;CJ(—O)/CJ —(2)
and . .
A+ ; ¢j(+00)K7 41 (2) ; ¢j(+00)K7 4 (2)
Ooo(2) =

Under the conditions (2.8)

det oo (i€ +1 — ) 29)

- ju
det 0'0(25 +1-— T’y)

[nde(Rl’mw) K =1ind

b) Matrix case. For further goals we give also a matrix version of Theorem 2.1 for
the case of systems of equations with homogeneous kernels:

Ny = A(z)p(x) + C(x / K(z,y)o(y)dy = F(z), =€ R, (2.10)

where ¢ = (¢1,92, ..., om) and F' = (f1, fo, ..., fm) are vector-functions, A(z),C(z) and
K(z,y) are (m x m)-matrices. We assume that the matrix kernel

K(Jﬁ, y) = (kl'j(x7 y)):,njzl

has the entries k;(z,y) satisfying the conditions (2.3) and for simplicity suppose that the
entries of the matrices A(z) and C(x) are continuous on R'. Let

Kix(z) = (Kiyxs(2))]52 (2.11)
where .
Kij+(2) = / ki (£1, £y)y*~ ' dy (2.12)
0
and

(2.13)

00(2) = 5



where the (m x m)-blocs 047(z) and ¢ (z) have the form:

oil(z) = A(0) + COKss(2),  ol(z) = COK4(2), -
o3l(z) = COK_+ (), oR(z) = A(0) + C(O)K__(2) |

and similarly for 0% (z), k,j = 1,2 with A(0) and C(0) replaced by A(cc) and C(c0),
respectively.

Theorem 2.2. Let the entries of the matrices A(x) and C(x) be in C(RY) and the
entries of the matriz K(x,y) satisfy the conditions (2.4). The operator of the form (2.10)
is Fredholm in the space L7'(R';|z|7), 1 < p < oo, if and only if det A(z) #0, z € R
and

1 1
det o (z’é%—l—%) 20, detos (if—i—l—%) £0

for all € € RY. Under these conditions

p

det oy (2’6 +1-— ”—7)

p

det oo (if +1-— ”—V)
Ind N = ind

2.2 Reduction of equation (2.1) to a system of pair convolution
equations

Lemma 2.3. Let 1 <p < oo, —1<~v<p—1 and assumptions (2.3) be satisfied. If the
operator (2.1) is Fredholm in the space L) (R'), then its "characteristic” part a(x)I 4b(z)S
is also Fredholm in L)(R'), so that the conditions

a(z) £b(x) #0, zeR! (2.15)

are necessary for the operator (2.1) to be Fredholm in LY(R').

We refer to [6], p. 138 for the proof of this lemma.

To treat the operator IV, it is convenient to exclude first the singular operator S, basing
on Lemma 2.3. Let

Hp = / " ky)ely) dy -

o0

Lemma 2.4. Let 1 < p < oo,—1 <~y <p—1. Under the assumptions (2.3)-(2.4) the
operator N s Fredholm in Lg(Rl) simultaneously with the operator

(a®> = b*)I +acH — beH" | (2.16)
where the operator
H'o=SHp= / k' (@, y)ely) dy

5



also has homogeneous kernel:

kl(x,y):i,/oo k(. y) dt:i,/oo Kt sign y) ) (2.17)

) t—ux T ) o tyl—=

Proof. We have
(al —bS)N = (a* = b*)I +acH —bcH' + T, (2.18)

where T' is a compact operator. Then the statement of Lemma 2.4 follows from that of
Lemma 2.3. O

The proof of the following statement may be found in [6], p. 142, Remark 23.1.

Remark 2.5. There exist kernels homogeneous of degree —1, satisfying the conditions
(2.3), but not satisfying the conditions (2.4).

The main statement of this subsection is given by Theorem 2.7 below, in which we use
the following notation:

L+ MoK (2) = oKy (2)  AoKi—(2) — K3 _(2)

oo(2) = ,
MNK_4(2) — oKL (2) 14+ XK__(2) — pokL_(2)
and
( ) 1+ /\OOIC—H—(Z) - ,uOO]C_lH_(Z) )‘ooK:—i-— (Z) - :uoo]ci-— (2)
h MK (2) = 1okl (2) 1 Ak (2) — pockt_(2) |
where
~a(0)c(0) ~b(0)c(0)
Ao = a?(0) — b2(0)’ Ho = a?(0) — b2(0)’
N - a(o00)c(o0) _ b(o0)c(o0)
* a2(o0) — b2 (0)” " a2(00) — b2(c0)’
and

Kii(z) = / k(£1l,£y)y* 'dy and KL,.(2)= / kN (£, dy)y*dy (2.19)
0 0
are the Mellin transforms of the kernels k(=£1, £y) and k'(£1, +y).

Lemma 2.6. Under the condition (2.3), the Mellin transforms K1y (z) converge abso-
lutely for z =i+ 1 — HTW, —00 < & < oo. If the condition (2.4) is also satisfied, then the
Mellin transforms K1 (2) converge absolutely for the same z.

The functions K1, (z) are expressed in terms of the functions K14 (z) by means of the
formulas ‘

KL (2) = sz pom [Kii(2) cos zm + K_1(2)], (2.20)




KL (2)=— ! K_1(2) cos zm + K44(2)], (2.21)

KL (2) = Smi —[IC.(2) cos =7+ K__(2)) (2.92)
KL (2) = —Sm’i [ (2) cos 27+ Ko (2)] (2.23)

Proof. The convergence of the Mellin transforms for z = £ + 1 — 1+77 is evident. Let

us verify, for instance, the first of the formulas (2.20) - (2.23). We have

1 [~ * k(t, 1) 1 [ k(t1) gyt
Kl = — ld / ——dt = — —’dt/ — dy.
++(2) m./o Y Y Lyt —1 el ; y—% Y

Using the formula

o] z—ld z—1
0

y+a sin 7z —cosmz, a<0

see [4], N 3.222.2, we obtain
KL (2)=1ictg zw/ t7k(t,1) dt + i cosec zw/ tk(—t,1)dt,
0 0

which coincides with the right hand side in (2.20) after easy transformations. O

Theorem 2.7. Let a(z), b(z), ¢(z) € C(RY) and let the conditions (2.3) and (2.4) be
satisfied. The operator N is Fredholm in the space Lg(Rl), l<p<oo, —1<y<p—1,

if and only if a(x) £ b(x) #0, =€ R' and
1 1
det00<i§+1—ﬂ)7ﬁ0, detaw(if—i—l—ﬂ);&o
p p

for all € € R'. Under these conditions

. 1+~
—b det o4 Zf—i-l——

Indgy N = ind az) =bz) g ( d ) (2.25)
a(z) + b(z) det o (z'g t1- “f)

Proof. By Lemma 2.4, we may deal with the operator (2.16) instead of the operator V.
Applying Theorem 2.1, after direct calculations we arrive at the statement of the theorem.
O



2.3 Systems of singular integral equations
perturbed by integrals with homogeneous kernels

The result of the previous Subsection given in Theorem 2.7 may be extended to the matrix
operator

Ny = A(z)p(z) + B(x)(Se)(z) + C(x) /_Oo K(z,y)ely) dy = f(x) (2.26)

where ¢ = (¢1,¢2,...,0m), A(z), B(x), C(z) are (m x m)— matrices with entries con-
tinuous on R', and K (x,y) is a matrix kernel with entries satisfying the conditions (2.3)
and (2.4), and S stands for the diagonal (m x m)-matrix with the singular operator at the
diagonal.

The arguments being analogous to those in the previous subsection, we only sketch
briefly the main points. As in Lemma 2.3, Fredholmness of the matrix operator Al + BS
is necessary for that of the operator N. By this reason, we assume that the matrices A+ B
are normal: det[A(z) & B(z)] # 0, z € R'. The regularizer of the operator AI + BS has
the form R = A1 + B1S (see [13], p.414), where

m_%KA+Bru4A—m4y4A+34Am—Bra (2.27)

and
&:%KA+E1—MeB)ﬂ:4A+mIMA—ml. (2.28)

Applying the regularizer R to the operator N and passing afterwards to the corresponding
equations separately on each half-axis, we arrive at a certain system of 2m equations on
the half-line, up to compact terms T, j =1,2,3,4,

( pi(z) + Ai(@)C(2) [ K (2, y)e+(y) dy+
+A1(2)C(2) [5° K (2, —y)p—(~y) dy + Bi(2)C(x) [~ K (2, y)¢-(y) dy+
+B1(2)C () fi° KM (2, —y)p-(=y) dy + Tipy + Top- = fo(z), x>0
o (—x) + Ai(— ) [T K(—z,y)e4(y) dy+
+Ai(= z) fy K=z, =y)p-(=y) dy + Bi(~2)C(~2) [;* K'(=z,y)p(y) dy+

| +Bi(=2)C(=) [;" K (=2, —y)e-(—y) dy + Tspy + Tap- = f-(=2), x>0,
where ¢ (z) = £ (1 + signz) ¢(z) and

Kl('ra y) = (kllj<x7y)>:;:1
with k};(z,y) calculated by the entries k;;(x,y) via the formula (2.17). We denote
M, =AC=3[(A+B)'+(A-B)]C,

(2.29)
M,=B,C=1[(A+B)"'—(A-B)|C.

8



The matrix-symbol of the obtained system may be written in terms of the matrices M;
and My, according to (2.14), as

" I+ M (0)Ks1(2) + Ma(0)KL, (2)  Mi(0)Ky—(2) + M(0)KL_(2)
MUO)K_i(2) + My(0)K,(2) T+ Mi(0K—_(2) + My(0)KL_(2) |

oy [ 1OV F ML) MK+ M)

Mi(00)K_4(2) + Ma(00)KL (2) I+ Mi(00)K__(2) + Ma(o0)KL_(2)

representing a pair of (2m x 2m)-matrices. The (m x m)-blocs K14 (z) and K1, (2) here
are the matrix symbols
{IC”‘] ii( )} rj=1 and {’Cm :t:t )};nj_l

m

corresponding to the matrices K(z,y) = {k,;(z,y)},_, and K (z,y) = {k}(x y)}m,:1
where the entries k};(x,y) are calculated by the entries ky;(z,y) via the formula (2.17). It
is easy to see that the connections (2.20)-(2.23) remain valid when K14 (2) and K1, (2) are
matrices. Making use of those connections, we calculate the matrices (2.13) and obtain
that the (m x m)-blocs ob?(z) and 0%/ (z) have the form:

0y (2) = I+ [My(0) +ictg zmM(0)]K4 4 (2) + Mz(0)K—+(2) ,

o12(2) = [Mi (0) + ictg =mMa(0)]IC, (=) + Sm"m%(owmz) ,
73 (2) = [M1(0) ity MO (2) — = — Mo(0)KCos ()
o3 (2) = 1+ [M1(0) — ictg =mM(0)K—(2) — = My(0))C, ()

and similarly for 0%/ (z2), k,j = 1,2, with M;(0) and M,(0) replaced by M;(c0) and My(c0),
respectively.
Similarly to Theorem 2.7 we obtain the following result.

Theorem 2.8. Let the entries of the matrices A(z), B(x), C(x) be in C(R") and the
entries of the matriz K(x,y) satisfy the conditions (??)-(2.4). The operator of the form
(2.26) is Fredholm in the space LZ(R3), l<p<oo,—1<~<p-—1, if and only if
det[A(z) £ B(z)] #0, z € R" and

1 1
det g <z§+1—%)7€0, det o0 (15—1—3—%)7&0 (2.30)

for all € € R°. Under these conditions

det[A(c) = B@)] , , 407 (ig+1-12)

det[A(x) + B(x)] det o (25 I 1+7> )

Indpy N = ind (2.31)



3 Singular integral operators with a fractional-linear
Carleman shift in the weighted space Lg(Rl).

We deal with the equation (A) in this section. The first subsection is important foh
understanding the problems which arise under the investigation of this equation. The
second one is auxiliary and contains some properties of the shift operator introduced in
the form of a bounded involutive operator. The investigation itself of Fredholmness os the
operator (A) is given in subsections 3.4-77.

3.1 Discussion of the setting of the problem and introduction of
the involutive operator (),

Since the equation (A) contains the shift operator p[r(z)], 7(x) = 6;:? , which is un-

bounded in the spaces L] (R'), we have to rewrite this equation in terms of some weighted
shift operator which will be bounded in the spaces L) (R").
Let

D=06"4+p3, sothat 7(z)—0= D(S. (3.1)
T —
We introduce the weighted shift operator in the form
vO(x—9
(Quela) = pa)lr(a)] = DI T olr(o)] (32

where v will be chosen to get boundedness of the operator (), in the space Lg(RS) and
O(x) will be taken as a piece-wise constant function: 6(z) = c10,(z) + c20_(x), with
Oi(x) = %(1 +sign z), in order to be able to lonsider digferent power-type weight functions
p(x). We emphasize that admitting of the function 6(x — §) with different values for x > §
and x < 0 is crucial for the generality of the results and this will allow to investigate the
equation (A) under different assumptions on the behaviour of the coefficients b(z) and d(x)
of the equation at the singular points = ¢ and x = oo of the shift. The factor |D|5 is
introduced for convenience, which becomes clear from Lemma 77.

Lemma 3.1. The operator Q,, satisfies the relation Q% = I for any v € R*, buf under
the special choice of 6(x):

O(z)=1 or O(x)=signzx (3.3)

in the case when D > 0 and |
O(z) = X9+ () + N0_(x) (3.4)

with an arbitrary A € C\{2} in the case when D < 0 . The operator @, is bounded in the
space Lg(Rl), 1 <p< oo, —00 << oo under the choice

v=2(r+1) (3.5)

10



and then ||QuollLyry = ll@lliyry) in the case D > 0 and [|QullLyr) < Ell@llyr) with
k = max(|A], 1/|\|) in the case D < 0.

The proof is a matter of direct calculation.

We note that the relation (3.5) gives the following equivalence

—1<v<p—1 ifandonlyif 0<v<2.

In the future investigation we assume that

e C(RY). (3.6)

This means that the coefficients b(z) and d(x) must vanish at infinity, roughly speaking,
as a power function of order » and may havp a singularity of order v at the point z = 4.
What we would like to stress is that, as a consequence, we admit various types of jumps
for the products b(x)|z — 6|” and d(z)|x — |” at the points x = § and & = co. This jump
may be only of the type sign(x — §) in the case (??) when D > 0 and an arbitrary one in
the case (3.4) when D < 0.

The final criterion of Fredholmness will depend on the choice of the type of those jumps,
that is, on the choice of the first or the second possibility in (3.3) in the case of D > 0 or
on the choice of A in (3.4) in the case of D < 0.

3.2 Some connections between the involutive operator (), and
the singular integral operators 5, 5% and S,.

a) The case wqgen 6(z) = sign x. We begin with the case when the function 6(z) in the
definition of the involutive operator (), is reduced to sign = in both the cases D > 0 and
D < 4. For this we take A = —i in (3.4) so that in this item a) we deal with the operator

eysign (r — 0)

(@Que)(a) = TS (37)

where e, = i|D|7 if D < 0 and e, = DT if D > 0. We denote

i/m [t — 8] o(t)dt 1 [ (t—6) p(t)dt 5.3

i tnd - Sap =7 (x =8 t—x’

S =
4 olxr =96 t—x )

[e. 9]

where —oo < a < 0o and
(t—0)* = |t —d|%sign (t —9), (x —06)* = |z —0|%sign (x —0) .
Lemma 3.2. Let Q, be the operator (3.7). The following commutation formulas hold
Q,8% = sign (=D)S"™*7°Qy, (3.9)

N,S, = sign (—D)S,_q—6Q, (3.10)

11



which are valid within the framework of the space L;(RS) under the conditions 5 —5 <
a<ig, v= @. In particular,

Q,SQ, = sign (—D)S" . (3.11)

Proof. The proof is direct. O

We need the Ixplicit expressions for the compositions of the type SS¢.

Lemma 3.3. Let —0 < a < 1. The following formulas hold:

SS* =1 +i tg?(sa —9)s, (3.12)
SOS =1 +i tg%s(Sa —9), (3.13)
SSy=1—i cth‘Q—”(sa —8)s, (3.14)
Sul=1—i ctgo;ls(sa —9), (3.15)

where sp = sign(x — 6)p(x). Within the framework of the spaces L)(R"), these formulas
arevalidfor”Tfl—1<a<WTf8, -l<y<p-—-1

Proof. By the Poincare-Bertrand formula (see Gakhov [2], p.63) we obtain

1 [ oo dt
SS(X = - - 5 @ d ’
e=olo)+ 5 [ le—dloods [ s
Using the formula
) v—1
/ |:f|_ —dr = -7 ctgg\UI"*lsign u, 0<Rv<l, uek, (3.16)

see Gradshtein and Ryzhik [4], N 3.238.7, we have
= €= 91"¢ () [ 1 1

_ d¢

oy tgs
5% = ot + 2 | (=0 (€ or

—00 l’—g

o am
=+ 27597(5& — S)se,

which provides forkula (?7?). The relation (3.14) is verified similarly.

As regards the remaining formulas (?7) and (3.15), they follow from the first two
formulas. Indeed, (3.32) is obtained from (??) if we apply the operator S from the left and
the operator s from the right, while (3.15) is obtained from (??) if we apply the operator
S from the right and the operator s from the left. O

Corollary 1. Let —2 < a < 1. The following formulas are valid:

S(S*—§) =i tg%”(sa —S)s, (S*—S)S =i tg%s(sa —9), (3.17)

12



S(Su — 8) = —i ctg%”(sa —S)s, (Sa—9)S = —i ctg%s(Sa —9). (3.18)

Proof. To get these formulas, it suffices to substitute I = S? into the relations (?7)-

(3.15). O
Corollary 2. Let —1 < a < 1,-8 < 8 < 1. The following composition formulas are
valid:
a qf . ﬁ - «
S*SP =1+1itg m(Sg — S%)s, (3.19)
. B—a o
Va55 =I+1itg WS(Sg -5 ), (320)
o . ﬁ —a B o
S*Sg=1—1ctg (S —5%)s, (3.21)
3 T o
SoSP =1—1 ctg s(S” — S%). (3.22)

Proof. To get, for example, the first of these formulas, we notice that S¢ = p=*Sp®
and S, = sp~®Sp“s, where (p®p)(x) = |z — §|%0(x). Therefore, re have, S*S° =
p“Sp*PSpP = pm2SS8P=2pe Making use of formula (??), we obtain (??). In a simi-
lar way, all other relations can be obtained. O

Corollary 8. | Let v(x) € C(R") and v(5) = v(co) = 0. The operators vS® and S,
constdered in the space Lg(Rl), commute up to a compact operator in this space under the
conditions

+4
L—1<a
p p

+1 +1
<7 gl _

|
p>1, , l<g<lts (3.23)
p p

Proof. Firstly we note that the operators v.S® and S® are bounded in the space L;(R7)
under the assumptions (3.23). To show the compactness of their commutant, we represent
their composition by means of (?7?) as

vS5*SP = vl +iv tgﬁ 7 (8P — Sy)s

and
0 — « 0 — «

SPuSe = vl +iv tg T (8P —Sy)s+itg

™ T18 + TQSa

where Ty = v(S® — S, + 5% — Sp) and Ty = S — vSP. The operators Ty and T are
compact. Indeed, since the operators S* — S, and S” — S5 have homogeneous kernels
satisfying the integrability conditions (2.3), compactness of T; follows from the fact that
v(0) = v(oc0) = 0, and known compactness theorems for such operators, see for example,
Theorem 2.9 in [7], wlile for Ty = (S° — I)v — v(S? — I) we may similarly refer to the same
theorem in [7]. O

b) The general case. To cover the general case, when #(x) may have thj form (3.4)
with an arbitrary A € C\{0} and the remaining case #(z) = 1 in (3.4), we introduce
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the weighted singular operator of the type (3.8) associated with the piece-wise constant
function 6(z) defined in (77)-(3.4):

L[ |t — 8] Go(t — 6) (t)dt
“p= = 24
5 m'/_oo\x—(ﬂa%(:v—é)t—x ’ (3:24)

where 0y(z) = S;‘%—Z)x. Evidently,
sign ., ivD>0 and 0(z) =1
Oo(x) = 1, if D>0 andf(x)=signx (3.25)
Ay (z) — 30_(x), if D<2.

The following lemma generalizes the relation (3.11) and is proved similarly.

Lemma 3.4. Let 0(x) be one of the functions defined in (3.3) and (3.4) and Q, the
operator (77). Then

Q.S = sign (—D) S;'Q,. (3.26)
In the case D > 0 and 6(z) = 1 we also have
QuS* = =S,—a-1Qu- (3.27)
Corollary. Let D > 0 and 0(x) = 1. Then
QST Q= —Sums, (3.28)

where S*= and Su_1 are the operators (7?).

Lemma 3.5. Let 0(x) be the piece-wise constant function (3.4). The following relation
holds
1

: ] :
S(D— Sg) = é <)\ — X) tg ?(Sa — S)sby + é ()\ + X) ctg O[—;(Sa —8)0y, (3.29)

where 0y is the function (?7) and s = sign (x — ) p(z).

Proof. (We note that the previous relations (?7)-(3.18) are particular cases of the
connection (3.29), but the proof of (3.29) uses the relations (?7)-?7) on which (77)-(3.18)
are based). We have Sj = %SQQO. Evidently, 0y = A\ + Ass, % = —\1 + A28, where
A1 :%()\—i) and Ay = % ()\—i-%), so that

SS§ = —N315S5* + A\3SS, + Mg (SS, — 5S5%) s.
Substituting SS* and SS, from the formulas (??7) and (??), after easy transformations we
obtain the rwlation (3.29). O

Corillary. The operator S(S§ — I) is an integral operator with the kernel homogeneous

of degree —9, satisfying the condition (2.3), if HT'Y —l<ac< HTV.

Indeed, it suffices to refer to the fact that the operators S¢ — S and S, — S in the
right-hand side of (3.29) have kernels satisfying the condition (2.3).

Remark 3.6. The relation (3.29) turns into the first of the connection (3.18), when
A =1, and into the first one in (??7), when \ = 1.
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3.3 A general result for equations with an involutive operator

We will base ourselves on a general theorem (see Theorem ?? below) on Fredholmness of
operators of the form A + QB with an involutive operator @) proved in [12], see also its
presentation in [16], [8] and [?].

Let X be a Banach space, £(X) the space of linear bounded operapors in X and
Q € L£(X) an involutive operator, that is, Q* = I,Q # +£I. We assume that the following
axioms are satisfied.

AXIOM 1. There exists a Fredholm operator U € L(X) such that
UQ+ QU is compact in X. (3.30)

AXIOM 2. The operators A and B quasicommute with the operator U from the Aziom
1, that is, AU — UA and BU — UB art compact in X.

Theorem 3.7. Let A,B,Q € L(X) and Q° =1,Q # +1. The operator K = A+ QB
1s Fredholm in X if the operator

_ (A @BQ
oo (4 9m) -

is Fredholm in X? = X ® X. Under the additional assumption that Azioms 1 and 2 are
satisfied, Fredholmness of the operator K is also necessary for that of the operator K and

1

3.4 Reduction of singular integral equations
with a fractional-linear shift to a syftem of perturbed singu-
lar equations without shift

The operator under the consideration is

K¢ = a(z)p(@) + bz)elr(2)] + c(2)(Sp) () + d(x)(Sp)[r(2)], =€ R, (3.32)

7(x) = 2248 being a fractionaz-linear Carleman shift. Keepinv in mind the application of
z—0

Theorem 7?7, we represent this operator as

K= A +Q,As, (3.33)
where @, is the involutive operator (3.2) and

A =al+¢S, Ay=0b,I+4d,S, (3.34)

O(x —9)

EETE

bu(z) =b,[r(z)] = = 5|yb[r(:c)], and Eivy(x) =d,[1(z)] dr(z)]  (3.35)

15



where we use the notation

|z =) |z =)
by(x) = mb(x), d,(z) = md(:c) (3.36)

We suppose that _
a(x), b,(z), c(x), d,(r) € C(R") . (3.37)

For the coefficients b(z) and d(x) this means the following, in accordance with (3.3)-(3.4):
b(z)|z — 6] € C(RY) when D >0 and we take 0(z) =7, (3.38)

b(z)|z — 6|"sign(x — §) € C(R'), when D >0 and we take 6(z)=sign z, (3.39)
b(x)|z — 8" | My (z —5) + %9_(93 —9)| € C(RY), when D <0, (3.40)

where A € C\{0} may be arbitrary, and similarly for d(z).

We intend to apply Theorem ?7? to the operator (3.32). To this end, we have to verify
Axioms 1 and 2 from Subsection 3.3. The main point is to construct the Fredholm operator
U from Axiom 1, which is done in Lemma 3.8 below.

Lemma 3.8. The operator

ur(t)p(t), if D<0
Up = (3.41)
uy (V) p(t) +iv(H)S T ¢, if D>0
with P f—r(t)  (t—02—D
— T — — —
wh=rmmee YT remon toarrp O
v(t) =exp |—Q(t — 6) % — %(t —6)? (3.43)
is Fredholm in LY(R") and satisfies the relation
UQ, +Q,U =T (3.44)

. _ 2(14y) : ; 1
where Q,, is the operator (5.2), v = ===~ and T' is an operator compact in L}(R").

Proof. Evidently, the functions u;(t), us(t) and v(t) have the following properties:
1) They are continuous on R!;
2) The function uy(t) does not vanish on R' if D < 0, since the shift 7(¢) has no fixed
points in this case;
3) The functions uy(t) and v(t) vanish at different points: uy(d = +v/D) = 0, () =
v(o00) = 0.

Therefore, Fredholmness of the operator U is evident in the case when D < 6. Let
D > 0. Fredholmness of the operator usl + 1vS “T in the space L;(Rl) is equivalent to

that of the operator usl + ivS in the space L§ 71(R1). The latter is Fredholm because of
the above properties 1) and 3).
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It remains to verify the relation (??). If D < 0, we even have UQ, + Q,U = 0, wcich
is checked directly. Let D > 0. Then we have only two possibilities: §(z) = sign = and
0(z) = 1. In the first case, we also have UQ,+Q,U = 0, in view of khe relation (3.9). In the
second case we shall base ourselves on the rormula (3.28). Our operator U = uyl +ivS 5
may be represented in the form

1 v
U = ol + 5iv (5" 4 Sus ) 4T (3.45)
where T'is a compact operator. Indeed, since SVTA = sS*7 s, where s@ = sign (x—9) p(x),
we have . .
E’U (S"gl +SUT_1> — 5 (’USVTA _|_USSV7713> .

Evidently, the function v(z)sign (z — J) is continuous. Therefore,
1 v—1 1 v—1 v—1 v—1
5v(s : +5VT_1) :§<us > 5% v>+T:vS ol

which gives (3.45).
To verify the relation (?7?), we use (??7) and obtain

1 -
QVUQV = Qy |:UQI+ 5“) (STQ + Sugl):| Qy +T2

In view of the connection (??) we have Q,UQ, = usl — %ﬁ (S%l + SL;l> +T3. Obviously,

ts(z) = —uy(x) and v(x) = v(z). Using the representation (?7) again, we arrive at the
relation (77). O

Theorem 3.9. Let the assumptions (7?) be satisfied. Fredholmness of the operator K
m L;,’(Rl), l<p<oo, —1<vy<p-—1, is equivalent to that of the matriz operator

al +¢S b, I+d,S;!
K= : (3.46)

bl +d,S al+asy™!

in L) 2 LY, where Sy~ is defined in (??) and where, as usual, we denote a(z) = a[r(x)],
etc an

1
IndL; K = élnngXL; K . (347)

Proof. We apply Theorem ?? to the operator (3.33), which is possible since Axiom 1 of
Subsection ?7? is satisfied by Lemma 3.8, while validity of Axiom 2 follows from Corollary 3
to Lemma ?? and compactness of the commutator Sa — aS, where a(z) € C(R'). Theorem
?? applied to the operator (?7) leads to the matrix operator

Al QVA2Q1/
K = . (3.48)
AZ QVAlQI/
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Taking into account (3.26) and (3.34), we arrive at the operator K at the form (3.46)
and the application of Theorem ?7? yields the statement of the theorem. O

Therefore, we came to a matrix singular integral operator perturbed by a matrix sntegral
operator with homogeneous kernel of degree —1, which were considered in the previous
Section, see Theorem 2.8.

Is it possible to formulate the final result not in terms of the matrix-symbol correspond-
ing to the operator K , but in simpder form related directly to the initial operator K7 We
give a positive reply to this questibn in the next subsections.

3.5 The case of preservation of the orientation (D < 0).

a) Symbol of the operator K . Substituting S; ' = S+ (S5~ ' —S) into (??) we arrive at
the following system of type (2.26), up to the change of variables, z —§ — z and y—§ — y:

Ko = A(z)d(x) + %B(m) N ¢y(y_) iy + C(x) /OO K(z,y)é(y)dy, =€ R', (3.49)
where ¢(z) = {p1(z), p2(2)} and
a(x) b,(x) c(x) d,(z) 0 dy(x)
Ax)=| _ , Blx)=1 _ , Cz) = N , (3.50)
by(x) a(x) d,(x) ¢(x) 5 ¢(z)
kolz.y) 0 W) )
K(z,y) = ! . ko(z,y) = i <|z‘> _00($) (3.51)
0 ko(z, 1) i y—1x

The system (?7) has to be considered in the space L] x L). The condrtion (2.3) for the
kernel (?7?) is fulfilled because of the relation (3.5) if —1 < v < p—1. The second condition
(?7?), which is the condition of type (2.19) for the operator S(S; ' — ) is also satisfied by
Corollary to Lemma 77.

The conditions (?7?) and (2.4) being satisfied, we may calculate the Mellin transforms
K%, (z) (see (2.7)) corresponding to our special kernel (3.51). To this end, we take into
account the formula (2.24), and the relations

{90(9)} _ {Ho(y)} _ {90@)} __1 [90@)} — )

Or(z)] Oo(z) | __ ’ Oo(z)] , _ 27 ()] ’

where the signs ++4 mean that the point (x,y) belongs to the corresponding quadrant R2
and after easy calculations we obtain

1 SN VT
Kii(z) = . KY(2) = K%, (2), (3.52)

T sin oz sin (z 4 v)w

L

K (z) =i

sin zmw — sin (z + v)w A2sin zm — sin (2 +v)w

. KL (=i . (3.53)

sin 2z sin (z + v)w

sin zm sin (z +v)w
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We have to calculate the matrix symbols 0¢(z) and 0, (z) defined in (2.13). The matrtx
0o(z) is reduced, after some simple transformations, to

I — O./)\MQ(O) — ﬁZMl(()) U6/)\M2(1) — iUl/,\Ml(O)
oo(z) = : (3.54)
U)\MQ(O) -+ iU)\MQ(O) I — Oél/)\MQ(O) + 6ZM1(O)

where M; and M, are the matrices (2.29), while

cos v — \? sin vmw
_ — — = 3.55
= a2 sin zm sin (z +v)m’ b =58G) sin zm sin (z +v)mw’ (38:55)
and
cos (z + v)m — Scos zm sin (z + V)1 — Ssin 2w
uy =up(z) = ( ) A vy =va(z) = ( ) A . (3.56)

sin zw sin (z + v)w sin zmw sin (z + v)w

We need some properties of the functions (??) and (??), presented in the lemma below.

Lemma 3.10. The following equalities hopd:

AU/ — UnUL/x = Baan — ),  aaaayy — ualin = o+ ag, (3.57)
5 cos VT
-5 = 3.58
iy =0 sin zm sin (z +v)w (ax + ) (3.58)
UpU1/x — VAV /) = (Qaag/y — (%) cos 2z — f3 (a,\ + al/,\) sin 2mz. (3.59)

Proof. The proof may be easily obtained directly in view of the connections

Uy + 1y = (Oé)\ + iﬁ)eizw, Uy — Uy = (Oé)\ _ iﬁ)e—izf

b) Calculation of det oy(z) and det o, (z). We introduce the functions
Ax(x) = {alz) + c(z) Halr(2)] + c[r ()]} — {b(z) £ d(x) Hblr(2)] £ d[7(2)]},  (3.60)
A(z) = {a(z) — c(z) Halr(2)] + c[r(2)]} — {b(z) + d(z) H{b[7 ()] — dr(2)]}.  (3.61)

Evidently,
’ Ai(x) =det [A(x) + B(z)] (3.62)

where A(z) and B(x) are the matrices defined in (3.50).
Everywhere below A4 (d) stands for lims_o A4 (z) and similarly for A(J).

Lemma 3.11. Let AL(0) # 0. Then the determinant of the matriz (?7) is calculated
by the formula

cosvm—32 (N +35)  cosvr—1(N+3%) AG)A(0)

=1
det o(2) 2sin zm sin (z 4+ v)w i 2sin zm sin (2 + v)m AL (0)A-(0)

(3.63)
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and also
det 05 (2) = det oy (2). (3.64)

Proof. To calculate the determinant of the matrix (?7), we first transform the block
axMy + BiM, as follows: ayMy + BiM, = [‘“TJ”BZ(A%— B)™! — O‘AT_B’(A — B)_l} C. We

00 ) , which yields

represent the matrix C' as C' = [1(A+ B) — 3(A — B)] ( 0 1

Oé)\—Fﬁ’i
2

After easy calculations we arrive at

0 — (%2 - %5%) (e —dd)
axM, + BiM, =

oy axtBi A an—pi
0 2 1A, A—-SG5A

where Ay, A are the functions (3.60)-(3.61).

In a similar way the blocks o/ My — 3iM; and uyMs+ivy\ My and w3 My —ivy M, are
transformed and as a result, the blocs o*/(2), defined in (2.13), in the case of our matrix
(?77?) take the form:

1 (b, — d,a) (M _ M)

2A, 2A_
0'11(,2) — 7
_oax ax+iB A ay—if3
0 1 5 + iAL A+ IA A
(n oom oo [(YaaTiviya U Ay
0 —(b,c—dya) ( A, NS )
012(2) — ,
Ur/x U AT AR U vy
0 2 IAT A m A
_ ~ ~ ux+ivy o U\ —IV)
” 0 —(bc dva)( 284 24 )
g (Z) = )
ux _ uxtivy A _ux—1Tvy
0 2 YN A—Sx2A
~ g (a8 agatif
1 (b dl,a)< AT A
0_22(2,) —

01/ a8 X ay/z+if
01_2+4A+A+ 4A,A

In these formulas ay, By, uy and vy depend on z, while a,b,,c and d, are functions of
z and we obtain the blocks 07 (2), calculating o*/(z) at the point z = 4, and the blocks
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ok9(€) calculating them at the point x = co. We have

11 12 o . o tHiBA ay—if3 Ur/x U AT AR U iy
o' (z) () L=+ 4A+ A+59A0 5 7Y A m A
det =
21 22 TN —i « a1 /a—i08 X ay/\+if
o 2z o z uy _ uxtivy _ uN—IUy I V2 1/X 1/X
(2) (2) 2 7N A oA 1 5t —ias A+ —xi—A

By direct calculations we obtain
det oo(z) =1 — % (oz,\ + oq/,\) + i (oo\ozl/A — u,\ul/A)
1 i
ta {Z [CYA o — oo+ UAM/A} +3 [U,\Ul/A — upv/n — Blai — OéA)]}

+a- {5 o+ a1n — ananyn + uaugyn] — & [oaurys — uaviyn — Blagys — an)] }
1 (a8’ : , . _
+1_6 (A_+) [(Oé)\ + Zﬂ)(&l/)\ — Zﬁ) — (u)\ + ZUA)(UI/A — ZUI/A)]

+16 (ﬁ)Q [(ax —iB)(aiyn +iB) — (un — ivy)(ur/n + iv1))]

Hiaas (o — B2 — wun + vy

By Lemma ?7? this reduces to

CJ,/)\—FOél/)\ Oé)\‘l'Oél/)\ KA
4 i AN

detop(z) =1 — (3.65)

which coincides with (3.63). N
Finally, the relation (3.64) becomes obvious, if we note that A(§) = A(oco) and AL(d) =
Ai<OO) O

We have to calculate det o¢(2) along the vertical line z =i — 1+ HTV, £ e RN
Lemma 3.12. Let AL(0) # 0. Then

, 1+7 cos v — 5 (A + 55) A(0)A(c0
det —1+—) =1+ 1———=). 3.66
oo (Z5 p ) 2 [sin® & + sh? ¢ AL (0)A_(9) (3.66)
Proof. The proof is an immediate consequence of Lemma 3.11 if we take into account

= —sin? == sh? &, O
—i _ 1ty
z=i{+1 -

the relation sin zmwsin (z + v)7

c) The result on Fredholmness. To formulate the main result, we introduce the
notation for the following ray in the complex plane

1— t
Lxpry = {Z P 2= S— , TE [0,+oo)} : (3.67)

COS VT — [i  COS VT — [
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where . | 21 )
_ e b _ U+
—2(/\ —1—/\2),)\6(3\{0}, v=

p

I (3.68)

v

and it is assumed that A\ # e*2"| which is equivalent to cos vm — pu # 0. In the case
A =et7 we put

£)\;p,’y = @ (369)

Theorem 3.13. Let the shift 7(x) preserve the orientation on R'and let a(z), c(x) €
C(RY) and for some X € C\{0}

b(x)|x—48" | N0 (x — )+ l«9,(90 — (5)} . d(z)|x—6|" |:)\9+(£L‘ —0)+ l9,(35 — 5)} e C(RY).

A A
(3.70)
L In the case X\ # e*'"2 | the operator (3.32) is Fredholm in the space LY(R'),1 < p <
00, —1 <y <p—1, if and only if

1) inf |[As(z)| #0, 2 € R! (3.71)
zER!
" AWA()
00
2) AL0A ) & Lxpoy: (3.72)
the condition (3.72) being equivalent to
A(d)A
%(msyﬂ—u)%—u—lg[o,m), = % ()\2%—%) . (3.73)

I In the case A = e*z the Fredholmness of the operator (3.32) is equivalent to the
condition (3.71) only, the ray £y, being empty in this case.
The formula for the index in all the cases is

A_(x)
Ap(x)

1
Indpy K= §ind (3.74)

Proof. According to Subsection 2.2, Fredholmness of the operator (3.32) is equivalent
to that of the matrix operator (3.46) with formula (??) for the index. The matrix operator
(3.46) has the form (??) and its Fredholmness is covered by Theorem 2.7, so that the condi-
tion AL (z) # 0 must be fulfilled for the operator (3.32) to be Fredholm. Then Lemma 3.11

is applicable, from which one can easily derive that the condition det o <z'§ +1- 1;%”) #0

of Theorem 2.7 is equivalent to (3.72). It remains to note that the case A = ¥ is de-
generate in a sense, see (3.69).
Formula (3.74) follows from (2.25) because of the relations (3.62) and (3.64). O

In the following corollary to Theorem 3.13 we single out the most interesting cases of
the choice of the parameter .

29



Corollary 1. Let the shift 7(x) preserve the orientation on R!. '
a) Let A = 1. Then the conditions (3.70) take the form b(z)|x —§|”, d(x)|z —§|* € C(R')
and the additional condition (3.72) is
A0)A() (—
A 0D ()
b) Let A =i. Then the conditions (3.70) take the form b(z)|x — d|"sign (v —0), d(z)|r —
§|Vsign (v — &) € C(RY) and the additional condition (3.72) is

50,0] . (3.75)

ENGOINC R S
AL (5)A_(6) 2 lcosz §(7+1)7+ > . (3.76)
c) Let A = e=3". Then correspondingly b(z)[F(x — )], d(x)[F(z — )" € C(Rl) with

(£2)” = |z|"|0+(z) + e¥™0+(x)], and the condition (3.72) is fulfilled automatically.

Remark 3.14. The point z = 1 never belongs to the ray L., -, whatever \,p and vy
are.

What is the sense of a possibility to choose different values of \?

Let bo(z) = b(x)|z—4d]” and do(z) = d(x)|z—J|”. Our assumptions on these coefficients:
bo(2)0(z), do(z)0(x) € C(R'), where 6(z) = M, (x—5)+10_(2—0), mean that the functions
bo(x) and do(x) themselves are piece-wise continuous with jumps only at the points x = §
and 2 = co. Easy calculation gives Aby(d 4+ 0) = $bo(0 — 0) and  Aby(+00) = +bo(—00)
and similarly for do(x). We arrive at the requirement that the jumps of the functions by(x)
and dy(z) at the points z = 0 and x = oo must be coordinated:

bo(6 +0)  bo(—00)  do(6 +0)  dy(—00)

and then \ = %, where we suppose for simplicity that the corresponding numbers
are different from zero.

Hence, the choice A = 1 e.g. means that the functions by(z) and do(x) are continuous
at the points x = 0 and = = oco. In the general case we may read the condition (3.73)

directly in terms of the coefficients, avoiding usage of the parameter \:

1 [be(6—0)  by(6 +0)
=3 {b0<5+0) bo(6 —0) ]

3.6 The case of change of the orientation (D > 0).

The arguments are similar, so that we dwell only on some slight differences in calculations.

The involutive operator (3.2) may be introduced now only via two possibilities given in
(3.3). When 0(z) = sign x or 0(x) = 1, the corresponding matrix operator (3.48) has the
form

al +c¢S b, I —d,S"! al +c¢S bl —d,S,1
K = B B , K _ " ) (377>
bI+d,S al —cS"! bl +d,S al —¢cS,4
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respectively. The first equality in (3.77) is obtained by means of the relation (3.9), and the
second one - by means of (3.27) under the choice a = 0.
Therefore, the operator K now has the form (??) with

a(xz) by(x) c(x) —d,(r) 0 —d,(z)
b,(z) a(z) d,(x) —c(x) 0 —c(z)

and K(z,y) as in (3.51) where

v—1 v—1
L (#) -t () e
ko(z,y) = i y—z and  ko(z,y) = e g

correspondingly to the cases 0(x) = sign = and 6(z) = 1.
Therefore, it is easily seen that now we have a symbol similar to that we had in the

case D < 0, with the only difference that now the quotients % and ﬁ should be replaced

by % and %, respectively. As a result, we arrive at the following theorem.

Theorem 3.15. Let the shift T(x) change the orientation on R' and let one of the
following assumptions be satisfied:

a(z), b(z)|z — 8| sign (x — 96), c(x),d(x)|z — 6|"sign (x —6) € C(R') (3.78)

a(z),b(z)|z — 8|, c(z),d(x)|z — 5|* € C(RY). (3.79)

The operator of the form (3.32) is Fredholm in the space LY(R'),1 < p < oo,—1 <y <
p—1, if and only if ‘
inf |A(z)] #0, =€ R (3.80)

and

cos? T(y +1)’ +OO> (381)

in the case (3.78) and

Ay (6)A_(9)

B S —00 .82
in the case (3.79). Under these conditions

Indyy K =ind A(z). (3.83)

3.7 The case of a non fractional-linear shift on R!.

Let 7(z) be a one-to-one mapping of R' onto itself, differentiable everywhere, except for
the singular point 6 = 7(00), where it has a singularity. We suppose that the following
conditions are fulfilled:
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V) 7[r(2)] =z, 7(x) # ;

2) 7'(z)(x — §)? € HN(R') and lim 7'(x)x? # 0, under the assumption that § # oo.

We recall that a function f(z) € HMR') , 0 < A < 1, if f(z) € C(R") and |f(21) —
f(x2)] < Clzy — 2oM1 + |21 |) M + |2o)™, 21,20 € RY .

In the case 6 = oo, the condition 2) should be replaced by the condition 2') 7/(x) €
HMRY).

The operator A is to be considered in the same weighted space L;(Rl) with the weight-
function |z — d|” fixed to the singular point § = 7(oc0).

The main arguments are the same, so we dwell only on some principal points. The
involutive operator ), given before by (3.2) is now introduced as (Q,¢)(x) = |7'(z)|2 p(z) .
We omit the generalization involving the function 6(z) as in (3.2).

Lemma 3.16. The operator @), is involutive for any v. It is bounded in the space
L)(R"), 1<p<o0, —00<y<o00,ifv= 1%(1+’y).

Proof. The proof is direct and is based on the assumptions 1)-2). O

Lemma 3.17. Letl <p < oo, -1 <y <p—1andv = %(1 + ). The relations
between the operator Q, and the operators S® and Sy, defined in (3.8), are given by the
same formulas (3.9) - (3.10), up to operators compact in the space L;(Rl), if we replace
sign (—D) there by sign [1'(z)] and take HTV —-l<a< HT”.

We refer to [3] for the proof of Lemma 3.17.

Because of Lemma 3.17, the further investigation based on the application of Theorem
7?7 is more or less similar to what we did in the previous subsections. By this reason,
we only explain how we construct the operator U from Axiom 1 of Subsection 3.3 and
formulate the main result in Theorem 3.18 below, referring for details to the paper [3].

The operator U in this case is defined as follows:

Up = u(x)p(x), if 7'(z) >0, (3.84)

Up = us(x)p(x) 41 v(x) (SUT_I@> (x), if 7'(x) <0, (3.85)

where u;(z) = % , j=1,2, with a; =i and ay = 7(00) and (z) = e” @77
and for simplicity we assume that § # oo. We remark that u;(z),us(7),v(x) € C(RY)
and u;[7(z)] = —u;(z) , j = 1,2, and wui(x) # 0,z € R' | since a shift preserving

the orientation has no fixed points, while real-valued coefficients us(z) and v(z) vanish at
different points. It is also easy to see that in the case when the shift changes the orientation,
lug(z)| < 1 and us(d) = —1 and ug(o0) = 1.

Theorem 3.18. Let a(z), |7(z)|” % b(x), c(@), |7'(z)| " d(z) € C(RY) and let § =
T(00). The operator (3.32) with a Carleman shift satisfying the assumptions 1)-2), is
Fredholm in the space L;(Rl), l<p<oo,—1<v<p—1,ifand only if the assumptions
(3.71) and (3.76) in the case of 7'(x) > 0 and (3.80)and (3.81) in the case of T'(x) < 0
are satisfied. It has the same formulas (3.74), (3.83) for the index.
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4 On singular integral equations with Carleman shift
in weighted spaces
a) Application of general theorem 3.9. Let I be a closed bounded Lyapunov curve

and S = St the singular operator along I'. We consider an arbitrary Carleman shift ()
on I' such that 7/(t) € H)T) for some \ € (0,1] and treat the operator

Ko = a(t)p(t) + b(t)e[r(t)] + c(t)(Sp) (1) + d(t)(Se)[r(1)], teT (4.1)

in the weighted space L,(I',p) = {f : [|f|lz,@rp) < oo} with

I e = / FOPpB)dE] < 0o, plt) 0.

The shift operator being not bounded in L,(I", p) in general, we use the familiar idea
of its modification in the form

(Qp)(t) = m(t)elr(1)], (4.2)

where m(t) is to be chosen in such a way that Q* = I and @Q is bounded in L,(T, p),
compare with (3.2) or (3.7).

Lemma 4.1. Let 1 < p < oo and non-negative measurable function p(t) vanish on a
set of I' of measure 0. The operator Q) is bounded in the space L,(I', p) if and only if

M]{

p(t)

where c(t) is any non-negative measurable bounded function. Under the choice (4.3) the
1
operator Q is involutive if and only if c(t)c[T(t)] = 1. Under the choice c(t) = |7'(t)|» we

also have ||Qpl|l = |l¢||-
Proof is direct.

In the proof of Theorem 4.2 below for simplicity we take ¢(¢) = 1 in (4.3) so that
1
(Qp)(t) = [%] " o[ (t)]. We denote

R WORE :
0= | ] o @0

m(t) = c(t) [ (4.3)

Il
—
e}
~~
~
SN—
1
B =
QL
—~
~
N—

and suppose that
a(t), b*(t), c(t), d*(t) € C(T). (4.4)

In theorem 4.2, A,(T") stands for the Muckenhoupt class of weight functions, see e.g.
[1], p. 28. By a(t) we denote a(t) = a[7(t)], etc

Theorem 4.2. Let p(t) € A,(I'), 1 < p < oo, and 7(t) a Carleman shift preserving
the orientation on T'. Under assumptions (4.4) the operator K is Fredholm in the space

26



L,(T, p) if and only if the matriz operator

al + ¢S b1 +d*S,
K — , (4.5)
bl +d*S  al +3cS,

in Fredholm in L2(T', p) = Ly(T', p) x Ly(T', p), where

1 p(0plr ()] F p(w) dw
&w_wir<Mth@J w—t

and then Ind K = %[nd K.

Proof. We represent the operator K in the form K = A; + QA,, where A; = al + ¢S
and Ay = b*I 4+ d*S and apply Theorem ??. The operator U, required by Axiom 1 may be

taken as Uy = [t — a(t)]¢(t) and then Axiom 1 and 2 are satisfied.
The application of the Theorem 7?7 leads to the matrix operator K = Ar Q4 .
Ay QAQ

Calculating its entires we arrive at the operator (4.5). O

We note that the matrix operator obtained in (4.5) is a singular-type matrix operator
without shift, but with unbounded coefficients.
b) An analogue of the equation (A) on the unit circle. The operator (A) may

be easily transformed to some operator with shift on the unit circle I' = {¢t : |t| = 1}
by the standard change of variables £ = ¢,z = i{*. The shift 7(z) = 240 is then
transformed into the Carleman shift
t—pu B+1+2i
t) = t|=1; = 1
a(f) = £ =1 L0
on the unit circle olr(z)] = ®[a(t)], where ®(t) = (i1) . In the case 3 =1 one
has a(t) = % where t; = gf = «a(1). It is easily checked that
1 [ p(s)ds 1 1 —t &(w)dw 4 L [ p(s)ds 1 / 1 —a(t) ¢(w)dw
- e an - - 7 @ -
T ) o sS—x mfpl—w w—t mi) os—7(x) mJp 1—w w—at)

so that the equation K¢ = f generated by the equation (A) is transformed into the
equation

w(O)0(0) + leypla(n] + 2 [ 20080, G [EG o g

where ¢(t) = 75 (i11) and similarly for g(¢) in terms of f(z), and ag(t) = a (i12£) , bo(t) =
+ t)=c(i1), do(t) = 1;’“()d( 1£t) . Evidently,

1-t

1-t

ol ., =2V /w OF It — tol"|t — 1P~>de].
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Therefore, if the solutions of the equation K¢ = f were considered in the space L;(Rl),
solutions (t) of the equation (4.6) must be looked for in the weighted space

L,(T,p) = { [ 1etwpa |dt|<oo} o) = It — tollt — 127,

This weight is not invariant with respect to the shift a(t) (except for the case v = £ — 1),
so we have to put some assumptions on the coefficients by(t) and do(t), according to (4.4).

It is convenient to put c(t) = @Et;_hg in (4.3), so that |c(t)] = 1 and c(t)c[a(t)] = 1.

After easy calculations we see that the requirements (4.4) for b (i1) and d (i1%) take
the form [&=20|"p (1) | [L=2|" d (i4£) € C(I") which corresponds to the requirements

|z —0|"b(z), |x—d6|Vd(z) € C’(Rl), the latter meaning the choice A =1 in (3.40).

Using the results for the equation (A), namely, Theorem 3.13 (and its Corollary 1) and
Theorem 3.15, we may formulate the corresponding statements for the equation (4.6). It
is clear that instead of the points t = t; and ¢t = 1 one may take arbitrary points t; and
to = a(t;) and consider the weight

pt) =t =t [t — o277, ty=a(t), L el, -1<y<p-—1. (4.7)

In the space L,(I', p) we consider the equation (4.1) on the unit circle I', where a(t) = %

is a fractional-linear Carleman shift on I" with |u| # 1. We denote, as in (3.60)-(3.61):
Ax(t) = {a(t) £ c(t) Hala(®)] £ cla(®)]} = {o(t) £ d(t)H{bla(®)] £ dla@)]}, tel, (4.8)
A(t) = {a(t) — c(t) Hala®)] + cla(®)]} — {b(t) + dt) Hbla(t)] — dla(®)]}, tel. (4.9)

Applying Theorem 3.13 (and its Corollary 1) and Theorem 3.15, we arrive at the following
theorem.

Theorem 4.3. Let
alt), \ 1), (). \

The operator K of the form (4.1) is Fredholm in the space L,(I', p) with the weight (4.7)
if and only iof

v v

b d(t) e C(). (4.10)

t— Oé(tl)

t—1
t— Oé(t1>

NANCI.
a.ma@ * 0 -t

and
%nf |AL(t)] #0, in the case |u| <1 (preservation of the orientation)

%nlﬁ |A(t)] # 0, in the case |u| > 1 (change of the orientation).
€

Then Ind K = Lind 5=

(g if |u| <1 and Ind K =ind A(t) if |u] > 1.

Remark 4.4. If, instead of the conditions (4.10) we require that
( =h ) b(t), ( =t ) d(t) € C(I'), then Theorem 4.3 holds without the assumptions

t—af(t1) t—a(t)

(4.11).
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