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Abstract

An abstract approach to the investigation of Fredholmness of equations (A1+A2Q+· · ·+
AnQn−1)ϕ = f in a Banach space is developed, where Q is a generalized involutive operator,
that is, Qn = I, Qj 6= I, j = 1, 2, ..., n− 1. Equations with two independent such involutive
operators of different orders are also considered. The general results obtained extend the
approach given by the authors in previous publications (in Russian). Application is given
to two-dimensional singular integral equations with a linear shift of rotational type and to
one-dimensional integral equations on R1 with homogeneous kernels, which include terms
both with inversion and complex conjugation.

Keywords: involutive operators, Fredholm theory, integral equations, Calderon-Zygmund
singular operators, homogeneous kernels

1991 A.M.S. Subject Classification: 47A53, 47B35, 45E05

In this paper we deal with singular type integral equations which involve the so called
involutive operators, that is, the operators Q, which satisfy the condition Q2 = I. More
generally, by involutive operator we mean the operator satisfying the condition Qn = I
with some n.



In general, a linear equation with involutive operator has the form

(A1 + QA2 + . . . + Qn−1An)ϕ = f, (0.1)

where Aj, j = 1, ..., n, have this or that nature. The interest to equations of such a kind
has its origin in the theory of singular integral equations with Carleman shift, developed
by G.S.Litvinchuk, see his books [13], [12].

In seventieth, the authors developed an approach to the investigation of the Fred-
holm(=Noether) properties of the equations of the form (1.1) in an abstract Banach space
setting, see [5]-[6], [7]. See also [9], where one can find applications of this general approach
to various types of integral or discrete equations. Here we present a further modification
and simplification of this approach together with its generalization to the case of equations
with two independent involutive operators.

We dwell briefly on historical references to previous investigations on the subject. The
first consideration of abstract equations with an operator satisfying the condition Q2 = I,
was undertaken by Z.Khalilov within the framework of normed rings, see his book [11]. The
theory developed there was a direct treating of the theory of singular integral equations
with continuous coefficients within the framework of an abstract normed ring. That theory
was algebraic in the sense that it was based just on the idea of regularization and did not
included any mean to calculate the index. The extension of those results to the case of
Banach spaces was given later, see references in [9].

A significant step in the abstract theory was made by Cherskii [1], who constructed the
abstract theory of the characteristic singular integral equation. He was first who gave the
formula for the index in terms of the so called factorization index of the operator coefficient
corresponding to the abstract Riemann boundary problem.

Przeworska-Rolewicz, see the book by Przeworska-Rolewicz [14], investigated equations
with an involutive operator or algebraic (P (Q) = 0, P being a polynomial) or almost alge-
braic operator ( P(Q) is compact). There was suggested a simple algebraic approach which
allowed to construct regularizers and, in some cases, to obtain solution of the equations.

The investigations carried out in the above mentioned researches were, in fact, based
on the model of singular integral operators. By this reason, the theories developed there,
did not cover other types of equations with an involutive operator, e.g. singular integral
equations with a Carleman shift and even equations with complex conjugate unknowns. In
the abstract terms this means that in the equations of the form (A+QB)ϕ = f with Q2 = I
the operators A and B were assumed to be quasicommuting with the involutive operator Q.
(In the case of singular integral equations with a Carleman shift this immediately requires
invariance of the coefficients of the equations with respect to the shift).

The authors, studying some classes of singular integral equations with a shift and
discrete Wiener-Hopf operators with oscillating coefficients, arrived to construction of an
abstract theory of the equations (A + QB)ϕ = f in the general non-commutative case.
Inspired by the investigations in Karapetiants and Samko [3]-[4], this approach in the first
version was presented in Karapetiants and Samko [5],[7], and [8].

The abstract matrix approach has as a prototype the well known idea of the passage
from singular integral equations with a Carleman or generalized Carleman shift to a system
of such equations without shift, which was widely used in the theory of singular equations,
see Litvinchuk [13]. In the form of the corresponding exact matrix identity this idea was
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given in Gohberg and Krupnik [2] in the case n = 2. The generalization of this abstract
identity to the case of an arbitrary n, was given in Karapetiants and Samko [7] together
with some general approach of investigation of equations with iterations of a generalized
involutive operator of order n.

1. Fredholmness of abstract equations with some gen-

eralized involutive operators (the matrix approach)

A general method of investigation of Fredholmness of equations with involutive operators
presented in this section, is given in two versions: for the case when the equation involves
only powers of the same involutive operator Q, and, as a generalization, when the equation
may include powers of two independent involutive operators P and Q.

This method has various applications and allows, in particular, to treat the following
types of equations: convolution type equations with reflection and complex conjugation,
singular integral equations on closed or disclosed curve with a finite group of shifts and
discontinuous coefficients, many of such equations being treated in [9].

1.1. The case of one generalized involutive operator

Let X be a Banach space and Q be a generalized involutive operator in X, that is

Qn = I, Qj 6= I, j = 1, 2, . . . , n− 1, n ≥ 2.

We investigate Fredholm properties of operators of the form

K = A1 + QA2 + . . . + Qn−1An. (1.1)

The operator Q and the ”coefficients” Aj, j = 1, 2, . . . , n, are assumed to satisfy the
following axioms.
AXIOM 1. There exists a Fredholm operator U ∈ L(X) such that

UQ = εnQU + T, εn = e
2πi
n , (1.2)

where T is compact in X.
AXIOM 2. The operators Aj, j = 1, 2, ..., n quasicommute with the operator U from

the Axiom 1:
AjU = UAj + Tj, j = 1, 2, . . . , n. (1.3)

Example 1.1. Let X = Lp(R
1), 1 < p < ∞, and Qϕ = ϕ(ν − x), where ν is a real

number and the coefficients Aj in (1.1) be operators of the form

Ajϕ = aj(x)ϕ(x) + cj(x)(Sϕ)(x) + Tjϕ, j = 1, 2, (1.4)

where aj(x), cj(x) ∈ C(Ṙ1) and Tj are compact operators.
We recall that Ṙ1 is the real line completed by the unique infinite point, so that

a(+∞) = a(−∞) for a(x) ∈ C(Ṙ1).
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The validity of Axiom 1 follows from the equality

QS = −SQ . (1.5)

In view of (1.5), the operator U from Axiom 1 may be chosen as the invertible operator
U = S. Finally, the validity of Axiom 2 follows from the fact that the commutator aS−Sa
is a compact operator in Lp(R

1), 1 < p < ∞, for any function a(x) ∈ C(Ṙ1).

Example 1.2. Let Γ be a Liapunov curve and let X = Lp(Γ), 1 < p < ∞, treated as
the space of complex-valued functions over the field of real numbers. We put

Qϕ = ϕ(t), t ∈ Γ . (1.6)

and take the operators Aj in the same form (1.4).
Here the operator U from Axiom 1 may be realized as

Uϕ = iϕ(t). (1.7)

With the operator (1.1) we relate the following matrix operator acting in Xn = X ×
X × . . . X :

K =




A1 QA2Q
−1 Q2A3Q

−2 . . . Qn−1AnQ−n+1

A2 QA3Q
−1 Q2A4Q

−2 . . . Qn−1A1Q
−n+1

. . . . . . . . . . . . . . .
An QA1Q

−1 Q2A2Q
−2 . . . Qn−1An−1Q

−n+1


 . (1.8)

Theorem 1.3. Fredholmness of the operator K in Xn is sufficient for that of the
operator K in X. Under Axioms 1 and 2 it is also necessary and

IndX K =
1

n
IndXn K . (1.9)

Proof. We introduce the operators

K(s) =
n∑

j=1

εs(j−1)
n Qj−1Aj

and denote
V = (ε(r−1)(j−1)

n I)n
r,j=1, W = (δrjQ

r−1)n
r,j=1,

where δrj is a Kronecker symbol. The operator W has a diagonal form with invertible op-
erators on the diagonal. The operator V is invertible, since the Vandermonde determinant
det (εsk

n ) is different from zero. The following equality is valid

V WKWV = n(δrjK
r−1)n

r,j=1, K0 = K. (1.10)

Since the operators V and W are invertible, the operators K and (δrjK
r−1)n

r,j=1 are simul-
taneously Fredholm. From Axiom 1 and Axiom 2 we observe that

U sK = K(s)U s + Ts, s = 1, 2, . . . , n− 1,
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where Ts are compact operators. Consequently, all the operators K(s), s = 0, 1, . . . , n− 1,
are simultaneously Fredholm and their indices coincide.

Sufficiency part. Let the operator K be Fredholm, then the diagonal operator
(δrjK

r−1)n
r,j=1 is the same and all the operators K(s), s = 0, 1, . . . , n − 1, are Fredholm.

Consequently, the operator K is Fredholm.
Necessity part. Let now the operator K be Fredholm. Then all the operators K(s), s =

0, 1, . . . , n−1, are Fredholm and Ind K = Ind K(s), s = 1, 2, . . . , n−1, so that the diagonal
operator (δrjK

r−1)n
r,j=1 is also Fredholm and K is the same. From (1.10) it follows that

Ind K =
n−1∑
s=0

Ind K(s) = nInd K.

2

Remark 1.4. Let the operator K be Fredholm in Xn. Then from (1.10) it follows that
the operator K and all the operators K(s) are Fredholm in X and

α(K) =
n−1∑
s=0

α(K(s)), β(K) =
n−1∑
s=0

β(K(s)).

In particular, if the operator K is invertible (left or right invertible), then the operator K is
also invertible (left or right invertible resp.). Let Axioms 1-2 be fulfilled with the additional
assumption that the compact operators T and Tj in (1.2)-(1.3) are equal to zero. Then the
inverse statement is valid: invertibility of the operator K in X implies that of the operator
K in Xn.

The important particular case n = 2 of Theorem 1.3 is given specially in the following
theorem. We note that in this case the matrix identity (1.10) turns to be

(
I I
Q −Q

)(
A1 + QA2 0

0 A1 −QA2

)(
I Q
I −Q

)
= 2

(
A1 QA2Q
A2 QA1Q

)
, (1.11)

where A1 and A2 are arbitrary linear operators and Q2 = I, this equality being given in
[2].

Theorem 1.5. Let Axiom 1 and Axiom 2 be fulfilled. The operator K = A1 + QA2 is
Fredholm in X if and only if the operator

K =

(
A1 QA2Q
A2 QA1Q

)

is Fredholm in X2. In this case IndX K = 1
2
IndX2 K .

Theorem 1.3 may be easily transformed to the case when the operators Aj in (1.1) are
matrix operators. For the formulation of the result of such a kind we introduce the matrix

operators Q̂ = (δrkQ)m
r,k=1, Âj =

(
A

(j)
rk

)m

r,k=1
, acting in Xm = X × X × . . . X. We

consider the operator

K̂ =
n∑

j=1

Q̂j−1Âj.
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As above, we introduce the matrix operator K̂ related to the operator K̂:

K̂ = (Q̂r−1Âr+j−1Q̂
−(j−1))n

r,j=1, Ân+s = Âs.

Theorem 1.6. Let the operators A
(j)
rk satisfy Axioms 1 and 2 . The operator K̂ is

Fredholm in Xm if and only if the operator K̂ is Fredholm in Xmn. In this case

IndXm K̂ =
1

n
IndXmn K̂ . (1.12)

Proof. It is evident that Q̂ is an involutive operator. Applying Theorem 1.3 to the
operator K̂ we should verify that Axiom 1 and Axiom 2 are fulfilled for the operator Q̂
and the ”coefficients” Âj. If we put Û = (δrjU)m

r,j=1 , then we see that Axiom 1 yields

Q̂Û = εnQ̂Û + T , where T is compact in Xm. Consequently, Axiom 1 is satisfied. The
validity of Axiom 2 is evident. 2

1.2. The case of two generalized involutive operators

Let X be a Banach space and let P and Q be two generalized involutive operators of
orders n and m respectively:

Qn = Pm = I,

P j 6= I, j = 1, 2, . . . , m− 1; Qk 6= I, k = 1, 2, . . . , n− 1.
(1.13)

We study the Fredholm properties of the operator K of the form

K =
m∑

j=1

n∑

k=1

P j−1Qk−1Ajk. (1.14)

a) The general case. The involutive operators P and Q and the ”coefficients” Ajk

are supposed to satisfy the following axioms.
AXIOM 1. There exist Fredholm operators UP ∈ L(X) and UQ ∈ L(X) such that

UP P = εmPUP + T1, εm = e
2πi
m , (1.15)

UQP = εnQUP + T2, εn = e
2πi
n , (1.16)

UP Q = QUP + T3, (1.17)

where Tj, j = 1, 2, 3 are compact in X.
AXIOM 2. The following quasicommutation relations for the operators UP and UQ hold

UP Ajk = AjkUP + T4, (1.18)

UQA
′
jk = A

′
jkUQ + T5, (1.19)

where A
′
jk = P lAjkP

−l, j = 1, 2, . . . ,m; k = 1, 2, . . . , n; l = 0, 1, . . . , m− 1.
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In the case when P and Q commute, we could apply our approach of Subsection 1.2
”with respect to the operator Q”. However, we shall treat the operator K under the
assumption more general than the condition of commutativity of P and Q. Namely, we
suppose that the following axiom is satisfied.
AXIOM 3. There exist a real number γ and an integer ν such that

PQP−1 = γQν . (1.20)

As we shall see below, this axiom is realized in applications with some ν and γ just in
this form. We note some corollaries of this axiom:

1). The number γ may be only a root of 1: γn = 1.
2). The following equality holds

P jQkP−j = γk(1+ν+...+νj−1)Qkνj

. (1.21)

3). Independently of n, the (νm − 1)-th power of Q is reduced to the multiplication by
some power of εn:

Qνm−1 = γ−
νm−1
ν−1 I; (1.22)

if (ν, n) = p, then Q
n
p = γ

n
p I.

4). If the order m is even and ν = −1, then the operators P and Q is commute.
5). The group, generated by the operators P and Q and their powers is finite.

Proof. 1). The equality γn = 1 is obtained by raising (1.20) to the power (1.20), taking
the equality

(PQP−1)j = PQjP−1 (1.23)

into account.
2). In view of (1.23), it is sufficient to prove the formula (1.21) for k = 1 only. We use

the induction method. If j = 1, the formula (1.21) is evident. Assuming that it is true
for some j, we have P j+1QkP−(j+1) = Pγ1+ν+...+νj−1

Qνj
P−1 = γ1+ν+...+νj−1+νj)Qνj+1

, and
then it is also true for the number j + 1.

3). The equality (1.22) is obtained from (1.21), if we put k = 1 and j = m. Let
(ν, n) = p . By raising the equality (1.20) to the power n

p
, we have PQ

n
p P−1 = γ

n
p Q

ν
p
+n.

Since ν
p

is an integer, we obtain PQ
n
p P−1 = γ

n
p I, which yields PQ

n
p = γ

n
p P .

4). If ν = −1 and the order m is even, from (1.22) we have Q−2 = γ−1I and then
γQ−1 = Q. The last equality yields PQP−1 = Q or PQ = QP .

5). The proof is direct.
2

We return to the investigation of the operator (1.14) under the assumption that Axioms
1-3 are fulfilled.

We rewrite the operator (1.14) in the form

K =
m∑

j=1

P j−1Bj, (1.24)
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where

Bj =
n∑

k=1

Qk−1Ajk.

We apply Theorem 1.3 to this operator with respect to the involutive operator P with the
”coefficients” Bj. It is easy to see that Axioms 1-2 from Subsection 1.2 are fulfilled in view
of (1.15),(1.17) and (1.18). By Theorem 1.3, the operator (1.24) is Fredholm simultaneously
with the matrix operator

K = (P j−1Br+j−1P
−(j−1))m

r,j=1 = (Nrj)
m
r,j=1, (1.25)

where

Nrj =
m∑

j=1

P j−1Qk−1Ar+j−1,kP
−(j−1). (1.26)

In the notation Br+j−1 it is assumed that Bj+m ≡ Bjand similarly for Ar+j−1,k.
Up to now we did not use Axiom 3 and obtained the following preliminary result.

Theorem 1.7. Let the operators Ajk satisfy Axioms 1 and 2 . The operator K is
Fredholm in X if and only if the operator K is Fredholm in Xm and

IndX K =
1

m
IndXm K . (1.27)

To obtain the final result, we suppose now that Axiom 3 is also fulfilled. Using the
formula (1.21), we rewrite the matrix operator (1.25) in the form

K =
n∑

k=1

(
Q(k−1)νj−1

P j−1γ(k−1) 1−νj−1

1−ν Ar+j−1,kP
−(j−1)

)n

r,j=1

=
n∑

k=1

N̂k.

It may be represented as

K =
n∑

k=1

Q̂k−1Ẑk, Q̂ = (δrjQ)n
r,j=1,

where the matrix Ẑk consists of elements P j−1AP−(j−1), where each operator A is a linear
combination of the operators Ajk . Now we apply Theorem 1.6 with respect to the involutive

operator Q̃ with the coefficients Ẑk. It is evident, that Axioms 1 and 2 from the Subsection
1.2 with respect to Q̃ and Ẑk are fulfilled and we have the following final result.

Theorem 1.8. Let the operators Ajk satisfy Axioms 1-3 . The operator K is Fredholm
in X if and only if the operator

K̂ =
(
Q̂(µ−1)Ẑλ+µ−1Q̂

1−µ)
)n

λ,µ=1
= (Mλ,µ)n

λ,µ=1 (1.28)

is Fredholm in Xmn and

IndX K =
1

mn
IndXmn K̂ . (1.29)
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We can construct the operators Ẑk effectively in two cases: a) ν = 1 or b) ν = −1 in
Axiom 3.

The case a). In this case Axiom 3 takes the form PQ = γQP and we see, that

Ẑk = (γ(k−1)(j−1)P j−1Ar+j−1,kP
−(j−1))m

r,j=1.

Consequently,

Mλµ = (γ(j−1)(λ+µ−2)Qµ−1P j−1Ar+j−1,λ+µ−1P
−(j−1)Q−(µ−1))n

r,j=1 (1.30)

in this case .
The case b). In this case Axiom 3 is PQ = γQ−1P and the matrix Ẑk contains odd

columns of the matrix N̂k and even columns of the matrix N̂n−k+2. Hence

Ẑk =

(
1 + (−1)j−1

2
γ(k−1)

1+(−1)j

2 P j−1Ar+j−1,kP
−j+1

)m

r,j=1

+

+

(
1 + (−1)j

2
γ(n−k−1)

1+(−1)j

2 P j−1Ar+j−1,n−k+2P
−j+1

)m

r,j=1

,

so that

Mλµ =
(

1+(−1)j−1

2
γ(λ+µ−2)

1+(−1)j

2 Qµ−1P j−1Ar+j−1,λ+µ−1P
−j+1Q−µ+1

)m

r,j=1
+

(
1+(−1)j

2
γ(n−λ−µ−2)

1+(−1)j

2 Qµ−1P j−1Ar+j−1,n−λ−µ+3P
−j+1Q−µ+1

)m

r,j=1

(1.31)

in this case.
b) The case m = n = 2. We single out the case when both of involutions have the

order 2 and suppose that PQ = QP keeping applications in mind.
In this case the operator (1.14) has the form

K = (A11 + QA12) + P (A21 + QA22). (1.32)

We suppose that Axioms 1 and 2 are satisfied. To construct the matrix operator without
shift, we observe that at the first step we obtain the following matrix operator




A11 + QA12 P (A21 + QA22)P

A21 + QA22 P (A11 + QA12)P


 (1.33)

which includes the involutive matrix operator Q̂ of order 2:




A11 PA21P

A21 PA11P


 + Q̂




A12 PA22P

A22 PA12P


 , Q̂ =




Q 0

0 Q


 . (1.34)
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At the next step, we arrive at the matrix operator

K̂ =




A11 PA21P QA12Q QPA22PQ
A21 PA11P QA22Q QPA12PQ
A12 PA22P QA11Q QPA21PQ
A22 PA12P QA21Q QPA11PQ


 . (1.35)

As a corollary of Theorem 1.8 we obtain the following result.

Theorem 1.9. Let the operators Ajk satisfy Axioms 1-2 and PQ=QP. The operator

K of the form (1.32) is Fredholm in X if and only if the operator K̂ of the form (1.35) is
Fredholm in X4 and in this case

IndX K =
1

4
IndX4 K̂ . (1.36)

2. Application to integral equations

2.1. Calderon-Zygmund operators with linear Carleman shift
We shall consider two-dimensional singular integral equations with Calderon-Zygmund

singular operators of the type

(Sϕ)(x) =

∫

R2

Ω(y′)
|y|2 ϕ(x− y)dy, x ∈ R2, y′ =

y

|y| , (2.1)

and linear Carleman type shift. By α(x) = Ax + β we denote a linear transformation
on R2, satisfying the generalized Carleman condition of order n ≥ 2 (that is, αn(x) ≡
x, αn(x) = α[αn−1(x)]), generated by an orthogonal matrix A. The integral operator
under the consideration will be

(Kϕ)(x) =
n−1∑
j=0

{
ajϕ[αj(x)] + bj(SΩj

ϕ)[αj(x)]
}

= f(x), x ∈ R2, (2.2)

where aj, bj are constants and α0(x) = x. It is assumed that Ωj

(
x
|x|

)
, j = 0, 1, . . . , n −

1, satisfy the standard conditions which provide the boundedness of the corresponding
Calderon-Zygmund operators in the space Lp(R

2), 1 < p < ∞.
The function

σ(ξ′) =

∫

|t|=1

ln
1

−ξ′ · t Ω(t)dt, |ξ′| = 1,

is known as the symbol of the singular operator SΩ.

Lemma 2.1. Let A be any orthogonal linear transformation in R2 and Qϕ =
ϕ(Ax + β), β ∈ Rn. Then

QSΩQ−1 = SΩ∗ with Ω∗(x) = Ω(Ax). (2.3)
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The operator (2.2) has the form

K =
n∑

j=1

Qj−1Aj with Aj = aj−1 + bj−1SΩj−1
, j = 1, 2, ..., n. (2.4)

This enables us to apply the general Theorem 1.3.
We denote

Σ(ξ) = A+H(ξ), where A =




a0 a1 . . . an−1

a1 a2 . . . a0

. . . . . . . . . . . .
an−1 a0 . . . an−2




and

H(ξ) =




b0σ0(ξ) b1σ1(Aξ) . . . bn−1σn−1(A
n−1ξ)

b1σ1(ξ) b2σ2(Aξ) . . . b0σ0(A
n−1ξ)

. . . . . . . . . . . .
bn−1σn−1(ξ) b0σ0(Aξ) . . . bn−2σn−2(A

n−1ξ)


 (2.5)

where σj(ξ) are the symbols of Calderon-Zygmund operators with the characteristics Ωj(x
′).

Theorem 2.2. The operator (2.2) is invertible in the space Lp(R
2), 1 < p < ∞, if and

only if inf |ξ|=1 | det Σ(ξ)| 6= 0.

Proof. Any linear Carleman-type transformation may be reduced to the so called
canonical case which is either the ”rational” rotation or reflection with respect to one of
the variables. Therefore, one may take from the very beginning

A =

(
cos θ sin θ
− sin θ cos θ

)
with θ =

2πk

n
or A =

(
1 0
0 −1

)
.

We consider the first possibility as more interesting, the second one being easier. To apply
Theorem 1.3, we have to construct the operator U satisfying Axioms 1-2 of that theorem.
We look for the operator U in the form of a singular Calderon-Zygmund operator U = SΩ

with some characteristic Ω(x′). Axiom 1 is then reduced to the following relation for the
characteristic Ω(x′):

Ω(y) = εnΩ(Ay). (2.6)

We take k = 1 for simplicity and choose Ω(y) = y1+iy2

|y| (the idea of this choice in a differ-
ent situation was formulated by A.I.Koshelenko, Master Theses, Rostov State University,
1981). Then the symbol of the operator U is equal to

σ(ξ) =
iπ2

2
(ξ1 + iξ2) , so that σ(ξ) 6= 0 for |ξ| = 1 .

Therefore, the operator U is invertible. It commutes with the operators Ak as a con-
volution operator. Therefore, Axioms 1 and 2 of Theorem 1.3 are satisfied. The entries
Qj−1Ar+j−1Q

1−j in the matrix operator (1.8) from Theorem 1.3 are equal to

Qj−1Ar+j−1Q
1−jϕ = ar+j−2ϕ(x) + br+j−2Sr,j ,
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where Sr,j is the Calderon-Zygmund singular operator with the characteristic Ωr+j−2(A
j−1x),

computed in accordance with Lemma 2.1. Calculating the symbol of this matrix operator
and applying Theorem 1.3, we arrive at the conclusion of our theorem. 2

2.2. Singular integral operators with homogeneous kernels

This section is preliminary. We recall here some results on Fredholmness of m × m-
systems of integral equations on R1 with homogeneous kernels of degree −1. The scalar
equation (m = 1) has the form

Nϕ ≡ a(x)ϕ(x) + b(x)

∫ ∞

−∞
k(x, y)ϕ(y) dy = f(x), (2.7)

where
k(λx, λy) = λ−1k(x, y), λ > 0.

We consider the operator (2.7) in the space Lp(R
1), 1 < p < ∞, and assume that a(x), b(x) ∈

C(Ṙ1) and ∫ ∞

−∞
|y|− 1

p |k(±1, y)|dy < ∞, (2.8)

the latter condition guaranteeing the boundedness of the integral operator in (2.7) in the
space Lp(R

1). This condition obviously excludes singular homogeneous kernels of the type
k(x, y) = 1

x−y
. We recall that equations with homogeneous kernels are easily reduced to

convolution type equations by means of direct exponential change of variables. We give the
corresponding result for systems of equations with homogeneous kernels, see Theorem 2.3.
This theorem may be considered as well known, see for example, [10] in the case m = 1.

In what follows the notation

K±±(ξ) =

∫ ∞

0

k(±1,±y)yξ−1dy (2.9)

will stand for the Mellin transforms of the kernels k(±1,±y).
The corresponding system of integral equations with homogeneous kernels has the form

Nϕ ≡ A(x)ϕ(x) + B(x)

∫ ∞

−∞
K(x, y)ϕ(y) dy = F (x), (2.10)

where ϕ = (ϕ1, ϕ2, . . . , ϕm) is a vector-function, A(x), B(x) and K(x, y) are (m × m)-
matrices. We assume that the entries of the matrices A(x) and B(x) are continuous on Ṙ1,
and the kernel K(x, y) has entries satisfying the conditions (2.8).

It may be shown that Fredholmness of the matrix operator AI is necessary for that of
the operator N . By this reason, we assume that det A(x) 6= 0, x ∈ Ṙ1. We denote

σ0(ξ) =




σ11
0 (ξ) σ12

0 (ξ)

σ21
0 (ξ) σ22

0 (ξ)


 , σ∞(ξ) =




σ11
∞(ξ) σ12

∞(ξ)

σ21
∞(ξ) σ22

∞(ξ)


 , (2.11)

where the (m×m)-blocs σkj
0 (ξ) and σkj

∞(ξ) have the form:

σ11
0 (ξ) = I + A−1(0)B(0)K++(ξ), σ12

0 (ξ) = A−1(0)B(0)K+−(ξ) ,

12



(2.12)

σ21
0 (ξ) = A−1(0)B(0)K−+(ξ) , σ22

0 (ξ) = I + A−1(0)B(0)K−−(ξ)

and similarly for σkj
∞(ξ), k, j = 1, 2 with A−1(0)B(0) replaced by A−1(∞)B(∞).

Here K±±(ξ) are matrices with elements of the form (2.9) calculated for the kernels
kjr(x, y) .

Theorem 2.3. Let the entries of the matrices A(x) and B(x) be in C(Ṙ1) and the
entries of the matrix K(x, y) satisfy the conditions (2.8). The operator of the form (2.10)
is Fredholm in the space Lp(R

1), 1 < p < ∞, if and only if det A(x) 6= 0 and

det σ0

(
ix + 1− 1

p

)
6= 0 , det σ∞

(
ix + 1− 1

p

)
6= 0

for all x ∈ Ṙ1. Under these conditions

IndLpN = ind
det σ∞

(
ix + 1− 1

p

)

det σ0

(
ix + 1− 1

p

) .

2.3. Integral equations with homogeneous kernels involving terms with in-
version and complex conjugation.

Let us consider the following integral equation

Kϕ :≡ a(x)ϕ(x) + b(x)ϕ(x) + c(x)ϕ
(

1
x

)
+ d(x)ϕ

(
1
x

)
+ α(x)

∞∫
−∞

k(x, y)ϕ(y)dy

+β(x)
∞∫
−∞

`(x, y)ϕ(y)dy + γ(x)
∞∫
−∞

p(x, y)ϕ
(

1
y

)
dy + δ(x)

∞∫
−∞

q(x, y)ϕ
(

1
y

)
dy = f(x),

(2.13)
where k(x, y), l(x, y), p(x, y) and q(x, y) are homogeneous kernels of degree −1.

Here we have two involutions ϕ(x) and ϕ
(

1
x

)
. To have a bounded involutive opera-

tor in the latter case, we introduce it in the form (Qϕ)(x) = |x|− 2
p ϕ

(
1
x

)
. In this case

‖Qϕ‖p = ‖ϕ‖p. To be able to apply the general Theorem 1.9, we rewrite the equation
(2.13) introducing the following notation:

a11(x) = a(x) a12(x) = |x|− 2
p c

(
1
x

)
a21(x) = b(x) a22(x) = |x|− 2

p d
(

1
x

)

b11(x) = α(x) b12(x) = |x|− 2
p γ

(
1
x

)
b21(x) = β(x) b22(x) = |x|− 2

p δ
(

1
x

)

k11(x, y) = k(x, y) k12(x, y) = 1
y2 p

(
1
x
, 1

y

)
k21(x, y) = `(x, y) k22(x, y) = 1

y2 q
(

1
x
, 1

y

)

and

Qϕ(x) =
1

|x| 2p
ϕ

(
1

x

)
, Pϕ(x) = ϕ(x). (2.14)
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Evidently, Q2 = P 2 = I and QP = PQ. Under these notations, the equation (2.13) may
be rewritten as

K = (N11 + QN12) + P (N21 + QN22), (2.15)

where Njr are operators of the form (2.7):

Njr = ajr(x)I + cjr(x)Kjr, j, r = 1, 2.

We assume that
ajr(x), bjr(x) ∈ C(Ṙ1) (2.16)

∞∫

−∞

|y|− 1
p |kjr(±1, y)|dy < ∞, j, r, = 1, 2. (2.17)

We consider the operator K in the space Lp(R
1). Axioms 1 and 2 from Subsection 1.2

are satisfied under the choice

UP ϕ(x) = iϕ(x), UQϕ(x) = sign(ln |x|)ϕ(x).

The relations
UP P + PUP = 0, and UQQ + QUQ = 0

are obvious, so that Axiom 1 is satisfied. As regards Axiom 2, we evidently have UP Ajr =
AjrUP and UQAjr = AjrUQ + Tjr where Tjr are compact operators. Here we used the fact
that the operator

sign(ln |x|)Kjr −Kjrsign(ln |y|)
is compact under our conditions, see [10]. To formulate the final result we need to calculate
the entries of the matrix operator (1.35). We have

PNjrP = ajr(x)I + cjr(x)Kjr, Kjrϕ(x) =

∫ ∞

−∞
kjr(x, y)ϕ(y)dy, (2.18)

QNjrQ = a∗jr(x)I + c∗jr(x)K∗
jr, K∗

jrϕ(x) =

∫ ∞

−∞
k∗jr(x, y)ϕ(y)dy, (2.19)

where

k∗jr(x, y) =
1

y2

∣∣∣y
x

∣∣∣
2
p
k

(
1

x
,
1

y

)

and

QPNjrPQ = a∗jr(x)I + c∗jr(x)K∗
jr, K∗

jrϕ(x) =

∫ ∞

−∞
k∗jr(x, y)ϕ(y)dy (2.20)

for all j, r = 1, 2.
It is easy to check that the kernels k∗jr(x, y) satisfy the same integrability condition

(2.8) as kjr(x, y).
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Theorem 1.9 leads us to the matrix operator of the form (2.10) which has to be consid-
ered in the space L4

p(R
1), where

A(x) =




a11(x) a21(x) a∗12(x) a∗22(x)

a21(x) a11(x) a∗22(x) a∗12(x)

a12(x) a22(x) a∗11(x) a∗21(x)

a22(x) a12(x) a∗21(x) a∗11(x)




, B(x) =




b11(x) b21(x) b∗12(x) b∗22(x)

b21(x) b11(x) b∗22(x) b∗12(x)

b12(x) b22(x) b∗11(x) b∗21(x)

b22(x) b12(x) b∗21(x) b∗11(x)




and

K(x, y) =




k11(x, y) k21(x, y) k∗12(x, y) k∗22(x, y)

k21(x, y) k11(x, y) k∗22(x, y) k∗12(x, y)

k12(x, y) k22(x, y) k∗11(x, y) k∗21(x, y)

k22(x, y) k12(x, y) k∗21(x, y) k∗11(x, y)




. (2.21)

It remains to apply Theorem 2.3 and we arrive at the following result.

Theorem 2.4. Under the assumptions (2.16) and (2.17), the operator (2.13) is Fred-
holm in the space Lp(R

1), 1 < p < ∞, if and only if det A(x) 6= 0 and

det σ0

(
ix + 1− 1

p

)
6= 0 , det σ∞

(
ix + 1− 1

p

)
6= 0

for all x ∈ Ṙ1, where the 8 × 8-matrices σ0(ξ) and σ∞(ξ) are given by (2.11) and (2.12)
with K(x, y) defined in (2.21). Under these conditions

IndLpK =
1

2
ind

det σ∞
(
ix + 1− 1

p

)

det σ0

(
ix + 1− 1

p

) . (2.22)

Remark. Theorem 1.9 gives the fraction 1
4

for the formula for the index. But we have
1
2

in (2.22), because we take into account only real coefficients while considering linear
combinations of complex-valued functions.
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