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Fractional powers of the operator −|x|2∆
in Lp-spaces

Anna V.Abramyan, Vladimir A.Nogin and Stefan G. Samko

Abstract

We investigate fractional powers of the operator −|x|2∆ within the framework of
the spaces Lp(Rn). Negative powers are realized as Riemann-Liouville fractional inte-
grals of a strongly continuous semi-group, while positive powers, inverse to negative,
are constructed as Marchaud fractional derivatives of that semi-group.

1 Introduction

We consider fractional powers of the operator

−|x|2∆, (1.1)

where ∆ is the Laplace operator in Rn. There are a number of papers devoted to inves-
tigation of fractional powers of second order translation invariant differential operators, in
particular, the classical operators of mathematical physics: the wave operator, the Klein-
Gordon-Fock and Schrödinger operators, the telegraph operator, and others (for references
and detailed analysis of the results we refer to the books [16]-[17] and the survey papers
[8],[9],[15]. We observe that positive fractional powers (−∆)α/2f , α > 0, of the operator
−∆ are known to be realized as hypersingular integrals (HSI), see the papers [13]-[14] and
the books [16]-[17]. The case of multidimensional differential operators, invariant with
respect to dilations (and rotations) is almost untouched. We can only mention the papers
[4] and [1], devoted to the investigation of fractional powers
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The goal of this paper is to fill in this gap with respect to the operator (1.1). Its
fractional powers are defined as follows. We base ourselves on the expansion

(−|x|2∆ϕ)(x) =
1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫

Re s={
|x|−s ×

×(m + n− 2− s)(m + s)(Mϕmµ)(s) ds, x ∈ Rn, (1.2)



where {Ymµ(x′)} is the orthonormal basis of spherical harmonics,

(Mϕmµ)(s) =

∫ ∞

0

τ s−1ϕmµ(τ) dτ

is the Mellin transform of the Fourier-Laplace coefficients

ϕmµ(r) =

∫

Sn−1

ϕ(rσ)Ymµ(σ) dσ .

In view of (1.2) it is natural to define the negative powers (−|x|2∆)−α/2ϕ, Reα > 0, as
follows:

(−|x|2∆)−α/2ϕ(x) ≡ (Iα
{ϕ)(x) =

1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫

Re s={
|x|−s ×

×(m + n− 2− s)−α/2(m + s)−α/2(Mϕmµ)(s) ds, ϕ ∈ C∞
0,0. (1.3)

As is shown in this paper, the operator Iα
{ is extended as a bounded operator to the

whole space Lp, 1 < p < ∞. We obtain the integral representation for the potential
Iα
{f , Reα > 0, ϕ ∈ Lp, via the Riemann-Liouville fractional integral of a certain strongly

continuous semi-group Tt and prove the inversion formula

DαIα
{ϕ = ϕ,

where Dαf is the Marchaud-type fractional derivative of the semi-group Tt (a realization
of the Balakrishnan formula). In fact, we obtain an explicit expression for the positive
powers (−|x|2∆)α/2f , Reα > 0.

The paper is organized as follows. Section 2 contains some auxiliary information, in
particular, for radial-spherical expansions and multidimensional integral operators with
homogeneous kernels. In Section 3 we define the negative powers Iαϕ = (−|x|2∆)−α/2ϕ,
Reα > 0, by (1.3) and prove that the operator Iα

{ is bounded in Lp(R
n), 1 < p < ∞. We

also obtain the following representation for the potentials Iα
{ϕ in terms of radial-spherical

convolutions:

(Iα
{f)(x) =

∫

Rn
ϕ(y)kα

( |x|
|y| , x

′ · y′
)

dy

|y|n , (1.4)

which is of special interest itself. In Section 4 we study the semi-group Tt generated by the
infinitesimal operator |x|2∆ and obtain the representation

(Iα
{f)(x) =

1

Γ(α/2)

∫ ∞

0

tα/2−1(Ttϕ)(x) dt, ϕ ∈ Lp (1.5)

for the potential Iα
{f . The equality (1.5) enables us to apply the HSI’s method for inverting

the potential f = Iαϕ, ϕ ∈ Lp, provided that n/(n− 2) < p < ∞. Within the framework
of this approach, in Section 5 the inversion is constructed as follows:

Dαf =
(Lp)

lim
ε→0

Dα
ε f, (1.6)

where

(Dα
ε f)(x) =

1

κ(α/2, l)

∫ ∞

ε

(E − Tτ )
lf(x)

dτ

τα/2+1
.

Some of the results presented in this paper were announced in [2].
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2 Preliminaries

1◦. Notation:

x′ = x
|x| , x ∈ Rn;

Sn−1 is the unit sphere in Rn;
|Sn−1| is its Lebesgue measure;

dn(m) = (n+2m− 2) (n+m−3)!
m!(n−2)!

,n > 2, is the dimension of the space of spherical harmonic
of order m;
(Fϕ)(ξ) =

∫
Rnϕ(x) exp(ix · ξ) dx is the Fourier transform of ϕ;

Lp = Lp(R
n); ‖ϕ‖p = ‖ϕ‖Lp ;

Lp(A,w) = {f : ‖f‖p
Lp(A,w) =

∫
A
|f(x)|pw(x) dx < ∞}, w ≥ 0;

C∞
0,0(R+) is the class of infinitely differentiable functions on R+ with a compact support

beyond the origin;
Z0

+ = {0, 1, 2, . . . };
λ− =

{
0, λ > 0,
|λ|, λ < 0;

By zα, α ∈ C, we denote the main branch (k = 0) of the multi-valued function zα =
exp(α[ln |z|+ i arg z + 2kπi]) analytic in the complex plane cutted along the negative real
semiaxis .

The end of the proof is denoted by ¥ .
2◦. Some properties of the Mellin transform (see [7, § 2]). Let Lc(0,∞) be

the class of complex valued piece-wise continuous functions f(x) on (0, +∞) with a finite

number of jumps and such that

∫ ∞

0

|f(x)| dx < ∞. The following statements are valid.

Lemma 2.1 Let ϕ(x)x{−1 ∈ Lc(0,∞) and let ϕ(x) be piece-wise differentiable in some
neighborhood (x0 − ε, x0 + ε) of a point x0 > 0 and continuous at x0. Then

ϕ(x0) =
1

2πi
lim

λ→∞

∫ {+iλ

{−iλ

(Mϕ)(s)x−s
0 ds.

Lemma 2.2 If f(x)x{−1 and g(x)x{−1 ∈ Lc(0,∞), then the Mellin convolution h(x) =∫ ∞

0

f(y)g

(
x

y

)
dy

y
exists and h(x)x{−1 ∈ Lc(0,∞), and (Mh)(s) = (Mf)(s)(Mg)(s),

where Re s = κ.

3◦. Radial-spherical expansions and multipliers (see [12]). Let ϕ ∈ C∞
0,0. The

expansion

ϕ(x) =
1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫

Re s={
|x|−s(Mϕmµ)(s) ds,

where the series in the right-hand side converges absolutely and uniformly in any layer
0 < α ≤ |x| ≤ β < ∞ for all κ ∈ R, is known as the radial-spherical expansion.
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Consider the operator

(A{ϕ)(x) =
1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)×

×
∫

Re s={
|x|−sµm(s)(Mϕmµ)(s) ds, ϕ ∈ C∞

0,0,

generated by the sequence of measurable functions µm(s), defined on the straight line
Re s = κ.

Theorem 2.1 ([12]). Let n ≥ 2, 1 < p < ∞, κ = (λ + n)/p and let the following
assumptions be satisfied

I) there exist numbers N0 ∈ Z0
+, C1 > 0 and C2 > 0 such that

∣∣∣∣ξk ∂k

∂ξk
µm

(
λ + n

p
+ iξ

)∣∣∣∣ ≤ C1, ξ ∈ R \ {0},

where m = 0, 1, . . . , N0 and k = 0, 1 with C1 not depending on ξ and m;
II) there exists a function M(ξ, η) : R × [N0,∞) → C such that M(ξ,m) = µm((λ +

n)/p + iξ) for all m ≥ κ and
∣∣∣∣ξkηl ∂k

∂ξk

∂l

∂ηl
M(ξ, η)

∣∣∣∣ ≤ C2, ξ ∈ R \ {0}, η ≥ N0,

l = 0, 1, . . . , [(n + 1)/2], k = 0, 1, where C2 does not depend on ξ and η.
Then ‖A{ϕ‖Lp(Rn

,|x|λ) ≤ b(C1 + C2)‖ϕ‖Lp(Rn
,|x|λ), ϕ ∈ C∞

0,0, where b is some absolute
constant not depending on {µm(s)}∞m=0.

4◦. On the analyticity of an integral depending on a parameter. The following
lemma is known.

Lemma 2.3 ([16], Subsection 5.2 of Ch.1). Let f(x, z) be an analytic function with respect
to z ∈ D ⊂ C for almost all x ∈ Ω ⊆ Rn which is dominated by a function integrable in

x not depending on z: |f(x, z)| ≤ F (x) ∈ L1(Ω). Then the integral

∫

Ω

f(x, z) dx is an

analytic function in D.

5◦. Lp-mapping properties of operators with homogeneous kernels. The
following statement is contained in Theorem 1 from [6].

Theorem 2.2 Let

(Kϕ)(x) =

∫

Rn
k

( |x|
|y| , x

′ · y′
)

ϕ(y)
dy

|y|n
and let the condition

A = |Sn−2|
∫ ∞

0

∫ 1

−1

|k(ρ, t)| ρ(n+λ)/p−1(1− t2)(n−3)/2 dρ dt < ∞ (2.1)

be satisfied. Then K is bounded in Lp(R
n, |x|λ), 1 < p < ∞, and ‖K‖ ≤ A.
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3 Fractional powers (−|x|2∆)−α/2, Reα > 0, in Lp-spaces

1◦. Heuristic arguments. Applying the inverse Mellin transform in the equality

(M(−|x|2∆ϕ)mµ)(s) = (m + n− 2− s)(m + s)(Mϕmµ)(s), ϕ ∈ C∞
0,0, (3.1)

we have

(−|x|2∆ϕ)mµ(|x|) =
1

2πi

∫

Re s={
|x|−s(m + n− 2− s)(m + s)(Mϕmµ)(s) ds.

Expanding the function −|x|2(∆ϕ)(x) into the Fourier-Laplace series (see [16], p.34), we
arrive at the equality

−|x|2(∆ϕ)(x) =
∞∑

m=0

dn(m)∑
µ=1

Ymµ(x′)(−|x|2∆ϕ)mµ(|x|) =

=
1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫

Re s={
|x|−s(m + n− 2− s)(m + s)(Mϕmµ)(s) ds,

where ϕ ∈ C∞
0,0, κ ∈ R.

Basing on this equality, it is natural to define negative powers (−|x|2∆)−α/2ϕ = Iα
{ϕ

with Reα > 0 and κ ∈ R, by (1.3).
2◦. Mapping properties of the operator Iα

{ in Lp. The following theorem provides
Lp-estimates for the operator Iα

{ defined in (1.3).

Theorem 3.1 Let n ≥ 2, 1 < p < ∞, κ = n/p, Reα > 0. Then

‖Iα
{ϕ‖p ≤ C‖ϕ‖p

for ϕ ∈ C∞
0,0 where C does not depend on ϕ.

The statement of Theorem 3.1 follows from Theorem 2.1, when p 6= 2 and n = 2, or
p /∈ {n/(n−1), n/(n−2)} and n ≥ 3. The proof being direct, we omit it. In the remaining
cases, the proof is derived from the Riesz interpolation theorem.

3◦. Integral representation for the operator Iα
{, n ≥ 3. We introduce the kernel

aα
m(ρ) =

(2m + n− 2)
1−α

2√
πΓ(α/2)

| ln ρ|α−1
2 Kα−1

2

(
2m + n− 2

2
| ln ρ|

)
ρ

2−n
2 , 0 < ρ < ∞

where Kν(z) is the McDonald function of order ν. Its Mellin transform is given by

(Maα
m)(s) = (m + n− 2− s)−α/2(m + s)−α/2, −m < Re s < m + n− 2, (3.2)

which is verified by means of the formula
∫ ∞

0

tνKν(at)cosh ptdt =
2ν−1

√
πΓ

(
ν + 1

2

)
aν

(a2 − p2)ν+ 1
2

, (3.3)

a > 0, ν > −1

2
, |p| < a

(see [11], formula 2.16.6.6; it may be also obtained from the formula more known formula
6.621.3 in [5] by use of some standard properties of the Gauss hypergeometric function).
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Lemma 3.1 Let Reα > 0, n ≥ 3, m ∈ Z0
+ and κ ∈ (0, n− 2). Then the representation

1

2πi

∫

Re s={
ρ−s(m + n− 2− s)−α/2(m + s)−α/2(Mψ)(s) ds =

=

∫ ∞

0

aα
m

(ρ

r

)
ψ(r)

dr

r
, ψ ∈ C∞

0,0, (3.4)

is valid.

Proof. Denote h(g) =

∫ ∞

0

aα
m

(ρ

r

)
ψ(r)

dr

r
. Using the well-known properties of the

McDonald function (see, for example, [3]), it is easy to verify that ρ{−1aα
m(ρ) ∈ Lc(0,∞),

if κ ∈ (0, n−2). Hence, t{−1h(t) ∈ Lc(0,∞) and (Mh)(s) = (Mψ)(s)(Maα
m)(s) by Lemma

2.2. Then Lemma 2.1 and relation (3.2) yield (3.4). ¥
Making use of Lemma 3.1 in (1.3), we have

(Iα
{ϕ)(x) =

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫ ∞

0

aα
m

( |x|
ρ

)
ϕmµ(ρ)

dρ

ρ
,

0 < κ < n− 2, ϕ ∈ C∞
0,0 . Taking into account the equality

dn(m)∑
µ=1

Ymµ(x′)Ymµ(σ) =
dn(m)

|Sn−1|Pm(x′ · σ), (3.5)

(see [16], formula 1.57), where the Legendre polynomial

Pm(θ) =
(n− 3)!m!

(m + n− 3)!
C

n−2
2

m (θ), −1 ≤ θ ≤ 1, (3.6)

is defined via the Gegenbauer polynomial Cλ
m(θ), we obtain

(Iα
{ϕ)(x) =

1

|Sn−1|
∞∑

m=0

dn(m)

∫ ∞

0

∫

Sn−1

ϕ(rσ)aα
m

( |x|
r

)
Pm(x′ · σ)

dr

r
dσ

=
1

|Sn−1|
∞∑

m=0

dn(m)

∫

Rn
ϕ(y)aα

m

( |x|
|y|

)
Pm(x′ · y′) dy

|y|n , (3.7)

ϕ ∈ C∞
0,0, 0 < κ < n− 2. To represent the potential Iα

{ϕ as a radial-spherical convolution,
we consider the kernel

kα(ρ, θ) =
1

|Sn−1|
∞∑

m=0

dn(m)aα
m(ρ)Pm(θ),

where Reα > 0, 0 < ρ < ∞, and −1 ≤ θ ≤ 1.

Lemma 3.2 Let n ≥ 3, Reα > 0, −1 ≤ θ ≤ 1, ρ > 0 and ρ 6= 1. Then

kα(ρ, θ) =
| ln ρ|α−1ρ

2−n
2

|Sn−1|2α−1Γ(α
2
)

∫ ∞

1

(t2 − 1)
α
2
−1 |ρn−2

2
t − ρ

n+2
2

t|
(1− 2θρt + ρ2t)

n
2

dt = (3.8)
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=
21−αρ

2−n
2

|Sn−1|Γ
(

α
2

)
∫ eρ

0

(
ln2 s− ln2 ρ

)α
2
−1 s

n−4
2 (1− s2) ds

(1− 2θs + s2)
n
2

,

where ρ̃−min
(
ρ, 1

ρ

)
= ρsign (1−ρ).

Proof. We rewrite kα(ρ, θ) as:

kα(ρ, θ) =
1

|Sn−1|(n− 2)

∞∑
m=0

(2m + n− 2)aα
m(ρ)C

n−2
2

m (θ). (3.9)

Using the formula 8.432(3) from [5], we obtain

aα
m(ρ) =

| ln ρ|α−1ρ
2−n

2

Γ2(α
2
)2α−1

∫ ∞

1

(t2 − 1)
α
2
−1 exp

(
−(m +

n− 2

2
)| ln ρ|t

)
dt,

whence

kα(ρ, θ) =
| ln ρ|α−1ρ

2−n
2 21−α

|Sn−1|(n− 2)Γ2(α
2
)

∞∑
m=0

(2m + n− 2)C
n−2

2
m (θ)×

×
∫ ∞

1

(t2 − 1)
α
2
−1 exp

(
−(m +

n− 2

2
)| ln ρ|t

)
dt

by (3.9). Changing the order of integration and summation, we arrive at the equality

kα(ρ, θ) =
| ln ρ|α−1ρ

2−n
2

|Sn−1|2α−1Γ2(α
2
)

∫ ∞

1

(t2 − 1)
α
2
−1Sn(ρ̃t; θ) dt,

where

Sn(z; θ) =
1

n− 2

∞∑
m=0

(2m + n− 2)zm+n−2
2 C

n−2
2

m (θ),

0 < z < 1, −1 ≤ θ ≤ 1. We have

Sn(z; θ) =
2

n− 2
z

d

dz

(
z

n−2
2

∞∑
m=0

zmC
n−2

2
m (θ)

)
. (3.10)

Since (1− 2rt + r2)−λ =
∑∞

m=0 Cλ
m(t)rm (see [16], formula (1.16)), we obtain

Sn(z; θ) =
2

n− 2
z

d

dz

(
z

1− 2θz + z2

)n−2
2

=
z

n−2
2 − z

n+2
2

(1− 2θz + z2)
n
2

which yields (3.8). ¥
We also need the following estimates for the kernel kα(ρ, θ).

Lemma 3.3 Let Reα > 0, n ≥ 3, 0 < ρ < ∞, −1 ≤ θ ≤ 1.
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I) If −1 ≤ θ ≤ 1/2, 0 < ρ < ∞, then

|kα(ρ, θ)| ≤ C





| ln ρ|Reα/2−1, 0 < ρ < 1/2;
| ln ρ|Reα−1, 1/2 < ρ < 2, 0 < Reα < 1;
| ln | ln ρ||, 1/2 < ρ < 2, Reα = 1;
1, 1/2 < ρ < 2, Reα > 1;
| ln ρ|Reα/2−1ρ2−n, 2 < ρ < ∞.

(3.11)

II) If 1/2 < θ ≤ 1, 0 < ρ̃ ≡ min{ρ, 1/ρ} < θ − 1/4, then

|kα(ρ, θ)| ≤ C| ln ρ|Reα/2−1

{
1, 0 < ρ < 1/2;
ρ2−n, 2 < ρ < ∞.

(3.12)

III) Let 1/2 < θ ≤ 1, θ − 1/4 ≤ ρ̃ < 1. The following inequalities are valid:
a) if 0 < Reα < 2n− 2, then

|kα(ρ, θ)| ≤ C
[|ρ− 1|(Reα/2−1)−(1− 2θρ̃ + ρ̃2)(Reα−2n+2)/4 (3.13)

+|ρ− 1|1+(Reα/2−1)−(1− 2θρ̃ + ρ̃2)(Reα−2n)/4 + 1
] ≡ CuReα(ρ; θ);

b) if Reα > 0 then

|kα(ρ, θ)| ≤ C|ρ− 1|(Reα/2−1)−+(Reα/2−n+1)− ≡ CvReα(ρ; θ). (3.14)

Moreover, the constant C can be chosen independent of α in a small neighborhood of
each point α of the half-plane Reα > 0.

The proof of lemma is reduced to the direct estimation of the right-hand side of (3.8).
Let

(Iαϕ)(x) =

∫

Rn
ϕ(y)kα

( |x|
|y| , x

′ · y′
)

dy

|y|n . (3.15)

The following theorem provides the representation for the operator (1.3) in the form of a
radial-spherical convolution.

Theorem 3.2 Let Reα > 0, n ≥ 3, 0 < κ < n− 2, ϕ ∈ C∞
0,0. Then

(Iα
{ϕ)(x) ≡ (Iαϕ)(x), (3.16)

where (Iα
{ϕ)(x) was defined in (1.3).

Proof. Let Reα > n − 1 first. Changing the order of integration and summation in (3.7),
we obtain (3.16). This interchange is justified by the inequality

∞∑
m=1

dn(m)

∫

Rn

∣∣∣∣ϕ(y)aα
m

( |x|
|y|

)
Pm(x′ · y′)

∣∣∣∣
dy

|y|n < ∞. (3.17)

The last inequality follows from the estimates

|Pm(θ)| ≤ 1, −1 ≤ θ ≤ 1, (3.18)

dn(m) ≤ Cmn−2, (3.19)
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(see [16], inequality (1.55) and Corollary to Lemma 1.4) and the equality
∫

Rn
aReα

m

(
1

|y|
)

dy

|y|n = (MaReα
m )(0).

The validity of the equality in (3.16) for Reα > 0 isderived from the analyticity of its
both sides in the half-plane Reα > 0. The analiticity of the left-hand side is derived from
the uniform convergence of the series (1.3) in the half-plane Reα > 0 (for any fixed x 6= 0).
We omit the proof of this fact, because it is purely technical. Let us prove the analyticity
of the right-hand side of (3.16). Analyticity of the function kα(ρ, θ) defined in (3.8) in the
half-plane Reα > 0 follows from Lemma 2.3 in view of the estimate

|(t2 − 1)α/2−1| ≤ (t2 − 1)ε/2−1 + (t2 − 1)N/2−1,

where t > 1, 0 < ε < Reα < N < ∞. Then the application of Lemma 2.3 provides the
analyticity of the integral Iαϕ, defined in (3.15), in the half-plane Reα > 0 by virtue of the
estimate

|kα(ρ, θ)| ≤ C

{
uε(ρ, θ) + uN(ρ, θ), 0 < ε < Reα < N = 2n− 2,
vδ(ρ, θ) + uL(ρ, θ), 2n− 4 < δ < Reα < L < ∞,

(3.20)

where 1/2 < θ ≤ 1 and θ − 1/4 ≤ ρ̃ ≡ min{ρ, 1/ρ} < 1 and the functions uγ and vγ

were defined in (3.13) and (3.14), the constant C in (3.20) not depending on α in a small
neighborhood of each point α, Reα > 0. The integrability of the function in the right-hand
side of (3.20) - which is required by Lemma 2.3 - follows from the relations:

uγ

( |x|
|y| , x

′ · y′
)

ξ(x′ · y′) ∈ L1

(
{y ∈ Rn :

1

2
<
|x|
|y| < 2}

)
,

if γ ∈ (0, 2n− 2], where

ξ(θ) =

{
1, if 1/2 < θ ≤ 1,
0, if − 1 ≤ θ ≤ 1/2,

and

vγ

( |x|
|y| , x

′ · y′
)

ξ(x′ · y′) ∈ L1

(
{y ∈ Rn :

1

2
<
|x|
|y| < 2}

)
,

if γ > 2n− 4. ¥
4◦. Representation of the potential Iα

{ϕ, ϕ ∈ Lp. To extend (3.16) to the whole
space Lp, we need the following theorem.

Theorem 3.3 Let Reα > 0, n ≥ 3 and n/(n − 2) < p < ∞. Then the operator Iα is
bounded in Lp.

The statement of Theorem 3.3 follows from Theorem 2.2. The latter is applicable in
view of the inequality

A ≤ C

(∫ 1/2

0

| ln ρ|Reα/2−1ρn/p−1dρ +

+

∫ ∞

2

| ln ρ|Reα/2−1ρn/p+1−ndρ + 1

)
=

= C

(∫ ∞

ln 2

tReα/2−1 [exp(−nt/p) + exp((n/p + 2− n)t)] dt + 1

)
< ∞.
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Since the operators on both sides of the relation (3.16) are bounded in Lp , if Reα > 0,
n ≥ 3 and n/(n − 2) < p < ∞, this relation is extended by continuity to the whole Lp

under the given restrictions on the parameters. ¥

4 Representation of the potential Iαϕ via the Riemann-

Liouville fractional integral of a strongly continuous

semi-group

In this section we study the semi-group Tt generated by the infinitesimal operator |x|2∆.
Our main goal is to prove the representation (1.5).

1◦. Heuristic arguments.
The semi-group Tt, t > 0, generated by the infinitesimal operator |x|2∆ is

(Ttϕ)(x) = exp(t|x|2∆)ϕ(x) =
∞∑

k=0

tk

k!
(|x|2∆)kϕ(x), ϕ ∈ C∞

0,0.

By virtue of (3.1) we obtain

(M(Ttϕ)mµ)(s) =
∞∑

k=0

tk

k!

[
M

(
(|x|2∆)kϕ(x)

)
mµ

]
(s) =

=
∞∑

k=0

tk(s + m)k(s−m− n + 2)k

k!
(Mϕmµ)(s) =

= exp ((s + m)(s−m− n + 2)t)(Mϕmµ)(s),

whence

(Ttϕ)mµ(ρ) =
1

2πi

∫

Re s={
|x|−sexp ((s + m)(s−m− n + 2)t)(Mϕmµ)(s) ds.

Expanding (Ttϕ)(x) into the Fourier-Laplace series, we have

(Ttϕ)(x) =
1

2πi

∞∑
m=0

dn(m)∑
µ=1

Ymµ(x′)
∫

Re s={
|x|−s ×

×exp ((s + m)(s−m− n + 2)t)(Mϕmµ)(s) ds, (4.1)

where ϕ ∈ C∞
0,0, κ ∈ R.

2◦. Mapping properties of the operator Tt in Lp. The following theorem provides
the Lp -estimates for the operator Tt, t > 0, defined in (4.1).

Theorem 4.1 Let n ≥ 2, 1 < p < ∞, 0 < t < M and κ = n/p. Then ‖Ttϕ‖p ≤ C‖ϕ‖p,
ϕ ∈ C∞

0,0, where the constant C = C(M) does not depend on t and ϕ.
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The proof is reduced to the direct application of Theorem 2.1.
3◦. Integral representation for the operator Tt. Here we obtain a representation

for the operator Tt, defined in (4.1), in the form of a radial-spherical convolution. We
denote

bt
m(ρ) =

1

2
√

πt
exp

(
−(ln ρ)2

4t
− (2m + n− 2)2

4
t

)
ρ(2−n)/2, n ≥ 2,

where 0 < ρ < ∞ and t > 0 and use the following technical lemma.

Lemma 4.1 Let t > 0, n ≥ 2, m ∈ Z0
+, κ ∈ R. Then

1

2πi

∫

Re s={
ρ−sexp ((s + m)(s−m− n + 2)t)(Mψ)(s) ds =

=

∫ ∞

0

bt
m

(ρ

r

)
ψ(r)

dr

r
, ψ ∈ C∞

0,0. (4.2)

Proof. We observe that

(Mbt
m)(s) = exp ((s + m)(s−m− n + 2)t), −∞ < Re s < ∞, (4.3)

which is a consequence of the formula 2.3.16(11) from [10]. To prove (4.2), we denote

Ht(ρ) =

∫ ∞

0

bt
m

(ρ

r

)
ψ(r)

dr

r
.

Since r{−1bt
m(r) and r{−1ψ(r) are in Lc(0,∞) for any κ ∈ R, by Lemma 3.1 we obtain

that r{−1Ht(ρ) ∈ Lc(0,∞) and (MHt)(s) = (Mbt
m)(s)(Mψ)(s). Making use of Lemma 2.1

and equality (4.3), we arrive at (4.2). ¥

Theorem 4.2 Let n ≥ 2, t > 0, κ ∈ R and ϕ ∈ C∞
0,0. Then

(Ttϕ)(x) =

∫

Rn
ϕ(y)ht

( |x|
|y|

)
St(x

′ · y′) dy

|y|n , (4.4)

where

ht(ρ) = bt
0(ρ) =

1

2
√

πt
exp

(
−(ln ρ)2

4t
− (n− 2)2

4
t

)
ρ(2−n)/2 (4.5)

and

St(θ) =
1

|Sn−1|
∞∑

m=0

dn(m) exp (−m(m + n− 2)t) Pm(θ). (4.6)

Proof. From (4.1), in view of (4.2) we have

(Ttϕ)(x) =
∞∑

m=0

dn(m)∑
µ=1

Ymµ(x′)
∫ ∞

0

bt
m

( |x|
r

) ∫

Sn−1

ϕ(rσ)Ymµ(σ) dσ
dr

r
, (4.7)
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whence by virtue of (3.5) we obtain

(Ttϕ)(x) =
1

|Sn−1|
∞∑

m=0

dn(m)

∫ ∞

0

∫

Sn−1

ϕ(rσ)bt
m

( |x|
r

)
Pm(x′ · σ)

dr

r
dσ =

=
1

|Sn−1|
∞∑

m=0

dn(m)

∫

Rn
ϕ(y)bt

m

( |x|
|y|

)
Pm(x′ · y′) dy

|y|n . (4.8)

Changing the order of integration and summation in (4.8), we obtain (4.4). This inter-
change is justified by the fact that

A(x) : ≡
∞∑

m=1

dn(m)

∫

Rn

∣∣∣∣ϕ(y)bt
m

( |x|
|y|

)
Pm(x′ · y′)

∣∣∣∣
dy

|y|n < ∞.

Indeed, the application of (3.15), (3.16) and (4.3) yields

A(x) ≤ C

∞∑
m=1

mn−2

∫

Rn
bt
m

( |x|
|y|

)
dy

|y|n

= C

∞∑
m=1

mn−2

∫

Rn
bt
m

(
1

|y|
)

dy

|y|n = C

∞∑
m=1

mn−2(Mbt
m)(0)

= C

∞∑
m=1

mn−2 exp (−m(m + n− 2)t) < ∞.

¥
The following theorem plays an important role in the justification of the inversion

formula for the potential Iαϕ.

Theorem 4.3 Let n ≥ 2, t > 0 and 1 < p < ∞. Then

‖Ttϕ‖p ≤ Ct‖ϕ‖p, ϕ ∈ Lp, (4.9)

where

Ct = C(1 + t1−n) exp

[
n

p

(
2− n +

n

p

)
t

]
,

with the constant C not depending on t.

Proof. The proof is obtained by direct application of Theorem 2.2 to the right-hand
side of (4.6). Let us show that A ≤ Ct, where A is the constant (2.1). The application of
(3.15) and (3.19) yields

A =
exp(−(n− 2)2t/4)

2
√

πt|Sn−1|

∫ ∞

0

exp

(
−(ln ρ)2

4t

)
ρ(2−n)/2+n/p−1dρ×

×
∫

Sn−1

( ∞∑
m=0

dn(m) exp (−m(m + n− 2)t) |Pm(θ · σ|
)

dθ ≤

C
exp(−(n− 2)2t/4)

2
√

πt

∫ +∞

−∞
exp

(
−x2

4t
+

(
2− n

2
+

n

p

)
x

)
dx×

×
[
1 +

∞∑
m=1

mn−2 exp (−m(m + n− 2)t)

]
.
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Taking into account the formula 2.3.16(11) from [10] and the estimate

xce−ctx ≤ (et)−c,

where t > 0, c > 0, and x > 0, we have

A ≤ C exp

[
n

p

(
2− n +

n

p

)
t

]
×

×
(

1 +
∞∑

m=1

[
mn−2 exp (−(n− 2)tm) exp(−m2t)

]
)
≤

≤ C exp

[
n

p

(
2− n +

n

p

)
t

] (
1 + t2−n

∞∑
m=1

exp(−mt)

)
.

In view of the relation

1 + t2−n

∞∑
m=1

exp(−mt) = 1 +
t2−n

exp(t)− 1
≤ 1 + t1−n

we obtain (4.9). ¥
We note that the above theorem provides sharper estimates for the norms ‖Tt‖Lp→Lp

in comparison with those obtained in Theorem 4.1. It states that

‖Tt‖Lp→Lp ≤ C exp

[
n

p

(
2− n +

n

p

)
t

]
, t > 0, 1 < p < ∞, (4.10)

where C does not depend on t.
We also give the following point-wise estimate for (Ttϕ)(x), which will be used in the

justification of the inversion formula for the potential Iαϕ.

Lemma 4.2 Let ϕ ∈ C∞
0,0 and n ≥ 2. Then

|(Ttϕ)(x)| ≤ C|x|−1/r′t−1/(2r) exp

{
1

r

(
2− n +

1

r

)
t

}
, t > 0,

where 1 < r < ∞, x ∈ Rn \ {0} and C depends only on ϕ, n and r.

The proof is based on the equality (4.7).
4◦. Further properties of the operator Tt. Theorems 4.4 and 4.5 below show that

the family {Tt}t≥0 is a semi-group strongly continuous in Lp.

Theorem 4.4 Let n ≥ 2, 1 < p < ∞ and ϕ ∈ Lp(R
n). Then

(TtTτϕ)(x) = (Tτ+tϕ)(x), t > 0, τ > 0. (4.11)
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Proof. Since the operators on both sides of (4.11) are bounded in Lp, it remains to verify
this equality for ϕ ∈ C∞

0,0. For such ϕ(x) we have by (4.4)

(TtTτϕ)(x) =

∫

Rn
ht

( |x|
|y|

)
St(x

′ · y′)
(∫

Rn
hτ

( |y|
|z|

)
Sτ (y

′ · z′)ϕ(z)
dz

|z|n
)

dy

|y|n∫

Rn
ϕ(z)

(∫ ∞

0

ht

( |x|
ρ

)
hτ

(
ρ

|z|
)

dρ

ρ

)(∫

Sn−1

St(x
′ · σ)Sτ (σ · z′) dσ

)
dz

|z|n .

Application of the equalities

∫ ∞

0

ht(a/ρ)hτ (ρ/b)
dρ

ρ
= ht+τ (a/b), t > 0, τ > 0, a > 0, b > 0,

and ∫

Sn−1

St(x
′ · σ)Sτ (σ · y′) dσ = St+τ (x

′, y′),

obtained by simple calculations, yields (4.11). ¥

Theorem 4.5 Let n ≥ 2 and ϕ ∈ Lp(R
n), 1 < p < ∞. Then

lim
t→0

‖Ttϕ− ϕ‖p = 0 (4.12)

The verification of (4.12) is now easily obtained by means of the Banach-Steinhaus
theorem: the uniform estimate

sup
0<t<1

‖Tt‖Lp→Lp < ∞

is a consequence of (4.9), while the proof of (4.12) for ϕ ∈ C∞
0,0 is direct.

The following theorem plays a crucial role in the justification of the inversion formula
for the operator Iα within the framework of Lp-spaces.

Theorem 4.6 Let n ≥ 3, Reα > 0. On functions ϕ ∈ C∞
0,0 the operator (3.15) may be

represented as

(Iαϕ)(x) =
1

Γ(α/2)

∫ ∞

0

tα/2−1(Ttϕ)(x) dt. (4.13)

Proof. Let Reα > 2n − 2. Substituting (4.4) into the integral on the right-hand side of
(4.13) and changing the order of integration, after simple calculations we arrive at the
left-hand side of (4.13).

The validity of (4.13) in the case Reα > 0 follows from the analyticity of both sides
in the half-plane Reα > 0. The analyticity of the left-hand side follows from the uniform
convergence of the series (1.3) in the half-plane Reα > 0 (as was mentioned in the proof
of Theorem 3.2). The analyticity of the right-hand side is evident in view of Lemma 3.2.
¥
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5 Inversion of the potential f = Iαϕ, ϕ ∈ Lp

1◦. The case α > 0. Denote

(Dα
ε f)(x) =

1

κ(α/2, l)

∫ ∞

ε

(E − Tt)
lf(x)

dt

tα/2+1
, α > 0,

where

(E − Tt)
lf(x) =

l∑

k=0

(−1)k

(
l
k

)
(Tktf)(x),

κ(λ, l) =

∫ ∞

0

(1− e−t)l

t1+λ
dt, l > λ. (5.1)

Let

(Jαg)(t) =
1

Γ(α)

∫ ∞

t

g(τ)(τ − t)α−1dτ, α > 0

be the Liouville fractional integral.

Theorem 5.1 Let n ≥ 3, α > 0, and ϕ ∈ Lp with n/(n− 2) < p < ∞. Then

(Lp)

lim
ε→0

(Dα
ε I

αϕ)(x) = ϕ(x).

The proof is based on the following lemmas.

Lemma 5.1 Let ϕ ∈ C∞
0,0, α > 0 and n ≥ 3. Then

(TtI
αϕ)(x) =

(
Jα/2(T(·)ϕ)(x)

)
(t), t > 0.

The proof is a matter of direct verification.
In the following lemma we use the identity approximation kernel

k(η) =
∆l

1

[
η

α/2
+

]

ηΓ(α/2 + 1)κ(α/2, l)
, (5.2)

where

(∆l
τf)(x) =

l∑

k=0

(−1)k

(
l
k

)
f(x− kτ),

is the finite difference. The kernel k(η) is well known in fractional calculus ([17], Subsection
6.2 of Ch. 7). It is known that

k(η) ∈ L1(0,∞) and

∫ ∞

0

k(η) dη = 1. (5.3)
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Lemma 5.2 Let α > 0, ϕ ∈ C∞
0,0 and n ≥ 3. Then for any ε > 0 and t > 0 the following

equality holds:

1

κ(α/2, l)

∫ ∞

ε

∆l
τ

[
(T(·)I

αϕ)(x)
]
(t)

dτ

τα/2+1
=

=

∫ ∞

0

k(η)(Tt+εηϕ)(x) dη, 0 < α < 2` . (5.4)

Proof. Relations (5.3) for the kernel (5.2) are well-known (see, for example, [17], Subsection
6.2). The proof of (5.4) is based on the following auxiliary equality

∆l
τ

[
(T(·)I

αϕ)(x)
]
(t) =

∫ ∞

0

gτ (ξ)(Tt+ξϕ)(x) dξ, (5.5)

where

gτ (ξ) =
1

Γ(α/2)
∆l

τ [ξ
α/2+1
+ ] ∈ L1(0,∞), 0 < α < 2l.

Indeed, for any t > 0 by Lemma 5.1 we have

∆l
τ

[
(T(·)I

αϕ)(x)
]
(t) =

l∑

k=0

(−1)k

(
l
k

) (
Jα/2(Tt+ξϕ)(x)

)
(t− kτ) =

=
l∑

k=0

(−1)k

(
l
k

)
1

Γ(α/2)

∫ ∞

0

(Tθϕ)(x)(θ − t + kτ)
α/2−1
+ dθ.

Setting ξ = θ − t, after simple transformations we obtain (5.5).
To prove (5.4), we take into account (5.5) and for any ε > 0 obtain

1

κ(α/2, l)

∫ ∞

ε

∆l
τ

[
(T(·)I

αϕ)(x)
]
(t)

dτ

τα/2+1
=

=
1

κ(α/2, l)

∫ ∞

ε

(∫ ∞

0

gτ (ξ)(Tt+ξϕ)(x) dξ

)
dτ

τα/2+1
=

=
1

κ(α/2, l)

∫ ∞

0

(Tt+ξϕ)(x)

(∫ ∞

ε

gτ (ξ)
dτ

τα/2+1

)
dξ. (5.6)

The interchange of order of integration is justified by the Fubini theorem applicable in view
of Lemma 4.2. The integral

I =

∫ ∞

ε

gτ (ξ)
dτ

τα/2+1
.

proves to be dilatation of the kernel k(ξ). Indeed, we have

I =
1

Γ(α/2)

∫ ∞

ε

(
l∑

k=0

(−1)k

(
l
k

)
(ξ − kτ)

α/2−1
+

)
dτ

τα/2+1
=

=
1

Γ(α/2)

(
− 2

α
ξα/2−1τ−α/2

∣∣∣
∞

ε
+

+
l∑

k=0

(−1)k

(
l
k

)
kα/2

∫ (ξ−kε)+

0

θα/2−1 dθ

(ξ − θ)α/2+1

)
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and the formula 2.2.5(2) from [10] yields

I =
1

Γ(α/2 + 1)ξ

l∑

k=0

(−1)k

(
l
k

)(
ξ

ε
− k

)α/2

+

=
1

ε
k

(
ξ

ε

)
.

Then from (5.6) we obtain

1

κ(α/2, l)

∫ ∞

ε

∆l
τ

[
(T(·)I

αϕ)(x)
]
(t)

dτ

τα/2+1
=

1

κ(α/2, l)

∫ ∞

0

(Tt+εηϕ)(x)k(η) dη. (5.7)

¥
The proof of Theorem 5.1. Application of Lemma 5.2 yields

(TtD
α
ε I

αϕ)(x) =

(
Tt

[∫ ∞

0

k(η)(Tεηϕ)(·) dη

])
(x), ϕ ∈ C∞

0,0.

Passing to the limit as t → 0 in the Lp-norm in the last equality, we have

(Dα
ε I

αϕ)(x) =

∫ ∞

0

k(η)(Tεηϕ)(x) dη. (5.8)

The equality (5.8) is extended by continuity to the whole space Lp, since the operators on
both sides of (5.8) are bounded in Lp. From (5.3) we obtain

(Dα
ε I

αϕ)(x)− ϕ(x) =

∫ ∞

0

k(η) [(Tεηϕ)(x)− ϕ(x)] dη,

with ϕ ∈ Lp, whence

‖Dα
ε I

αϕ− ϕ‖p ≤
∫ ∞

0

|k(η)| ‖Tεηϕ− ϕ‖p dη → 0, ε → 0

by the Lebesgue dominated convergence theorem. (Existence of an integrable dominant
follows from (4.9) in view of the assumption p > n/(n− 2).) ¥

2◦. The case Reα > 0, Imα 6= 0. We observe that the approach developed in the
previous subsection for real α seems to be problematical in this case. The matter is that
we do not know, whether the normalizing constant κ(α/2, l), defined in (5.1), vanishes
if Imα 6= 0 or not. This is an old problem, equivalent to solvability of some functional
equation, which was formulated in [18]. It still remains open. To overcome this difficulty
while inverting the potential f = Iαϕ in this case, we deal with HSI of the form (1.6) with
generalized differences instead of ”usual” non-centered ones. See [16], Subsection 6.1 of
Ch. 3, for details on these generalized differences. We set

Dαf =
(Lp)

lim
ε→0

1

κ(α/2, l)

∫ ∞

ε

(E − Tt)
lf(x)

dt

tα/2+1
, l > Reα,

where

(E − Tt)
lf(x) =

1

dl

∣∣∣∣∣∣∣∣∣

(Tk0tf)(x) 1 k0 . . . kl−1
0

(Tk1tf)(x) 1 k1 . . . kl−1
1

...
...

...
. . .

...
(Tkltf)(x) 1 kl . . . kl−1

l

∣∣∣∣∣∣∣∣∣
=

1

dl

l∑
j=0

cj(Tkjtf)(x),
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with
dl =

∏

l>i>j≥0

(ki − kj)

and

κ(α/2, l) =
1

dl

∫ ∞

0

t−α−1

(
l∑

j=0

cj exp(−kjt)

)
dt.

The choice kj = aj, 0 ≤ j ≤ l, where a > 1 satisfies the condition

a 6= exp(2πk/Imα), k = ±1,±2, . . . ,

made in this subsection, provides the relation κ(α/2, l) 6= 0 to be fulfilled (see [16], Lemma
3.38 for details).

Theorem 5.2 Let Reα > 0, n ≥ 3 and f = Iαϕ, ϕ ∈ Lp, n/(n − 2) < p < ∞. Then
Dαf = ϕ.

The proof is similar to that of Theorem 5.1. It is based on the equality (5.4), where

k(η) =
1

κ(α/2, l)Γ(1 + α/2)η

l∑
j=0

cj(η − kj)
α
+

is an identity approximation kernel.
We note that Theorem 5.2 provides an explicit expression for the positive powers

(−|x|2∆)α/2f , Reα > 0 within the framework of Lp-spaces.
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