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Abstract

An abstract approach to the investigation of Fredholmness of equations (A;+A;Q+- - -+
A,Q" 1)y = fin a Banach space is developed, where @ is a generalized involutive operator,
that is, Q" =1,Q7 # 1,57 =1,2,...,n — 1. Equations with two independent such involutive
operators of different orders are also considered. The general results obtained extend the
approach given by the authors in previous publications (in Russian). Application is given
to two-dimensional singular integral equations with a linear shift of rotational type and to
one-dimensional integral equations on R! with homogeneous kernels, which include terms
both with inversion and complex conjugation.
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In this paper we deal with singular type integral equations which involve the so called
involutive operators, that is, the operators ), which satisfy the condition Q? = I. More
generally, by involutive operator we mean the operator satisfying the condition Q™ = I
with some n.



In general, a linear equation with involutive operator has the form
(A1 +QAs+ ...+ Q" 'A)p = f, (0.1)

where A;, j = 1,...,n, have this or that nature. The interest to equations of such a kind
has its origin in the theory of singular integral equations with Carleman shift, developed
by G.S.Litvinchuk, see his books [13], [12].

In seventieth, the authors developed an approach to the investigation of the Fred-
holm(=Noether) properties of the equations of the form (1.1) in an abstract Banach space
setting, see [5]-[6], [7]. See also [9], where one can find applications of this general approach
to various types of integral or discrete equations. Here we present a further modification
and simplification of this approach together with its generalization to the case of equations
with two independent involutive operators.

We dwell briefly on historical references to previous investigations on the subject. The
first consideration of abstract equations with an operator satisfying the condition Q* = I,
was undertaken by Z.Khalilov within the framework of normed rings, see his book [11]. The
theory developed there was a direct treating of the theory of singular integral equations
with continuous coefficients within the framework of an abstract normed ring. That theory
was algebraic in the sense that it was based just on the idea of regularization and did not
included any mean to calculate the index. The extension of those results to the case of
Banach spaces was given later, see references in [9)].

A significant step in the abstract theory was made by Cherskii [1], who constructed the
abstract theory of the characteristic singular integral equation. He was first who gave the
formula for the index in terms of the so called factorization index of the operator coefficient
corresponding to the abstract Riemann boundary problem.

Przeworska-Rolewicz, see the book by Przeworska-Rolewicz [14], investigated equations
with an involutive operator or algebraic (P(Q) = 0, P being a polynomial) or almost alge-
braic operator ( P(Q) is compact). There was suggested a simple algebraic approach which
allowed to construct regularizers and, in some cases, to obtain solution of the equations.

The investigations carried out in the above mentioned researches were, in fact, based
on the model of singular integral operators. By this reason, the theories developed there,
did not cover other types of equations with an involutive operator, e.g. singular integral
equations with a Carleman shift and even equations with complex conjugate unknowns. In
the abstract terms this means that in the equations of the form (A+QB)p = f with Q* = I
the operators A and B were assumed to be quasicommuting with the involutive operator Q).
(In the case of singular integral equations with a Carleman shift this immediately requires
invariance of the coefficients of the equations with respect to the shift).

The authors, studying some classes of singular integral equations with a shift and
discrete Wiener-Hopf operators with oscillating coefficients, arrived to construction of an
abstract theory of the equations (A + @B)¢ = f in the general non-commutative case.
Inspired by the investigations in Karapetiants and Samko [3]-[4], this approach in the first
version was presented in Karapetiants and Samko [5],[7], and [§].

The abstract matrix approach has as a prototype the well known idea of the passage
from singular integral equations with a Carleman or generalized Carleman shift to a system
of such equations without shift, which was widely used in the theory of singular equations,
see Litvinchuk [13]. In the form of the corresponding exact matrix identity this idea was



given in Gohberg and Krupnik [2] in the case n = 2. The generalization of this abstract
identity to the case of an arbitrary n, was given in Karapetiants and Samko [7] together
with some general approach of investigation of equations with iterations of a generalized
involutive operator of order n.

1. Fredholmness of abstract equations with some gen-
eralized involutive operators (the matrix approach)

A general method of investigation of Fredholmness of equations with involutive operators
presented in this section, is given in two versions: for the case when the equation involves
only powers of the same involutive operator (), and, as a generalization, when the equation
may include powers of two independent involutive operators P and Q).

This method has various applications and allows, in particular, to treat the following
types of equations: convolution type equations with reflection and complex conjugation,
singular integral equations on closed or disclosed curve with a finite group of shifts and
discontinuous coefficients, many of such equations being treated in [9].

1.1. The case of one generalized involutive operator

Let X be a Banach space and () be a generalized involutive operator in X, that is
Q=1 QP #I, j=1,2,....,.n—1, n>2.
We investigate Fredholm properties of operators of the form
K=A+QA+...+ Q" 'A,. (1.1)

The operator ) and the "coefficients” A;, 7 = 1,2,...,n, are assumed to satisfy the
following axioms.
AXIOM 1. There exists a Fredholm operator U € L(X) such that

2mi

UQ=,QU+T, e,=en, (1.2)

where T 1s compact in X.
AXIOM 2. The operators A;, j = 1,2,...,n quasicommute with the operator U from
the Axiom 1:
AU=UA+T;, j=12..n (1.3)

Example 1.1. Let X = L,(R"), 1 < p < oo, and Qp = p(v — z), where v is a real
number and the coefficients A; in (1.1) be operators of the form

Ajp = a;(2)p(x) + ¢;(2)(Sp)(2) + Ty, j=1,2, (1.4)

where a;(x),ci(x) € C’(Rl) and T; are compact operators.
We recall that R! is the real line completed by the unique infinite point, so that
a(+00) = a(—o0) for a(x) € C(RY).



The validity of Axiom 1 follows from the equality
QS =-9Q . (1.5)

In view of (1.5), the operator U from Axiom 1 may be chosen as the invertible operator
U = S. Finally, the validity of Axiom 2 follows from the fact that the commutator a5 —Sa
is a compact operator in L,(R'), 1 < p < oo, for any function a(x) € C(R').

Example 1.2. Let I' be a Liapunov curve and let X = L,(I'),1 < p < oo, treated as
the space of complez-valued functions over the field of real numbers. We put

Qe =op(t), tel. (1.6)

and take the operators A; in the same form (1.4).
Here the operator U from Axiom 1 may be realized as

Up =ip(t). (1.7)

With the operator (1.1) we relate the following matrix operator acting in X" = X X
Xx...X:

A QAQT QPAQ L. QUA,Q
g | A Qa0 @At L @rlagt | 18)

Ay QAQ QAQ ... QUALQ

Theorem 1.3. Fredholmness of the operator K in X" is sufficient for that of the
operator K in X. Under Axioms 1 and 2 it is also necessary and

1
n

Proof. We introduce the operators

n

K — Z EfL(J'—l)QJ'—lAj

J=1

and denote

V= (551T_1)(J_1)I)?,j:1v W= (57’jQT_1):l,j:17
where 0,; is a Kronecker symbol. The operator W has a diagonal form with invertible op-
erators on the diagonal. The operator V' is invertible, since the Vandermonde determinant

det (%) is different from zero. The following equality is valid

VWKWV =n(5,, K1) K’=K. (1.10)

rj=1

Since the operators V and W are invertible, the operators K and (0,; K"~');_, are simul-
taneously Fredholm. From Axiom 1 and Axiom 2 we observe that

U'K=K®U*+T,, s=1,2,....,n—1,
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where T, are compact operators. Consequently, all the operators K®), s =0,1,...,n—1,
are simultaneously Fredholm and their indices coincide.

Sufficiency part. Let the operator K be Fredholm, then the diagonal operator
(5TjKT’1)f7j:1 is the same and all the operators K®), s =0,1,...,n — 1, are Fredholm.
Consequently, the operator K is Fredholm.

Necessity part. Let now the operator K be Fredholm. Then all the operators K®), s =
0,1,...,n—1, are Fredholm and Ind K = Ind K, s =1,2,...,n—1, so that the diagonal

operator (9,;K 7"*1);}’]»:1 is also Fredholm and K is the same. From (1.10) it follows that

n—1
Ind K = Z Ind K® = nInd K.
s=0
O

Remark 1.4. Let the operator K be Fredholm in X™. Then from (1.10) it follows that
the operator K and all the operators K are Fredholm in X and

oK) = T (K9, BK) = 3 B(K®)

In particular, if the operator K is invertible (left or right invertible), then the operator K is
also invertible (left or right invertible resp.). Let Axioms 1-2 be fulfilled with the additional
assumption that the compact operators T and T; in (1.2)-(1.3) are equal to zero. Then the
wnverse statement is valid: invertibility of the operator K in X implies that of the operator
K in X™.

The important particular case n = 2 of Theorem 1.3 is given specially in the following
theorem. We note that in this case the matrix identity (1.10) turns to be

I 1 A+ QA 0 I Q _ A QAQ (1.11)
Q@ —Q 0 Ay — QA I -Q Ay QAQ ) '
where A; and A, are arbitrary linear operators and Q% = I, this equality being given in

2].

Theorem 1.5. Let Axiom 1 and Axiom 2 be fulfilled. The operator K = A; + QA is
Fredholm in X if and only if the operator

(A QAQ
K‘(AQQmQ>

is Fredholm in X?. In this case Indx K = $Indy: K .
Theorem 1.3 may be easily transformed to the case when the operators A; in (1.1) are
matrix operators. For the formulation of the result of such a kind we introduce the matrix

operators @ = (0,£Q)7_1, Ej = (AS,Q) ,acting in X™ = X x X x ... X. We
’ rk=1

consider the operator

R=Y"0A,
j=1
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As above, we introduce the matrix operator K related to the operator K:
K= (QrilAr+j*1Qi(j71))?,j:17 An+s = As-

Theorem 1.6. Let the operators Af?,g satisfy Azioms 1 and 2 . The operator K is
Fredholm in X™ if and only if the operator K is Fredholm in X™". In this case

~ 1 ~
I?’dem K = _Inden K. (112)
n

Proof. It is evident that @ is an involutive operator. Applying Theorem 1.3 to the
operator K we should verify that Axiom 1 and Axiom 2 are fulfilled for the operator Q
and the ”coefficients” Aj. If we put U= (6,0 rje then we see that Axiom 1 yields

@[7 = gn@(//\' + T, where T' is compact in X™. Consequently, Axiom 1 is satisfied. The
validity of Axiom 2 is evident. O

1.2. The case of two generalized involutive operators

Let X be a Banach space and let P and ) be two generalized involutive operators of
orders n and m respectively:

Q =Pr=1,
(1.13)
P £, j=1,2....m—-1; Q"#1I1, k=1,2,...,n—1.
We study the Fredholm properties of the operator K of the form

n

K= Xm: > P Ay (1.14)
k=1

j=1 k=

a) The general case. The involutive operators P and () and the ”coefficients” Ajj

are supposed to satisfy the following axioms.
AXIOM 1. There ezist Fredholm operators Up € L(X) and Ug € L(X) such that

2mi

UPPZSmPUp—f-Tl, Em =€m, (115)
UgP =e,QUp+ Ty, e, =cn, (1.16)
UpQ = QUp + 15, (1.17)

where T, j =1,2,3 are compact in X .
AXIOM 2. The following quasicommutation relations for the operators Up and Ug hold

UpAjr, = AjUp + Ty, (1.18)

UgAy, = A Uq + T, (1.19)
where A;k:PlAjkP*l, j=12,....m; k=12,...,n; 1=0,1,....,m—1.



In the case when P and () commute, we could apply our approach of Subsection 1.2
"with respect to the operator Q7. However, we shall treat the operator K under the
assumption more general than the condition of commutativity of P and (). Namely, we
suppose that the following axiom is satisfied.

AXIOM 3. There exist a real number v and an integer v such that

PQP™' =~Q". (1.20)

As we shall see below, this axiom is realized in applications with some v and v just in
this form. We note some corollaries of this axiom:

1). The number v may be only a root of 1: v™ = 1.

2). The following equality holds

PiQkp—I = Aktvt ™ Okw? (1.21)

3). Independently of n, the (V™ — 1)-th power of Q is reduced to the multiplication by

some power of €,:
m_1

Q" =~ I (1.22)

if (v,n) = p, then Qr = fy%I.
4). If the order m is even and v = —1, then the operators P and Q) is commute.
5). The group, generated by the operators P and Q) and their powers is finite.

Proof. 1). The equality 4™ = 1 is obtained by raising (1.20) to the power (1.20), taking
the equality . '
(PQP'Y = P’ P! (1.23)

into account.

2). In view of (1.23), it is sufficient to prove the formula (1.21) for £ = 1 only. We use
the induction method. If 7 = 1, the formula (1.21) is evident. Assuming that it is true
for some j, we have PItIQF P+l — prltvt. /" Opl p=1 — vt/ 7 i) it g
then it is also true for the number j + 1.

3). The equality (1.22) is obtained from (1.21), if we put & = 1 and j = m. Let
(v,n) = p . By raising the equality (1.20) to the power 5 we have PQr» P~ = ~vrQ» ™.
Since % is an integer, we obtain PQ%P_1 = fy%I, which yields PQ% = Py%P.

4). If v = —1 and the order m is even, from (1.22) we have Q=2 = 4! and then
vQ~ ! = Q. The last equality yields PQP~! = Q or PQ = QP.

5). The proof is direct.

O

We return to the investigation of the operator (1.14) under the assumption that Axioms
1-3 are fulfilled.
We rewrite the operator (1.14) in the form

K=> P'B, (1.24)
j=1



where .
Bj = ZQk_lAjk.
k=1

We apply Theorem 1.3 to this operator with respect to the involutive operator P with the
"coefficients” B;. It is easy to see that Axioms 1-2 from Subsection 1.2 are fulfilled in view
of (1.15),(1.17) and (1.18). By Theorem 1.3, the operator (1.24) is Fredholm simultaneously

with the matrix operator

K = (P77 By PTU) ) = (N7, (1.25)

where .
=3 PIQM A, PO, (1.26)

j=1

In the notation B, ;_; it is assumed that B;,, = Bjand similarly for A, ;_; .
Up to now we did not use Axiom 3 and obtained the following preliminary result.

Theorem 1.7. Let the operators A, satisfy Azioms 1 and 2 . The operator K is
Fredholm in X if and only if the operator K is Fredholm in X™ and

1
m

To obtain the final result, we suppose now that Axiom 3 is also fulfilled. Using the
formula (1.21), we rewrite the matrix operator (1.25) in the form

K — Z( (k—1)v7— 1P] 1,}/(14: 1)1=

It may be represented as

n

= ArJr] 1P G- 1)) :Zﬁk
L k=1

T7j:

where the matrix Z consists of elements P7~'AP~(=1 where each operator A is a linear
combination of the operators A;; . Now we apply Theorem 1.6 with respect to the involutive
operator Q with the coefficients Zk It is evident, that Axioms 1 and 2 from the Subsection
1.2 with respect to Q and Zk are fulfilled and we have the following final result.

Theorem 1.8. Let the operators A, satisfy Azioms 1-3 . The operator K is Fredholm
i X if and only if the operator

K = (@(M71)Z/\+#71©1—u)> (MA #)AM 1 (1-28)
Ap=1
1s Fredholm in X™ and .
Indy K = —Indym K . (1.29)

mn
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We can construct the operators Z;, effectively in two cases: a)v=1orb)rv=—1in
Axiom 3.
The case a). In this case Axiom 3 takes the form PQ = vQP and we see, that
Zk (7(1@ DG-1) pi- 1Ar+] kP~ (- 1))

rg=1°
Consequently,

My, = (W(j_l)()\+u_2)Q“_lPj_1Ar+j—1,A+u—1P_(j_l)Q_(“_l))”

rj=1

(1.30)

in this case . R
The case b). In this case Axiom 3 is PQ = vQ 'P and the matrix Z; contains odd
columns of the matrix Ny and even columns of the matrix N,,_ ;.. Hence

- 14 (—1)-1 m
2y = (LV% DEGE pi- M joan P j+1> +
2 rj=1
+ (1 . <2_1)] ,y(n_k_l)pr(;l)j Pj_lAr+j—1,n—k+2P_j+1> ’
rj=1
so that
(= , m
My, = (1+( 21)]_17(”“ PG Q“ tpi-t Ar+j—1,A+u—1P7”1Q7M+1) . 1+
7’7‘7:
(1.31)

L4 (1) (neA—p—2) D0 i it o—ptt)

(T’Y QM P A e3P >rj—1

in this case.

b) The case m = n = 2. We single out the case when both of involutions have the
order 2 and suppose that PQ) = QP keeping applications in mind.

In this case the operator (1.14) has the form

K - (All + QAIZ) + P(Agl —|— QAQQ). (132)

We suppose that Axioms 1 and 2 are satisfied. To construct the matrix operator without
shift, we observe that at the first step we obtain the following matrix operator

A+ QA1s P(Ag + QAx)P

(1.33)
Ag1 + QAzy P(An + QAr)P
which includes the involutive matrix operator @ of order 2:
+Q , Q= ) (1.34)



At the next step, we arrive at the matrix operator

All PA21P QA12Q QPA22PQ
A21 PAllp QA22Q QPA12PQ
A12 PAQQP QAHQ QPAQIPQ
A22 PAIQP QAQIQ QPAHPQ

K = (1.35)

As a corollary of Theorem 1.8 we obtain the following result.

Theorem 1.9. Let the operators Aj satisfy Azioms 1-2 and PQ=QP. The operator
K of the form (1.32) is Fredholm in X if and only if the operator K of the form (1.35) is

Fredholm in X* and in this case

1 .
Indy K = JIndx: K. (1.36)

2. Application to integral equations

2.1. Calderon-Zygmund operators with linear Carleman shift
We shall consider two-dimensional singular integral equations with Calderon-Zygmund
singular operators of the type
Q(y')

= —=—p(x — x 2 =2 .
S = [ T ele =y, we R =L .1)

and linear Carleman type shift. By «a(z) = 20z + § we denote a linear transformation
on R?, satisfying the generalized Carleman condition of order n > 2 (that is, a,(x) =
z, ay(r) = alay,—1(x)]), generated by an orthogonal matrix 2. The integral operator
under the consideration will be

n—1
(Ke)(x) =Y {ajpla;(@)] + b;(So,p)las(2)]} = f(z), =€ R, (2.2)
j=0
where a;,b; are constants and og(z) = x. It is assumed that €, <%> , 7 =0,1,....,n—

1, satisfy the standard conditions which provide the boundedness of the corresponding
Calderon-Zygmund operators in the space L,(R?),1 < p < oc.
The function

AN 1 o
&)= [ g o =1,

is known as the symbol of the singular operator Sg,.

Lemma 2.1. Let A be any orthogonal linear transformation in R* and Qp =
o(Az + 3), € R*. Then

QSaQ ' =Sg-  with Q(z) = Q(Ax). (2.3)
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The operator (2.2) has the form

K= Z Q‘j_lAj with Aj = Gj—1 + bj_lcSQ

j—17 ] = 1,2,...,71. (24)
j=1
This enables us to apply the general Theorem 1.3.
We denote
Qo ay ... Gp—1
S(€) = A+ H(E), where A= | @ %2 - 0
Ap—1 Qg ... Qp—29
and
booo() biot(AE) ... by_10, 1 (ALE)

b10'1(£) bQO-Q(Q[é-) boag(ﬂ”_lé)

H(E) = (2.5)

b 10w 1(E) boo(AE) .. by s o(AE)

where 0;(&) are the symbols of Calderon-Zygmund operators with the characteristics €2;(z).

Theorem 2.2. The operator (2.2) is invertible in the space L,(R?*),1 < p < oo, if and
only if infig= | det X(&)| # 0.

Proof. Any linear Carleman-type transformation may be reduced to the so called
canonical case which is either the ”"rational” rotation or reflection with respect to one of
the variables. Therefore, one may take from the very beginning

m:( cosd Sme) with 6=2"% o 9(:(1 0 )

—sinf cosf n 0 —1

We consider the first possibility as more interesting, the second one being easier. To apply
Theorem 1.3, we have to construct the operator U satisfying Axioms 1-2 of that theorem.
We look for the operator U in the form of a singular Calderon-Zygmund operator U = Sq
with some characteristic (z'). Axiom 1 is then reduced to the following relation for the
characteristic 2(z'):

Q(y) = ea2(Ay). (2.6)

We take k = 1 for simplicity and choose (y) = % (the idea of this choice in a differ-
ent situation was formulated by A.I.Koshelenko, Master Theses, Rostov State University,

1981). Then the symbol of the operator U is equal to

.2
(&) = %(51 +1i&), sothat o(§)#0 for [¢]=1.

Therefore, the operator U is invertible. It commutes with the operators Ay as a con-
volution operator. Therefore, Axioms 1 and 2 of Theorem 1.3 are satisfied. The entries
Q' A,4;—1Q" in the matrix operator (1.8) from Theorem 1.3 are equal to

QA 1Q T = aryj20(x) + by aSry

11



where S, ; is the Calderon-Zygmund singular operator with the characteristic ., ;_»(2/"'z),
computed in accordance with Lemma 2.1. Calculating the symbol of this matrix operator
and applying Theorem 1.3, we arrive at the conclusion of our theorem. O

2.2. Singular integral operators with homogeneous kernels

This section is preliminary. We recall here some results on Fredholmness of m x m-
systems of integral equations on R! with homogeneous kernels of degree —1. The scalar
equation (m = 1) has the form

o0

N = a(z)p(z) + blx) / ke, y)oly) dy = £(2), 2.7)
where

k(Az, A\y) = A k(z,y), A > 0.

We consider the operator (2.7) in the space L,(R"), 1 < p < 0o, and assume that a(x), b(x) €
C(RY) and

<
/ ly| 7 |k(£1, y)|dy < oo, (2.8)

the latter condition guaranteeing the boundedness of the integral operator in (2.7) in the

space L,(R"). This condition obviously excludes singular homogeneous kernels of the type

k(xz,y) = ;Ty We recall that equations with homogeneous kernels are easily reduced to

convolution type equations by means of direct exponential change of variables. We give the

corresponding result for systems of equations with homogeneous kernels, see Theorem 2.3.

This theorem may be considered as well known, see for example, [10] in the case m = 1.
In what follows the notation

Ran(€) = [ kL )y (2.9)

will stand for the Mellin transforms of the kernels k(£1, +y).
The corresponding system of integral equations with homogeneous kernels has the form

Nip= Ale)o(o) + B(a) [ " Ko y)ely) dy = Flo), (2.10)

where ¢ = (¢1,p2,...,pm) is a vector-function, A(x), B(z) and K(x,y) are (m x m)-
matrices. We assume that the entries of the matrices A(z) and B(z) are continuous on R,
and the kernel K (z,y) has entries satisfying the conditions (2.8).

It may be shown that Fredholmness of the matrix operator Al is necessary for that of
the operator N. By this reason, we assume that det A(z) # 0, z € R'. We denote

o' (€) 5*(€) 0(§) 028
oo(§) = , 0x(§) = : (2.11)
o3 (&) 05°(§) 0% (&) 03(E)

where the (m x m)-blocs ot (€) and 0¥/ (€) have the form:

05 (&) =1+ ATH0)B(0)K1+ (), 0p*(§) = AT (0)B(0)K,—(8)

12



(2.12)
05/ (§) = ATH0)B(O)K_+(§) . 05°(§) =1+ AT (0)B(0)K__(€)

and similarly for o%(€), k,j = 1,2 with A71(0)B(0) replaced by A~!(c0)B(c0).
Here K1 (&) are matrices with elements of the form (2.9) calculated for the kernels

kjr(xay) :
Theorem 2.3. Let the entries of the matrices A(x) and B(x) be in C(RY) and the

entries of the matriz K (z,y) satisfy the conditions (2.8). The operator of the form (2.10)
is Fredholm in the space L,(R'), 1 <p < oo, if and only if det A(z) # 0 and

1 1

for all x € RY. Under these conditions

det oo (za: t1- %)
Ind,, N = ind

det oy (ix—i—l—%) .

2.3. Integral equations with homogeneous kernels involving terms with in-
version and complex conjugation.

Let us consider the following integral equation

K = alo)e(a) +ba)o(o) + c@)g (2) + da)p () +a(e) [ bw)e)dy

[ee]

() [ o) 2Ty +() [ oo (5) du+0) T atw oo (B)dy = (o)

) (2.13)
where k(z,y),l(z,y),p(z,y) and g(x,y) are homogeneous kernels of degree —1.

Here we have two involutions ¢(z) and ¢ (%) To have a bounded involutive opera-

tor in the latter case, we introduce it in the form (Qp)(z) = \x|_%g0 (1). In this case
1Q¢ll, = |l¢ll,- To be able to apply the general Theorem 1.9, we rewrite the equation
(2.13) introducing the following notation:

an(r)=a(®)  an@) =2 re(t)  an(@)=bE)  an(z) = 2| rd (L)

—_— 2

bi(z) =a(z) b)) =l oy (2)  bulz) =B)  balr) = |z 6 (1)

kll(xay) = k(l’,y) k12($,y) = y%p (%7 i) k?l(xay) = E(%y) k22(I7y) - @%q (%7 i)

and
Qple) = 290(1), Polr) = oa). (2.14)

T

|7
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Evidently, Q* = P? = I and QP = PQ. Under these notations, the equation (2.13) may
be rewritten as
K = (N1 + QNia) + P(Noy + QNa), (2.15)

where N, are operators of the form (2.7):
er = ajr(a:)l + CjT(ZL')KjT, j, r= 1, 2.

We assume that .
ajr(x), bj(z) € C’(Rl) (2.16)

_1 .
/!y\ p |k (£1,y)|dy < oo, j,r,=1,2. (2.17)

We consider the operator K in the space L,(R'). Axioms 1 and 2 from Subsection 1.2
are satisfied under the choice

Upp(z) = ip(x),  Uqp(x) = sign(ln|z])p(x).

The relations
UpP+PUp:O, and UQQ+QUQ:0

are obvious, so that Axiom 1 is satisfied. As regards Axiom 2, we evidently have UpA;, =
A;;Up and UgA;, = A;,Uqg + T}, where Tj, are compact operators. Here we used the fact
that the operator

sign(ln |z|) K, — Kj,sign(ln |y|)

is compact under our conditions, see [10]. To formulate the final result we need to calculate
the entries of the matrix operator (1.35). We have

PNj?"P - ajr(x)j+ er(x)Kjra Kjr@(x) = / kjr(:v,y)go(y)dy, (218)
QN;:Q = aj,(x)] + ¢, (2) K},  Kjp(z) = / ki (2, y)e(y)dy, (2.19)
where . , -
* Yle
ki L A Y
]r(x7y) y2 T (xuy>
and 00
QPN;, PQ = a}.(x)] + ¢ (v) K5, Kio(r)= / K (2, y)e(y)dy (2.20)

for all j,r =1, 2.
It is easy to check that the kernels £, (z,y) satisfy the same integrability condition
(2.8) as kjr(x,y).
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Theorem 1.9 leads us to the matrix operator of the form (2.10) which has to be consid-
ered in the space Lj(R'), where

ain(z) an(z) ajy(z) ajy(r) bin(z) ba(z) bia(z) bio(z)

azn(z) an(z) ap(r) ajy(r) bar(z) bin(z) bi(z) bia(z)
A(x) = , Blz) =

a1a(z) ag(r) ajy(z) aby(v) bia(z) baa(x) b7(z) b5 (x)

axn(z) aa(zr) ay(z) aj(z) baa(z) bia(z) b3 (z) bfy(2)

and

kll(l‘7y) le(mvy) kfﬁ(l’,y) k;2($7y)

k21(367y) ]{311(513,Z/> k’§2<l’,y) k>1k2<x7y)
K(z,y) = . (2.21)

le(xay) kQZ(I,y) kikl(x7y) k;l(xvy)

k22(x7y> km(l‘,@j) k;1<x7y) kﬁ(.ﬁlﬁ,y)

It remains to apply Theorem 2.3 and we arrive at the following result.

Theorem 2.4. Under the assumptions (2.16) and (2.17), the operator (2.13) is Fred-
holm in the space L,(R'), 1 < p < oo, if and only if det A(x) # 0 and

1 1

for all x € R', where the 8 x 8-matrices 0o(€) and 0.s(€) are given by (2.11) and (2.12)
with K(z,y) defined in (2.21). Under these conditions

det o <za: +1-— l)

p

Ind;,, K = <ind : (2.22)
2" detog (z’x—i— 1— %)
Remark. Theorem 1.9 gives the fraction i for the formula for the index. But we have
% in (2.22), because we take into account only real coefficients while considering linear
combinations of complex-valued functions.
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