Integr. Transform. and Special Funct.
1998, v.7, No 3-4, 261-284.

Stefan G.Samko
Convolution and potential type
operators in L"%)(R"),

Introduction
In this paper we give a further development of the results of the paper
[1] and apply it to convolution operators

Kf=ksf= | ka—yfydy 1)

in the spaces LP(®*). We consider the question of extendability of the Young
theorem : || K f||, < [|&[|, [ fIl, % + % —1=1 well known for constant p
and ¢ , to the case when they may be variable. We also treat potential type
operators with the kernel | x — y |*(®)—"

In Section 1 we develop some estimates for LP(*)-norms of power functions
of distance truncated to exterior of a ball of radius r > 0, as r — 0 or r — 0.
Section 2 deals with convolution operators in the spaces LP(*) and Section 3

is devoted to potential type operators.

I. Estimates for L’*®)-norms of power func-
tions of distance truncated to exterior of

a ball

We use notations from [1], in particular:

Q is a measurable set in R",|Q| is its Lebesgue measure, R is the com-
pactification of R™ by the unique infinite point; S, 1 = {x € R" : |z| =
1}; B(xg,r) is the ball centered at zg and of radius r ; B,, = B(0, 1); p(zo,7) =



inf|y—$0|§7" p<y>7 P(l’o, T) = Sup|y—ag0|§r p(z/)uﬁ(IOa T) = inf|y—x0|27‘ p(y); P('T07 T) =
SUD|, o> P(Y); Xa(z) = 1forx € Qand = 0forx € Q; f(x) = fs(zo,757) =

| 2= [P0 X (o (@), g5(2) = gp(wo, 3 2) =| 2=20 |7 [1-Xp(eo,m (@)]; As =
1fall; s = llgsll-

We assume that
1 <py<plx)<P<o0,|Ex| =0. (1.1)

and recall that

Hf||p—||f\|<p>—inf{ArA>0’/Q"f(;)‘ dccél} (12)
p(z)

and
p(z)

) = 1 £l £ 0 (1.3)

/ﬂ £l

under the assumption (1.1).

1.1. The norming value and its bounds.
Similarly to a function fz(z) we denote
93 = 95(2) = 93(20,737) : = o — 2o Xppn (@) (14)
where X p(zo.n) (%) = 1 — XB(ao,r) (®). Let

s = pa(zo,7) = |lgallp - (1.5)

Under the asumptions (1.1), by (1.3) we have

e\ P
/ () dy = 1. (1.6)
ly|>r Up

Lemma 1.1. The function pg(zo,r) 1is increasing inr . If
p(x) € w-Lip (R™) and n + B(x)p(xo) <0, then lim, o pg(xo,r) = oo.
Proof is straightforward.

Definition 1.2. The value r = rq is the norming value for the function
(1.4) in the space LP@(R™) | if pg(wo, 7o) = 1.
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Lemma 1.3. The norming value rq is the root of the equation

/ || a0l ta0) gy — 1. (1.7)
x|>ro

This root does exist if p(x) € w-Lip (R™) and

n + B(xo)p(zo) <0, n+ B(xg)p(co) < 0. (1.8)

Lemma’s assertion is an immediate consequence of the monotonicity of
the left hand-side in (1.7) with respect to 7o (cf. the proof of Lemma 2.11 in

[1])-

Lemma 1.4. Let p(x) € w-Lip (R") . If

sup [n + B(xo)p(xo)] =:—dy <0, sup |B(z)| : = B<oo (1.9)

zER, z€ER,

then the function ro(zo) has a positive lower bound :
1
ro(zo) > [1+ (n+ BP)e*?] ™ (1.10)

where A is the constant from the w-Lip-condition for the function p(x).
Proof. Assuming that ro(x¢) < 1, from (1.7) we have

/ ’ 2| P@PE0) (1) dz < 1, g(z) = |x]P@) etz bl (1.11)
ro<|xr|<l

Here g(z) > e~48 by (2.10) from [1]. Therefore, from (1.11) Jro<lal<1 || B(@olp(@o) g <
4B Hence ry "R _ < 1n 4 B(xo)p(wo) e, which implies (1.10).
O

Lemma 1.5. Let p(x) be continuous in a neighbourhood of infinity. If
SUP,epn B(2) < — iy, then

(c00) 7

sup ro(z) = ¢ < oo. (1.12)
TER™

Proof. By continuity of p(z) at infinity we conclude that there exists
Ry > 0 such that

dr, : = inf |B(x)| inf p(§) —n > 0. (1.13)

T€ER, |§‘2R0
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Assuming that ro(z¢) > 1, we derive from (1.7) the folowing

1:/’ || PlEopEte0) gy 4 || B0l e0) g <
|z|>70,|z+x0|>Ro |x|>70,|z+20|<Ro

/| |x|_n_6R0dZL‘—|—/ T’O_‘ﬁ(%)‘podm.
x|>ro

|x+m0|§Ro

Hence 1 < |S,,_| (f,,ooo p 1 ORodp + %ro—\ﬁ(zo)lpo) . Therefore,

—1,.~0Rg Rg _;(7101;())

1
Hence (1.12) follows with ¢ = {|Bn| (52 + RS)] ", 4 =min (530, L ) :
0

p(o0)

1.2. Estimates for the norm ps as r — 0.

Before the main estimate in Theorem 1.8 , we give some "rough” estimates
in Lemma 1.6 which will be used then in the proof of Theorem 1.8.

Together with (1.9) we shall need the condition

doo 1= — sup [n+ B(z)p(c0)] > 0, (1.15)

CEERn

which in fact was used in Lemma 1.5.

Lemma 1.6. Let p(x) € w-Lip (R"). Under the conditions (1.9) there
exists ¢ > 0 not depending on r and xy such that

tp < crP@o) , 0<r <.

Proof. From (1.6) we have

B(zo) \ P(To+)
r<|z|<ro,|z|f<pgs Up

(wo+x) p(zo+x)
‘x|ﬂ(aro)>p <|x|5($0)>
dr + / dx
/r<:v|<ro,x|ﬁ>ua< JU%; |lz[>ro J206]

Hence, taking (1.7) into account, we obtain

1</‘ (mmm>P+<mwmvm
~ Jr<lal<ro 115 I

1
dl’lf‘i‘%g
K




pBa)\ T/ Bo)\ PO 1
Hp Hp M3

By Lemma 1.5, |B(0,79)| is bounded uniformly in x, . Noting also that

T P T
B = B(xg) < 0, we reduce (1.16) to (%) + (%)po > (. Hence the
rB(zq)

estimate > c¢; > 0 evidently follows. O
Lemma 1.7. Let a(x) > 0, p(z) > 1, = € R", and p(x) € C(R"). If

a(z)p(x) > n+dy, do >0, (1.17)
a(z)p(0o) > n + do, doo >0, (1.18)
then there exist numbers N > 0 and € > 0 such that

a(z)p(§) >n+d, d= ;min(do, doo) (1.19)

for all x € R" and £ € R™ such that either |{] > N or |z — &| < e.

Proof is straightforward. _

Theorem 1.8. Let p(xz) € w-Lip (R™) and let the conditions (1.9) and
(1.15) be satisfied. Then

pp < crmonp#o), 0<7r<ny, (1.20)

with ¢ > 0 not depending on r and xq .
Proof. Denoting p = pg for brevity, from (1.6) we have

1:/ +/ +/ — L+ L+l, (121
r<|z|<eu|z|lPl<1 r<|z|<e,ulz|lPl>1 || >€

where it is assumed that r < ¢, a fixed number € € (0, 1] being chosen later.
Estimation of I, . Werepresent Iy as It = [, jpj<e ufal#1<1 9r(T)

o p(zo)—p(z+z0)
(J2]p) 0 dz, g, (x) = (pla])
p(z) we have

. By the w-Lip-condition for

log (|z]”I12)
sl
2

B|log A — log
:A|| 1022 “gA|ﬁ|gAB.

||

|10ggT(:E)| <A

log



Therefore, I; < il

< S Jafsr 27O dz. Hence

BAB |Sn—1 | Tn+ﬁ(x0)p(:po)

hos —r ey (1.22)
Estimation of Is. We have
|| B(w0) \
I, < ( ) dx (1.23)
|z|>r )%

where p. = minj,_,<c p(z). Now we choose € independent of x; sufficiently
small so that n + ((z¢)p. < —0 < 0 with ¢ also independent of zy . Such a
choice is possible by Lemma 1.6. Then from (1.23) we have

Sna| [ S| ol
I, < | 1|/ pPEopetn=lg, — [Sn-a| 7 . (1.24)
Mpe r 5 ,upe
Estimation of I3. Evidently,
1
<0 [ = / |p|BE0)p(a-+0) oy (1.25)
o |z[>€

Let us show that I is bounded , € being fixed. If ry < ¢, then Iy < 1 by
(1.6). So, let 79 > €. Using (1.6) again, we have

S
=1+ ooy < 1 4+ er il < | corip
e<|z|<ro n

It remains to note that rj is bounded by Lemma 1.5. Then, in view of
boundedness of I the inequality (1.25) implies the estimate I3 < Cp7°.

Gathering the estimates for I, I5, I3, we conclude from (1.21) that
yprtB@o)p(zo)  pntB(zo)pe 1

Mp(ivo) T Iupe - % ) <126>

1§CO

1

Evidently, u(r) increases to infinity as r — 0. Therefore, o S ﬁ for r

sufficiently small. Then from (1.26) we derive the inequality

y+B8(wo)p(zo) y+B(mo)pe co

Iup(xo) + Iupe Z 5 '

(1.27)

Her r+B(zg)pe < rr+B(zg)p(zg)

R T max(1, ), by Lemma 1.6. Then

from (1.27) it follows that " 725 > s~ which yields (1.20). O
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1.3. Estimates of the norms 3 as r — oo.
It is natural to expect that instead of (1.20) we should have

ps < CrPeIteS | 5 0o (1.28)

However, it proved to be a difficult moment and we succeeded only in ob-
taining such an estimate with a constant ¢ which depends on xg and grows
as |zo| — oo (as a power function of |xy| ). It is also possible to obtain the
estimate (1.28) with an absolute constant but with a worse exponent.

A) Estimates with constants depending on the point .

We start with the following auxilliary lemma giving the rough lower bound
which nevertheless proved to be of importance in proving the main result.

Lemma 1.9. Let p(z) € w-Lip (R™) and let (1.15) and the second of the
conditions (1.9) be satisfied. Then puz > 2= % B@0) for p > | B,V

Proof. We assume that u = ug < r?, otherwise the lemma is proved.
From (1.6) we have

B(zo) \ P(0+y) .
N e RS B LA )
r<lyl<p'/B Hp r<lyl<ul/8

Then ,ug < |Bfln‘ + 7" < 2" in case of r > |B,|™"/". . Hence the lemma’s
assertion follows. O
Theorem 1.10. Under the assumptions of Lemma 1.9

% Tﬁ(ro)+p<go> S 13 S CQK T,B(:Eo)-l-ﬁ , (129)

1/n
asr — oo (r > [max(2, ﬁ} / ) where c1,co do not depend on r and xy ,
while K, not depending on r, may grow when |xq| — o0.
Proof. For p = pg from (1.6) we have

B W)p(oo)‘ N
= /H( ) (1.30)

T+x0)—p(c0 — T+x0)—p(c0
where j,.(x) = %)p( 0)p(e) < 273(1:”})0) (Qg)fu)p( 0)p(e) . There-

fore, log ji(x) < log C+|p(x + x0) — p(00)| (|B(x0)|log ] + £ log 2 — log 1) .




B(P—pg)

with C = 27 = . Taking into account the w-Lip - behavior of the func-
10g ‘m|+lo7g12
log(e+\:v+x0|> —

2log |z| . log|z| log(a+|z—y|
log C' + 2Am3m- Since Tog o] < foglal for | y |> a > 1, we have

| log ji (x)] <log C' + 24 Blog(e + |z 4 xo|) < and then (e + |zo])24=F <
Jr(z) < cle + |xo|)?4=E. So, from (1.30)

8\ p(c0) 8\ p(co)
Ll dr <1< c(e+|x0|)2A“B/ s dr.
7 jal>r \ p

tion p(z) at infinity, we obtain |logj.(z)| < logC + AB

1
(e+aol) 247 [

c |z|>r

Simple evaluations reduce this to (1.29) with K = (e + |z|)?4=5/P(>).0
B) Estimates with absolute constants but with rough

exponents.
Lemma 1.11. Letr > rq. Then
[Ja(zo, m)]Pr < pg < [Jp(wo, )] " (1.31)
where
Ja(xo, ) :/|| || Pleolpletao) g (1.32)
x|>r

Proof. Since pg > 1 if and only if 0 < r < Ry, the equality (1.6) gives
J(xo,7) <1 < Jz(xo,7)
P N I

which coincides with (1.31). O
Lemma 1.12. Forr > ry the integral (1.32) is estimated as follows

7\ ntB(zo) Pr r \ ntB(zo)pr
k(zo,7) () < Js(zo,r) < klwo,r) <> (1.33)
To To
where .
k(o,7) =/|| || PP rEw) gy (1.34)
x|>T0

Proof. The change of variables z = “y in (1.32) leads to

ran r B(zo)p(;-y+z0)
Jataor) = (=) [ (Swt) Ty
To ly[>ro \T0
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Hence (1.33) follows. O

Lemma 1.13. Let p(x) € w-Lip (R") and let the assumptions (1.9) and
(1.15) be satisfied. Then 0 < ¢y < k(xo,7) < o <00 for r > ry with ¢; and
co not depending on r and xg.

Proof. By (1.15) , there exists N > 0 such that

: doo
it (5] inf pl€) >+ %

(1.35)

(see Lemma 1.7). We have k(20,7) = [i15r0 58 T Jiaro¢/<N Whedre £ =
w2 +xg. Let 19 > 1 first. By (1.35) we have k(z0,7) <[5, |z| " % dx +

_doo n
f\£|1<N T_|B(x0)|pod$ =[S [2 ro ° —i— lﬂ(wo)po (M) } It remains to

note that “* <1 and ry has a lower bound by Lemma 1.4.

If 7o < 1, to obtain the right-hand side estimate, we put k(zg,r) =
Je>1 6> N —{—fx|>17|£‘<N + Jro<jzj<1 - Here the first two integrals are estimated
exactly as before, while for the third one we have [, - .1<1 < Jo<iz1<1 2|~ BPdx =
const < oo where ¢ = inf cgn 79(z) > 0 by Lemma 1.4.

It remains to give the lower bound for k(x¢,r) which is easier :

k(xg,7) > |z|~ dex>/ |z|~BPdx = const > 0.0

|z|>max(1,r0) |z|>max(1, c)

Theorem 1.14. Let p(z) € w-Lip (R") and let the assumptions (1.9)
and (1.15) be satisfied. Then

n+B(zq) Pr n+B(xg)pr

1 (7“) e <pus < ¢ <T> o T, (1.36)
To To

with ¢; > 0 and co > 0 not depending on r and x.
Proof. The estimates (1.36) follow directly from Lemmas 1.11 - 1.13.
Remark 1.15. Evidently, lim, . p, = lim, .o, P, = p(c0), if p(x) is
continuous at infinity. However, these limits are in no way uniform in xg
1.4. The case of a bounded domain.
In case of spaces LP®)(Q) on a bounded domain @ € R" , Theorem 1.8
on behaviour of norms of power functions of distance remains true with the

simplification owing to the fact that now there is no necessity to deal with
the assumption (1.15) connected with infinity. Naturally, the function (1.4)
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is considered in the domain 2 only with the corresponding integration in
(1.6).

Definition 1.16. We say that f(z) € w-Lip (Q) if f(z) € C(Q) and
|f(x) — f(y)|10g|x—iy‘ < A< oo forall z,y € Q such that |z —y| < 1.

Analysis of the proof of Theorem 1.8 shows that the following theorem
holds.

Theorem 1.17. Let f(z) € w-Lip () and let

SUP,eq [n + B(2)p(z)] <0, sup,eq |5(x)| < co. Then

n

ws(zo,m) < PTGy 2o e, 0<r< D, (1.37)

where D = diam ) < oo and ¢ does not depend on xy and r.

II. Convolution operators in the spaces L%

2.1. On a necessary condition for the Young theorem in

case of kernels of potential type.
We start with the folowing remark of a negative character.
Remark 2.1. Young theorem in the form

IKfIl, < cll&l 1£1, (2.1)

is not valid for an arbitrary kernel k(z) € L'(R™) and an arbitrary variable
exponent p(z),1 < p(z) < oco.

Proof. Let n = 1 for simplicity. We put p(z) = p; for z < 0 and
p(x) = py for £ > 0 where 1 < p; < py < 00 and k(z) = |z —2]*7 1 if || < 3
and k(z) =0 if |x| > 3 where 0 < a < p% — piz, so that k(z) € L*(R'). Then
we choose f(z) = |z + 1|77 if x € (—2,0) and f(z) = 0 otherwise. Evidently,
f(z) € LP@(RY) if we take 0 < v < pil. However, k x f does not belong to
LP@)(RY) under the additional choice v > a + p% , the latter choice being

evidently possible. Really, taking 1 <z < % , we have

-1 2—x
k;*fZ/ |x—t—2|a_1|t+1|_”dt:/ sz —1+5)"ds =
z—3 0
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2—x
C

(x —1)* /0ﬁ E(1+8) e > x—1)pe

with ¢ = [ €77(1 4 &)*'d¢ . Therefore , k* f cannot be integrable on [1, 3
to the power py since (v — a)py > 1.0

This example shows clearly that convoluted functions k(x) and f(x) hav-
ing singularities at points a and xy, respectively, produce the convolution
with a singularity at the point zo + a (see also Lemma 2.3 below). In case of
a constant exponent p such a shift of singularities played no role. However,
for a variable exponent p(x) having, in general, different values at points
o and xg + a, such shifting produces evident problems. So, we begin with
kernels k(x) having singularities only at the origin, potential type operators,
for example. Nevertheless, we consider before some ”potential type opera-
tors” with weak singularities at different points and derive some necessary
condition for them to act within the frameworks of the spaces LP(®)(R").

Let E = {z1,...,xx} be afinite set of points in R™ and let v = (avq, ..., ) €
RY.
Definition 2.2. By A = Ag, we denote the class of kernels which satisfy
the assumptions

1) k(xz) >0 ;

2)k(z) > clx — x| ™™, 0 < ar <n,c>0; |z —x| <e,k=1,....N, for
some € > 0;

3) k(z) is bounded beyond some neighbourhoods of the points x1, ..., xy.

Lemma 2.3. Let k(x) € Ag, and let f(x) = |v —a|™"@ for |z —a| < d
and f(x) =0 for |z — a| > d where a € R",d > 0,7v(z) € w-Lip (B(a,d))
and 0 < y(a) < n. Then the convolution k *x f has singularities at the points
a+2xy,a+ 2o, ..., 0 +2TyN

ks f>cle—(a+z) |7 | |z = (a+ 23)| < min(6, g) (2.2)

where ¢ > 0 and € is the number from Definition 2.2.
Proof. We consider the convolution

k(x —y)dy

ly—a|<é |y — alW(y)

kxf> , 0<o6<d,

for x € {93: v —xp —al < g} Choosing § < §, we have |z —y — 2| < e.

11



Then, by the condition 2) of Definition 2.2, we obtain

ks f> ly —a| "Wz — y — | dy

ly—al<f,|z—y—ar|<e

Since v(zr) € w-Lip , we have 0 < m < |z — a|/?®@7) < M < oo. So,
kxf > e Jiy<si—zi<e |t| =@ |t —F|*~"dt where we have denoted & = z—x,—a.
Let r = |z|. After the change of variables t = r£ we obtain

kxf> cro"“_V(a)/

|€]<d/m | é—r—1F|<er—1

— a 'i.a_n
4 7()|§—;| RS,

Applying also an evident rotation change of variables we arrive at the in-
equality
ks f> A(r)ree—@ (2.3)

with A(r) = fiejcs/r(e_zjcarr 1677 @€ — |*7dE. and & = (1,0, ...,0). The re-
quired inequality (2.2) will follow from (2.3) if A(r) does not vanish for small
r. The latter is easily seen from the fact that {§ el < L6 —e] < f} 2
{I¢| < 1} for » < min(é,€/2).0

Lemma 2.3 yields the following more essential statement.

Lemma 2.4. Let k(x) € Ag,, p(x) € w-Lip (R"),1 < p(z) < P < 0.
If the convolution operator (1) maps the space LP@(R™) into itself, then

necessarily
1 1 (673

S ] S o ETL2eN, (2.4)
for all x € R™.
Proof. Suppose that k * f € LP@(R"™) for any function f(x) € LP@(R™)
. We choose then f(z) = |z — a|_z<;:£x3(a,d)(x) where X p(q,q) (%) is the char-
acteristic function of an arbitrary ball B(a,d),a € R",0 < d < oo, and
0 < d < n. From Lemma 2.3 it follows that |x — (a + xk)|ak_2(;a§ € LP®) in
some neighbourhood of the point a + xy, &k = 1,2,..., N. Then, by Lemma
2.7 from [1], the necessary condition

[n—é — ak]p(a+xk)<n

p(a)

should be satisfied, which coincides with (2.4). O

12



Remark 2.5. The condition (2.4) is quite natural in the following sense:
it means that in case of potential type kernels with a singularity shifted from
the origin to a point xy, the value of the exponent p(x) at the new (shifted)
point x + x should not be greater that the value of the corresponding Sobolev
exponent

np(x)
n — agp(x)
(in case p(x) < n/ay), calculated with respect to the ”old” point x.

Remark 2.6.The condition (2.4) is satisfied automatically in the follow-
Mg CaSes:

1) in case of purely potential kernel, that is E = {0}, when there is no
shift of singularities ;

2) in case of the exponent p(x) which is “periodically nonincreasing” in
each of the directions defined by vectors xy, € E , that is p(x + x) <
p(z), = € R", x, € E (in particular, if p(x) is periodic with respect to all
vectors in E).

2.2. Young theorem .

The above arguments show that it is impossible to have the Young theo-
rem, except for special cases noted e.g. in Remark 6. Within the framework
of the assumption k(z) € L'(R"), or, more generally, k(z) € Li®)(R"), it
proves to be possible to obtain a Young-type theorem in terms of the upper
and lower bounds for p(x) and ¢(x). One of such versions of Young theorem is
considered below. We prove first Young theorem in a special form, when the
resulting exponent is constant (Theorem 2.7) and then derive more general
statement (Theorem 2.8). Everywhere below, as before

po= inf p(z), P = supp(z), 1 <py < P < o0,
$ER” IEER"

go = inf ¢(z), Q= sup q(z), 1 <qo < Q < o0,

Theorem 2.7. Let ﬁ + ﬁ =1 —1—% where r = const > 1. If
k(x) € L®(R™) N L9(R") , then the convolution operator (1) is bounded from
LP@)(R™) into L7 (R™).

Proof. We assume that || f||, < 1. Evidently,

1-u(y)

dy

k(z —y)
A

1 e

KF@) < [ A1) ke - )P )
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where A > 0 and u(y) , 0 < u(y) < 1, will be chosen later.
Applying the Holder inequality (1.21/) from [1] , with the exponents

pi(y) =7 paly) = 205 pa(y) = pi(y) = ;0% we obtain

1
T

[Kf(z)] <c {/Rn AT F () PO k(2 — )@ dy}

1—p(y)
_p) k(z —y)
<) — (2.5)
p2(y) A
P/(y)
In view of the estimate (1.16) from [1] we obtain
_p) min[l—%y)]
Jrr==] < < (26)

To estimate the third factor in (2.5) we choose p(y) in such a way that

1 — u(y)]p(y) = q(y) , that is p(y) = @ We intend to apply the inequality
(1.16) from [1] to this third factor. So, we need the inequality
H k—y)|| 1

1 k@ =)l < 1. (2.7)

A

a(y)

To reach (2.7) we choose A = ||k||4, +]| k|| so that (2.7) is satisfied by Lemma
1.13 from [1] . Then we can apply (1.16) from [1] and obtain

’k(ﬂf—y)
A

1—p(y)

<1. (2.8)

pI(y)

By (2.6) and (2.8) we obtain from (2.5)

K fl], < eA” {/Rn dq}/Rn |f(y)|p(y)|k(a: _ y>|q(y)dy}’l” _

Id

A [ 1@y [ k@) i)
R R
where v =1—-Q/rif A<1landv=1-¢q/rif A> 1. Hence, obviously

40 Q
K fIl < eA” (1Kl + lIK]lg ()P dy
R’VL

14



and it remains to note that the last integral is not greater than 1 according
to (1.11) from [1] . O

Theorem 2.8. Let k(x) € L™"(R")NLZ(R"),1 < q¢1 < ¢ < 0o . The
convolution operator (1) is bounded from LP@(R™) into L"™®) (R"), if

1 11 1
) e —— (2.9)

q g2 Do P
and r(x) is any bounded function, r(x) > 1, such that

1 1 1 1 1
—+——1< —<=-+—-1 (2.10)
Po Q2 r(z) P q
Proof. In fact, Theorem 2.8 is a corollary of Theorem 2.7. Really, in the
estimate for || K f||, in Theorem 7 not the function ¢(x) is involved, but only
its upper and lower bounds () and ¢y . Let us reconsider the assumption

1 1 1
r

@) (@)

of Theorem 2.7 in terms of () and ¢y . Since ) < qio , we have

<
- 4q
1 1 1 1 1 1 1 1
QS;—@—FlSq—O.Hen(}e;%— _7<7§1;+1
~+1
r

- . 1 1 1 1 1
This is equivalent to ;—1—1—(1—0 < 5, o < =4 -5 Hence
1 __1+1 { < 1 < 1+1 1_.1
re  po @ - r - P g T

By Lemma 1.13 from [1], || f|l+@) < [ £l + || f||r, for any function r(z) such
that 71 < r(z) < ry. Therefore, we arrive at the assertion of Theorem 2.8. O
If we deal with the convolution type operator in case of bounded domain:

Kof = [ K —y)f()dy (2.11)

Theorem 8 is valid under weaker assumptions. Namely, the following its
version is valid.

Theorem 2.9 . Let k(x) € L9 ((B(0,2D)) where Q > 1 and D
diam . The operator (12) is bounded from LP@(Q) into L™®) (Q), r(x) >

if

L,

Q ~ po P°or(@) T Q p



Proof. Since L? = LN L' in case of a set of finite measure, we may
apply Theorem 2.8 with ¢ = 1,qo = ) , preliminarily having continued
the function f and the kernel k£ as zero to the whole space and taking into
account that the right-hand side inequality in (2.10) turns into trivial one.
O

ITI. Potential type operators in L*(%)

3.1. Sobolev Theorem.

We consider the potential type operator of variable order

d
]a(a’)f:/gwf(;j)y, reQ, 0<a(r)<n, (3.1)

|n—a(ac)

where 2 C R"™ is a bounded domain . We shall investigate mapping properties
of the operator I*®) If within the framework of the spaces LP®)(Q) (Sobolev
theorem or its weaker version with pre-Sobolev exponent).

One can also consider the operator (3.1) with a(y) instead of a(z) which
differs unessentially from (3.1) if a(x) € w-Lip (92), because ¢; |z —y[*~*®) <
|z — y["7@) < gyl — y|"*®) in this case.

We shall show that the Sobolev theorem in the natural generalization

1 1 ax)

@ opp e 2 2 g (z <ﬁ 3.2
g(z) p n @ p .

is valid in case of constant p > 1. In case of variable p(z) we succeeded
in obtaining only the conventional result as yet: Sobolev theorem is valid
if the maximal operator is bounded in the space LP(® . The question of
boundedness of the maximal operator in LP(*) remains open.

For variable exponents p(x) we shall also give an unconditional, but a
weaker assertion about validity of such a theorem ”with a gap” (Theorem
3.3). We specially treat the case of boundedness 1% : LP@) — [ with the
pre-limiting exponent r in the case when r is constant (Theorem 3.5).

Let
1

Mi@) =swp o [ f@ldy, e, (33)

t>0 "

16



be the well known [ 2 | maximal operator.

Definition 3.1. A function p(z),1 < p(x) < 00, is said to be an appro-
priate function for the operator (3.3) if this operator is bounded in the space
LP@)(Q).

It is well known that the constant function p(x) = p > 1 is an appropriate
function for the operator M . The question of existence of a non-trivial (non-
constant) appropriate functions remains open. Supposingly, such a function
p(z) must be continuous. (In any case , Sobolev theorem cannot be valid for
a piece-wise constant function p(x) , see Subsection 3.4 below, and therefore,
the maximal operator cannot be bounded in such a space LP(®)).

Theorem 3.2. (Sobolev type Theorem). Let 1 < p < oo and let

ap = ;gga(as) >0, (3.4)
sup a(x) < . (3.5)
€N p

Then (3.2) holds . It remains valid for a variable ezponent p(x) € w —

Lip(Q),1 < pp < p(z) < P < oo if p(x) is an appropriate function for the
mazximal operator M and the assumption (3.5) is replaced by
supp(z)a(x) < n. (3.6)
z€eQ
Proof. We shall prove the second part of the theorem which assumes that
the function p(x) is appropriate for the maximal opertator. The first part is
an immediate consequence of the second one. We shall use the known idea

to reduce the Sobolev theorem to boundedness of maximal operator and the

estimates for LP(®) - norms of power functions of distance we obtained before
in [1] . We have

10 f = |z — y|* 7" f(y)dy+

|lx—y|<r

/|x—y|>7~ o = y|* D" f(y)dy = : Ac(x) + By () (3.7)

so that B.(z) =0 for r > D = diam (.
We shall take use of the inequality
2n,ra(x)

[Ar(2)] <

S S 1 Mf(x) (3.8)

17



which is known in case of a(x) = const and remains valid in case it is variable.
By (3.8) and (3.4)
1A, ()] < er® @M f(z) (3.9)

with some absolute constant ¢; > 0.
We assume that || f||,,) < 1. Applying the Holder inequality (1.21/) from
[1] to the integral B,.(z), we obtain

|Br(@)] < | Fllpwys(, 7) < pp(,7) (3.10)

where
(3.11)

st = e~ ],

and y is the characteristic function of the exterior {y € Q : |z —y| > r} of
the ball and B(x) = a(x) —n . We can apply Theorem 1.17, its assumptions
being satisfied due to conditions of our theorem. By that theorem we have
pg(z,r) < cyfﬁ, reQ, 0<r<D .If p(x) = p = const, this estimate
is evidently valid for all » > 0. Then from (3.7), in view of (3.9)-(3.11) , we
obtain

‘Ia(x)f(x)’ <3 [ra(x)Mf(x) + riﬁ] , 0<r<oo,

Minimizing the right-hand side with respect to r we see that its minimum is
reached at

p(x)

o = [ a(2)a(2) M (z)]

and easy evaluations give

p(x) 1_M
@@ [ 1 a(@)
]a(x)fm SCW[Mfo] [] )
o) < 5 e o
p(z)
Hence, by the assumptions of our theorem, I”‘(x)f(x)’ < ¢y [Mf(z)]1® so
that "
1@ f@)| < e |[(Mf(x)m@
a() q(z)
Applying Lemma 1.12 from [1] with y(z) = %, we obtain
o(z) r N p(x)
[Ks f(af)Hq(x) < ellMf(@) . T =sup oo <! (3.12)

18



p(x)
rp)|
q(z
is already proved). In view of the assumed boundedness of the operator M
in the space LP(®) () the estimate (3.12) implies Hlo‘(x)f(x)H @ < gyl M.
q(z
0.

(under the assumption that > 1, otherwise our theorem

3.2. Theorems with prelimiting exponents.
Theorem 3.3. (Pre-limiting Sobolev theorem with a gap). Let p(z) €

w — Lip(Q),1 <py <p(x) <P <ooand o(x) > 0. If

igﬂ@%@%(&—?)

the operator 1) is bounded from LP@®(Q) into L") (Q) where r(x) is any
function such that r(x) > 1 and

11 a(x)
[r(w) p@)

<n, (3.13)

11
> — = 3.14
o P (3.14)

inf
€

Proof. We estimate the first term in the represenation (3.7) as follows:

IfL(x)lS7‘“@_ejg|f@HHx-yF_"dy==T“”**f€OfD (3.15)

and € > 0 is to be chosen in such a way that the operator /¢ to be bounded
in the space LP(®) . Theorem 2.8 gives a sufficient condition for that :

n o n
€ > o P (3.16)

Meanwhile the estimate (3.15) with the operator I¢ bounded in LP®)
means that we are exactly in the same situation as in the proof of Theorem
3.2 , the only difference being in the fact that the operator M must be
replaced by I¢ and «a(z) by a(z) — €. Repeating the arguments of Theorem
3.2, we obtain that the operator /** is bounded frrom LP®) to L"®) where

11 o) —e
@ W 347
and the condition
ilelgp(x) [a(z) — € <n (3.18)



is satisfied. (Naturally, we do not require that py > 1, as in Theorem 3.2,
since we do not deal with the maximal operator). It is easily seen that the
set of conditions (3.17)-(3.18) is equivalent to the conditions (3.13)-(3.14). O

Remark 3.4. In the case when p(x) is constant, we have P = pg, so
that the "gap” - — § is absent in (5.15)-(3.14) . Then the condition (3.13)
admits validity of the equality p(z)a(z) = n on some set and then r(z) = oo
on this set In this relation we remark that it is of interest to investigate the
spaces LP@) which turn to be BMO at the set where p(x) = oo .

The following theorem, although dealing with the special case r(x) =
const is of independent interest, not being covered by Theorem 3.3.

Theorem 3.5. Let p(x) € w-Lip (Q), 1 < py < p(xr) < P < o0, and
0<ay<alx)<T<o. If

sup (1 — oz(x)) < inf b : (3.19)

the operator 1°®) is bounded from LP®(Q) into L"(Q) where the number
r > 1 satisfies the inequality

L B O
o> sup <p(3:) - ) . (3.20)

Proof. We have

05| < [ (17w

where p(z) = % and

e(x)—2 p( 2
o) 1) T dy (3.21)

n|l o) 1 no
S A 3.22
(z) 2 lfr - n p(z) 7 (3:22)
with 0 = & —sup,¢q (% — @) > 0.
We apply the Holder inequality (1.21/) from [1] with the exponents p; (y) =

r, pa(y) = TTI(,?(J;) , p3(y) = p/(y) and obtain

101 @)| < |17w)

X Nj X No(z) (3.23)

y‘ﬁ(x)*%
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where
r—p(y)

N1:H|f| "

L No(a) = |||z =y

rp(y) p(y)

r—p(y)

Assuming that || f||, < 1, we obtain N; < ||f||;1,7$ < 1 by means of (1.16)
from [1] .

To estimate the norm Ny(z) , we apply the inequality (1.11) from [1]
assuming that Np(x) > 1. We obtain Ny(z) < {fQ |x—y|5(””)p’(y)dy}li
where B(z) = €(z) — o7 We denote glx,y) = |z — y|/f@PO-P@]  Here
pl(z) € w-Lip (Q) , since inf p(z) > 1. Therefore, |logg(z,y)| < A|B(x)|
where |r —y| < 1 and A is the constant from the w-Lip - condition for
the function p(z). Then 0 < ¢; < g(z,y) < 2 < oo for |z —y| < 1 and,
consequently, for all x,y € R". So,

-4
Nofa) < s{ [ o = gy

Since B(z)p/(z) > %2 — n in view of (3.22), we easily obtain that Ny(z) <
c4 = const . Hence, the inequality (3.23) yields

ol=

meﬂLs@{éuwwwwyéu—ywmﬂmﬁé

The inner integral is bounded, since re(y) > % > (. Consequently,
cs, |[fllp<1.0

0], <

3.3. Necessary conditions for the operator I**) to be

bounded from LP%) into L%,

Theorem 3.6. Let 1 < py <p(x) < P<oo and 0 < op < afx) <T <
oo, = € R™. If the operator I*®) over Q = R™ is bounded from L@ (R™)
into L@ (R™) with 1 < q(z) < Q < 0o, © € R™, for some Q > 1, then

[ n n
inf |a(z)+——| < —, 3.24
b S e (3:24)
n n
sup |a(z)+ ——| > —= . 3.25
sup _ (2) @) =P (3.25)



In case of the spaces LP®)(Q) on a bounded domain Q only the condition
(3.25) (with the supremum over §2 ) is necessary.

The proof of the theorem uses the dilatation operator I, f(z) = f(tx),z €
R™,t > 0 (although it does not preserve the space LP(*) ), the estimates

tu | Fllpe < NTLefllp < (1 Fllp

where p, = p(7) and u = P,v = py for t <1 and u = py,v = P for t > 1, the
relation [*II, f = t=*@ @ f = qy(z) = (%), and the estimates

N Fllpe < DI F N, < M| fllp, 0<t <1, (3.26)

M fllp < A1 Pigflly < 7| fllpe, ¢ > 1, (3.27)
with

. n n
m, = xlenan [a(x) + p(a:)] , M, = sup la(as) + p(x)]
which can be obtained straightforwardly.

Remark 3.7. It seems to be natural to suppose that the conditions (3.24)-
(8.25) which do not reach the case of the limiting Sobolev exponent, can be
strengthened. The question, however, remains open. These conditions are
satisfied, for example, by any perturbed Sobolev exponent

1 1 a(z)

@) = (@) - + h(z) (3.28)

with the perturbation |h(x|) < pio — +. This can be easily seen from the fact

that the conditions (3.24)-(3.25) for the function (3.28) take the form

+h(x)] < sup 1 sup | —— —i—h(x)] > inf !

inf , —
zERM p(x) zERM [p(l‘) zER™ p(:)?)

and the condition |h(zx)| < pio — & is sufficient for validity of the above in-
equalities.

3.4. A counterexample to the Sobolev theorem in
case of discontinuous exponent p(x).
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The Sobolev theorem in the form 71¢®) : [p®) — L) % %—@ ,
is not, in general, true in case of discontinuous exponents p(z) (even if a(z) =
const ), see Lemma 3.8 below. Probably, continuity of p(z) is a necessary
condition . In any case, the following lemma shows that p(z) cannot be

piece-wise constant. Let n = 1 for simplicity, © = [—1, 1] and let

p(z) =p1, a(x) =aq, ©<0; p(x)=ps, alr) =ay, x>0. (3.29)

Lemma 3.8. If the operator

b fly)dy
7@ = / _ = 3.30
o= [ A (3.30)
is bounded from LP®)[—1,1] into L) [—1,1], ﬁ = ﬁ —a(z), pia; < 1,i=

1,2, then necessarily p; = po.

Proof. In view of Lemma 1.14 from [1], boundedness of the operator
(3.30) stated in the lemma, is equivalent to boundedness of the folowing 4
operators in the corresponding setting:

v (y)dy | |
Apjp = / = (—1)Hig[i-ax . LPi[0,1] — L*[0,1], k,j=1,2.

Meanwhile, it is well known that for the operator Ap;j to be bounded from
LPi[0,1] into L]0, 1], it is necessary that 1 > p— —ag; k,j =1,2; where
thecases k=1,7=2and k=2, =1 yleld the condition p; = p».

Remark 3.9. Simple modification of Lemma 3.8 shows that, in case of
a piece-wise constant exponent p(x), even the "prelimiting” theorem cannot
hold with an arbitrarily small "gap”

1 1
e(z) = RO
which is €; = % — qil, <0, 6= % — q% x > 0. Really, in the same way as
in the proof of Lemma 3.8 it can be shown that necessarily either e; > p% — pil
or €y > p% — p%'
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