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Convolution type operators in Lp(x) .

Introduction
We intend to investigate integral transforms of convolution type or op-

erators close to them within the frameworks of the spaces Lp(x) of variable
order p(x). We note at once that convolution operators have a ”bad” behav-
ior in these spaces. The reason is in the fact that the convolution operator
K = k ∗ f , in general, shifts a singularity a function f has at some point, to
another point, while the integrability exponent p(x) may have different values
at those points. Naturally, it depends on the kernel k(x) whether it shifts sin-
gularities or not. As a result, Young type theorem K : Lp(x)(Rn) → Lp(x)(Rn)
for an arbitrary summable kernel k(x) is not already valid for the spaces
Lp(x)(Rn).

This paper may be considered as a preliminary one. It provides a nec-
essary tool for our future investigations of convolution and potential type
operators. In the next paper ”Convolution and potential type operators in
Lp(x) ” we shall prove some kind of Young Theorem for these spaces , consider
also potential type operators and treat the question of validity of Sobolev-
type theorem in the spaces Lp(x)(Rn). It should be emphasized that we shall
deal with the potential type operators whose order α(x) is variable as well.

The approach to the investigation of potential type operators is based on
estimates of Lp(x) - norms of power functions of distance truncated to the
exterior of the ball, in dependence of its radius. We develop these estimates
in this paper (section 2) and shall continue them in the next paper together
with applications to boundedness problems of the convolution and potential
type operators within the farmework of the spaces Lp(x).

In this paper we develop some results for the spaces Lp(x) themselves
both for our needs in application and for completeness of the presentation
(section 1 ). The spaces Lp(x) were first investigated in [8]. Some further
developments of the theory of Lp(x) - spaces were given in [5], [7].
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N o t a t i o n . Ω is a measurable set in Rn, |Ω| is its Lebesgue measure,
Ṙn is the compactification of Rn by the unique infinite point; Sn−1 = {x ∈
Rn : |x| = 1}; B(x0, r) is the ball cenetered at x0 and of radius r ; Bn =
B(0, 1); p(x0, r) = inf |y−x0|≤r p(y), P (x0, r) = sup|y−x0|≤r p(y),

p̄(x0, r) = inf |y−x0|≥r p(y), P̄ (x0, r) = sup|y−x0|≥r p(y); χΩ(x) ≡ 1 for x ∈ Ω

and ≡ 0 for x 6∈ Ω; fβ(x) = fβ(x0, r; x) =| x − x0 |β(x0) χB(x0,r)(x), gβ(x) =
gβ(x0, r; x) =| x− x0 |β(x0) [1− χB(x0,r)(x)]; λβ = ‖fβ‖, µβ = ‖gβ‖.

I. Basics of the theory of the spaces Lp(x)(Ω)

1.1. Metric in Lp(x)(Ω)
Let Ω be a measurable set in Rn and p(x) be a non-negative measurable

function on Ω. Let Ea = Ea(p) : = {x ∈ Ω : p(x) = a} where we shall
be interested in the cases a = 0, a = 1 and a = ∞. Everywhere below it is
assumed that | E0 | = 0.

Definition 1.1. By Lp(x)(Ω) we denote the set of measurable functions
f(x) on Ω such that

Ip(f) : =
∫

Ω\E∞
| f(x) |p(x) dx < ∞ (1.1)

and supx∈E∞ | f(x) | < ∞.
Following [8] we consider a natural topology in Lp(x) defined by the con-

vergence

∫

Ω\E∞
| fm(x)− f(x) |p(x) dx + sup

x∈E∞
| fm(x)− f(x) | < ε. (1.2)

We shall essentially use the numbers

P = sup
x∈Ω\E∞

p(x), p0 = inf
x∈Ω

p(x) (1.3)

so that 0 ≤ p0 ≤ P ≤ ∞. In case P < ∞ we set

d(f, g) = {
∫

Ω\E∞
|f(x)− g(x)|p(x)}1/P1 + sup

x∈E∞
|f(x)− g(x)|

with P1 = max{P, 1}. We shall also use the notation ρ(f) = ρp(f) = d(f, 0).
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Lemma 1.2. [ 8 ] . The topological space defined by Definition 1.1 and
(1.2), is linear if and only if P < ∞ and then d(f, g) is a metric on this
space.

Let S = S(Ω) be the set of simple step functions
∑N

k=1 ckχΩk
(x) where

Ωk are arbitrary measurable bounded sets in Ω and χΩk
(x) are their charac-

teristic functions. Evidently, S ⊂ Lp(x) if P < ∞.

1.2. Kolmogorov-Minkowski-type norm in Lp(x)(Ω),
1 ≤ p(x) ≤ ∞.

Theorem 1.4 below introduces a norm inspired by the Kolmogorov’s the-
orem on norming topological spaces ([4];[3], Ch. 4 , p. 122) with a convex
bounded neighbourhood of the null-element, the Minkowsky functional of
this neighbourhood being a norm.

Lemma 1.3 ([8],[7]). Let f(x) ∈ Lp(x)(Ω), 0 ≤ p(x) ≤ ∞. The function

F (α) : = Ip

(
f

λ

)
, λ > 0 , (1.4)

takes finite values for all λ ≥ 1, is continuous and decreases and limλ→∞ F (λ) =
0. If P < ∞, the same is true for all λ > 0.

Theorem 1.4 ([8],[7]). Let 0 ≤ p(x) ≤ ∞. For any f(x) ∈ Lp(x)(Ω) the
functional

‖f‖(p) = inf



λ : λ > 0,

∫

Ω\E∞

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣
p(x)

dx ≤ 1



 (1.5)

takes a finite value and

Ip

(
f

‖f‖(p)

)
≤ 1 , ‖f‖(p) 6= 0 . (1.6)

If either P < ∞ or ‖f‖(p) ≥ 1 , then

Ip

(
f

‖f‖(p)

)
= 1 , ‖f‖(p) 6= 0 . (1.7)

Finally, if 1 ≤ p(x) ≤ P < ∞, x ∈ Ω\E∞, then

‖f‖p = ‖f‖(p) + sup
x∈E∞

| f(x)| (1.8)
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is a norm in Lp(x)(Ω).
Corollary 1. The functional (1.5) satisfies the estimates

( ‖f‖(p)

λ

)P

≤ Ip

(
f

λ

)
≤

( ‖f‖(p)

λ

)p0

, λ ≥ ‖f‖(p) , (1.9)

( ‖f‖(p)

λ

)p0

≤ Ip

(
f

λ

)
≤

( ‖f‖(p)

λ

)P

, 0 < λ ≤ ‖f‖(p) , (1.10)

where the cases p0 = 0 or P = ∞ are admitted.
Proof. Rewriting (1.9) and (1.10) as λP ≤ Ip

(
λ
‖f‖f

)
≤ λp0 , λ ≤ 1, and

λp0 ≤ Ip

(
λ
‖f‖f

)
≤ λP , λ ≥ 1, we see that the last inequalities follow from

(1.7) if either P < ∞ or P = ∞ but ‖f‖(p) ≥ 1. If P = ∞ and ‖f‖(p) ≤ 1,
we should refer to (1.6) and take into account that ‖g‖(p) = λ ≥ 1 for

g(x) = λf(x)
‖f‖(p)

.

Corollary 2. For any p(x), 0 ≤ p0 ≤ p(x) ≤ P < ∞, x ∈ Ω\E∞, the
following estimates hold

‖f‖P
(p) ≤ Ip(f) ≤ ‖f‖p0

(p) , ‖f‖(p) ≤ 1, (1.11)

‖f‖p0

(p) ≤ Ip(f) ≤ ‖f‖P
(p) , ‖f‖(p) ≥ 1, (1.12)

Corollary 3. Let E be a measurable set in Ω\E∞ and let χE(x) be its
characteristic function. If 0 < p0 ≤ P < ∞ , we have

|E|1/p0 ≤ ‖χE‖(p) ≤ |E|1/P , |E| ≥ 1,

signs of the inequalities being opposite if |E| ≤ 1 , so that the equality
‖χE‖(p) = 1 is equivalent to |E| = 1. (If, instead of E ⊆ Ω\E∞, it is assumed
that E ⊆ Ω, then |E| must be replaced by |E ⋂

(Ω\E∞)|.
Remark 1.5. An example that illustrates just (1.6) instead of (1.7) is

Ω = [0, 1], p(x) = 1
x

, f(x) = 4−xx−x/2.
Remark 1.6 ([8]). In case P = ∞, the functional ‖f‖(p) does exist for

any f ∈ Lp(x) according to Theorem 1.1 . However, if ‖f‖(p) < ∞, it does not
necessarily implies that f ∈ Lp(x)(Ω\E∞), but f(x) ∈ LLp(x)(Ω\E∞) where
LLp(x) denotes the linear envelope of the class Lp(x)(Ω\E∞). .

Remark 1.7. A realization of Kolmogorov-Minkowsky norm for the Or-
licz spaces, similar to (1.8), is known in the theory of Orlicz spaces [6] as the
Luxemburg norm.
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Remark 1.8. The space Lp(x)(Ω) is ideal, which means that it is complete
and the inequality |f(x)| ≤ |g(x)| implies ‖f‖p ≤ ‖g‖p (see the proof of
completeness of the space Lp(x)(Ω) in [5],[7] ).

Remark 1.9 ([8]). The (semi)norm ‖f‖(p), p(x) ≥ 1, is strict in the
sense that the equality ‖f + g‖(p) = ‖f‖(p) + ‖g‖(p) is possible if and only
if g = cf, c > 0 (c = ‖g‖(p)/‖f‖(p)).

Remark 1.10. Let 1 ≤ p(x) ≤ ∞, P < ∞. The (semi)norm ‖f‖(p) may
be represented in the form

‖f‖(p) =
∫

Ω\E∞
ϕ0(x)f(x)dx , ϕ0(x) ∈ Lq(x)(Ω) (1.13)

where 1
p(x)

+ 1
q(x)

≡ 1, ϕ0(x) =
∣∣∣∣

f(x)
‖f‖(p)

∣∣∣∣
p(x)−1

f(x)
|f(x)| , x /∈ E∞, and ‖ϕ0‖ ≤ 1.

Lemma 1.11 ([7]). Let 0 < p0 ≤ P ≤ ∞. If

Ip

(
f

a

)
< b , a > 0, b > 0, (1.14)

then ‖f‖(p) ≤ abν with ν = 1/p0 if b ≥ 1 and ν = 1/P if b ≤ 1.
Lemma 1.12 ([7]). Let 0 < γ(x) ≤ p(x) ≤ P < ∞, x ∈ Ω\E∞. Then

‖f‖γ0

(p) ≤ ‖fγ‖( p
γ
) ≤ ‖f‖Γ

(p) , ‖f‖(p) ≥ 1 , (1.15)

‖f‖Γ
(p) ≤ ‖fγ‖( p

γ
) ≤ ‖f‖γ0

(p) , ‖f‖(p) ≤ 1 , (1.16)

where fγ = |f(x)|γ(x) and γ0 = infx∈Ω\E∞ γ(x) , Γ = supx∈Ω\E∞ γ(x) .
If p(x) and γ(x) are continuous on Ω\E∞, there exists a point x0 ∈ Ω\E∞
such that ‖fγ‖( p

γ
) = ‖f‖γ(x0)

(p) .

Corollary. Let 0 ≤ p0 ≤ p(x) ≤ P < ∞, x ∈ Ω\E∞. If p(x) is
continuous on Ω\E∞, there exists a point x0 ∈ Ω\E∞ (depending on f) such
that

‖f‖(p) =

{∫

Ω\E∞
|f(x)|p(x)dx

} 1
p(x0)

. (1.17)

Lemma 1.13. Let 0 < p1(x) ≤ p(x) ≤ p2(x) ≤ ∞ and |E∞(p2)| = 0.
Then

Lp1(x)(Ω)
⋂

Lp2(x)(Ω) ⊆ Lp(x)(Ω) ⊆ Lp1(x)(Ω) + Lp2(x)(Ω).
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where the algebraic sum of spaces stands in the right-hand side. Besides,
‖f‖p ≤ max{‖f‖p1 , ‖f‖p2}.

Proof is straightforward.
The property of semiadditivity of the norm:

max{‖f‖Lp(x)(Ω1), ‖f‖Lp(x)(Ω2)} ≤ ‖f‖Lp(x)(Ω) ≤ ‖f‖Lp(x)(Ω1) + ‖f‖Lp(x)(Ω2)

(1.18)
with Ω1

⋃
Ω2 = Ω, well known for the case of constant exponents, is covered

by the following lemma.
Lemma 1.14. Let Ω = Ω1

⋃
Ω2 and let p(x) be a function on Ω, p(x) ≥

1 and P < ∞. Then (1.18) holds for any f(x) ∈ Lp(x)(Ω).
Proof. Let |E∞| = 0 for simplicity. We denote a = ‖f‖Lp(x)(Ω1), b =

‖f‖Lp(x)(Ω2). Let a ≥ b for definiteness. We have

∫

Ω

∣∣∣∣∣
f(x)

max(a, b)

∣∣∣∣∣
p(x)

dx ≥
∫

Ω1

∣∣∣∣∣
f(x)

a

∣∣∣∣∣
p(x)

= 1.

Hence ‖f‖Lp(x)(Ω) ≥ max(a, b). To prove the right-hand side inequality, we
put

f(x)

a + b
=

a

a + b

χ1(x)f(x)

a
+

b

a + b

χ2(x)f(x)

b

where χi(x) are the charecteristic functions of the sets Ωi, i = 1, 2. Using the

convexity property, we obtain
∫
Ω

∣∣∣f(x)
a+b

∣∣∣
p(x)

dx ≤ 1 which was required.

In case |E∞| > 0, the arguments are similar if we take into account the fact
that the lemma has already been proved for the situation Ω\E∞ = Ω∗

1

⋃
Ω∗

2

where Ω∗
i = Ωi\E∞

⋂
Ωi, i = 1, 2. 2

1.3. Another version of the Kolmogorov-Minkowskii
norm.

The Kolmogorov-Minkowski-type norm can be also introduced directly
with respect to the whole set Ω :

‖f‖1
p = inf

{
λ > 0 : Ip

(
f

λ

)
+ sup

x∈E∞

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣ ≤ 1

}
(1.19)

which is well defined for f(x) ∈ Lp(x)(Ω), whatever measurable function
p(x), 0 ≤ p(x) ≤ ∞, is used ; it is a norm, if 1 ≤ p(x) ≤ ∞. This can
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be proved similarly to Theorem 1.4, see [7]. Analogously to (1.7) it can be
proved that

∫

Ω\E∞

∣∣∣∣∣
f(x)

‖f‖1
p

∣∣∣∣∣
p(x)

dx +
‖f‖L∞(E∞)

‖f‖1
p

= 1 (1.20)

if P < ∞ or P = ∞ , but ‖f‖1
p ≥ 1. It is exactly this version of the norm

that was used in [5].
Theorem 1.15 ([7]). The norms (1.8) and (1.20) are equivalent: 1

2
‖f‖p ≤

‖f‖1
p ≤ ‖f‖p where f(x) ∈ Lp(x)(Ω), 1 ≤ p(x) ≤ ∞, P < ∞.

1.4. Holder inequality and its generaliza-

tions.
Theorem 1.16 ([8],[7]). Let f(x) ∈ Lp(x)(Ω), 1 ≤ p(x) ≤ ∞, and ϕ(x) ∈

Lq(x)(Ω), 1
p(x)

+ 1
q(x)

≡ 1, x ∈ Ω. Then

∫

Ω
|f(x)ϕ(x)|dx ≤ k‖f‖p ‖ϕ‖q (1.21)

with k = 1
p0

+ 1
q0

= sup 1
p(x)

+sup 1
q(x)

. The Holder inequality holds also in the
form ∫

Ω
|f1(x)...fm(x)|dx ≤ c‖f1‖p1 ...‖fm‖pm (1.21′)

where p1(x) ≥ 1, ..., pm(x) ≥ 1 and
∑m

k=1 1/pk(x) ≡ 1, x ∈ Ω, and c =∑m
k=1 1/pk

0, p
k
0 = minx∈Ω pk(x).

Remark 1.17. If instead of (1.5) we introduce the (semi)norm ‖f‖(p) as

‖f‖(p) = inf



λ > 0 :

∫

Ω\E∞

2

p(x)

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣
p(x)

dx ≤ 1



 (1.22)

then the Holder inequality (1.21) holds with the constant 1 :
∫

Ω
|f(x)ϕ(x)|dx ≤ ‖f‖p ‖ϕ‖q (1.23)

In case of constant p(x) = p the Holder inequality has a simple gener-
alization in the form ‖uv‖r ≤ ‖u‖p‖v‖q,

1
p

+ 1
q

= 1
r
, which is an immediate
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consequence of the Holder inequality itself. In case of variable exponents such
an inequality does not follow from the Holder inequality since ‖|u|r‖ 6= ‖u‖r

p,
see Lemma 1.12. However, it is valid , but may be obtained not as a conse-
quence of the Holder inequality.

Lemma 1.18 ([7]). Let 1
p(x)

+ 1
q(x)

≡ 1
r(x)

, p(x) ≥ 1, q(x) ≥ 1, r(x) ≥ 1

and let R = supx∈Ω\E∞(r) r(x) < ∞. Then

‖uv‖r ≤ c‖u‖p‖v‖q (1.24)

for all u ∈ Lp(x) and v ∈ Lq(x) with c = c1 + c2, c1 = supx∈Ω\E∞(r)
r(x)
p(x)

, c2 =

supx∈Ω\E∞(r)
r(x)
q(x)

.

Remark 1.19. If we would use the modification (1.22) of the (semi)norm
‖f‖(p), then the inequality (1.24) holds with c = 2 and the requirement R < ∞
may be omitted .

1.5. On the imbedding Lp(x) ⊆ Lr(x).
Theorem 1.20 ([7]). Let 0 ≤ r(x) ≤ p(x) ≤ ∞ and let |Ω\E∞(r)| < ∞.

If E∞(r) ⊆ E∞(p) and R : = supx∈E∞(p)\E∞(r) r(x) < ∞, then Lp(x)(Ω) ⊆
Lr(x)(Ω) and

Ir(f) ≤ Ip(f) + |E∞(p)\E∞(r)|‖f‖R
L∞(E∞(p)\E∞(r)) + |Ω\E∞(r)| (1.25)

for any f ∈ Lp(x) . (In the case E∞(p) = E∞(r), the second term in the right
hand side should be omitted and R is allowed to be infinite). If, moreover,
1 ≤ r(x) ≤ p(x) and E∞(p) = E∞(r), the inequality for norms also holds:

‖f‖(r) ≤ cν
0‖f‖(p) (1.26)

where c0 = c2+(1−c1)|Ω\E∞(p)|, c1 = infx∈Ω\E∞(p)
r(x)
p(x)

, c2 = supx∈Ω\E∞(p)
r(x)
p(x)

,

and ν = 1
r0

if c0 ≥ 1 and ν = 1
R

if c0 ≤ 1.

We note that in [5] it was shown, under the assumption | Ω |< ∞, that
continuous imbedding holds if and only if r(x) ≤ p(x).

1.6. Riesz-type norm in Lp(x)(Ω) .
We consider now the norm inspired by the Riesz theorem on the repre-

sentation of a linear functional in Lp. We introduce first the space

L̃p(x)(Ω) =
{
f(x) :

∣∣∣∣
∫

Ω
f(x)ϕ(x)dx

∣∣∣∣ < ∞ ∀ϕ(x) ∈ Lq(x)(Ω)
}

(1.27)

8



where 1 ≤ p(x) ≤ ∞ and 1
p(x)

+ 1
q(x)

≡ 1. This space will in fact coincide with

Lp(x)(Ω) under some natural assumptions on p(x) as it reaches the values 1
and ∞ . The imbedding Lp(x) ⊆ L̃p(x)(Ω) , 1 ≤ p(x) ≤ ∞ , is an immediate
consequence of the Holder inequality (1.21).

We note that the space (1.27) is always linear. So , by Lemma 1.2 , it
cannot coincide with Lp(x) á priori if P = ∞.

Besides the notations p0 and P for p(x) , see (1.4), and q0 and Q for
q(x), we shall also use

p1
0 = inf

x∈Ω\E1(p)
p(x) , q1

0 = inf
x∈Ω\E1(q)

q(x) .

Evidently,

E1(p) = E∞(q), E1(q) = E∞(p), Q =
p1

0

p1
0 − 1

, q1
0 =

P

P − 1
. (1.28)

The space (1.27) can be equipped with the natural norms

‖f‖∗p = sup
ρq(ϕ)≤1

∣∣∣∣
∫

Ω
f(x)ϕ(x)dx

∣∣∣∣ , (1.29)

‖f‖∗∗p = sup
‖ϕ‖q≤1

∣∣∣∣
∫

Ω
f(x)ϕ(x)dx

∣∣∣∣ , (1.30)

where the distance ρq(ϕ) , defined in Subsection 1.1 is taken with respect to
the variable exponent q(x) and it is assumed that Q < ∞ (that is p1

0 > 1
) in (1.29), while p(x) may be arbitrary (1 ≤ p(x) ≤ ∞ ) in case of (1.30).
The first of these norms was used in [5] , but with ‖ϕ‖1

q instead of ‖ϕ‖q (see
(1.19) ).

Note that from Remark 1.10 it follows that

‖f‖p ≤ ‖f‖∗∗p (1.31)

in case 1 ≤ p(x) ≤ P < ∞ , |E∞| = 0.
Lemma 1.21 ([7]). Let f(x) ∈ L̃p(x)(Ω), p0

1 > 1. Then ‖f‖∗p < ∞ and
∫

Ω
|f(x)ϕ(x)|dx ≤ ‖f‖∗p‖ϕ‖1

q ≤ ‖f‖∗p‖ϕ‖q (1.32)

for all ϕ(x) ∈ Lq(x)(Ω), 1/p(x) + 1/q(x) ≡ 1, where ‖ϕ‖1
q is the norm (1.27).

Besides, the functional (1.29) is a norm in L̃p(x)(Ω).
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Lemma 1.22 ([7]). Let 1 ≤ p(x) ≤ ∞, p1
0 > 1 and P < ∞. The norms

(1.29) and (1.30) are equivalent on functions f(x) ∈ L̃p(x)(Ω) :

21−Q/q1
0‖f‖∗∗p ≤ ‖f‖∗p ≤ ‖f‖∗∗p . (1.33)

They coincide with each other in the cases : 1) |E1(p)| = 0, 2) p(x) = const
for x ∈ Ω\(E∞

⋃
E1).

Theorem 1.23 ([7]). Let p1
0 > 1 and P < ∞. The spaces Lp(x)(Ω) and

L̃p(x)(Ω) coincide up to the equivalence of norms:

1

3
‖f‖p ≤ ‖f‖∗p ≤

(
1

p0

+
1

q0

)
‖f‖p (1.34)

where 1/3 may be replaced by 1 if |E1| = |E∞| = 0.
Corollary. Let f(x) ∈ Lp(x)(Ω), ϕ(x) ∈ Lq(x)(Ω), 1 ≤ p(x) ≤ ∞, 1

p(x)
+

1
q(x)

≡ 1, x ∈ Ω. With respect to the norms (1.29)-(1.30) the Holder inequality
holds with the multiple constant 1 :

∫

Ω
|f(x)ϕ(x)|dx ≤ ‖f‖∗p‖ϕ‖q , p1

0 > 1, (1.35)

∫

Ω
|f(x)ϕ(x)|dx ≤ ‖f‖∗∗p ‖ϕ‖q. (1.36)

The inequality ∫

Ω
|f(x)ϕ(x)|dx ≤ ‖f‖∗p‖ϕ‖∗q (1.37)

is also valid in case

p1
0 > 1, P < ∞, |E∞(p)| = |E1(p)| = 0. (1.38)

Really, (1.35) has already been given in (1.32) while (1.36) follows directly
from the definition (1.30). The inequality (1.37) follows from (1.35) since
‖ϕ‖q ≤ ‖ϕ‖∗q under the conditions (1.38) in view of Theorem 1.23.

The definition (1.27) gives one of posiible ways to define the space Lp(x)(Ω)
as linear in case P = ∞. It could be also defined from the very beginning as
a linear envelope of the space Lp(x)(Ω) (see Remark 1.6) or as

L̂p(x)(Ω) =



f(x) : ∃λ > 0 =⇒

∫

Ω\E∞

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣
p(x)

dx + ‖f‖L∞(E∞) < ∞




(1.39)
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This space is always linear, 0 ≤ p(x) ≤ ∞. So, in case P = ∞ we can deal
with three versions of definitions - LLp(x), L̂p(x) and L̃p(x). It is easily seen
that LLp(x) = L̂p(x) ⊆ L̃p(x) The norm in the space L̃p(x) is given by (1.30)
while in LLp(x) = L̂p(x) by (1.5).

1.7. One norm more in Lp(x)(Ω).
We introduce now another norm inspired by a norm known for the Orlicz

spaces [6 ] . We put

‖f‖?
p = inf

λ>0
F (λ) , F (λ) = λ + λ

∫

Ω

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣
p(x)

dx (1.40)

assuming that |E∞| = 0 for simplicity. The axioms for norms are easily
verified.

Lemma 1.24. The function c(p) = p(p−1)
1
p
−1, 1 ≤ p < ∞, is increasing

for 1 ≤ p ≤ 2 and decreasing for p ≥ 2 and

1 ≤ c(p) ≤ 2, 1 ≤ p ≤ ∞; c(1) = 1, c(2) = 2, c(∞) = 1.

Proof is direct.
Theorem 1.25. Let |E∞| = 0, 1 ≤ p0 ≤ p(x) ≤ P < ∞. The norm

(1.40) is equivalent to the norm ‖f‖p :

c1‖f‖p ≤ ‖f‖?
p ≤ c2‖f‖p (1.41)

where c1 = min{c(p0), c(P )} ≥ 1, and c2 = max{c(p0), c(P )},if P ≤ 2 or
p0 ≥ 2, and c2 = 2, if p0 ≤ 2 ≤ P.

Proof. Evidently, F (‖f‖p) = 2‖f‖p by (1.7). Hence ‖f‖?
p ≤ 2‖f‖p.

To prove the right-hand side inequality in (1.41) we note that

‖f‖?
p = inf

λ>0
F (λ‖f‖p) (1.42)

The evident inequality F (λ‖f‖p) ≥ (λ + λ1−t)‖f‖p is valid, where t = p0 if
0 < λ ≤ 1 and t = P if λ ≥ 1. So, from (1.42) we arrive at the left-hand side
inequality in (1.41) with

c1 = min
{

min
0<λ≤1

(λ + λ1−p0), min
λ≥1

(λ + λ1−P ),
}

.

An easy calculation and Lemma 1.24 give the value of this constant as
indicated in the theorem. Similarly the right-hand side inequality in (1.41)
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is obtained if we take use of the inequality F (λ‖f‖p) ≤ (λ+λ1−t̄)‖f‖p where
t̄ = P , if λ ≤ 1 and t̄ = p0 if λ ≥ 1. 2

Theorem 1.26. Let 1 ≤ p(x) ≤ P < ∞, |E∞| = 0 and
|{x : p(x) > 1}| > 0. Infinum in (1.40) is reached at λ = λ0 = ‖af‖p, with

a(x) = [p(x)− 1]
1

p(x) , so that

‖f‖?
p = ‖af‖p



1 +

∫

Ω

∣∣∣∣∣
f(x)

‖af‖p

∣∣∣∣∣
p(x)

dx



 . (1.43)

Proof. We have dF (λ)
dλ

= 1 − ∫
Ω[p(x)− 1]

∣∣∣f(x)
λ

∣∣∣
p(x)

dx, the differentiation
under the integral sign being easily verified since P < ∞. The equation
dF (λ)/dλ = 0 gives λ = ‖af‖p. 2

Remark 1.27. The equivalence of norms presented in Theorem 1.6 fol-
lows also from (1.43).

1.8. Minkowski inequality.
Theorem 1.28 ([7]). Let 1 ≤ p(x) ≤ ∞ , P < ∞ and p1

0 > 1 . Then
∥∥∥∥
∫

Ω
f(·, y)dy

∥∥∥∥
∗∗

p
≤

∫

Ω
‖f(·, y)‖∗∗p dy . (1.44)

Corollary. Let 1 ≤ p(x) ≤ ∞ , P < ∞ and p1
0 > 1 . Then

∥∥∥∥
∫

Ω
f(·, y)dy

∥∥∥∥
∗

p
≤ c1

∫

Ω
‖f(·, y)‖∗pdy , (1.45)

∥∥∥∥
∫

Ω
f(·, y)dy

∥∥∥∥
p
≤ c2

∫

Ω
‖f(·, y)‖pdy (1.46)

where c1 = 1 if |E1| = 0 and c1 = 2−1+Q/q1
0 otherwise, while c2 = kc1 if

|E∞| = |E1| = 0 and c2 = 3kc1 otherwise; k = 1
p0

+ 1
q0

.

Proof. The inequality (1.45) with c1 = 2−1+Q/q1
0 follows from (1.44) in

view of (1.33). Similarly , (1.46) follows from (1.44) by (1.34) and (1.33). To
show that c1 = 0 in (1.45) in case |E1| = 0, we note that

∥∥∥∥
∫

Ω
f(·, y)dy

∥∥∥∥
∗

p
≤ sup

ρq(ϕ)≤1

∫

Ω
‖ϕ‖q‖f(·, y)‖∗pdy

and it remains to note that the conditions ρq(ϕ) ≤ 1 and ‖ϕ‖q ≤ 1 are
equivalent in case |E1| = 0 in view of (1.11)-(1.12). 2
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Remark 1.29. Fubini theorem in the form

‖ ‖f(x, y)‖p(y)‖p(x) = ‖ ‖f(x, y)‖p(x)‖p(y),

valid for p(x) = const, is not in general true for a variable exponent, even in
the form of the inequality

‖ ‖f(x, y)‖p(y)‖p(x) ≤ c‖ ‖f(x, y)‖p(x)‖p(y) . (1.47)

Really, taking n = 1 for simplicity and p(x) = p1 for −1 < x < 0, p(x) =
p2 for 0 < x < 1 , we can easily see that (1.47) would yield the equivalence
of mixed norms in the spaces Lp1 (Lp2([0, 1])) , Lp2 (Lp1([0, 1])) , which is not
true, as is known [ 1 ] , [2 ] .

II. Estimates of norms of power functions of

distance, truncated to a ball of a radius

r > 0.

2.1. Preliminaries.
In further applications, for example, to potential type operators in Lp(x)(Ω)

we shall need an information about behaviour of norms ‖fβ‖ where

fβ(x) = fβ(x0, r; x) = χr(x− x0)|x− x0|β(x0) , x0 ∈ Rn,

where χr(x) is a characteristic function either of interior or exterior of the ball
of the radius r > 0. To obtain these estimates, some minimal requirement
of smoothness of p(x) arises - we take it in the class w-Lip (Rn), see its
definition below. There arises also a notion of norming value r0 of radius for
which ‖fβ‖ = 1. In case of β = 0 , r0 gives the ball of the volume 1 , while
in the general case r0 is as a root of some special equation.

Everywhere below in Section 2 it is assumed that

1 ≤ p0 ≤ p(x) ≤ P < ∞ , |E∞| = 0. (2.1)
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Definition 2.1. A function f(x) is said to belong to w-Lip(Rn), if f(x) ∈
C(Rn) and |f(x + h)− f(x)| ≤ A

log 1
|h|

, x ∈ Rn, h ∈ Rn, |h| < 1 where A > 0

(the weak Lipschitz condition).
Definition 2.2. A function f(x) is said to have the w-Lip - behaviour at

infinity, if it is continuous at the infinite point and |f(x)−f(∞)| log(e+|x|) ≤
A∞ < ∞, where A∞ > 0 does not depend on x .

Definition 2.3. A function f(x) is said to belong to w-Lip (Ṙn) , if
f(x) ∈ w − Lip(Rn)

⋂
C(Ṙn) and has the w − Lip- behaviour at infinity .

We first study the case of the interior of the ball : χr = χB(x0,r)(x), where
χB(x0,r)(x) is the characteristic function of the ball B(x0, r) centered at x0 .
. For brevity we denote

λβ = λβ(x0, r) = ‖fβ‖p = ‖ | x− x0 |β(x0) χB(x0,r)(x)‖p.

According to (1.7) we have

∫

|y|≤r

( |y|β(x0)

λβ

)p(x0+y)

dy = 1 (2.2)

2.2. On convergence of integrals of power functions
with a variable exponent .

Let

J =
∫

|x−x0|<r

dx

|x− x0|a(x)
. (2.3)

We assume that sup|x−x0|≤1 a(x) < +∞ , inf |x−x0|≥1 a(x) > −∞ (the latter
in the case r > 1 only).

Lemma 2.6. Let a(x) ≤ b(x) , |x− x0| ≤ ε, where b(x) ∈ C (B(x0, r))
and b(x0) < n. Then the integral (2.3) converges.

Proof is direct.
Corollary. Let x0 ∈ Ω ⊂ Rn and |Ω| < ∞. Then |x − x0|−a(x) ∈

Lp(x)(Ω), 0 ≤ p(x) < ∞, if

1) sup
|x−x0|≤1

a(x)p(x) < +∞ , inf
|x−x0|≥1

a(x)p(x) > −∞

2) a(x) ≤ b(x)
p(x)

, |x− x0| < ε for some ε > 0, where b(x) ∈ C (B(x0, ε)) and

b(x0) < n.
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Lemma 2.7. Let

a(x)− a(x0) ≥ A

log |x− x0|−1
, A > 0 , (2.4)

in some neighbourhood of the point x0. Then the condition a(x0) < n is
necessary for convergence of the integral (2.3).

Proof. The condition (2.4) is equivalent to the inequality |x−x0|a(x0)−a(x) ≥
eA > 0, and then the necessity of the condition a(x0) < n becomes obvious .

2.3. The norming value of radius.
The function λβ(x0, r) increases with respect to r . We are interested in

separating the cases λβ(x0, r) < 1 and λβ(x0, r) > 1.
Definition 2.8. The value r = r0 = r0(x0) of the radius is the norming

one for the function fβ(x0, r; x) in the space Lp(x)(Rn) , if λβ(x0, r0) = 1.
It may happen that r0 = ∞ or does not exist . Evidently,

λβ(x0, r) ≤ 1 ⇐⇒ 0 < r ≤ r0, (2.5)

λβ(x0, r) ≥ 1 ⇐⇒ r ≥ r0, (2.6)

We introduce the function

F (x0) =
∫

Rn
|x|β(x0)p(x+x0)dx, x0 ∈ Rn, (2.7)

Lemma 2.9. Let w-Lip (Ṙn) and |β(x0)| < ∞. Then F (x0) < ∞ , if
and only if

n + β(x0)p(x0) > 0 , n + β(x0)p(∞) < 0. (2.8)

Proof. We have F (x0) =
∫
|x|<1 |x|β(x0)p(x+x0)dx +

∫
|x|>1 |x|β(x0)p(x+x0)dx =

G(x0) + H(x0), so that the convergence of f(x0) is equivalent to the simul-
taneous convergence of G(x0) and H(x0) . Obviously, G(x0) =∫
|x|>1 |x|β(x0)p(x0)g(x)dx and H(x0) =

∫
|x|>1 |x|β(x0)p(∞)h(x)dx , where

g(x) = |x|β(x0)[p(x+x0)−p(x0)] , (2.9)

h(x) = |x|β(x0)[p(x+x0)−p(∞)] .

Since |x| ≤ 1 in the first integral, in accordance with Definition 2.1 we have

e−A|β(x0)| ≤ g(x) ≤ eA|β(x0)|. (2.10)
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Similarly, e−A∞|β(x0)| ≤ h(x) ≤ eA∞|β(x0)| in accordance with Definition 2.2.
Therefore, convergence of the integral G(x0) is equivalent to the first of the
conditions (2.8), while that of H(x0) is equivalent to the second one. 2

We shall also need a more strong requirement for the first condition in
(2.8) to be uniform in x0 :

d : = inf
x∈Rn

[
1 +

β(x)p(x)

n

]
> 0. (2.11)

Remark 2.10. The condition (2.11) arises only in case of β < 0. In the
case when β(x) ≥ 0 a.e. in Rn we make the convention that d = 1.

Lemma 2.11. The norming value r0 of radius is the root of the equation
∫

|x|<r0

|x|β(x0)p(x+x0)dx = 1. (2.12)

It does exist if p(x) ∈ w-Lip (Rn), n + β(x0)p(x0) > 0 and F (x0) > 1.
Proof. By (2.2) , λβ = 1 is just the same as (2.12). Since the left-hand

side in (2.12) increases with respect to r0, the equation does have a unique
root, if only the integral converges. This is the case by Lemma 2.7. 2

Lemma 2.12. Let p(x) ∈ w-Lip (Rn) . If r0 ≤ 1 , then

e−A|β(x0)| ≤
∫

|x|<r0

|x|β(x0)p(x0)dx ≤ eA|β(x0)|. (2.13)

Proof. From (2.12) we have
∫
|x|<r0

|x|β(x0)p(x0)g(x)dx = 1 where g(x) is
the function from (2.9). Applying (2.10), we obtain (2.13). 2

The next subsections 2.4 and 2.5 are devoted to the proof of the uniform
boundedness of r0 as a function of x0 : 0 < c ≤ r0(x0) ≤ C < ∞ with c and
C not depending on x0 .

2.4. Lower bound for r0(x0).
Besides (2.11) we shall also deal with the condition

d1 = inf
x∈Rn

(
1 +

β(x)P

n

)
> 0 . (2.14)

Similarly to Remark 2.10 we take d1 = 1 if β(x) ≥ 0 a.e.
Lemma 2.13. Let d > 0 and p(x) ∈ w-Lip (Rn). Then

r0 ≥ e
− A

p0
max{ 1−d

d
,1}

[
min

(
1,

d

|Bn|

)] 1
nd

, (2.15)
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where A is the constant from the Definition 2.1 of the w-Lip - condition for
the function p(x). If d1 ≥ 0, then

r0 ≥
[
min

(
1,

d

|Bn|

)] 1
nd1

, (2.16)

without the assumption p(x) ∈ w-Lip (Rn) .
Proof. We suppose that r0 = r0(x0) ≤ 1 (otherwise the estimate (2.16) is

already valid). From (2.12) we have

1 ≤
∫

|x|<r0

|x|β(x0)qdx (2.17)

where q = p0 , if β(x0) ≥ 0 and q = P if β(x0) < 0. Denoting 1+ βq
n

= t(≥ d1),

we obtain r0 ≥
(

t
|Bn|

) 1
nt . Hence (2.16) follows, since

inf
d1≤t<∞

(
t

|Bn|

) 1
t

= min

(
1,

d1

|Bn|

) 1
d1

. (2.18)

Let d > 0. Taking r0 ≤ 1 again , from the left-hand side inequality in
(2.13) we derive the estimate r

n+β(x0)p(x0)
0 ≥ [n + β(x0)p(x0)] |Sn−1|−1e−A|β(x0)|.

Hence
r0 ≥ [k(t)]

1
n (2.19)

where t = 1 + β(x0)p(x0)
n

≥ d > 0 and k(t) =
(

t
|Bn|

) 1
t e

− nA
p(x0)

|t−1|
t . Taking (2.18)

and the equality

sup
t>d

|t− 1|
t

= max

(
1,

1− d

d

)
(2.20)

into account, we see that (2.15) follows from (2.19). 2

2.5 Upper bound for r0(x0).
Similarly to case of the lower bound, we give the upper bound without

assumption on w-Lip - behaviour of the function p(x) in case d1 > 0.
Lemma 2.14. Let d1 > 0. Then

r0(x0) ≤ e
1+d1|Bn|−1

ned1 (2.21)
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Proof. Assuming that r0 ≥ 1 , from (2.12) we obtain 1 ≥∫
1<|x|<r0

|x|β(x0)p(x+x0)dx ≥ ∫
1<|x|<r0

|x|β(x0)qdx , where q is the same as in
(2.17). Hence

r0(x0) ≤
(

1 +
t

|Bn|

) 1
nt

(2.22)

with t = 1 + β(x0)q
n

≥ d1. Since (1 + at)
1
t ≤ e

1+ab
be , t ≥ b > 0, a > 0, we see

that (2.21) follows from (2.22).
Lemma 2.15. Let d > 0 and let p(x) ∈ w-Lip (Rn). Then

r0(x0) ≤ R0 : = e
1

e|Bn|+
A
p0

max(1, 1−d
d

)
. (2.23)

Proof. In accordance with Lemma 2.11 we shall show that there exist a
number R0 > 0 not depending on x0 such that

G(R0, x0) :=
∫

|x|<R0

|x|β(x0)p(x+x0)dx ≥ 1 (2.24)

for all x0 ∈ Rn. We have G(R0, x0) =
∫
|x|<R0

|x|β(x0)g(x)dx where g(x) is
defined in (2.9). Hence, by (2.13)

G(R0, x0) ≥ |Bn|e−A|β(x0)|

1 + β(x0)p(x0)
n

R
n+β(x0)p(x0)
0 .

Therefore, to have (2.24) , it is sufficient to choose R0 in such a way that

R
n+β(x0)p(x0)
0 ≥ 1

|Bn|e
A|β(x0)|

(
1 + β(x0)p(x0)

n

)
or R0 ≥

[(
t

|Bn|
) 1

t e
A|t−1|

t
n

p(x0)

] 1
n

,

t = 1 + β(x0)p(x0)
n

. By (2.20) we may take R0 ≥ e
A
p0

max(1, 1−d
d

)
(

t
|Bn|

) 1
nt . Since

maxt>0(at)1/t = ea/e, this gives (2.23). 2

2.6 Estimates of the norm ‖fβ‖p as r → 0.
Lemma 2.16. The norm λβ is estimated by

[Jβ(r)]
1

p(x0,r) ≤ λβ ≤ [Jβ(r)]
1

P (x0,r) , 0 ≤ r ≤ r0, (2.25)

where
Jβ(r) = Jβ(x0, r) =

∫

|x|<r
|x|β(x0)p(x+x0)dx. (2.26)
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Proof. From (2.2) and (2.5) we have

1

λp(x0,r)

∫

|x|<r
|x|β(x0)p(x+x0)dx ≤ 1 ≤ 1

λP (x0,r)

∫

|x|<r
|x|β(x0)p(x+x0)dx

which coincides with (2.25).
Lemma 2.17. The integral Jβ(r) satisfies the estimates

k(r)
(

r

r0

)n+βq1

≤ Jβ(r) ≤ k(r)
(

r

r0

)n+βq2

, 0 < r ≤ r0, (2.27)

where q1 = P (x0, r) if β(x0) ≥ 0 and q1 = p(x0, r) , if β(x0) ≤ 0, while
q2 = p(x0, r) if β(x0) ≥ 0 and q2 = P (x0, r) , if β(x0) ≤ 0 and

k(r) =
∫

|x|<r0

|x|β(x0)p( r
r0

x+x0)
dx . (2.28)

Proof. The change of variables x = r
r0

y yields Jβ(r) =
(

r
r0

)n ∫
|y|<r0

(
r
r0
|y|

)β(x0)p( r
r0

y+x0)
dy. Hence (2.27) is easily derived. 2

We shall see below that 0 < c1 ≤ k(r) = k(x0, r) ≤ c2 < ∞ uniformly in
x0 under the appropriate assumptions on p(x) and β(x).

Lemma 2.18 . (Estimates for a fixed point x0). Let p(x) ∈ w-Lip (Rn)
and n + β(x0)p(x0) > 0. Then

0 < k− ≤ k(r) ≤ k+ < ∞ (2.29)

where

k− = A−
n (x0) min

(
1, r

n+β(x0)p(x0)
0

)
, k+ = A+

n (x0) max
(
r

n+β(x0)q
0 , r

n+β(x0)p(x0)
0

)
,

with q = P if β(x0) ≥ 0 and q = p0 if β(x0) < 0 and

A±
n (x0) =

e±A|β(x0)||Sn−1|
n + β(x0)p(x0)

. (2.30)

Proof. Let 0 < r0 ≤ 1 first . We have

k(r) =
∫

|x|<r0

|x|β(x0)p(x0)hr(x)dx (2.31)
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where hr(x) = |x|β(x0)[p( r
r0

x+x0)−p(x0)]
. Since p(x) ∈ w-Lip (Rn) and

∣∣∣ r
r0

y
∣∣∣ ≤

r ≤ r0 ≤ 1, we have

| log hr(x)| ≤ A|β(x0)|
∣∣∣∣∣∣
log |x|
log r0

r|x|

∣∣∣∣∣∣
= A|β(x0)|

log 1
|x|

log 1
|x| + log r0

r

≤ A|β(x0)|.

Then
e−A|β(x0)| ≤ hr(x) ≤ eA|β(x0)| , (2.32)

so that the estimates (2.29) follow from (2.31)
Let now r0 > 1. We have

k(r) =
∫

|x|<1
|x|β(x0)p(x0)hr(x)dx +

∫

1≤|x|≤r0

|x|p( r
r0

x+x0)
dx . (2.33)

In the first term the function hr(x) is estimated in the same way as in the
previous case. So, (2.33) implies

k(r) ≤ A+
n (x0) +

|Sn−1|
n + qβ(x0)

[
r

n+qβ(x0)
0 − 1

]
≤ A+

n (x0)r
n+qβ(x0)
0 (2.34)

since n + qβ(x0) ≥ n + β(x0)p(x0).
Similarly to (2.34) the lower bound

k(r) ≥
∫

|x|<1
|x|β(x0)p(x0)hr(x)dx ≥ A−

n (x0),

for 0 < r ≤ r0, R0 ≥ 1, can be obtained. Gathering the estimates we arrive
at (2.29)

Lemma 2.19. (The uniform estimate). Let p(x) ∈ w-Lip (Rn), γ : =
supx∈Rn β(x) < +∞ and let d > 0. Then 0 < c− ≤ k(r) ≤ c+ < ∞ , 0 < r ≤
r0 , with c+ and c− not depending on r and x0; in the case r0 ≤ 1 one may

take c± = e±2AB where B = sup |β(x)| ≤ max
(
γ, n(1−d)

d

)
.

Proof. Let r0 ≤ 1. From (2.31)-(2.32) we obtain

e−A|β(x0)|
∫

|x|<r0

|x|β(x0)p(x0)dx ≤ k(r) ≤ eA|β(x0)|
∫

|x|<r0

|x|β(x0)p(x0)dx

Hence by Lemma 2.12 e−2A|β(x0)| ≤ k(r) ≤ e2A|β(x0)| which proves the lemma
for r0 ≤ 1. If r0 > 1, the uniform estimates follow from (2.82) in view of the
uniform estimates (2.15) and (2.23) for r0(x). 2
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Lemma 2.20. Let p(x) ∈ w-Lip (Rn) and d > 0. There exists a constant
c > 0 , not depending on r and x0 such that for all 0 < r ≤ r0 we have

|P (x0, r)− p(x0)| log
r0

r
≤ c , |p(x0, r)− p(x0)| log

r0

r
≤ c, (2.35)

Proof. Let r ≤ 1 . Since p(x) ∈ w-lip (Rn), we have

sup
|x−x0|≤r

(
| p(x)− p(x0) | log

1

| x− x0 |

)
≤ A, 0 < r ≤ 1 .

Then, moreover,
∣∣∣sup|x−x0|≤r[p(x)− p(x0)]

∣∣∣ log 1
r
≤ A. The latter is nothing

else but [P (x0, r)− p(x0)] log 1
r
≤ A. Hence the first of the inequalities (2.35)

follows with c = A + (P − p0) supx0
| log r0| . If r ≥ 1, the inequalities (2.33)

are trivial . It remains to note that supx0
| log r0| < ∞ by Lemmas 2.13 and

2.14.
To obtain the second of the inequalities in (2.35), we remark that | inf f(x)| ≤

sup |f(x)| and then from what was above it follows that | inf |x−x0|≤r[p(x) −
p(x0)] log 1

r
≤ A. Then the same arguments give the required estimate. 2

Theorem 2.21. Let p(x) ∈ w-Lip (Rn), d > 0 and supx |β(x)| < ∞.
Then

c1

(
r

r0

) n
p(x0)

+β(x0)

≤ λβ(x0, r) ≤ c2

(
r

r0

) n
p(x0)

+β(x0)

, 0 < r ≤ r0. (2.36)

Proof. From (2.25), (2.27) and (2.29) we conclude that

c1

(
r

r0

) n
p(x0,r)

+β(x0)

≤ λβ ≤ c2

(
r

r0

) n
P (x0,r)

+β(x0)

, (2.37)

in case β(x0) ≤ 0 and

c1

(
r

r0

) n
p(x0,r)

+β(x0)
P (x0,r)

p(x0,r) ≤ λβ ≤ c2

(
r

r0

) n
P (x0,r)

+β(x0)
p(x0,r)

P (x0,r)

, (2.38)

in case β(x0) ≥ 0, c1 and c2 not depending on r and x0. Hence we derive
(2.36) by means of Lemma 2.20. 2

Lemma 2.22. Under the assumptions of Lemma 2.19 , λβ(x0, r) ≤ c <
∞ for 0 < r ≤ R , with c not depending on r and x0 .
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Proof. Because of (2.35) we take r ≥ r0. Since λβ ≥ 1 in this case , from
(2.2) and (2.11) we obtain 1 ≤ 1

λ
p0
β

∫
|x|<r |x|β(x0)p(x+x0)dx =

1
λ

p0
β

[
1 + ,

∫
r0≤|x|<1 |x|β(x0)p(x+x0)dx +

∫
1≤|x|<r |x|β(x0)p(x+x0)dx

]
where the split-

ting of the integral over the layer r0 ≤ |x| ≤ r to two integrals should be
omitted in case of r0 ≥ 1. Since supx β(x) < +∞ , r0(x0) is separated from
zero, so that the expression in the brackets is easily estimated for 0 ≤ r ≤ R
by a constant owing to the w-Lip - condition. 2

Corollary. Under the assumptions of Theorem 2.21

c3 r
n

p(x0)
+β(x0) ≤ λβ(x0, r) ≤ c4 r

n
p(x0)

+β(x0)
, 0 < r ≤ R,

with c3 and c4 depending R only.
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