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Abstract
In this expository article we survey some properties of completely monotonic functions and give

various examples, including some famous special functions.
Such function are useful, for example, in probability theory. It is known, [3], p.450, for example, that

a function w is the Laplace transform of an infinitely divisible probability distribution on (0,∞), if and
only if w = e−h where the derivative of h is completely monotonic and h(0+) = 0.
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1 Definitions and some basic criteria

Definition. A function f with domain (0,∞) is said to be completely monotonic (c.m.),
if it possesses derivatives f (n)(x) for all n = 0, 1, 2, 3, ... and if

(−1)nf (n)(x) ≥ 0 (1.1)

for all x > 0.
The limit f (n)(0) = limx→0+ f (n)(x), finite or infinite, exists.
It is known (see [21], p. 161) that a necessary and sufficient condition that f(x) be

c.m. is that

f(x) =

∫ ∞

0

e−xtdα(t)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞. Hence we conclude
that a non-identically zero c.m. function f(x) cannot vanish for any positive x.



From the definition it follows that if f(x) is c.m. and f (n0)(x0) = 0 at some point
x0 ∈ (0,∞) for some n0 = 0, 1, 2, 3, ... then its derivatives of greater order are also equal
to zero at this point:

f (n)(x0) = 0, n ≥ n0.

The following elementary functions are immediate examples of c.m. functions, which
is verified directly:

e−ax,
1

(λ + µx)ν
, and ln

(
b +

c

x

)
(1.2)

where a ≥ 0, λ ≥ 0, µ ≥ 0 and ν ≥ 0 with λ and µ not both zero and b ≥ 1, c > 0.
Other examples of elementary functions are

e
a
x , a > 0,

ln (1 + x)

x
, (1.3)

see Corollary to Theorem 3 and Corollary to Theorem 5, respectively.
Remark 1. A trivial observation is that if f(x) is c.m., then

f (2m)(x) and − f (2m+1)(x)

are also c.m. This produces immediately some other examples. For example, from (1.3)

ln (1 + x)

x2
− 1

x(1 + x)
is c.m., etc

Theorem 1. If f(x) and g(x) are c.m., then

af(x) + bg(x) where a and b are nonnegative constants and f(x)g(x)

are also c.m.

Proof. The first is obvious, the second is then easily seen from the Leibniz formula

dn

dxn
[f(x)g(x)] =

n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x) . (1.4)

2

Theorem 2. Let f(x) be c.m. and let h(x) be nonnegative with a c.m. derivative.
Then f [h(x)] also is c.m.

Proof. It suffices to refer to the formula for the n-th derivative of a composite function:

dn

dxn
f [h(x)] =

n∑

k=1

1

k!
f (k)[h(x)]Uk(x) (1.5)

where

Uk(x) =
k−1∑
j=0

(−1)j

(
k

j

)
[h(x)]j

dn

dxn
[h(x)]k−j,
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see [4], No. 0.430.1. 2

Corollary 1. Let f(x) and g(x) be c.m. Then

f

(
a + b

∫ x

0

g(t) dt

)
,

where a and b are arbitrary nonnegative constants, also is c.m. In particular, the following
functions are c.m.

f(axα + b), a ≥ 0, b ≥ 0 and 0 ≤ α ≤ 1, (1.6)

f [a + bln (1 + x)], a ≥ 0, b ≥ 0, (1.7)

f
(
1− e−x

)
(1.8)

f
(
Arctg

√
x
)

(1.9)

if f(x) is c.m.
Corollary 2. Let f(x) be c.m. and f(0) < ∞. Then the functions

1

[A− f(x)]µ
, A ≥ f(0), µ ≥ 0 (1.10)

and

− ln

[
1− f(x)

A

]
, A ≥ f(0) (1.11)

are c.m. From (1.11) it also follows that

f ′(x)

A− f(x)
, A ≥ f(0) (1.12)

is c.m. since (1.12) reduces to minus the derivative of (1.11).
We note some particular cases of c.m. functions of the type (1.6)-(1.11):

e−axα

, a ≥ 0 and 0 ≤ α ≤ 1, (1.13)

1

[a + bln (1 + x)]µ
, a ≥ 0, b ≥ 0, µ ≥ 0, (1.14)

1

(a− be−x)µ , a ≥ b > 0, µ ≥ 0, (1.15)

ln

[
x

x− ln (1 + x)

]
. (1.16)

Another version of the statement for composite functions is given in terms of power
series with non-negative coefficients by the following obvious theorem.
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Theorem 3. Let y = f(x) be c.m. and let the power series

ϕ(y) =
∞∑

k=0

aky
k

converge for all y in the range of the function y = f(x). If ak ≥ 0 for all k = 0, 1, 2, ...
Then

ϕ[f(x)]

is c.m.
Corollary. If f(x) is c.m., then

ef(x)

is c.m. In particular, the functions

eaxα

, a ≥ 0, α ≤ 0, (1.17)

(1 + x)
a
x = ea

ln (1+x)
x , a ≥ 0, (1.18)

and (
a +

b

x

)µ

= eµln (a+ b
x), a ≥ 1, b > 0, µ ≥ 0 (1.19)

are c.m.
Below in Lemma 1 we shall extend the statement on complete monotonicity of the

function
(
a + b

x

)µ
for all a ≥ 0.

Remark 2. Observe that, besides the function ex, for example, the functions

sinh x, cosh x, L(α)
n (−x), In(x), Eα,β(x) (1.20)

have nonnegative coefficients in their power series expansion; L
(α)
n (−x) is the Laguerre

polynomials, In(x) is the modified Bessel function of the first kind and Eα,β(x) is the
generalized Mittag-Leffler function, see (4.2).

2 Some special functions and integral transforms as

c.m. functions

1. A theorem on c.m. functions representable by integrals.

A natural idea is to pass from series representation with positive coefficients, as in
Theorem 3, to integral transforms with non-negative densities. Let

F (x) =

∫ d

c

K(x, t)f(t)dt, 0 ≤ c < d ≤ ∞. (2.21)

Obviously, if K(x, t) is c.m. in x for all t ∈ (0,∞) and f(t) is nonnegative, then formal
differentiation shows that F (x) also is c.m. Since the differentiation under the integral
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sign is possible in case of uniform convergence of the differentiated integral, we arrive at
the following statement.

Theorem 4. Let K(x, t) be c.m. in x for all t ∈ (0,∞) and let a nonnegative locally
integrable function f(t) be such that all the integrals

∫ d

c

∂n

∂xn
K(x, t)f(t)dt, n = 0, 1, 2, 3, ... (2.22)

converge uniformly in a neighborhood of any point x ∈ (0,∞). Then F(x) is c.m.
First of all we show that by means of the above theorem we may prove the following

auxiliary result.
Lemma 1. The function

(
a +

b

x

)µ

, a ≥ 0, b > 0, µ ≥ 0, (2.23)

is c.m.

Proof. The function a + b
x

is obviously c.m. Thus by Theorem 1,
(
a + b

x

)m
is c.m.

in case m is an integer. Therefore, it remains but to prove the lemma for the case when
0 < µ < 1. The representation

(
1 +

1

x

)µ

= 1 +
µ

xµ

∫ ∞

1

dt

tµ+1(xt + 1)1−µ
,

is valid which may be verified directly by means of the change of variable t = 1
xs

. Since
µ ≤ 1, the function 1

(xt+1)1−µ is c.m. Then the result follows by Theorem 4. 2

Corollary. The function
(

a +
b

xα

)µ

, a ≥ 0, b ≥ 0, µ ≥ 0, 0 ≤ α ≤ 1, (2.24)

is c.m.

2. Complete monotonicity of some special functions.
By means of Theorem 4 we obtain the following statement on complete monotonicity

of some special functions.
Theorem 5. The following special functions:

the confluent hypergeometric function (Kummer’s function) 1F1(a, c;−x), c > a > 0,
the Gauss hypergeometric function 2F1(a, b; c;−x), c > b > 0, a > 0,

the function xmin{ν, 1
2
}exKν(x), where Kν(x) is the modified Bessel function (MacDonald’s

function),
the function J2

ν (x) + Y 2
ν (x), where Jν(x) and Yν(x) are the Bessel functions of the first

and second kind,

the function e
x2

4 Dµ(x), where Dµ(x) is the parabolic cylinder function, µ < 0,

the function x−β− 1
2 e

x
2 Wα,β(x), where Wα,β(x) is the Whittaker function, α < β + 1

2
,

are c.m.
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Proof. The statement of Theorem 5 follows from Theorem 4 and the well known
integral representations of the special functions:

1F1(a, c;−x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

e−xt ta−1(1− t)c−a−1 dt, c > a > 0, [14], p.274;

(2.25)

2F1(a, b; c;−x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1−t)c−b−1(1+tx)−a dt, c > b > 0, [14], p.54;

(2.26)

J2
ν (x) + Y 2

ν (x) =
8

π2

∫ ∞

0

K0(2x sinh t)cosh(2νt) dt [14], p.93; (2.27)

Dµ(x) =
e−

x2

4

Γ(−µ)

∫ ∞

0

e−xte−
t2

2 t−µ−1 dt, µ < 0, [14], p.328; (2.28)

Wα,β(x) =
xβ+ 1

2 e−
x
2

Γ
(

1
2

+ β − α
)

∫ ∞

0

e−xttβ−α− 1
2 (1 + t)β+α− 1

2 dt, β > α− 1

2
, [14], p.313.

(2.29)
As regards the MacDonald function, from its well known integral representation

exKν(x) =

∫ ∞

0

e−x(cosh t−1)cosh(νt) dt x > 0, [14], p.85;

(2.30)

we immediately conclude that exKν(x) is c.m. To state more, that is, that xmin{ν, 1
2
}exKν(x)

is c.m., we use another representation:

exKν(x) =

√
π
2x

Γ(ν + 1
2
)

∫ ∞

0

e−ttν−
1
2

(
1 +

t

2x

)ν− 1
2

dt x > 0, [4], No. 8.432.8,

(2.31)

which is valid for ν > −1
2
. By Lemma 1, the factor

(
1 + t

2x

)ν− 1
2 in (2.31) is c.m. with

respect to x, if ν ≥ 1
2
. Let ν ≤ 1

2
. We make the change of variables t = xs in the integral

in (2.31) and taking also into account that Kν(x) = K−ν(x), arrive at the representation

exKν(x) =

√
π
2

Γ(−ν + 1
2
)
x−ν

∫ ∞

0

e−xss−ν− 1
2

(
1 +

s

2

)−ν− 1
2

ds , 0 ≤ ν ≤ 1

2
.

(2.32)
Since e−xs is c.m in x, we conclude that xνexKν(x) is c.m., 0 ≤ ν ≤ 1

2
. 2

Remark 3. One may also obtain the complete monotonicity of most of the special
functions listed in Theorem 5, not referring to Theorem 4, but directly, making use of the
formulas for their n-th derivatives:

(−1)n dn

dxn 1F1(a, c;−x) =
Γ(a + n)Γ(c)

Γ(c + n)Γ(a)
1F1(a+n, c+n;−x) ≥ 0, [14], p.264;
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(−1)n dn

dxn 2F1(a, b; c;−x) =
Γ(c)Γ(a + n)Γ(b + n)

Γ(a)Γ(b)Γ(c + n)
2F1(a+n, b+n; c+n;−x) ≥ 0, [14], p.41;

(−1)n dn

dxn

[
e

x2

4 Dµ(x)
]

=
Γ(n− µ)

Γ(−µ)
e

x2

4 Dµ−n(x) ≥ 0, [14], p.326;

(−1)n dn

dxn

[
e

x
2 x−β− 1

2 Wα,β(x)
]

=
Γ

(
β − α + n + 1

2

)

Γ
(
β − α + 1

2

) e
x
2 x−β−n

2
− 1

2 Wα−n
2

,β+n
2
(x) ≥ 0, [14], p.301.

In the following Corollary to Theorem 5 we use the error function

Erfx =
2√
π

∫ x

0

e−t2dt

and the modified incomplete Gamma function

γ∗(λ, x) =
1

Γ(λ)xλ

∫ x

0

tλ−1e−t dt, λ > 0.

Corollary to Theorem 5. The functions

Erf
√

x√
x

, γ∗(λ, x), λ > 0 and
ln (1 + x)

x

are c.m.

Proof. Indeed, it suffices to observe that

1F1

(
1

2
,
3

2
;−x

)
=

1

2

√
π

x
Erf

√
x,

1F1 (λ, λ + 1;−x) = Γ(λ + 1)γ∗(λ, x), λ > 0

and

2F1(1, 1; 2;−x) =
ln (1 + x)

x
.

2

Remark 4. Making use of the recursion formulas for the MacDonald function Kν(x)

K ′
ν(x) = −Kν−1(x)− ν

x
Kν(x) (2.33)

and
x [Kν+1(x)−Kν−1(x)] = 2νKν(x), (2.34)
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[4], Nos. 8.486.12 and 8.486.10, one may easily derive some consequences from the fact
that Kν(x) and even exKν(x) are c.m. Thus, from (2.34) we conclude that

xex [Kν+1(x)−Kν−1(x)] is c.m.

and differentiating the product exKν(x), by means of (2.33) we easily obtain that

ex
[
Kν−1(x) +

(ν

x
− 1

)
Kν(x)

]
is c.m. etc

We observe also that one may make a conclusion on the complete monotonicity of
another famous special function, the Riemann zeta-function, as is stated in the next
theorem.

Theorem 6. The generalized Riemann zeta-function

ζ(x + 1, ν + 1) =
∞∑

k=0

1

(ν + 1 + k)x+1
(2.35)

is c.m. both in x and ν.
The proof is obtained by the direct differentiation under the series sign, which is

obviously possible.

3. Integral transforms of nonnegative functions as complete monotonic
functions

Theorem 7. The following integral transforms are c.m. under the corresponding
convergence conditions, whatever the nonnegative function f(t) is :

1. The Laplace transforms

F (x) =

∫ ∞

0

e−xtf(t)dt; (2.36)

2. The Stieltjes-type transforms

F (x) =

∫ ∞

0

f(t) dt

(x + t)ρ
(2.37)

and also the transformation which is close in a sense:

F (x) =

∫ ∞

0

tγ−1

(xα + tα)a
f(t) dt (a > 0, 0 < α ≤ 1, γ > 0);

3. The Lambert transforms ([22], p. 192)

F (x) =

∫ ∞

0

f(t) dt

ext − 1
(2.38)

or more generally

F (x) =

∫ ∞

0

f(t) dt

(ext − 1)m
, m = 1, 2, 3, 4, ...;
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4. The Hankel-type transforms

F (x) =

∫ ∞

0

√
xtKν(xt) f(t) dt , ν ≥ 1

2
. (2.39)

Proof. The statement of the theorem follows from Theorem 4, since all the kernels in
1.-4. are c.m. Indeed, for 1. and 2., we refer to (1.2), for 3. the complete monotonicity
of the kernel 1

ex−1
was stated in (1.15) and the complete monotonicity of the kernel√

xKν(x) in 4. is given by Theorem 5. 2

4. The case of integral transforms with kernels homogeneous of degree −1.
The following theorem gives some useful criterion of monotonicity of integral trans-

forms, which is a consequence of Theorem 4. Let

Kf(x) =
1

x

∫ ∞

0

k
(x

t

)
f(t) dt or Kf(x) =

1

x

∫ x

0

k
(x

t

)
f(t) dt (2.40)

be an integral transformation with kernel homogeneous of degree −1.
Theorem 8. Integral transform (2.40) with a nonnegative kernel k(t) of a c.m. func-

tion f(t) also is c.m., under the corresponding convergence conditions.

Proof. Indeed, we have

Kf(x) =

∫ ∞

0

k

(
1

t

)
f(xt) dt (2.41)

for the first of the operators in (2.40) with the upper limit ∞ in (2.41) replaced by 1 in
case we deal with the second of the operators in (2.40). Since f(xt) in (2.41) is c.m. with
respect to x and k

(
1
t

)
is nonnegative, it remains but to apply Theorem 4. 2

Corollary. The modified fractional integral

f ∗α =
1

xα

∫ x

0

(x− t)α−1 f(t) dt, (2.42)

and the modified Love transform (see [13] or [19], p. 696, for the Love transformation)

1

Γ(c)xc

∫ x

0

(x− t)c−1
2F1

(
a, b; c; 1− t

x

)
f(t) dt, c > b > 0, (2.43)

of any c.m. function f(t) are c.m. functions as well.
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3 Ratios of Bessel functions

Theorem 9. The following ratios of the MacDonald functions

y1(x) =
1√
x

Kν(
√

x)

Kν+1(
√

x)
, y2(x) =

1√
x

Kν+1(
√

x)

Kν(
√

x)
(3.1)

and

y3(x) =
1√
x

Iν(
√

x)

Iν+1(
√

x) + Iν(
√

x)
, y4(x) =

1√
x

Iν+1(
√

x)

Iν+1(
√

x) + Iν(
√

x)
(3.2)

are c.m.

Proof. Let

ϕ1(t) =
1

t
[
J2

ν+1(
√

t) + Y 2
ν+1(

√
t)

] , ϕ2(t) =
1

t
[
J2

ν (
√

t) + Y 2
ν (
√

t)
] ,

ϕ3(t) =
J2

ν (
√

t)√
t
[
J2

ν+1(
√

t) + J2
ν (
√

t)
] and ϕ4(t) =

J2
ν+1(

√
t)√

t
[
J2

ν+1(
√

t) + J2
ν (
√

t)
]

and let

Φk(x) =

∫ ∞

0

ϕk(t) dt

x + t
, k = 1, 2, 3, 4.

Then from [5], [6], [10] we have

y1(x) =
2

π2
Φ1(x), y2(x) =

2ν

x
+

2

π2
Φ2(x), (3.3)

y3(x) =
1

π
Φ3(x), y4(x) =

1

π
Φ4(x).

Theorem 4 completes the proof. 2

Theorem 10. The ratio

F (x) =
Kν(b

√
x)

Kν(a
√

x)
(3.4)

with b ≥ a > 0 is c.m.

Proof. Since F (x) = e−h(x) with h(x) = − ln F (x), in view of Theorem 2 it suffices
to show that h(x) ≥ 0 and the derivative h′(x) is c.m. The former is obvious because
the MacDonald function Kν(x) is decreasing and b ≥ a. As for the latter, the direct
calculation of h′(x) with the recursion formula (2.34) taken into account, yields

2
√

xh′(x) = b
Kν−1(b

√
x)

Kν(b
√

x)
− a

Kν−1(a
√

x)

Kν(a
√

x)
.

Making use of the first of equations (3.3), we obtain

h′(x) =
b2 − a2

π2

∫ ∞

0

1

(a2x + t) (b2x + t)

dt

J2
µ(
√

t) + Y 2
µ (
√

t)

10



which is c.m. by Theorem 4, since 1
(a2x+t)(b2x+t)

is c.m. and 1
J2

µ(
√

t)+Y 2
µ (
√

t)
is non-

negative. 2

Corollary. The product

Kν(b
√

x)

Kν(a
√

x)
· Kµ(b

√
x)

Kµ(a
√

x)
, b ≥ a > 0

is c.m. for all ν and µ. Compare this with the expression

Kν(b
√

x)

Kν(a
√

x)
· Kµ(a

√
x)

Kµ(b
√

x)
, b ≥ a > 0, µ ≥ ν,

which was proved to be c.m. in [11].

4 Mittag-Leffler function and its generalizations

The Mittag-Leffler function

Eα(x) =
∞∑

k=0

xk

Γ(αk + 1)
, α > 0, (4.1)

and its generalization

Eα,β(x) =
∞∑

k=0

xk

Γ(αk + β)
, α > 0, β > 0, (4.2)

are known to have various applications in analysis, in particular in fractional calculus
and in the theory of fractional differential equations, see for example, [15] and [19] and
references therein. We are interested in c.m. properties of these functions.

In [17] it was shown that Eα(−x) is c.m for 0 < α ≤ 1. This was extended to Eα,β(−x),
see [16] and [20], where it was shown that Eα,β(−x) is c.m. for 0 < α ≤ 1 and β ≥ α.

Another statement on complete monotonicity is the following.

Theorem 11. The generalized Mittag-Leffler function Eα,β

(
1
x

)
is c.m. for all α >

0, β > 0.
Indeed, this follows directly from Theorem 3, since 1

x
is c.m.

Since some special functions may be expressed in terms of the generalized Mittag-
Leffler function, they are automatically c.m. for suitable values of the parameters. We
consider examples.

If M > 0 is an integer or half integer, M = 1
2
, 1, 3

2
, 2, ... then we may write

E 1
2
,M(−x) =

∞∑
j=0

(−x)j−2M

Γ
(

j
2

) −
2M−1∑
j=0

(−x)j−2M

Γ
(

j
2

)

11



=
(−1)2M+1

x2M

[
xE 1

2
, 1
2
(−x) +

2M−1∑

k=0

(−1)kxk

Γ
(

k
2

)
]

. (4.3)

As regards the function E 1
2
, 1
2
(−x), it may be expressed in terms of the error function

Erfc(x) =
2√
π

∫ ∞

x

e−t2dt.

We shall show that the formula

E 1
2
, 1
2
(−x) =

1√
π
− xex2

Erfc(x) (4.4)

is valid. The proof is direct. Indeed, splitting the summation for odd and even k in (4.2),
we have

E 1
2
, 1
2
(−x) = −xex2

+
1√
π

1F1

(
1,

1

2
; x2

)
.

Then from the representation

e−z
1F1

(
1,

1

2
; z

)
= 1F1

(
−1

2
,
1

2
;−z

)
= −

∞∑

k=0

(−z)k

(2k − 1)k!
,

[14], p. 267, and from the series expansion for the error function

e−x2

+
√

πxErf(x) = 1 +
∞∑

k=0

(−1)kx2k+2

(2k + 1)(k + 1)!
,

[14], p. 350, we arrive at (4.4).

We observe also that E 1
2
, 1
2
(−x) is the Laplace transform of

1

2
√

π
te−

t2

4 .

Taking M = 1 in (4.3), and taking (4.4) into account, we also obtain

E 1
2
,1(−x) = ex2

Erfc(x). (4.5)

Also, for β = n + 1 a positive integer, we have

E1,n+1(−x) = (−1)n e−x − en−1(−x)

xn
(4.6)

where

en(x) =
n∑

k=0

xk

k!

is the partial sum of the series expansion of ex and we assume that e−1(x) ≡ 0.
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Conclusion. The functions

ex2

Erfc(x) = E 1
2
,1(−x), (4.7)

1√
π
− xex2

Erfc(x) = E 1
2
, 1
2
(−x) (4.8)

and

(−1)n e−x − en−1(−x)

xn
= E1,n+1(−x) (4.9)

are c.m.
We should note that the complete monotonicity of the function ex2

Erfc(x) also follows
in view of Theorem 4 directly from its integral representation

ex2

Erfc(x) =
2√
π

∫ ∞

0

e−2xt−t2dt. (4.10)

Recently, Kilbas and Saigo [12] and [18] introduced a further generalization of the
Mittag-Leffler function. Let α and β be positive and let

Eα,β,λ(x) =
∞∑

m=0

cm(α, β, λ)

where

c0(α, β, λ) = 1, cm(α, β, λ) =
m−1∏

k=0

Γ[α(kβ + λ) + 1]

Γ[α(kβ + λ + 1) + 1]
, m ≥ 1,

and α, β and λ are such that

α(kβ + λ) 6= −1,−2,−3, ... (4.11)

In case β = 1, it reduces to the Mittag-Leffler function:

Eα,1,λ(x) = Γ(αλ + 1)Eα,αλ+1(x)

provided (4.11) holds. If α ≤ 1 and λ ≥ 0, then Eα,1,λ(−x) is c.m.
If α = 1, then if λ > −1,

E1,β,λ(x) = Γ(µ + 1)E1,µ+1

(
x

β

)
,

where µ = x+1−β
β

. Hence E1,β,λ(−x) is c.m. if λ ≥ β − 1.

If λ > − 1
α
, the coefficients cm are non-negative and by Theorem 3 we see that

Eα,β,λ

(
1

x

)

is c.m.
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