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Abstract
We fill in a gap discovered in the proof of Theorem A, on weighted Sobolev type bound-

edness for potential operators in variable exponent Lebesgue spaces, in the paper of the
authors ”Weighted Sobolev theorem in Lebesgue spaces with variable exponent”, J. Math.
Anal. and Applic., 2007, vol. 335, No 1, 560-583. The proof remains the same in the case
where the Matuszewska-Orlich indices m(w) and M(w) of the weight w are both positive or
negative, but in the case where they have different signs, the proof needs some additional
arguments and requires a slightly different formulation of the result.
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1 Introduction

Let Ω be an open set in Rn, p : Ω → [1,∞) a measurable function on Ω with inf
x∈Ω

p(x) >

1, sup
x∈Ω

p(x) < ∞ and

Lp(·)(Ω, ρ) =
{
f : ρ(x)|f(x)|p(x) ∈ L1(Ω)

}
,

where ρ(x) = w(|x − x0|) with x0 ∈ Ω. We assume that w is in the generalized
Bary-Stechkin-type class, Definition 2.2 in [1]. We refer also to Definition 2.3 there on
Matuszewska-Orlich indices m(w) and M(w) of the weight. Recall that

−∞ < m(w) ≤ M(w) < ∞
for weights in such class. In [1], within the frameworks of the spaces Lp(·)(Ω, ρ), we studied
the potential type operator

Iα(·)f(x) =

∫

Ω

f(y) dy

|x− y|n−α(x)
, x ∈ Ω. (1.1)
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of variable order α(x), where inf
x∈Ω

α(x) > 0. The paper [1] contains the following theorem.

Theorem A. Let p(x) and α(x) satisfy local log-condition in Ω and the condition
sup
x∈Ω

α(x)p(x) < n. If the indices m(w) and M(w) of the weight satisfy the condition

α(x0)p(x0)− n < m(w) ≤ M(w) < n[p(x0)− 1]. (1.2)

Then ∥∥Iα(·)f
∥∥

Lq(·)
(

Ω,w
q
p (|x−x0|)

) ≤ C ‖f‖Lp(·)(Ω,w(|x−x0|)) . (1.3)

However, the proof of this theorem given in [1] contains a gap. We correct the proof.
This correction led to a certain modification of the statement. Namely, the statement of
Theorem A and its proof remain without changes when the indices are both positive or
negative:

α(x0)p(x0)− n < m(w) ≤ M(w) < 0 or 0 < m(w) ≤ M(w) < n[p(x0)− 1], (1.4)

while in the case of different signs:

α(x0)p(x0)− n < m(w) ≤ 0 ≤ M(w) < n[p(x0)− 1], (1.5)

the correction of the proof led to some modification of the weight on the left-hand side of
inequality (1.3). The corrected version of Theorem A runs as follows.

Theorem Acorr. Let p(x) and α(x) satisfy local log-condition in Ω and the condition
supx∈Ω α(x)p(x) < n. If the indices m(w) and M(w) of the weight satisfy the condition
(1.4), then inequality (1.3) is valid. If (1.5) holds, then

∥∥Iα(·)f
∥∥

Lq(·)
(

Ω,ϕ(|x−x0|)w
q
p (|x−x0|)

) ≤ C ‖f‖Lp(·)(Ω,w(|x−x0|)) , (1.6)

where ϕ(t) is any bounded weight function such that
∫̀
0

ϕ(t)
t

dt < ∞, ` = diam Ω.

2 Proof of Theorem Acorr

2.1 The case (1.4); the proof contained in [1]

We start with the part which does not need changes, to underline some points. As in [1],
we take x0 = 0. First we note that estimate (5.8) in [1] may be rewritten in the form

|Br(x)| ≤ C r−
n

q(x) [w(r + x)]−
1

p(x) , (2.7)

where we replaced rx = max{r, |x|} by r + |x|, which is possible when w has finite indices
m(w) and M(w), since rx ≤ r + |x| ≤ 2rx. Therefore, inequality (5.9) in [1] holds in the
form

Iα(·)f(x) ≤ C
[
rα(x)Mf(x) + [w(r + |x|)]− 1

p(x) r−
n

q(x)

]
(2.8)
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in all the cases, that is, independently of the signs of the indices m(w) and M(w). By
the almost monotonicity properties of w(r), from (2.8) it follows that

Iα(·)f(x) ≤ C
[
rα(x)Mf(x) + [w(|x|)]− 1

p(x) r−
n

q(x)

]
when m(w) > 0, (2.9)

because functions w with positive index m(w) are almost increasing, see for instance [1],
Theorem 2.4. Then all the arguments remain the same as in [1] after formula (5.9) there.
This covers the case 0 < m(w) ≤ M(w) < n[p(0)− 1]. The case α(0)p(0)− n < m(w) ≤
M(w) < 0 is covered by the standard dual arguments, as on pages 575-576 of [1] in section
2 0 of the proof.

We recall that the minimizing value of r for the right-hand side of (2.9) is

r = r0 := [w(|x|)]− 1
n [Mf(x)]−

p(x)
n . (2.10)

Note that
r0 ≤ |x| ⇐⇒Mf(x) ≥ v(x), (2.11)

r0 ≥ |x| ⇐⇒Mf(x) ≤ v(x), (2.12)

where
v(x) = |x|− n

p(x) [w(|x|)]− 1
p(x)

Note also that w(|x|)[v(x)]p(x) = 1
|x|n , so that v /∈ Lp(·)(Ω, w). This means that the

possibility (2.11) in fact cannot happen.

3 The case (1.4); the added proof

We transform the right-hand-side of (2.8) as follows

r−
n

q(x) [w(r + |x|)]− 1
p(x) = r−

n
q(x) [w(r + |x|)(r + |x|)a]−

1
p(x) (r + |x|) a

p(x) ,

where a is a number from formula (5.2) in [1], a < n. Since w(t)ta is almost increasing,
we obtain

r−
n

q(x) [w(r + |x|)]− 1
p(x) ≤ r−

n
q(x) [w(|x|)]− 1

p(x)

(
r + |x|
|x|

) a
p(x)

.

Therefore, from (2.8) we obtain

Iα(·)f(x) ≤ C
(
rα(x)Mf(x) + r−

n
q(x) [w(|x|)]− 1

p(x)

)
in the case where r ≤ |x| (3.13)

and

Iα(·)f(x) ≤ C
(
rα(x)Mf(x) + r

a
p(x)

− n
q(x) |x|− a

p(x) [w(|x|)]− 1
p(x)

)
in the case where r ≥ |x|

(3.14)
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The minimizing value of r = r0 for the right-hand side of(3.13) is given in (2.10). The
minimizing value r1 for (3.14) (obtained as the value of r for which both terms in (3.14)
coincide), is

r1 := |x| a
a−n [w(|x|)] 1

a−n Mf(x)
p(x)
a−n . (3.15)

Observe that
r1

|x| =

(
r0

|x|
) n

n−a

,

so that for r1 we have exactly the same relations as in (2.11)-(2.12):

r1 ≤ |x| ⇐⇒Mf(x) ≥ v(x), (3.16)

r1 ≥ |x| ⇐⇒Mf(x) ≤ v(x). (3.17)

Therefore, from (3.13)-(3.14) we have

Iα(·)f(x) ≤ Cr
α(x)
0 Mf(x) in the case where Mf(x) ≥ v(x) (3.18)

and
Iα(·)f(x) ≤ Cr

α(x)
1 Mf(x) in the case where Mf(x) ≤ v(x). (3.19)

Substituting the values of r0 and r1, we obtain

Iα(·)f(x) ≤ C[w(|x|)]−α(x)
n [Mf(x)]

p(x)
q(x) .

and

Iα(·)f(x) ≤ C|x|a−n[w(x)]
α(x)
a−nMf(x)

p1(x)
q(x)

respectively, where

p1(x) = p(x)

(
1− aα(x)q(x)

n(n− a)

)
< p(x).

Consequently,
∫

Ω

[w(|x|)] q(x)
p(x)

∣∣Iα(·)f(x)
∣∣q(x)

dx ≤ C

∫

Ω

w(|x|)|Mf(x)|p(x) dx.

in the first case, and

∫

Ω

[w(|x|)] q(x)
p(x)

∣∣Iα(·)f(x)
∣∣q(x)

dx ≤ C

∫

Ω

wβ1(x)(|x|)
|x|β2(x)

|Mf(x)|p1(x) dx, (3.20)

in the second case, where

β1(x) = q(x)

[
1

p(x)
− α(x)

n− a

]
, β2(x) =

aα(x)q(x)

n− a
.

There is nothing to do in the first case, so we have to work with inequality (3.20).
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Let p2(x) = p(x)
p1(x)

. Obviously, infx∈Ω p2(x) > 1. Observe that with this notation we
have

β1(x) =
1

p2(x)
, β2(x) =

n

p′2(x)
.

An application of the weighted variable exponent Hölder inequality in (3.20) with the
exponents p2(x) and p′2(x) is not helpful, if we wish to obtain the final inequality in form
(1.3). Indeed, we have

∥∥∥∥∥
[w(|x|)]β1(x)− p1(x)

p(x)

|x|β2(x)

∥∥∥∥∥
Lp′2

=

∥∥∥∥
1

|x|β2(x)

∥∥∥∥
Lp′2

= ∞,

since β2(x)p′2(x) ≡ n. This explains the appearance of the additional factor ϕ in the weight
in our proof. Instead of (3.20) we write

∫

Ω

ϕ(|x|)[w(|x|)] q(x)
p(x)

∣∣Iα(·)f(x)
∣∣q(x)

dx ≤ C

∫

Ω

ϕ(|x|)[w(|x|)]β1(x)

|x|β2(x)
|Mf(x)|p1(x) dx. (3.21)

Then the Hölder inequality with the exponents p2(x) and p′2(x), the boundedness of the
maximal operator in the space Lp(·)(Ω, w) (see Theorem 2.9 in [1]), and the fact that

β1(x) − p1(x)
p(x)

= 0 provide inequality (1.6), if
∥∥∥ ϕ(|x|)
|x|β2(x)

∥∥∥
Lp′2

< ∞. The latter is equivalent

to
∫
Ω

[ϕ(|x|)]p′2(x)

|x|n dx < ∞. Since p′2(x) > 1 and ϕ is bounded, the condition
∫̀
0

ϕ(t)
t

dt < ∞ is

sufficient for the latter.

The authors thank Dr Mubariz Hajiboyev whose question helped the authors to notice
the gap in the proof.
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