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Convolution and potential type

operators in Lp(x)(Rn).

Introduction
In this paper we give a further development of the results of the paper

[1] and apply it to convolution operators

Kf = k ∗ f =
∫

Rn
k(x− y)f(y)dy (1)

in the spaces Lp(x). We consider the question of extendability of the Young
theorem : ‖Kf‖r ≤ ‖k‖q ‖f‖p , 1

p
+ 1

q
− 1 = 1

r
, well known for constant p

and q , to the case when they may be variable. We also treat potential type
operators with the kernel | x− y |α(x)−n .

In Section 1 we develop some estimates for Lp(x)-norms of power functions
of distance truncated to exterior of a ball of radius r > 0, as r → 0 or r →∞.
Section 2 deals with convolution operators in the spaces Lp(x) and Section 3
is devoted to potential type operators.

I. Estimates for Lp(x)-norms of power func-

tions of distance truncated to exterior of

a ball

We use notations from [1], in particular:
Ω is a measurable set in Rn, |Ω| is its Lebesgue measure, Ṙn is the com-

pactification of Rn by the unique infinite point; Sn−1 = {x ∈ Rn : |x| =
1}; B(x0, r) is the ball centered at x0 and of radius r ; Bn = B(0, 1); p(x0, r) =
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inf |y−x0|≤r p(y), P (x0, r) = sup|y−x0|≤r p(y), p̄(x0, r) = inf |y−x0|≥r p(y), P̄ (x0, r) =
sup|y−x0|≥r p(y); χΩ(x) ≡ 1 for x ∈ Ω and≡ 0 for x 6∈ Ω; fβ(x) = fβ(x0, r; x) =

| x−x0 |β(x0) χB(x0,r)(x), gβ(x) = gβ(x0, r; x) =| x−x0 |β(x0) [1−χB(x0,r)(x)]; λβ =
‖fβ‖, µβ = ‖gβ‖.

We assume that

1 ≤ p0 ≤ p(x) ≤ P < ∞, |E∞| = 0. (1.1)

and recall that

‖f‖p = ‖f‖(p) = inf



λ : λ > 0,

∫

Ω

∣∣∣∣∣
f(x)

λ

∣∣∣∣∣
p(x)

dx ≤ 1



 (1.2)

and ∫

Ω

∣∣∣∣∣
f(x)

‖f‖p

∣∣∣∣∣
p(x)

dx = 1, ‖f‖p 6= 0 (1.3)

under the assumption (1.1).

1.1. The norming value and its bounds.

Similarly to a function fβ(x) we denote

gβ = gβ(x) = gβ(x0, r; x) : = |x− x0|β(x0)χ̄B(x0,r)(x) (1.4)

where χ̄B(x0,r)(x) = 1− χB(x0,r)(x). Let

µβ = µβ(x0, r) : = ‖gβ‖p . (1.5)

Under the asumptions (1.1), by (1.3) we have

∫

|y|≥r

( |y|β(x0)

µβ

)p(x0+y)

dy = 1. (1.6)

Lemma 1.1. The function µβ(x0, r) is increasing in r . If
p(x) ∈ w-Lip (Rn) and n + β(x0)p(x0) ≤ 0, then limr→0 µβ(x0, r) = ∞.

Proof is straightforward.
Definition 1.2. The value r = r0 is the norming value for the function

(1.4) in the space Lp(x)(Rn) , if µβ(x0, r0) = 1.
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Lemma 1.3. The norming value r0 is the root of the equation
∫

|x|>r0

|x|β(x0)p(x+x0)dx = 1. (1.7)

This root does exist if p(x) ∈ w-Lip (Ṙn) and

n + β(x0)p(x0) ≤ 0 , n + β(x0)p(∞) < 0. (1.8)

Lemma’s assertion is an immediate consequence of the monotonicity of
the left hand-side in (1.7) with respect to r0 (cf. the proof of Lemma 2.11 in
[1]).

Lemma 1.4. Let p(x) ∈ w-Lip (Rn) . If

sup
x∈Rn

[n + β(x0)p(x0)] = : −d0 < 0 , sup
x∈Rn

|β(x)| : = B < ∞ (1.9)

then the function r0(x0) has a positive lower bound :

r0(x0) ≥
[
1 + (n + BP )eAB

]− 1
d0 (1.10)

where A is the constant from the w-Lip-condition for the function p(x).
Proof. Assuming that r0(x0) ≤ 1 , from (1.7) we have

∫

r0<|x|<1
|x|β(x0)p(x0)g(x)dx ≤ 1, g(x) = |x|β(x0)[p(x+x0)−p(x0)]. (1.11)

Here g(x) ≥ e−AB by (2.10) from [1]. Therefore, from (1.11)
∫
r0<|x|<1 |x|β(x0)p(x0)dx ≤

eAB. Hence r
−|n+β(x0)p(x0)|
0 − 1 ≤ |n+β(x0)p(x0)|eAB , which implies (1.10).

2

Lemma 1.5. Let p(x) be continuous in a neighbourhood of infinity. If
supx∈Rn β(x) < − n

p(∞)
, then

sup
x∈Rn

r0(x) = c < ∞. (1.12)

Proof. By continuity of p(x) at infinity we conclude that there exists
R0 > 0 such that

δR0 : = inf
x∈Rn

|β(x)| inf
|ξ|≥R0

p(ξ)− n > 0. (1.13)
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Assuming that r0(x0) ≥ 1, we derive from (1.7) the folowing

1 =
∫

|x|>r0,|x+x0|≥R0

|x|β(x0)p(x+x0)dx +
∫

|x|>r0,|x+x0|≤R0

|x|β(x0)p(x+x0)dx ≤
∫

|x|>r0

|x|−n−δR0dx +
∫

|x+x0|≤R0

r
−|β(x0)|p0

0 dx.

Hence 1 ≤ |Sn−1|
(∫∞

r0
ρ−1−δR0dρ +

Rn
0

n
r
−|β(x0)|p0

0

)
. Therefore,

1 ≤ |Sn−1|
(
δ−1
R0

r
−δR0
0 +

Rn
0

n
r
−−np0

p(∞)

0

)
. (1.14)

Hence (1.12) follows with c =
[
|Bn|

(
n

δR0
+ Rn

0

)] 1
γ

, γ = min
(
δR0 ,

np0

p(∞)

)
.

1.2. Estimates for the norm µβ as r → 0.
Before the main estimate in Theorem 1.8 , we give some ”rough” estimates

in Lemma 1.6 which will be used then in the proof of Theorem 1.8.
Together with (1.9) we shall need the condition

d∞ : = − sup
x∈Rn

[n + β(x0)p(∞)] > 0, (1.15)

which in fact was used in Lemma 1.5.
Lemma 1.6. Let p(x) ∈ w-Lip (Ṙn). Under the conditions (1.9) there

exists c > 0 not depending on r and x0 such that

µβ ≤ crβ(x0) , 0 < r < r0.

Proof. From (1.6) we have

1 =
∫

r<|x|<r0,|x|β<µβ

( |x|β(x0)

µβ

)p(x0+x)

dx +

∫

r<|x|<r0,|x|β>µβ

( |x|β(x0)

µβ

)p(x0+x)

dx +
∫

|x|>r0

( |x|β(x0)

µβ

)p(x0+x)

dx

Hence, taking (1.7) into account, we obtain

1 ≤
∫

r<|x|<r0




( |x|β(x0)

µβ

)P

+

( |x|β(x0)

µβ

)p0

 dx +

1

µp0

β

≤
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|B(0, r0)|



(
rβ(x0)

µβ

)P

+

(
rβ(x0)

µβ

)p0

 +

1

µp0

β

. (1.16)

By Lemma 1.5, |B(0, r0)| is bounded uniformly in x0 . Noting also that

β = β(x0) < 0, we reduce (1.16) to
(

rβ(x0)

µβ

)P
+

(
rβ(x0)

µβ

)p0 ≥ C. Hence the

estimate rβ(x0)

µβ
≥ c1 > 0 evidently follows. 2

Lemma 1.7. Let a(x) ≥ 0, p(x) ≥ 1, x ∈ Rn, and p(x) ∈ C(Ṙn). If

a(x)p(x) ≥ n + d0, d0 > 0, (1.17)

a(x)p(∞) ≥ n + d∞, d∞ > 0, (1.18)

then there exist numbers N > 0 and ε > 0 such that

a(x)p(ξ) ≥ n + d, d =
1

2
min(d0, d∞) (1.19)

for all x ∈ Rn and ξ ∈ Rn such that either |ξ| ≥ N or |x− ξ| ≤ ε.
Proof is straightforward.
Theorem 1.8. Let p(x) ∈ w-Lip ( ˙Rn) and let the conditions (1.9) and

(1.15) be satisfied. Then

µβ ≤ cr
β(x0)+ n

p(x0) , 0 < r ≤ r0, (1.20)

with c > 0 not depending on r and x0 .
Proof. Denoting µ = µβ for brevity, from (1.6) we have

1 =
∫

r<|x|<ε,µ|x||β|<1
+

∫

r<|x|<ε,µ|x||β|>1
+

∫

|x|>ε
= I1 + I2 + I3 (1.21)

where it is assumed that r < ε, a fixed number ε ∈ (0, 1] being chosen later.
E s t i m a t i o n o f I1 . We represent I1 as I1 =

∫
r<|x|<ε,µ|x||β|<1 gr(x)

(|x||β|µ)−p(x0)dx, gr(x) =
(
µ|x||β|

)p(x0)−p(x+x0)
. By the w-Lip-condition for

p(x) we have

|log gr(x)| ≤ A

∣∣∣∣∣∣
log

(
|x||β|µ

)

log |x|
2

∣∣∣∣∣∣
= A

|β| log 1
|x| − log µ

log 2
|x|

≤ A|β| ≤ AB.

5



Therefore, I1 ≤ eAB

µp(x0)

∫
|x|>r |x|β(x0)p(x0)dx. Hence

I1 ≤ eAB|Sn−1|
d0

rn+β(x0)p(x0)

µp(x0)
(1.22)

E s t i m a t i o n of I2 . We have

I2 ≤
∫

|x|>r

( |x|β(x0)

µ

)pε

dx (1.23)

where pε = min|x−x0|<ε p(x). Now we choose ε independent of x0 sufficiently
small so that n + β(x0)pε ≤ −δ < 0 with δ also independent of x0 . Such a
choice is possible by Lemma 1.6. Then from (1.23) we have

I2 ≤ |Sn−1|
µpε

∫ ∞

r
ρβ(x0)pε+n−1dρ =

|Sn−1|
δ

rn+β(x0)pε

µpε
. (1.24)

E s t i m a t i o n o f I3. Evidently,

I3 ≤ I0

µp0
, I0 :=

∫

|x|>ε
|x|β(x0)p(x+x0)dx (1.25)

Let us show that I0 is bounded , ε being fixed. If r0 ≤ ε, then I0 ≤ 1 by
(1.6). So, let r0 > ε. Using (1.6) again, we have

I0 = 1 +
∫

ε<|x|<r0

|x|β(x0)p(x+x0)dx ≤ 1 + εβ(x0)P |Sn−1|
n

rn
0 ≤ 1 + ε−BP |Bn|rn

0 .

It remains to note that rn
0 is bounded by Lemma 1.5. Then, in view of

boundedness of I0 the inequality (1.25) implies the estimate I3 ≤ Cµ−p0 .
Gathering the estimates for I1, I2, I3, we conclude from (1.21) that

1 ≤ c0

[
rn+β(x0)p(x0)

µp(x0)
+

rn+β(x0)pε

µpε
+

1

µp0

]
. (1.26)

Evidently, µ(r) increases to infinity as r → 0. Therefore, 1
µp0

≤ 1
2c0

for r

sufficiently small. Then from (1.26) we derive the inequality

rn+β(x0)p(x0)

µp(x0)
+

rn+β(x0)pε

µpε
≥ c0

2
. (1.27)

Here rn+β(x0)pε

µpε ≤ c1
rn+β(x0)p(x0)

µp(x0) , c1 = max(1, cP−p0), by Lemma 1.6. Then

from (1.27) it follows that rn+β(x0)p(x0)

µp(x0) ≥ c0
2(1+c1)

which yields (1.20). 2
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1.3. Estimates of the norms µβ as r →∞.
It is natural to expect that instead of (1.20) we should have

µβ ≤ Crβ(x0)+ n
p(∞) , r →∞ . (1.28)

However, it proved to be a difficult moment and we succeeded only in ob-
taining such an estimate with a constant c which depends on x0 and grows
as |x0| → ∞ (as a power function of |x0| ). It is also possible to obtain the
estimate (1.28) with an absolute constant but with a worse exponent.

A) Estimates with constants depending on the point x0.
We start with the following auxilliary lemma giving the rough lower bound

which nevertheless proved to be of importance in proving the main result.
Lemma 1.9. Let p(x) ∈ w-Lip (Ṙn) and let (1.15) and the second of the

conditions (1.9) be satisfied. Then µβ ≥ 2−
B
n rβ(x0) for r ≥ |Bn|−1/n .

Proof. We assume that µ = µβ ≤ rβ, otherwise the lemma is proved.
From (1.6) we have

1 ≥
∫

r<|y|<µ1/β

( |y|β(x0)

µβ

)p(x0+y)

dy ≥
∫

r<|y|<µ1/β
dy = |Bn|

(
µ

n
β − rn

)
.

Then µ
n
β

β ≤ 1
|Bn| + rn ≤ 2rn in case of r ≥ |Bn|−1/n. . Hence the lemma’s

assertion follows. 2

Theorem 1.10. Under the assumptions of Lemma 1.9

c1

K
rβ(x0)+ n

p(∞) ≤ µβ ≤ c2K rβ(x0)+ n
p(∞) , (1.29)

as r → ∞ (r ≥
[
max(2, 1

|Bn|
]1/n

) where c1, c2 do not depend on r and x0 ,

while K, not depending on r, may grow when |x0| → ∞.
Proof. For µ = µβ from (1.6) we have

1 =
∫

|x|>r

( |x|β
µ

)p(∞)

jr(x)dx (1.30)

where jr(x) =
( |x|β

µ

)p(x+x0)−p(∞) ≤ 2
B(P−P0)

n

( |x|β
2B/nµ

)p(x+x0)−p(∞)
. There-

fore, log jr(x) ≤ log C+|p(x + x0)− p(∞)|
(
|β(x0)| log |x|+ B

n
log 2− log µ

)
.
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with C = 2
β(P−p0)

n . Taking into account the w-Lip - behavior of the func-

tion p(x) at infinity, we obtain | log jr(x)| ≤ log C + A∞B
log |x|+ log 2

n

log(e+|x+x0|) ≤
log C + 2A∞B 2 log |x|

log(e+|x+x0|) . Since log|x|
log|y| ≤ log(a+|x−y|

log|a| for | y |≥ a > 1, we have

| log jr(x)| ≤ log C + 2A∞B log(e + |x + x0|) ≤ and then 1
c
(e + |x0|)−2A∞B ≤

jr(x) ≤ c(e + |x0|)2A∞B. So, from (1.30)

1

c
(e+|x0|)−2A∞B

∫

|x|>r

( |x|β
µ

)p(∞)

dx ≤ 1 ≤ c(e+|x0|)2A∞B
∫

|x|>r

( |x|β
µ

)p(∞)

dx.

Simple evaluations reduce this to (1.29) with K = (e + |x0|)2A∞B/p(∞).2

B) Estimates with absolute constants but with rough

exponents.
Lemma 1.11. Let r ≥ r0. Then

[Jβ(x0, r)]
1

pr ≤ µβ ≤ [Jβ(x0, r)]
1

Pr (1.31)

where
Jβ(x0, r) =

∫

|x|>r
|x|β(x0)p(x+x0)dx. (1.32)

Proof. Since µβ ≥ 1 if and only if 0 < r < R0, the equality (1.6) gives

Jβ(x0, r)

µpr
≤ 1 ≤ Jβ(x0, r)

µPr

which coincides with (1.31). 2

Lemma 1.12. For r ≥ r0 the integral (1.32) is estimated as follows

k(x0, r)
(

r

r0

)n+β(x0)Pr

≤ Jβ(x0, r) ≤ k(x0, r)
(

r

r0

)n+β(x0)pr

(1.33)

where
k(x0, r) =

∫

|x|>r0

|x|β(x0)p( r
r0

x+x0)
dx (1.34)

Proof. The change of variables x = r
r0

y in (1.32) leads to

Jβ(x0, r) =
(

r

r0

)n ∫

|y|>r0

(
r

r0

|y|
)β(x0)p( r

r0
y+x0)

dy .
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Hence (1.33) follows. 2

Lemma 1.13. Let p(x) ∈ w-Lip (Rn) and let the assumptions (1.9) and
(1.15) be satisfied. Then 0 < c1 ≤ k(x0, r) ≤ c2 < ∞ for r ≥ r0 with c1 and
c2 not depending on r and x0.

Proof. By (1.15) , there exists N > 0 such that

inf
x∈Rn

|β(x)| inf
|ξ|≥N

p(ξ) ≥ n +
d∞
2

(1.35)

(see Lemma 1.7). We have k(x0, r) =
∫
|x|>r0,|ξ|≥N +

∫
|x|>r0,|ξ|<N where ξ =

r
r0

x + x0. Let r0 ≥ 1 first. By (1.35) we have k(x0, r) ≤
∫
|x|>r0

|x|−n− d∞
2 dx +

∫
|ξ|l<N r

−|β(x0)|p0

0 dx = |Sn−1|
[

2
d∞

r
− d∞

2
0 + 1

n
r
−|β(x0)p0

0

(
r0N

r

)n
]
. It remains to

note that r0

r
≤ 1 and r0 has a lower bound by Lemma 1.4.

If r0 < 1, to obtain the right-hand side estimate, we put k(x0, r) =∫
|x|>1,|ξ|≥N +

∫
|x|>1,|ξ|<N +

∫
r0≤|x|≤1 . Here the first two integrals are estimated

exactly as before, while for the third one we have
∫
r0≤|x|≤1 ≤

∫
c≤|x|≤1 |x|−BP dx =

const < ∞ where c = infx∈Rn r0(x) > 0 by Lemma 1.4.
It remains to give the lower bound for k(x0, r) which is easier :

k(x0, r) ≥
∫

|x|≥max(1,r0)
|x|−BP dx ≥

∫

|x|≥max(1,c)
|x|−BP dx = const > 0.2

Theorem 1.14. Let p(x) ∈ w-Lip (Rn) and let the assumptions (1.9)
and (1.15) be satisfied. Then

c1

(
r

r0

)n+β(x0)P̄r
pr ≤ µβ ≤ c2

(
r

r0

)n+β(x0)p̄r
Pr

, r ≥ r0 , (1.36)

with c1 > 0 and c2 > 0 not depending on r and x0.
Proof. The estimates (1.36) follow directly from Lemmas 1.11 - 1.13.

Remark 1.15. Evidently, limr→∞ p̄r = limr→∞ P̄r = p(∞), if p(x) is

continuous at infinity. However, these limits are in no way uniform in x0

1.4. The case of a bounded domain.
In case of spaces Lp(x)(Ω) on a bounded domain Ω ⊂ Rn , Theorem 1.8

on behaviour of norms of power functions of distance remains true with the
simplification owing to the fact that now there is no necessity to deal with
the assumption (1.15) connected with infinity. Naturally, the function (1.4)
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is considered in the domain Ω only with the corresponding integration in
(1.6).

Definition 1.16. We say that f(x) ∈ w-Lip (Ω̄) if f(x) ∈ C(Ω̄) and
|f(x)− f(y)| log 1

|x−y| ≤ A < ∞ for all x, y ∈ Ω̄ such that |x− y| < 1.
Analysis of the proof of Theorem 1.8 shows that the following theorem

holds.
Theorem 1.17. Let f(x) ∈ w-Lip (Ω̄) and let

supx∈Ω̄ [n + β(x)p(x)] < 0 , supx∈Ω̄ |β(x)| < ∞. Then

µβ(x0, r) ≤ cr
β(x0)+ n

p(x0) , x0 ∈ Ω , 0 ≤ r ≤ D , (1.37)

where D = diam Ω < ∞ and c does not depend on x0 and r.

II. Convolution operators in the spaces Lp(x)

2.1. On a necessary condition for the Young theorem in
case of kernels of potential type.

We start with the folowing remark of a negative character.
Remark 2.1. Young theorem in the form

‖Kf‖p ≤ c ‖k‖1 ‖f‖p (2.1)

is not valid for an arbitrary kernel k(x) ∈ L1(Rn) and an arbitrary variable
exponent p(x), 1 ≤ p(x) ≤ ∞.

Proof. Let n = 1 for simplicity. We put p(x) = p1 for x < 0 and
p(x) = p2 for x > 0 where 1 ≤ p1 < p2 < ∞ and k(x) = |x− 2|α−1 if |x| ≤ 3
and k(x) = 0 if |x| > 3 where 0 < α < 1

p1
− 1

p2
, so that k(x) ∈ L1(R1). Then

we choose f(x) = |x+1|−ν if x ∈ (−2, 0) and f(x) = 0 otherwise. Evidently,
f(x) ∈ Lp(x)(R1) if we take 0 < ν < 1

p1
. However, k ∗ f does not belong to

Lp(x)(R1) under the additional choice ν > α + 1
p2

, the latter choice being

evidently possible. Really, taking 1 < x < 3
2

, we have

k ∗ f ≥
∫ −1

x−3
|x− t− 2|α−1|t + 1|−νdt =

∫ 2−x

0
s−ν(x− 1 + s)α−1ds =
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(x− 1)α−ν
∫ 2−x

x−1

0
ξ−ν(1 + ξ)α−1dξ ≥ c

(x− 1)ν−α

with c =
∫ 1
0 ξ−ν(1 + ξ)α−1dξ . Therefore , k ∗ f cannot be integrable on [1, 3

2
]

to the power p2 since (ν − α)p2 > 1.2

This example shows clearly that convoluted functions k(x) and f(x) hav-
ing singularities at points a and x0, respectively, produce the convolution
with a singularity at the point x0 + a (see also Lemma 2.3 below). In case of
a constant exponent p such a shift of singularities played no role. However,
for a variable exponent p(x) having, in general, different values at points
x0 and x0 + a, such shifting produces evident problems. So, we begin with
kernels k(x) having singularities only at the origin, potential type operators,
for example. Nevertheless, we consider before some ”potential type opera-
tors” with weak singularities at different points and derive some necessary
condition for them to act within the frameworks of the spaces Lp(x)(Rn).

Let E = {x1, ..., xN} be a finite set of points in Rn and let α = (α1, ..., αN) ∈
RN

+ .
Definition 2.2. By A = AE,α we denote the class of kernels which satisfy

the assumptions
1) k(x) ≥ 0 ;
2)k(x) ≥ c|x− xk|αk−n, 0 < αk ≤ n, c > 0; |x− xk| < ε, k = 1, ..., N, for

some ε > 0;
3) k(x) is bounded beyond some neighbourhoods of the points x1, ..., xN .
Lemma 2.3. Let k(x) ∈ AE,α and let f(x) = |x− a|−γ(x) for |x− a| ≤ d

and f(x) = 0 for |x − a| > d where a ∈ Rn, d > 0, γ(x) ∈ w-Lip (B(a, d))
and 0 < γ(a) < n. Then the convolution k ∗ f has singularities at the points
a + x1, a + x2, ..., a + xN :

k ∗ f ≥ c|x− (a + xk)|αk−γ(a) , |x− (a + xk)| ≤ min(δ,
ε

2
) (2.2)

where c > 0 and ε is the number from Definition 2.2.
Proof. We consider the convolution

k ∗ f ≥
∫

|y−a|<δ

k(x− y)dy

|y − a|γ(y)
, 0 < δ ≤ d ,

for x ∈
{
x : |x− xk − a| < ε

2

}
. Choosing δ ≤ ε

2
, we have |x − y − xk| < ε.

11



Then, by the condition 2) of Definition 2.2, we obtain

k ∗ f ≥
∫

|y−a|<δ,|x−y−xk|<ε
|y − a|−γ(y)|x− y − xk|αk−ndy .

Since γ(x) ∈ w-Lip , we have 0 < m ≤ |x − a|γ(x)−γ(a) ≤ M < ∞. So,
k∗f ≥ c1

∫
|t|<δ,t−x̃|<ε |t|−γ(a)|t−x̃|αk−ndt where we have denoted x̃ = x−xk−a.

Let r = |x̃|. After the change of variables t = rξ we obtain

k ∗ f ≥ crαk−γ(a)
∫

|ξ|<δ/r,|ξ−r−1x̃|<εr−1
|ξ|−γ(a)|ξ − x̃

r
|αk−ndξ.

Applying also an evident rotation change of variables we arrive at the in-
equality

k ∗ f ≥ A(r)rαk−γ(a) (2.3)

with A(r) =
∫
|ξ|<δ/r,|ξ−ē|<εr−1 |ξ|−γ(a)|ξ − |αk−ndξ. and ē = (1, 0, ..., 0). The re-

quired inequality (2.2) will follow from (2.3) if A(r) does not vanish for small

r. The latter is easily seen from the fact that
{
ξ : |ξ| < δ

r
, |ξ − e| < ε

r

}
⊇

{|ξ| < 1} for r ≤ min(δ, ε/2).2
Lemma 2.3 yields the following more essential statement.
Lemma 2.4. Let k(x) ∈ AE,α, p(x) ∈ w-Lip (Rn), 1 ≤ p(x) ≤ P < ∞.

If the convolution operator (1) maps the space Lp(x)(Rn) into itself, then
necessarily

1

p(x)
− 1

p(x + xk)
≤ αk

n
, k = 1, 2, ..., N, (2.4)

for all x ∈ Rn.
Proof. Suppose that k ∗ f ∈ Lp(x)(Rn) for any function f(x) ∈ Lp(x)(Rn)

. We choose then f(x) = |x − a|−n−δ
p(x) χB(a,d)(x) where χB(a,d)(x) is the char-

acteristic function of an arbitrary ball B(a, d), a ∈ Rn, 0 < d < ∞, and

0 < δ < n. From Lemma 2.3 it follows that |x − (a + xk)|αk−n−δ
p(a) ∈ Lp(x) in

some neighbourhood of the point a + xk, k = 1, 2, ..., N. Then, by Lemma
2.7 from [1], the necessary condition

[
n− δ

p(a)
− αk

]
p(a + xk) < n

should be satisfied, which coincides with (2.4). 2

12



Remark 2.5. The condition (2.4) is quite natural in the following sense:
it means that in case of potential type kernels with a singularity shifted from
the origin to a point xk, the value of the exponent p(x) at the new (shifted)
point x+xk should not be greater that the value of the corresponding Sobolev
exponent

np(x)

n− αkp(x)

(in case p(x) < n/αk), calculated with respect to the ”old” point x.
Remark 2.6.The condition (2.4) is satisfied automatically in the follow-

ing cases:
1) in case of purely potential kernel, that is E = {0}, when there is no

shift of singularities ;
2) in case of the exponent p(x) which is ”periodically nonincreasing” in

each of the directions defined by vectors xk ∈ E , that is p(x + xk) ≤
p(x), x ∈ Rn, xk ∈ E (in particular, if p(x) is periodic with respect to all
vectors in E).

2.2. Young theorem .
The above arguments show that it is impossible to have the Young theo-

rem, except for special cases noted e.g. in Remark 6. Within the framework
of the assumption k(x) ∈ L1(Rn), or, more generally, k(x) ∈ Lq(x)(Rn), it
proves to be possible to obtain a Young-type theorem in terms of the upper
and lower bounds for p(x) and q(x). One of such versions of Young theorem is
considered below. We prove first Young theorem in a special form, when the
resulting exponent is constant (Theorem 2.7) and then derive more general
statement (Theorem 2.8). Everywhere below, as before

p0 = inf
x∈Rn

p(x) , P = sup
x∈Rn

p(x), 1 ≤ p0 ≤ P < ∞,

q0 = inf
x∈Rn

q(x) , Q = sup
x∈Rn

q(x), 1 ≤ q0 ≤ Q < ∞,

Theorem 2.7. Let 1
p(x)

+ 1
q(x)

≡ 1 + 1
r

where r = const ≥ 1. If

k(x) ∈ Lq0(Rn)
⋂

LQ(Rn) , then the convolution operator (1) is bounded from
Lp(x)(Rn) into Lr(Rn).

Proof. We assume that ‖f‖p ≤ 1. Evidently,

|Kf(x)| ≤
∫

Rn
A1−µ(y)|f(y)| p(y)

r |k(x− y)|µ(y) |f(y)|1− p(y)
r

∣∣∣∣∣
k(x− y)

A

∣∣∣∣∣
1−µ(y)

dy

13



where A > 0 and µ(y) , 0 < µ(y) < 1, will be chosen later.
Applying the Holder inequality (1.21′) from [1] , with the exponents

p1(y) = r, p2(y) = rp(y)
r−p(y)

, p3(y) = p′(y) = p(y)
p(y)−1

, we obtain

|Kf(x)| ≤ c
{∫

Rn
Ar−rµ(y)|f(y)|p(y) |k(x− y)|rµ(y) dy

} 1
r

×
∥∥∥∥|f(y)|1− p(y)

r

∥∥∥∥
p2(y)

∥∥∥∥∥∥

∣∣∣∣∣
k(x− y)

A

∣∣∣∣∣
1−µ(y)

∥∥∥∥∥∥
p′(y)

(2.5)

In view of the estimate (1.16) from [1] we obtain

∥∥∥∥|f(y)|1− p(y)
r

∥∥∥∥
p2(y)

≤ ‖f‖min[1− p(y)
r

]

p(y) ≤ 1. (2.6)

To estimate the third factor in (2.5) we choose µ(y) in such a way that

[1− µ(y)] p′(y) = q(y) , that is µ(y) = q(y)
r

We intend to apply the inequality
(1.16) from [1] to this third factor. So, we need the inequality

∥∥∥∥∥
k(x− y)

A

∥∥∥∥∥
q(y)

=
1

A
‖k(x− y)‖q(y) ≤ 1. (2.7)

To reach (2.7) we choose A = ‖k‖q0 +‖k‖Q so that (2.7) is satisfied by Lemma
1.13 from [1] . Then we can apply (1.16) from [1] and obtain

∥∥∥∥∥∥

∣∣∣∣∣
k(x− y)

A

∣∣∣∣∣
1−µ(y)

∥∥∥∥∥∥
p′(y)

≤ 1. (2.8)

By (2.6) and (2.8) we obtain from (2.5)

‖Kf ||r ≤ cAν
{∫

Rn
dx

∫

Rn
|f(y)|p(y)|k(x− y)|q(y)dy

} 1
r

=

cAν
{∫

Rn
|f(y)|p(y)dy

∫

Rn
|k(x)|q(x+y)dx

} 1
r

where ν = 1−Q/r if A ≤ 1 and ν = 1− q0/r if A ≥ 1. Hence, obviously

‖Kf ||r ≤ cAν
(
‖k‖

q0
r

q0 + ‖k‖
Q
r
Q

) ∫

Rn
|f(y)|p(y)dy

14



and it remains to note that the last integral is not greater than 1 according
to (1.11) from [1] . 2

Theorem 2.8. Let k(x) ∈ Lq1(Rn)
⋂

Lq2(Rn), 1 ≤ q1 ≤ q2 < ∞ . The
convolution operator (1) is bounded from Lp(x)(Rn) into Lr(x)(Rn), if

1

q1

− 1

q2

≥ 1

p0

− 1

P
(2.9)

and r(x) is any bounded function, r(x) ≥ 1 , such that

1

p0

+
1

q2

− 1 ≤ 1

r(x)
≤ 1

P
+

1

q1

− 1. (2.10)

Proof. In fact, Theorem 2.8 is a corollary of Theorem 2.7. Really, in the
estimate for ‖Kf‖r in Theorem 7 not the function q(x) is involved, but only
its upper and lower bounds Q and q0 . Let us reconsider the assumption

1

p(x)
+

1

q(x)
− 1 ≡ 1

r

of Theorem 2.7 in terms of Q and q0 . Since 1
Q
≤ 1

q(x)
≤ 1

q0
, we have

1
Q
≤ 1

r
− 1

p(x)
+ 1 ≤ 1

q0
. Hence 1

r
+ 1 − 1

q0
≤ 1

p(x)
≤ 1

r
+ 1 − 1

Q
for all x ∈ Rn.

This is equivalent to 1
r

+ 1− 1
q0
≤ 1

P
, 1

p0
≤ 1

r
+ 1− 1

Q
. Hence

1

r2

: =
1

p0

+
1

Q
− 1 ≤ 1

r
≤ 1

P
+

1

q0

− 1 = :
1

r1

.

By Lemma 1.13 from [1], ‖f‖r(x) ≤ ‖f‖r1 + ‖f‖r2 for any function r(x) such
that r1 ≤ r(x) ≤ r2. Therefore, we arrive at the assertion of Theorem 2.8. 2

If we deal with the convolution type operator in case of bounded domain:

KΩf =
∫

Ω
k(x− y)f(y)dy , (2.11)

Theorem 8 is valid under weaker assumptions. Namely, the following its
version is valid.

Theorem 2.9 . Let k(x) ∈ LQ ((B(0, 2D)) where Q ≥ 1 and D =
diam Ω. The operator (12) is bounded from Lp(x)(Ω) into Lr(x)(Ω), r(x) ≥ 1,
if

1

Q
≤ 1− 1

p0

+
1

P
,

1

r(x)
≥ 1

Q
+

1

p0

− 1.
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Proof. Since LQ = LQ ⋂
L1 in case of a set of finite measure, we may

apply Theorem 2.8 with q1 = 1, q2 = Q , preliminarily having continued
the function f and the kernel k as zero to the whole space and taking into
account that the right-hand side inequality in (2.10) turns into trivial one.
2

III. Potential type operators in Lp(x)

3.1. Sobolev Theorem.
We consider the potential type operator of variable order

Iα(x)f =
∫

Ω

f(y)dy

|x− y|n−α(x)
, x ∈ Ω, 0 < α(x) < n, (3.1)

where Ω ⊆ Rn is a bounded domain . We shall investigate mapping properties
of the operator Iα(x) If within the framework of the spaces Lp(x)(Ω) (Sobolev
theorem or its weaker version with pre-Sobolev exponent).

One can also consider the operator (3.1) with α(y) instead of α(x) which
differs unessentially from (3.1) if α(x) ∈ w-Lip (Ω), because c1|x−y|n−α(y) ≤
|x− y|n−α(x) ≤ c2|x− y|n−α(y) in this case.

We shall show that the Sobolev theorem in the natural generalization

Iα(x) : Lp → Lq(x),
1

q(x)
=

1

p
− α(x)

n
, α(x) <

n

p
(3.2)

is valid in case of constant p > 1. In case of variable p(x) we succeeded
in obtaining only the conventional result as yet: Sobolev theorem is valid
if the maximal operator is bounded in the space Lp(x) . The question of
boundedness of the maximal operator in Lp(x) remains open.

For variable exponents p(x) we shall also give an unconditional, but a
weaker assertion about validity of such a theorem ”with a gap” (Theorem
3.3). We specially treat the case of boundedness Iα(x) : Lp(x) → Lr with the
pre-limiting exponent r in the case when r is constant (Theorem 3.5).

Let

Mf(x) = sup
t>0

1

tn

∫

y∈Ω:|x−y|<t
|f(y)|dy, x ∈ Ω, (3.3)
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be the well known [ 2 ] maximal operator.
Definition 3.1. A function p(x), 1 < p(x) < ∞, is said to be an appro-

priate function for the operator (3.3) if this operator is bounded in the space
Lp(x)(Ω).

It is well known that the constant function p(x) ≡ p > 1 is an appropriate
function for the operator M . The question of existence of a non-trivial (non-
constant) appropriate functions remains open. Supposingly, such a function
p(x) must be continuous. (In any case , Sobolev theorem cannot be valid for
a piece-wise constant function p(x) , see Subsection 3.4 below, and therefore,
the maximal operator cannot be bounded in such a space Lp(x)).

Theorem 3.2. (Sobolev type Theorem). Let 1 < p < ∞ and let

α0 : = inf
x∈Ω

α(x) > 0 , (3.4)

sup
x∈Ω

α(x) <
n

p
. (3.5)

Then (3.2) holds . It remains valid for a variable exponent p(x) ∈ w −
Lip(Ω̄), 1 < p0 ≤ p(x) ≤ P < ∞ if p(x) is an appropriate function for the
maximal operator M and the assumption (3.5) is replaced by

sup
x∈Ω

p(x)α(x) < n. (3.6)

Proof. We shall prove the second part of the theorem which assumes that
the function p(x) is appropriate for the maximal opertator. The first part is
an immediate consequence of the second one. We shall use the known idea
to reduce the Sobolev theorem to boundedness of maximal operator and the
estimates for Lp(x) - norms of power functions of distance we obtained before
in [1] . We have

Iα(x)f =
∫

|x−y|<r
|x− y|α(x)−nf(y)dy+

∫

|x−y|>r
|x− y|α(x)−nf(y)dy = : Ar(x) + Br(x) (3.7)

so that Br(x) ≡ 0 for r ≥ D = diam Ω.
We shall take use of the inequality

|Ar(x)| ≤ 2nrα(x)

2α(x) − 1
Mf(x) (3.8)
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which is known in case of α(x) = const and remains valid in case it is variable.
By (3.8) and (3.4)

|Ar(x)| ≤ c1r
α(x)Mf(x) (3.9)

with some absolute constant c1 > 0.
We assume that ‖f‖p(y) ≤ 1 . Applying the Holder inequality (1.21′) from

[1] to the integral Br(x), we obtain

|Br(x)| ≤ ‖f‖p(y)µβ(x, r) ≤ µβ(x, r) (3.10)

where
µβ(x, r) =

∥∥∥|x− y|β(x)χ
∥∥∥

p′(y)
(3.11)

and χ is the characteristic function of the exterior {y ∈ Ω : |x − y| > r} of
the ball and β(x) = α(x)− n . We can apply Theorem 1.17, its assumptions
being satisfied due to conditions of our theorem. By that theorem we have
µβ(x, r) ≤ c2r

− n
q(x) , x ∈ Ω, 0 < r < D . If p(x) ≡ p = const, this estimate

is evidently valid for all r > 0. Then from (3.7), in view of (3.9)-(3.11) , we
obtain ∣∣∣Iα(x)f(x)

∣∣∣ ≤ c3

[
rα(x)Mf(x) + r−

n
q(x)

]
, 0 < r < ∞,

Minimizing the right-hand side with respect to r we see that its minimum is
reached at

rmin =
[
1

n
q(x)α(x)Mf(x)

] p(x)
n

and easy evaluations give

∣∣∣Iα(x)f(x)
∣∣∣ ≤ c3n

p(x)

[
q(x)

n
Mf(x)

] p(x)
q(x)

[
1

α(x)

]1− p(x)
q(x)

.

Hence, by the assumptions of our theorem,
∣∣∣Iα(x)f(x)

∣∣∣ ≤ c4 [Mf(x)]
p(x)
q(x) so

that ∥∥∥Iα(x)f(x)
∥∥∥

q(x)
≤ c4

∥∥∥∥(Mf(x))
p(x)
q(x)

∥∥∥∥
q(x)

.

Applying Lemma 1.12 from [1] with γ(x) = p(x)
q(x)

, we obtain

∥∥∥Iα(x)f(x)
∥∥∥

q(x)
≤ c4 ‖Mf(x)‖Γ

p(x) , Γ = sup
x∈Ω

p(x)

q(x)
< 1 (3.12)
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(under the assumption that
∥∥∥∥(Mf(x))

p(x)
q(x)

∥∥∥∥
q(x)

≥ 1 , otherwise our theorem

is already proved). In view of the assumed boundedness of the operator M

in the space Lp((x)(Ω) the estimate (3.12) implies
∥∥∥Iα(x)f(x)

∥∥∥
q(x)

≤ c4‖M‖Γ .
2.

3.2. Theorems with prelimiting exponents.
Theorem 3.3. (Pre-limiting Sobolev theorem with a gap). Let p(x) ∈

w − Lip(Ω̄), 1 ≤ p0 ≤ p(x) ≤ P < ∞ and α(x) > 0. If

sup
x∈Ω

p(x)

[
α(x)−

(
n

p0

− n

P

)]
≤ n , (3.13)

the operator Iα(x) is bounded from Lp(x)(Ω) into Lr(x)(Ω) where r(x) is any
function such that r(x) ≥ 1 and

inf
x∈Ω

[
1

r(x)
− 1

p(x)
+

α(x)

n

]
>

1

p0

− 1

P
. (3.14)

Proof. We estimate the first term in the represenation (3.7) as follows:

|Ar(x)| ≤ rα(x)−ε
∫

Ω
|f(y)||x− y|ε−ndy = rα(x)−εIε(|f |) (3.15)

and ε > 0 is to be chosen in such a way that the operator Iε to be bounded
in the space Lp(x) . Theorem 2.8 gives a sufficient condition for that :

ε >
n

p0

− n

P
. (3.16)

Meanwhile the estimate (3.15) with the operator Iε bounded in Lp(x)

means that we are exactly in the same situation as in the proof of Theorem
3.2 , the only difference being in the fact that the operator M must be
replaced by Iε and α(x) by α(x) − ε. Repeating the arguments of Theorem
3.2, we obtain that the operator Iα(x) is bounded frrom Lp(x) to Lr(x) where

1

r(x)
=

1

p(x)
− α(x)− ε

n
(3.17)

and the condition
sup
x∈Ω

p(x) [α(x)− ε] < n (3.18)
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is satisfied. (Naturally, we do not require that p0 > 1, as in Theorem 3.2,
since we do not deal with the maximal operator). It is easily seen that the
set of conditions (3.17)-(3.18) is equivalent to the conditions (3.13)-(3.14). 2

Remark 3.4. In the case when p(x) is constant, we have P = p0, so
that the ”gap” n

p0
− n

P
is absent in (3.13)-(3.14) . Then the condition (3.13)

admits validity of the equality p(x)α(x) = n on some set and then r(x) = ∞
on this set. In this relation we remark that it is of interest to investigate the
spaces Lp(x) which turn to be BMO at the set where p(x) = ∞ .

The following theorem, although dealing with the special case r(x) =
const is of independent interest, not being covered by Theorem 3.3.

Theorem 3.5. Let p(x) ∈ w-Lip (Ω̄), 1 < p0 ≤ p(x) ≤ P < ∞, and
0 < α0 ≤ α(x) ≤ T < ∞. If

sup
x∈Ω

(
1

p(x)
− α(x)

n

)
< inf

x∈Ω

1

p(x)
, (3.19)

the operator Iα(x) is bounded from Lp(x)(Ω) into Lr(Ω) where the number
r ≥ 1 satisfies the inequality

1

r
> sup

x∈Ω

(
1

p(x)
− α(x)

n

)
. (3.20)

Proof. We have

∣∣∣Iα(x)f(x)
∣∣∣ ≤

∫

Ω

(
|f(y)| p(y)

r |x− y|ε(x)−n
r

)
|f(y)|1− p(y)

r |x−y|ε(x)− n
p(x) dy (3.21)

where p(x) = p(x)
p(x)−1

and

ε(x) =
n

2

[
1

r
+

α(x)

n
− 1

p(x)

]
>

nδ

2
(3.22)

with δ = 1
r
− supx∈Ω

(
1

p(x)
− α(x)

n

)
> 0 .

We apply the Holder inequality (1.21′) from [1] with the exponents p1(y) =

r , p2(y) = rp(y)
r−p(y)

, p3(y) = p′(y) and obtain

∣∣∣Iα(x)f(x)
∣∣∣ ≤

∥∥∥∥|f(y)| p(y)
r |x− y|ε(x)−n

r

∥∥∥∥
r
×N1 ×N2(x) (3.23)
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where

N1 =
∥∥∥∥|f |

r−p(y)
r

∥∥∥∥ rp(y)
r−p(y)

, N2(x) =
∥∥∥|x− y|ε(x)− n

p′(x)

∥∥∥
p(y)

.

Assuming that ‖f‖p ≤ 1, we obtain N1 ≤ ‖f‖1−P
r

p ≤ 1 by means of (1.16)
from [1] .

To estimate the norm N2(x) , we apply the inequality (1.11) from [1]

assuming that N2(x) ≥ 1. We obtain N2(x) ≤
{∫

Ω |x− y|β(x)p′(y)dy
}1− 1

P

where β(x) = ε(x) − n
p(x)

. We denote g(x, y) = |x − y|β(x)[p′(y)−p′(x)] . Here

p′(x) ∈ w-Lip (Ω̄) , since inf p(x) > 1. Therefore, | log g(x, y)| ≤ A|β(x)|
where |x − y| < 1 and A is the constant from the w-Lip - condition for
the function p(x). Then 0 < c1 ≤ g(x, y) ≤ c2 < ∞ for |x − y| < 1 and,
consequently, for all x, y ∈ Rn. So,

N2(x) ≤ c3

{∫

Ω
|x− y|β(x)p′(x)dy

}1− 1
P

Since β(x)p′(x) ≥ nδ
2
− n in view of (3.22), we easily obtain that N2(x) ≤

c4 = const . Hence, the inequality (3.23) yields

∥∥∥Iα(x)f
∥∥∥

r
≤ c4

{∫

Ω
|f(y)|p(y)dy

∫

Ω
|x− y|rε)y)−ndx

} 1
r

.

The inner integral is bounded, since rε(y) > rnδ
2

> 0. Consequently,
∥∥∥Iα(x)f

∥∥∥
r
≤

c5, ‖f‖p ≤ 1. 2

3.3. Necessary conditions for the operator Iα(x) to be
bounded from Lp(x) into Lq(x).

Theorem 3.6. Let 1 ≤ p0 ≤ p(x) ≤ P < ∞ and 0 < α0 ≤ α(x) ≤ T <
∞, x ∈ Rn. If the operator Iα(x) over Ω = Rn is bounded from Lp(x)(Rn)
into Lq(x)(Rn) with 1 ≤ q(x) ≤ Q < ∞, x ∈ Rn, for some Q > 1 , then

inf
x∈Rn

[
α(x) +

n

q(x)

]
≤ n

p0

, (3.24)

sup
x∈Rn

[
α(x) +

n

q(x)

]
≥ n

P
. (3.25)
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In case of the spaces Lp(x)(Ω) on a bounded domain Ω only the condition
(3.25) (with the supremum over Ω ) is necessary.

The proof of the theorem uses the dilatation operator Πtf(x) = f(tx), x ∈
Rn, t > 0 (although it does not preserve the space Lp(x) ), the estimates

t−
n
u‖f‖pt ≤ ‖Πtf‖p ≤ t−

n
v ‖f‖pt

where pt = p(x
t
) and u = P, v = p0 for t < 1 and u = p0, v = P for t > 1, the

relation Iα(x)Πtf = t−α(x)Iαt(x)f , αt(x) = α(x
t
), and the estimates

t−mp‖f‖pt ≤ ‖ t−α(x)Πtf‖p ≤ t−Mp‖f‖pt , 0 < t < 1, (3.26)

t−Mp‖f‖pt ≤ ‖ t−α(x) Pitf‖p ≤ t−mp‖f‖pt , t > 1, (3.27)

with

mp = inf
x∈Rn

[
α(x) +

n

p(x)

]
, Mp = sup

x∈Rn

[
α(x) +

n

p(x)

]

which can be obtained straightforwardly.
Remark 3.7. It seems to be natural to suppose that the conditions (3.24)-

(3.25) which do not reach the case of the limiting Sobolev exponent, can be
strengthened. The question, however, remains open. These conditions are
satisfied, for example, by any perturbed Sobolev exponent

1

q(x)
=

1

p(x)
− α(x)

n
+ h(x) (3.28)

with the perturbation |h(x|) ≤ 1
p0
− 1

P
. This can be easily seen from the fact

that the conditions (3.24)-(3.25) for the function (3.28) take the form

inf
x∈Rn

[
1

p(x)
+ h(x)

]
≤ sup

x∈Rn

1

p(x)
, sup

x∈Rn

[
1

p(x)
+ h(x)

]
≥ inf

x∈Rn

1

p(x)

and the condition |h(x)| ≤ 1
p0
− 1

P
is sufficient for validity of the above in-

equalities.

3.4. A counterexample to the Sobolev theorem in
case of discontinuous exponent p(x).
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The Sobolev theorem in the form Iα(x) : Lp(x) → Lq(x), 1
q(x)

= 1
p(x)

−α(x)
n

,

is not, in general, true in case of discontinuous exponents p(x) (even if α(x) =
const ), see Lemma 3.8 below. Probably, continuity of p(x) is a necessary
condition . In any case, the following lemma shows that p(x) cannot be
piece-wise constant. Let n = 1 for simplicity, Ω = [−1, 1] and let

p(x) = p1, α(x) = α1, x < 0; p(x) = p2, α(x) = α2, x > 0. (3.29)

Lemma 3.8. If the operator

Iα(x)f(x) =
∫ 1

−1

f(y)dy

|x− y|1−α(x)
(3.30)

is bounded from Lp(x)[−1, 1] into Lq(x)[−1, 1], 1
q(x)

= 1
p(x)

−α(x), piαi < 1, i =
1, 2, then necessarily p1 = p2.

Proof. In view of Lemma 1.14 from [1], boundedness of the operator
(3.30) stated in the lemma, is equivalent to boundedness of the folowing 4
operators in the corresponding setting:

Akjϕ =
∫ 1

0

ϕ(y)dy

|x− (−1)k+jy|1−αk
: Lpj [0, 1] → Lqk [0, 1], k, j = 1, 2.

Meanwhile, it is well known that for the operator Akj to be bounded from
Lpj [0, 1] into Lqk [0, 1], it is necessary that 1

qk
≥ 1

pj
− αk; k, j = 1, 2; where

the cases k = 1, j = 2 and k = 2, j = 1 yield the condition p1 = p2.
Remark 3.9. Simple modification of Lemma 3.8 shows that, in case of

a piece-wise constant exponent p(x), even the ”prelimiting” theorem cannot
hold with an arbitrarily small ”gap”

ε(x) =
1

r(x)
− 1

q(x)

which is ε1 = 1
r1
− 1

q1
, x < 0, ε2 = 1

r2
− 1

q2
, x > 0. Really, in the same way as

in the proof of Lemma 3.8 it can be shown that necessarily either ε1 ≥ 1
p2
− 1

p1

or ε2 ≥ 1
p1
− 1

p2
.
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