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Introduction

We intend to investigate integral transforms of convolution type or op-
erators close to them within the frameworks of the spaces LP®) of variable
order p(x). We note at once that convolution operators have a ”"bad” behav-
ior in these spaces. The reason is in the fact that the convolution operator
K =k x f, in general, shifts a singularity a function f has at some point, to
another point, while the integrability exponent p(z) may have different values
at those points. Naturally, it depends on the kernel k() whether it shifts sin-
gularities or not. As a result, Young type theorem K : LP@®)(R") — LP@)(R™)
for an arbitrary summable kernel k(x) is not already valid for the spaces
L@ (Rm).

This paper may be considered as a preliminary one. It provides a nec-
essary tool for our future investigations of convolution and potential type
operators. In the next paper ”Convolution and potential type operators in
LP®) * we shall prove some kind of Young Theorem for these spaces , consider
also potential type operators and treat the question of validity of Sobolev-
type theorem in the spaces LP®)(R™). It should be emphasized that we shall
deal with the potential type operators whose order a(x) is variable as well.

The approach to the investigation of potential type operators is based on
estimates of LP®) - norms of power functions of distance truncated to the
exterior of the ball, in dependence of its radius. We develop these estimates
in this paper (section 2) and shall continue them in the next paper together
with applications to boundedness problems of the convolution and potential
type operators within the farmework of the spaces LP(®).

In this paper we develop some results for the spaces LP(*) themselves
both for our needs in application and for completeness of the presentation
(section 1 ). The spaces LP(®) were first investigated in [8]. Some further
developments of the theory of LP®) - spaces were given in [5], [7].



~ Notation. (isameasurable set in R", Q] is its Lebesgue measure,
R™ is the compactification of R" by the unique infinite point; S, = {z €
R™ : |z| = 1}; B(zo,r) is the ball cenetered at zg and of radius r ; B, =
B(0,1); p(xo, ) = infjy—uo<r (), P(x0,7) = SUPyy <, P(),

p(wo, 1) = infly_zg>r P(Y), P(0,7) = supj,_, 1> P(y); xalr) = 1 for z € Q
and = 0 for z & Q; f5(x) = fs(wo,m;2) =| 2 — 20 |P@) Xp(ag.r(2), gs(x) =
98(wo,m3%) =] @ — 20 [ [1 = Xpao.n) (@)]; As = [1f5ll 115 = llgs]l-

I. Basics of the theory of the spaces L*%)(Q)

1.1. Metric in LP®)(Q)

Let €2 be a measurable set in R" and p(z) be a non-negative measurable
function on Q. Let E, = E,(p) : = {2 € Q: p(r) = a} where we shall
be interested in the cases a =0, a =1 and a = co. Everywhere below it is
assumed that | £y | = 0.

Definition 1.1. By LP@)(Q) we denote the set of measurable functions
f(z) on Q such that

B c= [, 1@ P9 dr < oo (1)

and sup,cp_ | f(x) | < oo.
Following [8] we consider a natural topology in LP®) defined by the con-
vergence

foop | Bl = F@ PO dr e swp | fuf@) = f@) | < e (12)

€l

We shall essentially use the numbers

P = sup p(z), po= inf p(x) (1.3)
20\ Eoo z€Q)

so that 0 < py < P < o00. In case P < oo we set

df.9) = ([, , @) = g@POP" + swp [f(x) —g(a)

$€Eoo

with Py = max{P,1}. We shall also use the notation p(f) = p,(f) = d(f,0).
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Lemma 1.2. [ 8] . The topological space defined by Definition 1.1 and
(1.2), is linear if and only if P < oo and then d(f,g) is a metric on this
space.

Let S = S(Q) be the set of simple step functions Sn_, cxxq, (z) where
() are arbitrary measurable bounded sets in Q and g, (x) are their charac-
teristic functions. Evidently, S ¢ LP@) if P < oo.

1.2. Kolmogorov-Minkowski-type norm in LP®)(Q),
1 < p(z) < 0.

Theorem 1.4 below introduces a norm inspired by the Kolmogorov’s the-
orem on norming topological spaces ([4];[3], Ch. 4, p. 122) with a convex
bounded neighbourhood of the null-element, the Minkowsky functional of

this neighbourhood being a norm.
Lemma 1.3 ([8],[7]). Let f(z) € LP™(Q), 0 < p(x) < oo. The function

Fla) : = Ip<§> , A>0, (1.4)

takes finite values for all X > 1, is continuous and decreases and limy_,o, F(\) =
0. If P < oo, the same is true for all A > 0.

Theorem 1.4 ([8],[7]). Let 0 < p(x) < oo. For any f(z) € LP®(Q) the
functional

()
. f@) [
_ A:AS 0, / T g <1 15
1l mf{ L (15)
takes a finite value and
I / <
vl —) = 1, Hf”(p) #0 . (1.6)
1/ llw)
If either P < oo or || f|lpm =1, then
L L =1 1
p =1, [[fllp#0 - (1.7)
1/ llw)
Finally, if 1 < p(x) < P < o0, x € Q\E, then
Il = 1iflley + sup | £(2)] (1.8)



is a norm in LP®)(Q).
Corollary 1. The functional (1.5) satisfies the estimates

P Po
(W gzp(ﬁ)g(W) Az fly . 09)

Po P
(M) <g (£) < (M) Co<as sy .

where the cases po =0 or P = 0o are admitted.

Proof. Rewriting (1.9) and (1.10) as A < I, (ﬁf) <A A <1, and
AP0 < T, (ﬁ f) < AP X > 1, we see that the last inequalities follow from
(1.7) if either P < oo or P = oo but ||f||p) > 1. If P = oo and || f||, < 1,
we should refer to (1.6) and take into account that ||g[/p, = A > 1 for

_ M@
g<x> ey

Corollary 2. For any p(x), 0 < pyg < p(x) < P < 00, z € Q\FEw, the
following estimates hold

A6y < L0 < WGy » Iflley < 1, (1.11)
1FIG) < () < IFIGy - I1flley = 1, (1.12)

Corollary 3. Let E be a measurable set in Q\Ey and let xg(z) be its
characteristic function. If 0 <py < P < 0o, we have

Bl < xelley < 1BV 1Bl =1,

signs of the inequalities being opposite if |E| < 1, so that the equality
IxEll(p) =1 is equivalent to |E| = 1. (If, instead of E C Q\ Ew, it is assumed
that E C Q, then |E| must be replaced by |E N(Q\ Ex)|-

Remark 1.5. An example that illustrates just (1.6) instead of (1.7) is
Q=1[0,1, plz) =121, flz)=4"2""2

Remark 1.6 ([8]). In case P = oo, the functional || f|| does exist for
any f € LP@) according to Theorem 1.1 . However, if | f||y) < 00, it does not
necessarily implies that f € LP®(Q\E,), but f(x) € LLP®(Q\EL) where
LLP@ denotes the linear envelope of the class LP™(Q\Ey). .

Remark 1.7. A realization of Kolmogorov-Minkowsky norm for the Or-
licz spaces, similar to (1.8), is known in the theory of Orlicz spaces [6] as the
Luzemburg norm.



Remark 1.8. The space LP™)(Q) is ideal, which means that it is complete
and the inequality |f(z)| < |g(x)| implies || fll, < |lgll, (see the proof of
completeness of the space LP(*)(Q) in [5],[7] ).

Remark 1.9 ([8]). The (semi)norm || f||p), p(x) > 1, is strict in the
sense that the equality | f + gllp) = [ fllw) + |9l is possible if and only
fg=chie>0 (= lgloy/ Il

Remark 1.10. Let 1 < p(z) < oo, P < oo. The (semi)norm || f|| ) may
be represented in the form

17l = [, eo@) @), eofa) € L) (1.13)
1 1 f(x) Pt f(z)
where 75+ 5 =1, wo(z) = i O ¢ By, and ||¢o]] < 1.
Lemma 1.11 ([7]). Let 0 < py < P < o0. If
I,,(f) < b, a>0,b>0, (1.14)
a

then || fllp) < ab” withv =1/po if b>1 and v =1/P if b < 1.
Lemma 1.12 ([7]). Let 0 < y(z) < p(z) < P < o0, © € Q\E. Then

A1) < 1 ey < Wl » Il =1, (1.15)
111y < 17 lzy < AUy 1l <1, (1.16)

where 7 = |f(z)]"® and vy = infzeo\e. v(2) | [' = sup,eq\p. V(T) -
If p(z) and ~(x) are continuous on Q\Es, there exists a point xg € Q\Fu
such that ||l = 115"

Corollary. Let 0 < py < p(x) < P < 00, x € Q\Ex. If p(z) is
continuous on Q\ FEw, there exists a point xo € Q\Ey, (depending on f) such
that )

p(z0)

oy ={ ,,_1r@Pe1as}"" (117)

Lemma 1.13. Let 0 < pi(z) < p(z) < po(z) < 00 and |Ex(p2)| = 0.
Then

LP@(Q) (M LP™(Q) € LP@(Q) C LP(Q) + LP®(Q).
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where the algebraic sum of spaces stands in the right-hand side. Besides,
11y < mac{ |l 1 e}

Proof is straightforward.

The property of semiadditivity of the norm:

max{ || f[ Lo @) 1 | o 0y} < N llLeer ) < N lle@r@ny + ||f||Lp<z><(1921)8>
with € U Qs = Q, well known for the case of constant exponents, is covered
by the following lemma.
Lemma 1.14. Let Q= Q;UQy and let p(x) be a function on Q, p(z) >
1 and P < co. Then (1.18) holds for any f(x) € LP®(Q).
Proof. Let |E.| = 0 for simplicity. We denote a = || f|| s (q,), b =
[l e () Let a > b for definiteness. We have

J

Hence || f|l o)) = max(a,b). To prove the right-hand side inequality, we

p(z)
dx >

f ()

max(a, b)

Q1

put
fle) o xa(e)flz) | b xofx)f(x)
= +
a+b a+b a a+b b
where y;(x) are the charecteristic functions of the sets €;,7 = 1,2. Using the
convexity property, we obtain [, ‘{L(TZZ pe) dx < 1 which was required.

In case |E| > 0, the arguments are similar if we take into account the fact
that the lemma has already been proved for the situation Q\E,, = Q} U
where QFf = Q\Foo NQy,0=1,2. 0

1.3. Another version of the Kolmogorov-Minkowskii
norm.

The Kolmogorov-Minkowski-type norm can be also introduced directly
with respect to the whole set € :

171, = inf{)\>O:Ip <§> + sup ‘f()\a:)‘ < 1} (1.19)

r€EF

which is well defined for f(z) € LP®(Q), whatever measurable function
p(2),0 < p(z) < oo, is used ; it is a norm, if 1 < p(z) < oco. This can



be proved similarly to Theorem 1.4, see [7]. Analogously to (1.7) it can be
(1.20)

proved that
p(z)
[POrT W
N | [ 11} 113

if P < ooor P =00, but|f|, > 1. It is exactly this version of the norm

that was used in [5].
Theorem 1.15 ([7]). The norms (1.8) and (1.20) are equivalent: L || f]|,
1£15 < I fllp where f(a) € LP(Q), 1 < p(a) < 00, P < oo.

Holder inequality and its generaliza-

1.4.
tions.
Theorem 1.16 ([8 ] [7]). Let f(z) € LP@(Q),1 < p(z) < oo, and p(x)
(@) D SR S
L1 (Q),p(m) + 3 = 1w €Q. Then
[ 1f@e@)da < k£, llell, (1.21)
with k = i q% = sup p(x) + sup q(x The Holder inequality holds also in the
form
/ [fi(@). (@) |d < cf| fullpr-o | fonlpm (1.217)

Q
M) > 1 and Y7 1/pF) =1, 2 € Q, and ¢ =

where p'(z) > 1, ...
w1 1/p6, pb = mingeq p*(x).
Remark 1.17. If instead of (1.5) we introduce the (semi)norm || f|]

' ) f(:c) p(x)
- A>0: [ oIEE de < 1.22
£l mf{ s0i [ s (122
then the Holder inequality (1.21) holds with the constant 1
(1.23)

L1@e@)de < I1fly el

In case of constant p(x) = p the Holder inequality has a simple gener-

alization in the form [[uv]l, < [lul,l|vllg, 5 + ; = 7, which is an immediate
7



consequence of the Holder inequality itself. In case of variable exponents such
an inequality does not follow from the Holder inequality since |||u|"[| # [Ju]]},
see Lemma 1.12. However, it is valid , but may be obtained not as a conse-
quence of the Holder inequality.

Lemma 1.18 ([7]). Let ﬁ + Tlx) = T(lx), p(x) > 1, q(x) > 1, r(z) > 1
and let R = sup,cq\p.. () 7(x) < 0o. Then

[uvlly < cllullpllv]lg (1.24)

r(z)
p(z)’

for all w € LP®) and v € L% with ¢ = ¢; + ¢9,¢1 = SUP e\ Eo (r)

SuprQ\Eoo (r) %

Remark 1.19. If we would use the modification (1.22) of the (semi)norm
|| fllp), then the inequality (1.24) holds with ¢ = 2 and the requirement R < oo
may be omitted .

1.5. On the imbedding LP®) C L"),

Theorem 1.20 ([7]). Let 0 < r(z) < p(x) < o0 and let |2\ Ex(r)
If Ex(r) C Ex(p) and R : = SupP,cp_p)\p.(r) T(T) < 00, then L@
L'@(Q) and

L(f) < L(f) + B0\ Ess (M 1 (5o o)\ B + [0\ Eoo(r)] (1.25)

for any f € LP@) _ (In the case B (p) = Ex(r), the second term in the right
hand side should be omitted and R is allowed to be infinite). If, moreover,
1 <r(z) <p(zr) and Ex(p) = Ex(r), the inequality for norms also holds:

Il < <Gl Nl (1.26)

(0. ¢]

| < o0.
Q) €

where cg = ca+(1—c1)|Q\Eo(p)|, ¢1 = infreo\ . () %, C2 = SUPzcO\ Ex (p) %,

anduz% ifco>1 anduz% if co < 1.
We note that in [5] it was shown, under the assumption | © |< oo, that
continuous imbedding holds if and only if 7(z) < p(z).

1.6. Riesz-type norm in L) (Q) .
We consider now the norm inspired by the Riesz theorem on the repre-
sentation of a linear functional in LP. We introduce first the space

LPO(Q) = {f(x) : ‘/Qf(x)go(m)dﬁ

< oo Vp(x) € Lq(’”)(Q)} (1.27)

8



where 1 < p(z) < oo and Wlx) + ﬁ = 1. This space will in fact coincide with
LP@)(Q) under some natural assumptions on p(z) as it reaches the values 1
and oo . The imbedding LP(®) C [P(#)(Q) | 1 < p(x) < 0o , is an immediate
consequence of the Holder inequality (1.21).

We note that the space (1.27) is always linear. So , by Lemma 1.2 | it
cannot coincide with LP®) & priori if P = oo.

Besides the notations pg and P for p(z) , see (1.4), and ¢o and @ for
q(z), we shall also use

L= inf g = inf .
Po 1691{1]:71 (») p(x) %o IES%{lEl (@) Q(x)
Evidently,
1
Py 1
E =FE (q), E = F(p), Q= , = —. 1.28
1(p) (9), Eilq) (), @ s Rl ey (1.28)
The space (1.27) can be equipped with the natural norms
17l = sup || f@)e(a)da). (1.29)
pq(p)<1 Q
1l = s | [ F@)e(e)dal (1.30)
l[ollg<1 1/

where the distance p,(¢) , defined in Subsection 1.1 is taken with respect to
the variable exponent ¢(x) and it is assumed that @ < oo (that is pj > 1
) in (1.29), while p(z) may be arbitrary (1 < p(z) < oo ) in case of (1.30).
The first of these norms was used in [5] , but with |||} instead of [|¢]|, (see
(1.19) ).

Note that from Remark 1.10 it follows that

£l < £15° (1.31)

in case 1 < p(r) < P <oo,|E.l=0.
Lemma 1.21 ([7]). Let f(z) € LP™(Q),p > 1. Then || f|l; < oo and

/Q!f(x)cp(xﬂdx < £ llellg < AUl (1.32)

for all p(x) € L™(Q),1/p(x) + 1/q(x) = 1, where ||¢||} is the norm (1.27).
Besides, the functional (1.29) is a norm in LP®)(Q).

9



Lemma 1.22 ([7]). Let 1 < p(z) < 0o, py > 1 and P < co. The norms
(1.29) and (1.80) are equivalent on functions f(z) € LP@®(Q) :

IV ) o (1.33)

They coincide with each other in the cases : 1) |Ey(p)| =0, 2) p(z) = const
for x € Q\(Ex U E}).

Theorem 1.23 ([7]). Let p} > 1 and P < oo. The spaces LP®)(Q) and
LP@)(Q) coincide up to the equivalence of norms:

1 ) 11
S0 < 0t < (24 L)1, (134

where 1/3 may be replaced by 1 if |Ey| = |Ex| = 0.
Corollary. Let f(z) € LP™(Q), o(z) € LY (Q), 1 < p(z) < oo, ﬁ—l—
Lo =1,2 € Q. With respect to the norms (1.29)-(1.30) the Holder inequality

(z)
lqwlds with the multiple constant 1 :

L1 @@l < 1151l ph > 1, (1.35)
L1 @e@)lde < 1715716l (1.36)

The inequality
L1 @e@de < 111 (137)

18 also valid in case
po>1, P < oo, |Ex(p)|=|Ei(p)| =0. (1.38)

Really, (1.35) has already been given in (1.32) while (1.36) follows directly
from the definition (1.30). The inequality (1.37) follows from (1.35) since
llellq < llell; under the conditions (1.38) in view of Theorem 1.23.

The definition (1.27) gives one of posiible ways to define the space L) ()
as linear in case P = co. It could be also defined from the very beginning as
a linear envelope of the space LP(*)(Q)) (see Remark 1.6) or as

LP@(Q) = {f(x) SN > 0= X

dz + [|fllre(pe) < 00}
(1.:39)

O\ oo
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This space is always linear, 0 < p(z) < oo. So, 1n case PP = oo we can deal
with three versions of deﬁmtlons - LLP@) [P@) and LP@ . Tt is easily seen
that LLP®) = Lp(w) C L*(®) The norm in the space LP(*) is given by (1.30)
while in LLP®) = L[P@) by (1.5).

1.7. One norm more in L”%)(Q).

We introduce now another norm inspired by a norm known for the Orlicz
spaces [6 ] . We put

p( )
[ f[l; = inf F(A),

A>0

(1.40)

assuming that |E.| = 0 for simplicity. The axioms for norms are easily
verified. )

Lemma 1.24. The function ¢(p) = p(p—1)» ", 1 < p < 00, is increasing
for 1 < p <2 and decreasing for p > 2 and

1<ec(p) <2, 1<p<oo; ¢(l)=1, ¢2)=2, ¢(0) =1.

Proof is direct.
Theorem 1.25. Let |E| =0, 1 < py < p(x) < P < oo. The norm
(1.40) is equivalent to the norm || f||, :

allfll < A5 < el £l (1.41)

where ¢; = min{c(py),c(P)} > 1, and co = max{c(py),c(P)},if P < 2 or
po =2, and c2 =2, if po <2< P.

Proof. Evidently, F([f],) = 2/fll, by (1.7). Hence |[f]}; < 2]/l

To prove the right-hand side inequality in (1.41) we note that

1£15 = inf F(A[LF1]) (1.42)
The evident inequality F(A|[f|l,) = (A + A9 f|l, is valid, where t = pq if
0O<A<landt=Pif A > 1. So, from (1.42) we arrive at the left-hand side
inequality in (1.41) with
= min{ min (A + A7), min(\ + A7), } .
0<A<1 A>1

An easy calculation and Lemma 1.24 give the value of this constant as
indicated in the theorem. Similarly the right-hand side inequality in (1.41)

11



is obtained if we take use of the inequality F(A||f],) < (A+ A" f]l, where
t=P ifx<landt=pyif \>1.0

Theorem 1.26. Let 1 < p(x) < P< o0, |[Ex| = 0 and
{z : p(x) > 1}| > 0. Infinum in (1.40) is reached at X\ = A\ = ||af||,, with

a(x) = [p(x) — 1]ﬁ, so that
p(z)
dx} . (1.43)

17t = Narty {1 + [ [L5F
p o,
dx the differentiation

Proof. WehavedF( =1 — [ylp(z) — ]‘f
under the integral sign being easily verified since P < oo. The equation
dF'(X)/d\ =0 gives A = |laf],. O

Remark 1.27. The equivalence of norms presented in Theorem 1.6 fol-
lows also from (1.43).

1.8. Minkowski inequality.
Theorem 1.28 ([7]). Let 1 < p(z) < oo, P<oco and p}>1. Then

H/Qf(-,y)

Corollary. Let 1 < p(r) < oo, P<oo and p},>1. Then

ay| < [ rCwlay (1:44)

| e <e [ 1rcol. (1.45)
[ 5 dy<@/Wf Dy (1.46)
where ¢y = 1 if |E1] = 0 and ¢; = 271+Q/%  otherwise, while ¢y = ke, if

|Ew| = |E1| =0 and co = 3kcy otherwise; k = p% + qio .
Proof. The inequality (1.45) with ¢; = 271+@/% follows from (1.44) in

view of (1.33). Similarly , (1.46) follows from (1.44) by (1.34) and (1.33). To
show that ¢; = 0 in (1.45) in case |E;| = 0, we note that

|| sy

and it remains to note that the conditions p,(¢) < 1 and |¢ll, < 1 are
equivalent in case |E;| = 0 in view of (1.11)-(1.12). O

< sup | lellgllfCo)ldy
pe(p)<1

12



Remark 1.29. Fubini theorem in the form

1 s )l oy = 1117 ) llp) o)

valid for p(x) = const, is not in general true for a variable exponent, even in
the form of the inequality

111 (s ) o) o) < el 1 (2 9) llp) lpe) - (1.47)

Really, taking n = 1 for simplicity and p(xz) = p; for —1 <z <0, p(x) =
pe for 0 < x <1, we can easily see that (1.47) would yield the equivalence
of mixed norms in the spaces LP* (LP*([0,1])), LP> (LP*(]0, 1])) , which is not

true, as is known [ 1], [2] .

II. Estimates of norms of power functions of
distance, truncated to a ball of a radius
r > 0.

2.1. Preliminaries.
In further applications, for example, to potential type operators in LP(®) ()
we shall need an information about behaviour of norms || fs|| where

fo(w) = falwo,r;2) = xo(x — o) |z — wo| "™, x € R,

where x,.(x) is a characteristic function either of interior or exterior of the ball
of the radius » > 0. To obtain these estimates, some minimal requirement
of smoothness of p(z) arises - we take it in the class w-Lip (R"), see its
definition below. There arises also a notion of norming value ry of radius for
which || fs]] = 1. In case of 5 =0, 7o gives the ball of the volume 1 , while
in the general case r( is as a root of some special equation.

Everywhere below in Section 2 it is assumed that

1 <py<plx)<P<oo , |Ex|l=0. (2.1)

13



Definition 2.1. A function f(x) is said to belong to w-Lip(R™), if f(x) €
C(R") and |f(x +h) — f(2)] < A, v € R",h € R",|h| <1 where A >0

log 77
(the weak Lipschitz condition). "

Definition 2.2. A function f(z) is said to have the w-Lip - behaviour at
infinity, if it is continuous at the infinite point and | f(x)— f(o0)|log(e+|z|) <
Ao < 00, where Ay, > 0 does not depend on x .

Definition 2.3. A function f(z) is said to belong to w-Lip (R") , if
f(x) € w— Lip(R")NC(R™) and has the w — Lip- behaviour at infinity .

We first study the case of the interior of the ball : x, = Xp(ay,r) (), where
X B(zo,r) () is the characteristic function of the ball B(xg,r) centered at zy .
. For brevity we denote

As = Ag(zo,m) = [ £5llp = | | £ = 0 | XBao.) (@)lp-

According to (1.7) we have

[P o)
/ dy =1 (2.2)
ly|<r g

2.2. On convergence of integrals of power functions
with a variable exponent .

Let i
J= S (2.3)
|z—xzo|<r ‘l‘ - m0|a(a:)
We assume that sup,_, < a(r) < +oo, infl, 4 >1a(x) > —oo (the latter

in the case r > 1 only).

Lemma 2.6. Let a(x) < b(x) , |z — xo| <€, whereb(z) € C(B(xo,7))
and b(xg) < n. Then the integral (2.3) converges.

Proof is direct.

Corollary. Let zyp € Q C R" and || < oo. Then |v — xo|7%®) €
LP@(Q), 0<plx) < oo, if

1)  sup a(x)p(z) < +oo, inf a(z)p(x) > —o0

|z—xzo|<1 lz—z0|21

2) a(x) < %, |z — xo| < € for some € > 0, where b(z) € C (B(xg,€)) and
b(xg) < n.
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Lemma 2.7. Let

A
a(x) — a(zg) > T r——— A>0, (2.4)

in some neighbourhood of the point xo. Then the condition a(xg) < n is
necessary for convergence of the integral (2.3).

Proof. The condition (2.4) is equivalent to the inequality |z —z|*@0) @) >
e/t > 0, and then the necessity of the condition a(zg) < n becomes obvious .

2.3. The norming value of radius.

The function Az(zo,7) increases with respect to r . We are interested in
separating the cases Ag(xo,r) < 1 and Ag(xo,r) > 1.

Definition 2.8. The value r = ro = ro(zo) of the radius is the norming
one for the function fz(xo,7;7) in the space LP@(R™) | if Ag(xo,70) = 1.

It may happen that ro = oo or does not exist . Evidently,

Ag(xg,7) <1 <= 0<7r <7y, (2.5)

As(@o, 1) > 1 <=1 > 10, (2.6)

We introduce the function

Fan) = [ e,z € R, 2.1)

Lemma 2.9. Let w-Lip (R") and |3(x)| < oo. Then F(xy) < oo , if
and only if
n+ B(zo)p(xo) >0, n+ [(xe)p(c0) < 0. (2.8)

Proof. We have F(z9) = [« || P@oIp(z+wo) g 4- Jiap>1 |z|P@op(@+eo) dgy =
G(zo) + H(xo), so that the convergence of f(z¢) is equivalent to the simul-
taneous convergence of G(xg) and H(xg) . Obviously, G(zg) =
Jiap>1 |z|B@o)r@0) g(2)dxr and H(zo) = Jiap>1 |z|B@o)r(®) p(z)dx , where

g(z) = ‘:C’ﬁ(xo)[lﬂ(xﬂo)*ﬁ(xo)] (2.9)

h(zx) = |z|P@olplFeo)=ple)]l
Since |z| <1 in the first integral, in accordance with Definition 2.1 we have

e~ AlBo)| < g(z) < eAlB(@o)l (2.10)

15



Similarly, e~A=8@0)l < p(z) < eA=lB@)l in accordance with Definition 2.2.
Therefore, convergence of the integral G(xg) is equivalent to the first of the
conditions (2.8), while that of H(z) is equivalent to the second one. O

We shall also need a more strong requirement for the first condition in
(2.8) to be uniform in x :

d .= inf ll + 75(33)19(@

rER™ n

> 0. (2.11)

Remark 2.10. The condition (2.11) arises only in case of 3 < 0. In the
case when f(x) > 0 a.e. in R™ we make the convention that d = 1.
Lemma 2.11. The norming value ro of radius is the root of the equation

/ | P@0pa+e0) g — 1, (2.12)
x|<rg

It does exist if p(x) € w-Lip (R™),n+ B(zo)p(xo) > 0 and F (o) > 1.
Proof. By (2.2) , A\g = 1 is just the same as (2.12). Since the left-hand

side in (2.12) increases with respect to ry, the equation does have a unique

root, if only the integral converges. This is the case by Lemma 2.7. O
Lemma 2.12. Let p(z) € w-Lip (R™) . If ro <1, then

e—AlBE0)| < / || P@P0) gy < (AlB@O) (2.13)
|z|<ro

Proof. From (2.12) we have [, |2|#@0)p(0) g(3)dx = 1 where g(z) is
the function from (2.9). Applying (2.10), we obtain (2.13). O

The next subsections 2.4 and 2.5 are devoted to the proof of the uniform
boundedness of ry as a function of 2y : 0 < ¢ < ro(xy) < C < oo with ¢ and
C not depending on z .

2.4. Lower bound for ry(xg).
Besides (2.11) we shall also deal with the condition

TER" n

d, = inf <1+ ﬁ(x)P> >0, (2.14)

Similarly to Remark 2.10 we take d; = 1 if f(x) > 0 a.e.
Lemma 2.13. Let d > 0 and p(x) € w-Lip (R"). Then

)] (215)

U

_A 1-d ,
ro > e Po max{ 75 | in 1,
| Bl
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where A is the constant from the Definition 2.1 of the w-Lip - condition for
the function p(x). If dy > 0, then

PSS

without the assumption p(x) € w-Lip (R") .
Proof. We suppose that rp = 7(x¢) < 1 (otherwise the estimate (2.16) is
already valid). From (2.12) we have

ro 2>

1</‘ || Py (2.17)
|z|<ro

where ¢ = py , if f(x9) > 0 and ¢ = P if f(xy) < 0. Denoting 1—1—% =t(> dy),
1

we obtain ry > (lﬁfﬂ)ﬁ . Hence (2.16) follows, since

: 13 i . dy i
dlgioo ('-Bn|> = min (1, |Bn’> : (2.18)
Let d > 0. Taking ry < 1 again , from the left-hand side inequality in

(2.13) we derive the estimate rj "7 > [ 4 B(0)p(20)] [Sn_i | Le~ B,
Hence

3=

ro > [k(1)] (2.19)

1 A |t—1]

where t = 1+ M >d>0and k(t) = ( : )? ¢ 7o) T Taking (2.18)

and the equality
t—1 1—d
sup | ; | = max (1, > (2.20)

into account, we see that (2.15) follows from (2.19). O
2.5 Upper bound for ry(x).

Similarly to case of the lower bound, we give the upper bound without
assumption on w-Lip - behaviour of the function p(z) in case d; > 0.
Lemma 2.14. Let dy > 0. Then

1+dq|Bn| !

ro(z) < e medr (2.21)
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Proof. Assuming that rq > 1, from (2.12) we obtain 1>
Jictai<re || B@olp(@+z0) gy > Jiciai<re |z|#@0)ady | where ¢ is the same as in

(2.17). Hence
rolio) < <1+ ) (2.22)

witht =1+ @ > d;. Since (1 + at)% < elxb,
that (2.21) follows from (2.22).
Lemma 2.15. Let d > 0 and let p(z) € w-Lip (R™). Then

t>b>0, a>0, we see

—d
ro(xo) < Ry : = eTBaT g WXL ) (2.23)

Proof. In accordance with Lemma 2.11 we shall show that there exist a
number Ry > 0 not depending on x( such that

G(Ro, z0) = / || PE0p@+e0) g > (2.24)
|z|<Ro

for all zyp € R". We have G(Ro,20) = [;<r, |2|@0) g(x)dr where g(z) is
defined in (2.9). Hence, by (2.13)

| By e~ 4180

n+03(xo)p(zo)
G(Ro, z0) > 1 4 BGokp(eo) 0 '

n

Therefore, to have (2.24) , it is sufficient to choose Ry in such a way that

1
1o Ap—1] n
1+ o) ) 5]
A —d 1
t =14 C@ok@) By (990) we may take Ry > evo max(1,45) (‘Bt—n') " . Since
max;so(at)!/t = e/, this gives (2.23). O
2.6 Estimates of the norm | f3|/, as r — 0.
Lemma 2.16. The norm Mg is estimated by

Rn+5(z0 p(zo )>

[Js(r)]7m < Ag < [J(r)]Peom , 0<r <, (2.25)
where
Jﬁ(?") = J/@([Eo,T) = ‘/| |:1;|5(170)p(36+:v0)dx' (226)
x|<r
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Proof. From (2.2) and (2.5) we have

1 |x|ﬂ($0)P(I+ro)dx <1<

1
Blzo)p(z+z0) 1
)\p(l’o,T’) ‘Z‘|<T’ - )\P(x()vr) /Z'|<T’ |x| z

which coincides with (2.25).
Lemma 2.17. The integral J5(r) satisfies the estimates

k(r) (T)nw‘“ < Js(r) < k(r) (’”)nw@ L0 <7 <1, (2.27)

To To
where qu = P(xo,7) if B(wo) > 0 and q1 = p(xo,7) , if B(wo) < 0, while
q2 = p(xo,7) if B(zo) > 0 and g2 = P(xo,7) , if B(x) <0 and

k) = | e (2.28)
|z|<ro

Proof. The change of variables x = y yields Ja(r) =

()" Jotem (Z1y) "5 dy. Hence (2.27) s easily derived. O

We shall see below that 0 < ¢; < k(r) = k(zo,7) < ¢3 < oo uniformly in
xo under the appropriate assumptions on p(z) and 5(z).

Lemma 2.18 . (Estimates for a fixed point ). Let p(z) € w-Lip (R")
and n + [(zo)p(xo) > 0. Then

0<hk <Ek(r)<k; <o0 (2.29)
where
ko= A; (l,o) min (1’ 7,6#5(900)17(900)) k= Ai<x0) max <T6L+5(Io)q7 70(7)Hr5(960)20(330)) :

with ¢ = P if B(xo) > 0 and g = po if B(xo) <0 and

et AlB(zo) |Sy_1]

AE(zy) = : 2.30
) = Bl (230
Proof. Let 0 < rg <1 first . We have
k(r) = /| P, (2) e (2.31)
x|<ro
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where h,(z) = |o|/OPGEGoTr0) =] Gipce p(2) € w-Lip (R") and %y’ <
r <rg <1, we have
log || log 17
| log R (2)] < AlB(0)| oo 20| — AW(IO)’m < AlB(wo)|.
rlal BTl T8,
Then
e~ Aol < he(z) < eAlB (o) 7 (2.32)
so that the estimates (2.29) follow from (2.31)
Let now ry > 1. We have
k)= [ e Oh @yt [ a5 (239
|z|<1 1<]@|<ro

In the first term the function h,(x) is estimated in the same way as in the
previous case. So, (2.33) implies

‘Sn—1|
n + qB(wo)

since n + gB(zo) > n + B(xo)p(xo).
Similarly to (2.34) the lower bound

k(r) < Al (zo) + [ ") — 1] < Al (wo)rg Y (2.34)

umzA | PP, () da > A (o),
x|<1

for 0 <r <ry, Rp>1,can be obtained. Gathering the estimates we arrive
at (2.29)

Lemma 2.19. (The uniform estimate). Let p(z) € w-Lip (R"), v : =
SUD,cpn B(2) < 400 and let d > 0. Then 0 < c— < k(r) <cy <oo, 0 <r <
ro , with ¢, and c_ not depending on r and xq; in the case ro < 1 one may
take cx = 248 where B = sup |B(x)| < max (fy, M) :

d
Proof. Let ry < 1. From (2.31)-(2.32) we obtain

e~ AlB(zo) || @oIP(@0) gy < k(1) < AP0 || A@oIp(o) gy

|z]<ro || <ro

Hence by Lemma 2.12 e~2418@0)l < (r) < ¢2418@0)l which proves the lemma
for ro < 1. If ry > 1, the uniform estimates follow from (2.82) in view of the
uniform estimates (2.15) and (2.23) for ro(z). O
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Lemma 2.20. Let p(z) € w-Lip (R") and d > 0. There exists a constant
c >0, not depending on r and xy such that for all 0 < r < ry we have

T T
|P(x0, ) — p(xo)|log 70 <c, |plao,r) — p(xo)| log 70 <e, (2.35)

Proof. Let r <1 . Since p(x) € w-lip (R™), we have

1

|z — x|

sup Qmm—p@@u% )SA,0<TS1.

|le—z0|<r

Then, moreover, [sup,_, <, [p(x) —p(xo)]’ log% < A. The latter is nothing
else but [P(zo,7) — p(x0)]log £ < A. Hence the first of the inequalities (2.35)
follows with ¢ = A + (P — po) sup,, |logro| . If r > 1, the inequalities (2.33)
are trivial . It remains to note that sup,, |logry| < oo by Lemmas 2.13 and
2.14.

To obtain the second of the inequalities in (2.35), we remark that | inf f(z)| <
sup | f(«)| and then from what was above it follows that | inf|,_,,<,[p(x) —
p(z0)] log% < A. Then the same arguments give the required estimate. O

Theorem 2.21. Let p(z) € w-Lip (R™), d > 0 and sup, |B(x)| < oo.
Then

70y TB(T0) L+ B(x0)
¢ <T> o) < Ao, 1) < 2 (T) v , 0<r<ry  (2.36)
To To

Proof. From (2.25), (2.27) and (2.29) we conclude that

ﬁ+6(x0) %’T+ﬂ($o)
()T s (D) (2.37)
To To

in case B(xp) < 0 and

n P(z 7'”)
r\ som T@0) 5l
C1

n p(z 7T)
r ) Pagm TH0) Bagr)

S)\gﬁcz(ro

, (2.38)

To

in case 3(zg) > 0, ¢; and ¢y not depending on r and zy. Hence we derive
(2.36) by means of Lemma 2.20. O

Lemma 2.22. Under the assumptions of Lemma 2.19 , Ag(xo,7) < ¢ <
oo for0<r < R, with c not depending on r and xq .
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Proof. Because of (2.35) we take r > r(. Since Ag > 1 in this case , from
(2.2) and (2.11) we obtain 1 < ﬁfm@ || B@olp(@+20) gy —

ﬁ {1 + o Jro<lzl<a |z|P@op@+eo) dg 4 Ji<jal<r |x\f6<x0)p(“x°)d9&} where the split-

ting of the integral over the layer ry < |z| < r to two integrals should be
omitted in case of 1o > 1. Since sup, (x) < +00 , 19(x0) is separated from
zero, so that the expression in the brackets is easily estimated for 0 < r < R
by a constant owing to the w-Lip - condition. O

Corollary. Under the assumptions of Theorem 2.21

c5 riteg) AT < Ag(zo,7) < ¢y it TP 0 < < R,

with c3 and ¢4 depending R only.
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