

Fractional powers of the operator $-|x|^2\Delta$
 in L_p -spaces

Anna V. Abramyan, Vladimir A. Nogin and Stefan G. Samko

Abstract

We investigate fractional powers of the operator $-|x|^2\Delta$ within the framework of the spaces $L_p(\mathbf{R}^n)$. Negative powers are realized as Riemann-Liouville fractional integrals of a strongly continuous semi-group, while positive powers, inverse to negative, are constructed as Marchaud fractional derivatives of that semi-group.

1 Introduction

We consider fractional powers of the operator

$$-|x|^2\Delta, \quad (1.1)$$

where Δ is the Laplace operator in \mathbf{R}^n . There are a number of papers devoted to investigation of fractional powers of second order translation invariant differential operators, in particular, the classical operators of mathematical physics: the wave operator, the Klein-Gordon-Fock and Schrödinger operators, the telegraph operator, and others (for references and detailed analysis of the results we refer to the books [16]-[17] and the survey papers [8],[9],[15]. We observe that positive fractional powers $(-\Delta)^{\alpha/2}f$, $\alpha > 0$, of the operator $-\Delta$ are known to be realized as hypersingular integrals (HSI), see the papers [13]-[14] and the books [16]-[17]. The case of multidimensional differential operators, invariant with respect to dilations (and rotations) is almost untouched. We can only mention the papers [4] and [1], devoted to the investigation of fractional powers

$$\left(-\sum_{k=1}^n \left(x_k \frac{\partial}{\partial x_k}\right)^2\right)^{\alpha/2} \quad \text{and} \quad \left(\pm \sum_{k=1}^n x_k^2 \frac{\partial^2}{\partial x_k^2}\right)^{\alpha/2}.$$

The goal of this paper is to fill in this gap with respect to the operator (1.1). Its fractional powers are defined as follows. We base ourselves on the expansion

$$\begin{aligned} (-|x|^2\Delta\varphi)(x) &= \frac{1}{2\pi i} \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_{\operatorname{Re} s=\varkappa} |x|^{-s} \times \\ &\times (m+n-2-s)(m+s)(\mathfrak{M}\varphi_{m\mu})(s) ds, \quad x \in \mathbf{R}^n, \end{aligned} \quad (1.2)$$

where $\{\mathcal{Y}_{m\mu}(x')\}$ is the orthonormal basis of spherical harmonics,

$$(\mathfrak{M}\varphi_{m\mu})(s) = \int_0^\infty \tau^{s-1} \varphi_{m\mu}(\tau) d\tau$$

is the Mellin transform of the Fourier-Laplace coefficients

$$\varphi_{m\mu}(r) = \int_{S^{n-1}} \varphi(r\sigma) \mathcal{Y}_{m\mu}(\sigma) d\sigma .$$

In view of (1.2) it is natural to define the negative powers $(-|x|^2\Delta)^{-\alpha/2}\varphi$, $\operatorname{Re} \alpha > 0$, as follows:

$$\begin{aligned} (-|x|^2\Delta)^{-\alpha/2}\varphi(x) &\equiv (\mathbf{I}_x^\alpha \varphi)(x) = \frac{1}{2\pi i} \sum_{m=0}^\infty \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_{\operatorname{Re} s=\varkappa} |x|^{-s} \times \\ &\times (m+n-2-s)^{-\alpha/2} (m+s)^{-\alpha/2} (\mathfrak{M}\varphi_{m\mu})(s) ds, \quad \varphi \in C_{0,0}^\infty. \end{aligned} \quad (1.3)$$

As is shown in this paper, the operator \mathbf{I}_x^α is extended as a bounded operator to the whole space L_p , $1 < p < \infty$. We obtain the integral representation for the potential $\mathbf{I}_x^\alpha f$, $\operatorname{Re} \alpha > 0$, $\varphi \in L_p$, via the Riemann-Liouville fractional integral of a certain strongly continuous semi-group T_t and prove the inversion formula

$$\mathbf{D}^\alpha \mathbf{I}_x^\alpha \varphi = \varphi,$$

where $\mathbf{D}^\alpha f$ is the Marchaud-type fractional derivative of the semi-group T_t (a realization of the Balakrishnan formula). In fact, we obtain an explicit expression for the positive powers $(-|x|^2\Delta)^{\alpha/2}f$, $\operatorname{Re} \alpha > 0$.

The paper is organized as follows. Section 2 contains some auxiliary information, in particular, for radial-spherical expansions and multidimensional integral operators with homogeneous kernels. In Section 3 we define the negative powers $\mathbf{I}^\alpha \varphi = (-|x|^2\Delta)^{-\alpha/2}\varphi$, $\operatorname{Re} \alpha > 0$, by (1.3) and prove that the operator \mathbf{I}_x^α is bounded in $L_p(\mathbb{R}^n)$, $1 < p < \infty$. We also obtain the following representation for the potentials $\mathbf{I}_x^\alpha \varphi$ in terms of radial-spherical convolutions:

$$(\mathbf{I}_x^\alpha f)(x) = \int_{\mathbb{R}^n} \varphi(y) k_\alpha \left(\frac{|x|}{|y|}, x' \cdot y' \right) \frac{dy}{|y|^n}, \quad (1.4)$$

which is of special interest itself. In Section 4 we study the semi-group T_t generated by the infinitesimal operator $|x|^2\Delta$ and obtain the representation

$$(\mathbf{I}_x^\alpha f)(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty t^{\alpha/2-1} (T_t \varphi)(x) dt, \quad \varphi \in L_p \quad (1.5)$$

for the potential $\mathbf{I}_x^\alpha f$. The equality (1.5) enables us to apply the HSI's method for inverting the potential $f = \mathbf{I}^\alpha \varphi$, $\varphi \in L_p$, provided that $n/(n-2) < p < \infty$. Within the framework of this approach, in Section 5 the inversion is constructed as follows:

$$\mathbf{D}^\alpha f = \lim_{\varepsilon \rightarrow 0}^{(L_p)} \mathbf{D}_\varepsilon^\alpha f, \quad (1.6)$$

where

$$(\mathbf{D}_\varepsilon^\alpha f)(x) = \frac{1}{\varkappa(\alpha/2, l)} \int_\varepsilon^\infty (E - T_\tau)^l f(x) \frac{d\tau}{\tau^{\alpha/2+1}}.$$

Some of the results presented in this paper were announced in [2].

2 Preliminaries

1°. Notation:

$$x' = \frac{x}{|x|}, \quad x \in R^n;$$

S_{n-1} is the unit sphere in R^n ;

$|S_{n-1}|$ is its Lebesgue measure;

$d_n(m) = (n+2m-2) \frac{(n+m-3)!}{m!(n-2)!}$, $n > 2$, is the dimension of the space of spherical harmonic of order m ;

$(\mathcal{F}\varphi)(\xi) = \int_{\mathbf{R}^n} \varphi(x) \exp(ix \cdot \xi) dx$ is the Fourier transform of φ ;

$$L_p = L_p(\mathbf{R}^n); \quad \|\varphi\|_p = \|\varphi\|_{L_p};$$

$$L_p(A, w) = \{f : \|f\|_{L_p(A, w)}^p = \int_A |f(x)|^p w(x) dx < \infty\}, \quad w \geq 0;$$

$C_{0,0}^\infty(\mathbf{R}_+)$ is the class of infinitely differentiable functions on \mathbf{R}_+ with a compact support beyond the origin;

$$\mathbf{Z}_+^0 = \{0, 1, 2, \dots\};$$

$$\lambda_- = \begin{cases} 0, & \lambda > 0, \\ |\lambda|, & \lambda < 0; \end{cases}$$

By z^α , $\alpha \in \mathbf{C}$, we denote the main branch ($k = 0$) of the multi-valued function $z^\alpha = \exp(\alpha[\ln|z| + i \arg z + 2k\pi i])$ analytic in the complex plane cutted along the negative real semiaxis.

The end of the proof is denoted by \blacksquare .

2°. **Some properties of the Mellin transform** (see [7, § 2]). Let $L^c(0, \infty)$ be the class of complex valued piece-wise continuous functions $f(x)$ on $(0, +\infty)$ with a finite number of jumps and such that $\int_0^\infty |f(x)| dx < \infty$. The following statements are valid.

Lemma 2.1 *Let $\varphi(x)x^{\varkappa-1} \in L^c(0, \infty)$ and let $\varphi(x)$ be piece-wise differentiable in some neighborhood $(x_0 - \varepsilon, x_0 + \varepsilon)$ of a point $x_0 > 0$ and continuous at x_0 . Then*

$$\varphi(x_0) = \frac{1}{2\pi i} \lim_{\lambda \rightarrow \infty} \int_{\varkappa-i\lambda}^{\varkappa+i\lambda} (\mathfrak{M}\varphi)(s) x_0^{-s} ds.$$

Lemma 2.2 *If $f(x)x^{\varkappa-1}$ and $g(x)x^{\varkappa-1} \in L^c(0, \infty)$, then the Mellin convolution $h(x) = \int_0^\infty f(y)g\left(\frac{x}{y}\right) \frac{dy}{y}$ exists and $h(x)x^{\varkappa-1} \in L^c(0, \infty)$, and $(\mathfrak{M}h)(s) = (\mathfrak{M}f)(s)(\mathfrak{M}g)(s)$, where $\operatorname{Re} s = \varkappa$.*

3°. **Radial-spherical expansions and multipliers** (see [12]). Let $\varphi \in C_{0,0}^\infty$. The expansion

$$\varphi(x) = \frac{1}{2\pi i} \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_{\operatorname{Re} s=\varkappa} |x|^{-s} (\mathfrak{M}\varphi_{m\mu})(s) ds,$$

where the series in the right-hand side converges absolutely and uniformly in any layer $0 < \alpha \leq |x| \leq \beta < \infty$ for all $\varkappa \in \mathbf{R}$, is known as the radial-spherical expansion.

Consider the operator

$$(A_\kappa \varphi)(x) = \frac{1}{2\pi i} \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \times \\ \times \int_{\operatorname{Re} s=\kappa} |x|^{-s} \mu_m(s) (\mathfrak{M} \varphi_{m\mu})(s) ds, \quad \varphi \in C_{0,0}^\infty,$$

generated by the sequence of measurable functions $\mu_m(s)$, defined on the straight line $\operatorname{Re} s = \kappa$.

Theorem 2.1 ([12]). *Let $n \geq 2$, $1 < p < \infty$, $\kappa = (\lambda + n)/p$ and let the following assumptions be satisfied*

I) *there exist numbers $N_0 \in \mathbf{Z}_+^0$, $C_1 > 0$ and $C_2 > 0$ such that*

$$\left| \xi^k \frac{\partial^k}{\partial \xi^k} \mu_m \left(\frac{\lambda + n}{p} + i\xi \right) \right| \leq C_1, \quad \xi \in \mathbf{R} \setminus \{0\},$$

where $m = 0, 1, \dots, N_0$ and $k = 0, 1$ with C_1 not depending on ξ and m ;

II) *there exists a function $M(\xi, \eta) : \mathbf{R} \times [N_0, \infty) \rightarrow \mathbf{C}$ such that $M(\xi, m) = \mu_m((\lambda + n)/p + i\xi)$ for all $m \geq \kappa$ and*

$$\left| \xi^k \eta^l \frac{\partial^k}{\partial \xi^k} \frac{\partial^l}{\partial \eta^l} M(\xi, \eta) \right| \leq C_2, \quad \xi \in \mathbf{R} \setminus \{0\}, \eta \geq N_0,$$

$l = 0, 1, \dots, [(n+1)/2]$, $k = 0, 1$, where C_2 does not depend on ξ and η .

Then $\|A_\kappa \varphi\|_{L_p(\mathbf{R}^n, |x|^\lambda)} \leq b(C_1 + C_2) \|\varphi\|_{L_p(\mathbf{R}^n, |x|^\lambda)}$, $\varphi \in C_{0,0}^\infty$, where b is some absolute constant not depending on $\{\mu_m(s)\}_{m=0}^\infty$.

4°. On the analyticity of an integral depending on a parameter. The following lemma is known.

Lemma 2.3 ([16], Subsection 5.2 of Ch.1). *Let $f(x, z)$ be an analytic function with respect to $z \in D \subset \mathbf{C}$ for almost all $x \in \Omega \subseteq \mathbf{R}^n$ which is dominated by a function integrable in x not depending on z : $|f(x, z)| \leq F(x) \in L_1(\Omega)$. Then the integral $\int_{\Omega} f(x, z) dx$ is an analytic function in D .*

5°. L_p -mapping properties of operators with homogeneous kernels. The following statement is contained in Theorem 1 from [6].

Theorem 2.2 *Let*

$$(K\varphi)(x) = \int_{\mathbf{R}^n} k \left(\frac{|x|}{|y|}, x' \cdot y' \right) \varphi(y) \frac{dy}{|y|^n}$$

and let the condition

$$A = |S_{n-2}| \int_0^\infty \int_{-1}^1 |k(\rho, t)| \rho^{(n+\lambda)/p-1} (1-t^2)^{(n-3)/2} d\rho dt < \infty \quad (2.1)$$

be satisfied. Then K is bounded in $L_p(\mathbf{R}^n, |x|^\lambda)$, $1 < p < \infty$, and $\|K\| \leq A$.

3 Fractional powers $(-|x|^2\Delta)^{-\alpha/2}$, $\operatorname{Re} \alpha > 0$, in L_p -spaces

1°. **Heuristic arguments.** Applying the inverse Mellin transform in the equality

$$(\mathfrak{M}(-|x|^2\Delta\varphi)_{m\mu})(s) = (m+n-2-s)(m+s)(\mathfrak{M}\varphi_{m\mu})(s), \quad \varphi \in C_{0,0}^\infty, \quad (3.1)$$

we have

$$(-|x|^2\Delta\varphi)_{m\mu}(|x|) = \frac{1}{2\pi i} \int_{\operatorname{Re} s=\varkappa} |x|^{-s} (m+n-2-s)(m+s)(\mathfrak{M}\varphi_{m\mu})(s) ds.$$

Expanding the function $-|x|^2(\Delta\varphi)(x)$ into the Fourier-Laplace series (see [16], p.34), we arrive at the equality

$$\begin{aligned} -|x|^2(\Delta\varphi)(x) &= \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') (-|x|^2\Delta\varphi)_{m\mu}(|x|) = \\ &= \frac{1}{2\pi i} \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_{\operatorname{Re} s=\varkappa} |x|^{-s} (m+n-2-s)(m+s)(\mathfrak{M}\varphi_{m\mu})(s) ds, \end{aligned}$$

where $\varphi \in C_{0,0}^\infty$, $\varkappa \in \mathbf{R}$.

Basing on this equality, it is natural to define negative powers $(-|x|^2\Delta)^{-\alpha/2}\varphi = \mathbf{I}_\varkappa^\alpha\varphi$ with $\operatorname{Re} \alpha > 0$ and $\varkappa \in \mathbf{R}$, by (1.3).

2°. **Mapping properties of the operator $\mathbf{I}_\varkappa^\alpha$ in L_p .** The following theorem provides L_p -estimates for the operator $\mathbf{I}_\varkappa^\alpha$ defined in (1.3).

Theorem 3.1 *Let $n \geq 2$, $1 < p < \infty$, $\varkappa = n/p$, $\operatorname{Re} \alpha > 0$. Then*

$$\|\mathbf{I}_\varkappa^\alpha\varphi\|_p \leq C\|\varphi\|_p$$

for $\varphi \in C_{0,0}^\infty$ where C does not depend on φ .

The statement of Theorem 3.1 follows from Theorem 2.1, when $p \neq 2$ and $n = 2$, or $p \notin \{n/(n-1), n/(n-2)\}$ and $n \geq 3$. The proof being direct, we omit it. In the remaining cases, the proof is derived from the Riesz interpolation theorem.

3°. **Integral representation for the operator $\mathbf{I}_\varkappa^\alpha$, $n \geq 3$.** We introduce the kernel

$$a_m^\alpha(\rho) = \frac{(2m+n-2)^{\frac{1-\alpha}{2}}}{\sqrt{\pi}\Gamma(\alpha/2)} |\ln \rho|^{\frac{\alpha-1}{2}} K_{\frac{\alpha-1}{2}} \left(\frac{2m+n-2}{2} |\ln \rho| \right) \rho^{\frac{2-n}{2}}, \quad 0 < \rho < \infty$$

where $K_\nu(z)$ is the McDonald function of order ν . Its Mellin transform is given by

$$(\mathfrak{M}a_m^\alpha)(s) = (m+n-2-s)^{-\alpha/2} (m+s)^{-\alpha/2}, \quad -m < \operatorname{Re} s < m+n-2, \quad (3.2)$$

which is verified by means of the formula

$$\int_0^\infty t^\nu K_\nu(at) \cosh pt dt = \frac{2^{\nu-1} \sqrt{\pi} \Gamma(\nu + \frac{1}{2}) a^\nu}{(a^2 - p^2)^{\nu + \frac{1}{2}}}, \quad (3.3)$$

$$a > 0, \quad \nu > -\frac{1}{2}, \quad |p| < a$$

(see [11], formula 2.16.6.6; it may be also obtained from the formula more known formula 6.621.3 in [5] by use of some standard properties of the Gauss hypergeometric function).

Lemma 3.1 *Let $\operatorname{Re} \alpha > 0$, $n \geq 3$, $m \in \mathbf{Z}_+^0$ and $\varkappa \in (0, n-2)$. Then the representation*

$$\begin{aligned} & \frac{1}{2\pi i} \int_{\operatorname{Re} s=\varkappa} \rho^{-s} (m+n-2-s)^{-\alpha/2} (m+s)^{-\alpha/2} (\mathfrak{M}\psi)(s) ds = \\ & = \int_0^\infty a_m^\alpha \left(\frac{\rho}{r} \right) \psi(r) \frac{dr}{r}, \quad \psi \in C_{0,0}^\infty, \end{aligned} \quad (3.4)$$

is valid.

Proof. Denote $h(g) = \int_0^\infty a_m^\alpha \left(\frac{\rho}{r} \right) \psi(r) \frac{dr}{r}$. Using the well-known properties of the McDonald function (see, for example, [3]), it is easy to verify that $\rho^{\varkappa-1} a_m^\alpha(\rho) \in L^c(0, \infty)$, if $\varkappa \in (0, n-2)$. Hence, $t^{\varkappa-1} h(t) \in L^c(0, \infty)$ and $(\mathfrak{M}h)(s) = (\mathfrak{M}\psi)(s) (\mathfrak{M}a_m^\alpha)(s)$ by Lemma 2.2. Then Lemma 2.1 and relation (3.2) yield (3.4). \blacksquare

Making use of Lemma 3.1 in (1.3), we have

$$(\mathbf{I}_\varkappa^\alpha \varphi)(x) = \sum_{m=0}^\infty \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_0^\infty a_m^\alpha \left(\frac{|x|}{\rho} \right) \varphi_{m\mu}(\rho) \frac{d\rho}{\rho},$$

$0 < \varkappa < n-2$, $\varphi \in C_{0,0}^\infty$. Taking into account the equality

$$\sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \mathcal{Y}_{m\mu}(\sigma) = \frac{d_n(m)}{|S_{n-1}|} P_m(x' \cdot \sigma), \quad (3.5)$$

(see [16], formula 1.57), where the Legendre polynomial

$$P_m(\theta) = \frac{(n-3)!m!}{(m+n-3)!} \mathcal{C}_m^{\frac{n-2}{2}}(\theta), \quad -1 \leq \theta \leq 1, \quad (3.6)$$

is defined via the Gegenbauer polynomial $C_m^\lambda(\theta)$, we obtain

$$\begin{aligned} & (\mathbf{I}_\varkappa^\alpha \varphi)(x) = \frac{1}{|S_{n-1}|} \sum_{m=0}^\infty d_n(m) \int_0^\infty \int_{S_{n-1}} \varphi(r\sigma) a_m^\alpha \left(\frac{|x|}{r} \right) P_m(x' \cdot \sigma) \frac{dr}{r} d\sigma \\ & = \frac{1}{|S_{n-1}|} \sum_{m=0}^\infty d_n(m) \int_{\mathbf{R}^n} \varphi(y) a_m^\alpha \left(\frac{|x|}{|y|} \right) P_m(x' \cdot y') \frac{dy}{|y|^n}, \end{aligned} \quad (3.7)$$

$\varphi \in C_{0,0}^\infty$, $0 < \varkappa < n-2$. To represent the potential $\mathbf{I}_\varkappa^\alpha \varphi$ as a radial-spherical convolution, we consider the kernel

$$k_\alpha(\rho, \theta) = \frac{1}{|S_{n-1}|} \sum_{m=0}^\infty d_n(m) a_m^\alpha(\rho) P_m(\theta),$$

where $\operatorname{Re} \alpha > 0$, $0 < \rho < \infty$, and $-1 \leq \theta \leq 1$.

Lemma 3.2 *Let $n \geq 3$, $\operatorname{Re} \alpha > 0$, $-1 \leq \theta \leq 1$, $\rho > 0$ and $\rho \neq 1$. Then*

$$k_\alpha(\rho, \theta) = \frac{|\ln \rho|^{\alpha-1} \rho^{\frac{2-n}{2}}}{|S_{n-1}|^{2\alpha-1} \Gamma(\frac{\alpha}{2})} \int_1^\infty (t^2 - 1)^{\frac{\alpha}{2}-1} \frac{|\rho^{\frac{n-2}{2}} t - \rho^{\frac{n+2}{2}} t|}{(1 - 2\theta \rho^t + \rho^{2t})^{\frac{n}{2}}} dt = \quad (3.8)$$

$$= \frac{2^{1-\alpha} \rho^{\frac{2-n}{2}}}{|S_{n-1}| \Gamma\left(\frac{\alpha}{2}\right)} \int_0^{\tilde{\rho}} \left(\ln^2 s - \ln^2 \rho\right)^{\frac{\alpha}{2}-1} \frac{s^{\frac{n-4}{2}} (1-s^2) ds}{(1-2\theta s + s^2)^{\frac{n}{2}}},$$

where $\tilde{\rho} = \min\left(\rho, \frac{1}{\rho}\right) = \rho^{\text{sign}(1-\rho)}$.

Proof. We rewrite $k_\alpha(\rho, \theta)$ as:

$$k_\alpha(\rho, \theta) = \frac{1}{|S_{n-1}|(n-2)} \sum_{m=0}^{\infty} (2m+n-2) a_m^\alpha(\rho) \mathcal{C}_m^{\frac{n-2}{2}}(\theta). \quad (3.9)$$

Using the formula 8.432(3) from [5], we obtain

$$a_m^\alpha(\rho) = \frac{|\ln \rho|^{\alpha-1} \rho^{\frac{2-n}{2}}}{\Gamma^2\left(\frac{\alpha}{2}\right) 2^{\alpha-1}} \int_1^\infty (t^2 - 1)^{\frac{\alpha}{2}-1} \exp\left(-(m + \frac{n-2}{2})|\ln \rho|t\right) dt,$$

whence

$$\begin{aligned} k_\alpha(\rho, \theta) &= \frac{|\ln \rho|^{\alpha-1} \rho^{\frac{2-n}{2}} 2^{1-\alpha}}{|S_{n-1}|(n-2) \Gamma^2\left(\frac{\alpha}{2}\right)} \sum_{m=0}^{\infty} (2m+n-2) \mathcal{C}_m^{\frac{n-2}{2}}(\theta) \times \\ &\quad \times \int_1^\infty (t^2 - 1)^{\frac{\alpha}{2}-1} \exp\left(-(m + \frac{n-2}{2})|\ln \rho|t\right) dt \end{aligned}$$

by (3.9). Changing the order of integration and summation, we arrive at the equality

$$k_\alpha(\rho, \theta) = \frac{|\ln \rho|^{\alpha-1} \rho^{\frac{2-n}{2}}}{|S_{n-1}| 2^{\alpha-1} \Gamma^2\left(\frac{\alpha}{2}\right)} \int_1^\infty (t^2 - 1)^{\frac{\alpha}{2}-1} S_n(\tilde{\rho}t; \theta) dt,$$

where

$$S_n(z; \theta) = \frac{1}{n-2} \sum_{m=0}^{\infty} (2m+n-2) z^{m+\frac{n-2}{2}} \mathcal{C}_m^{\frac{n-2}{2}}(\theta),$$

$0 < z < 1, -1 \leq \theta \leq 1$. We have

$$S_n(z; \theta) = \frac{2}{n-2} z \frac{d}{dz} \left(z^{\frac{n-2}{2}} \sum_{m=0}^{\infty} z^m \mathcal{C}_m^{\frac{n-2}{2}}(\theta) \right). \quad (3.10)$$

Since $(1-2rt+r^2)^{-\lambda} = \sum_{m=0}^{\infty} \mathcal{C}_m^\lambda(t) r^m$ (see [16], formula (1.16)), we obtain

$$S_n(z; \theta) = \frac{2}{n-2} z \frac{d}{dz} \left(\frac{z}{1-2\theta z+z^2} \right)^{\frac{n-2}{2}} = \frac{z^{\frac{n-2}{2}} - z^{\frac{n+2}{2}}}{(1-2\theta z+z^2)^{\frac{n}{2}}}$$

which yields (3.8). \blacksquare

We also need the following estimates for the kernel $k_\alpha(\rho, \theta)$.

Lemma 3.3 *Let $\text{Re } \alpha > 0$, $n \geq 3$, $0 < \rho < \infty$, $-1 \leq \theta \leq 1$.*

I) If $-1 \leq \theta \leq 1/2$, $0 < \rho < \infty$, then

$$|k_\alpha(\rho, \theta)| \leq C \begin{cases} |\ln \rho|^{\operatorname{Re} \alpha/2-1}, & 0 < \rho < 1/2; \\ |\ln \rho|^{\operatorname{Re} \alpha-1}, & 1/2 < \rho < 2, 0 < \operatorname{Re} \alpha < 1; \\ |\ln |\ln \rho||, & 1/2 < \rho < 2, \operatorname{Re} \alpha = 1; \\ 1, & 1/2 < \rho < 2, \operatorname{Re} \alpha > 1; \\ |\ln \rho|^{\operatorname{Re} \alpha/2-1} \rho^{2-n}, & 2 < \rho < \infty. \end{cases} \quad (3.11)$$

II) If $1/2 < \theta \leq 1$, $0 < \tilde{\rho} \equiv \min\{\rho, 1/\rho\} < \theta - 1/4$, then

$$|k_\alpha(\rho, \theta)| \leq C |\ln \rho|^{\operatorname{Re} \alpha/2-1} \begin{cases} 1, & 0 < \rho < 1/2; \\ \rho^{2-n}, & 2 < \rho < \infty. \end{cases} \quad (3.12)$$

III) Let $1/2 < \theta \leq 1$, $\theta - 1/4 \leq \tilde{\rho} < 1$. The following inequalities are valid:

a) if $0 < \operatorname{Re} \alpha < 2n - 2$, then

$$|k_\alpha(\rho, \theta)| \leq C [|\rho - 1|^{(\operatorname{Re} \alpha/2-1)-} (1 - 2\theta\tilde{\rho} + \tilde{\rho}^2)^{(\operatorname{Re} \alpha-2n+2)/4} \quad (3.13)$$

$$+ |\rho - 1|^{1+(\operatorname{Re} \alpha/2-1)-} (1 - 2\theta\tilde{\rho} + \tilde{\rho}^2)^{(\operatorname{Re} \alpha-2n)/4} + 1] \equiv C u_{\operatorname{Re} \alpha}(\rho; \theta);$$

b) if $\operatorname{Re} \alpha > 0$ then

$$|k_\alpha(\rho, \theta)| \leq C |\rho - 1|^{(\operatorname{Re} \alpha/2-1)-} + (\operatorname{Re} \alpha/2-n+1)- \equiv C v_{\operatorname{Re} \alpha}(\rho; \theta). \quad (3.14)$$

Moreover, the constant C can be chosen independent of α in a small neighborhood of each point α of the half-plane $\operatorname{Re} \alpha > 0$.

The proof of lemma is reduced to the direct estimation of the right-hand side of (3.8).

Let

$$(\mathbf{I}^\alpha \varphi)(x) = \int_{\mathbf{R}^n} \varphi(y) k_\alpha \left(\frac{|x|}{|y|}, x' \cdot y' \right) \frac{dy}{|y|^n}. \quad (3.15)$$

The following theorem provides the representation for the operator (1.3) in the form of a radial-spherical convolution.

Theorem 3.2 Let $\operatorname{Re} \alpha > 0$, $n \geq 3$, $0 < \varkappa < n - 2$, $\varphi \in C_{0,0}^\infty$. Then

$$(\mathbf{I}_\varkappa^\alpha \varphi)(x) \equiv (\mathbf{I}^\alpha \varphi)(x), \quad (3.16)$$

where $(\mathbf{I}_\varkappa^\alpha \varphi)(x)$ was defined in (1.3).

Proof. Let $\operatorname{Re} \alpha > n - 1$ first. Changing the order of integration and summation in (3.7), we obtain (3.16). This interchange is justified by the inequality

$$\sum_{m=1}^{\infty} d_n(m) \int_{\mathbf{R}^n} \left| \varphi(y) a_m^\alpha \left(\frac{|x|}{|y|} \right) P_m(x' \cdot y') \right| \frac{dy}{|y|^n} < \infty. \quad (3.17)$$

The last inequality follows from the estimates

$$|P_m(\theta)| \leq 1, \quad -1 \leq \theta \leq 1, \quad (3.18)$$

$$d_n(m) \leq C m^{n-2}, \quad (3.19)$$

(see [16], inequality (1.55) and Corollary to Lemma 1.4) and the equality

$$\int_{\mathbf{R}^n} a_m^{\operatorname{Re} \alpha} \left(\frac{1}{|y|} \right) \frac{dy}{|y|^n} = (\mathfrak{M} a_m^{\operatorname{Re} \alpha})(0).$$

The validity of the equality in (3.16) for $\operatorname{Re} \alpha > 0$ is derived from the analyticity of its both sides in the half-plane $\operatorname{Re} \alpha > 0$. The analyticity of the left-hand side is derived from the uniform convergence of the series (1.3) in the half-plane $\operatorname{Re} \alpha > 0$ (for any fixed $x \neq 0$). We omit the proof of this fact, because it is purely technical. Let us prove the analyticity of the right-hand side of (3.16). Analyticity of the function $k_\alpha(\rho, \theta)$ defined in (3.8) in the half-plane $\operatorname{Re} \alpha > 0$ follows from Lemma 2.3 in view of the estimate

$$|(t^2 - 1)^{\alpha/2-1}| \leq (t^2 - 1)^{\varepsilon/2-1} + (t^2 - 1)^{N/2-1},$$

where $t > 1$, $0 < \varepsilon < \operatorname{Re} \alpha < N < \infty$. Then the application of Lemma 2.3 provides the analyticity of the integral $\mathbf{I}^\alpha \varphi$, defined in (3.15), in the half-plane $\operatorname{Re} \alpha > 0$ by virtue of the estimate

$$|k_\alpha(\rho, \theta)| \leq C \begin{cases} u_\varepsilon(\rho, \theta) + u_N(\rho, \theta), & 0 < \varepsilon < \operatorname{Re} \alpha < N = 2n - 2, \\ v_\delta(\rho, \theta) + u_L(\rho, \theta), & 2n - 4 < \delta < \operatorname{Re} \alpha < L < \infty, \end{cases} \quad (3.20)$$

where $1/2 < \theta \leq 1$ and $\theta - 1/4 \leq \tilde{\rho} \equiv \min\{\rho, 1/\rho\} < 1$ and the functions u_γ and v_γ were defined in (3.13) and (3.14), the constant C in (3.20) not depending on α in a small neighborhood of each point α , $\operatorname{Re} \alpha > 0$. The integrability of the function in the right-hand side of (3.20) - which is required by Lemma 2.3 - follows from the relations:

$$u_\gamma \left(\frac{|x|}{|y|}, x' \cdot y' \right) \xi(x' \cdot y') \in L_1 \left(\{y \in \mathbf{R}^n : \frac{1}{2} < \frac{|x|}{|y|} < 2\} \right),$$

if $\gamma \in (0, 2n - 2]$, where

$$\xi(\theta) = \begin{cases} 1, & \text{if } 1/2 < \theta \leq 1, \\ 0, & \text{if } -1 \leq \theta \leq 1/2, \end{cases}$$

and

$$v_\gamma \left(\frac{|x|}{|y|}, x' \cdot y' \right) \xi(x' \cdot y') \in L_1 \left(\{y \in \mathbf{R}^n : \frac{1}{2} < \frac{|x|}{|y|} < 2\} \right),$$

if $\gamma > 2n - 4$. ■

4°. Representation of the potential $\mathbf{I}^\alpha \varphi$, $\varphi \in L_p$. To extend (3.16) to the whole space L_p , we need the following theorem.

Theorem 3.3 *Let $\operatorname{Re} \alpha > 0$, $n \geq 3$ and $n/(n-2) < p < \infty$. Then the operator \mathbf{I}^α is bounded in L_p .*

The statement of Theorem 3.3 follows from Theorem 2.2. The latter is applicable in view of the inequality

$$\begin{aligned} A &\leq C \left(\int_0^{1/2} |\ln \rho|^{\operatorname{Re} \alpha/2-1} \rho^{n/p-1} d\rho + \right. \\ &\quad \left. + \int_2^\infty |\ln \rho|^{\operatorname{Re} \alpha/2-1} \rho^{n/p+1-n} d\rho + 1 \right) = \\ &= C \left(\int_{\ln 2}^\infty t^{\operatorname{Re} \alpha/2-1} [\exp(-nt/p) + \exp((n/p+2-n)t)] dt + 1 \right) < \infty. \end{aligned}$$

Since the operators on both sides of the relation (3.16) are bounded in L_p , if $\operatorname{Re} \alpha > 0$, $n \geq 3$ and $n/(n-2) < p < \infty$, this relation is extended by continuity to the whole L_p under the given restrictions on the parameters. \blacksquare

4 Representation of the potential $\mathbf{I}^\alpha \varphi$ via the Riemann-Liouville fractional integral of a strongly continuous semi-group

In this section we study the semi-group T_t generated by the infinitesimal operator $|x|^2 \Delta$. Our main goal is to prove the representation (1.5).

1°. Heuristic arguments.

The semi-group T_t , $t > 0$, generated by the infinitesimal operator $|x|^2 \Delta$ is

$$(T_t \varphi)(x) = \exp(t|x|^2 \Delta) \varphi(x) = \sum_{k=0}^{\infty} \frac{t^k}{k!} (|x|^2 \Delta)^k \varphi(x), \quad \varphi \in C_{0,0}^{\infty}.$$

By virtue of (3.1) we obtain

$$\begin{aligned} (\mathfrak{M}(T_t \varphi)_{m\mu})(s) &= \sum_{k=0}^{\infty} \frac{t^k}{k!} \left[\mathfrak{M}((|x|^2 \Delta)^k \varphi(x))_{m\mu} \right] (s) = \\ &= \sum_{k=0}^{\infty} \frac{t^k (s+m)^k (s-m-n+2)^k}{k!} (\mathfrak{M} \varphi_{m\mu})(s) = \\ &= \exp((s+m)(s-m-n+2)t) (\mathfrak{M} \varphi_{m\mu})(s), \end{aligned}$$

whence

$$(T_t \varphi)_{m\mu}(\rho) = \frac{1}{2\pi i} \int_{\operatorname{Re} s=\varkappa} |x|^{-s} \exp((s+m)(s-m-n+2)t) (\mathfrak{M} \varphi_{m\mu})(s) ds.$$

Expanding $(T_t \varphi)(x)$ into the Fourier-Laplace series, we have

$$\begin{aligned} (T_t \varphi)(x) &= \frac{1}{2\pi i} \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_{\operatorname{Re} s=\varkappa} |x|^{-s} \times \\ &\quad \times \exp((s+m)(s-m-n+2)t) (\mathfrak{M} \varphi_{m\mu})(s) ds, \end{aligned} \tag{4.1}$$

where $\varphi \in C_{0,0}^{\infty}$, $\varkappa \in \mathbf{R}$.

2°. Mapping properties of the operator T_t in L_p . The following theorem provides the L_p -estimates for the operator T_t , $t > 0$, defined in (4.1).

Theorem 4.1 *Let $n \geq 2$, $1 < p < \infty$, $0 < t < M$ and $\varkappa = n/p$. Then $\|T_t \varphi\|_p \leq C \|\varphi\|_p$, $\varphi \in C_{0,0}^{\infty}$, where the constant $C = C(M)$ does not depend on t and φ .*

The proof is reduced to the direct application of Theorem 2.1.

3°. Integral representation for the operator T_t . Here we obtain a representation for the operator T_t , defined in (4.1), in the form of a radial-spherical convolution. We denote

$$b_m^t(\rho) = \frac{1}{2\sqrt{\pi t}} \exp\left(-\frac{(\ln \rho)^2}{4t} - \frac{(2m+n-2)^2}{4}t\right) \rho^{(2-n)/2}, \quad n \geq 2,$$

where $0 < \rho < \infty$ and $t > 0$ and use the following technical lemma.

Lemma 4.1 *Let $t > 0$, $n \geq 2$, $m \in \mathbf{Z}_+^0$, $\varkappa \in \mathbf{R}$. Then*

$$\begin{aligned} & \frac{1}{2\pi i} \int_{\operatorname{Re} s=\varkappa} \rho^{-s} \exp((s+m)(s-m-n+2)t) (\mathfrak{M}\psi)(s) ds = \\ & = \int_0^\infty b_m^t\left(\frac{\rho}{r}\right) \psi(r) \frac{dr}{r}, \quad \psi \in C_{0,0}^\infty. \end{aligned} \quad (4.2)$$

Proof. We observe that

$$(\mathfrak{M}b_m^t)(s) = \exp((s+m)(s-m-n+2)t), \quad -\infty < \operatorname{Re} s < \infty, \quad (4.3)$$

which is a consequence of the formula 2.3.16(11) from [10]. To prove (4.2), we denote

$$H_t(\rho) = \int_0^\infty b_m^t\left(\frac{\rho}{r}\right) \psi(r) \frac{dr}{r}.$$

Since $r^{\varkappa-1}b_m^t(r)$ and $r^{\varkappa-1}\psi(r)$ are in $L^c(0, \infty)$ for any $\varkappa \in \mathbf{R}$, by Lemma 3.1 we obtain that $r^{\varkappa-1}H_t(\rho) \in L^c(0, \infty)$ and $(\mathfrak{M}H_t)(s) = (\mathfrak{M}b_m^t)(s)(\mathfrak{M}\psi)(s)$. Making use of Lemma 2.1 and equality (4.3), we arrive at (4.2). \blacksquare

Theorem 4.2 *Let $n \geq 2$, $t > 0$, $\varkappa \in \mathbf{R}$ and $\varphi \in C_{0,0}^\infty$. Then*

$$(T_t\varphi)(x) = \int_{\mathbf{R}^n} \varphi(y) h_t\left(\frac{|x|}{|y|}\right) S_t(x' \cdot y') \frac{dy}{|y|^n}, \quad (4.4)$$

where

$$h_t(\rho) = b_0^t(\rho) = \frac{1}{2\sqrt{\pi t}} \exp\left(-\frac{(\ln \rho)^2}{4t} - \frac{(n-2)^2}{4}t\right) \rho^{(2-n)/2} \quad (4.5)$$

and

$$S_t(\theta) = \frac{1}{|S_{n-1}|} \sum_{m=0}^{\infty} d_n(m) \exp(-m(m+n-2)t) P_m(\theta). \quad (4.6)$$

Proof. From (4.1), in view of (4.2) we have

$$(T_t\varphi)(x) = \sum_{m=0}^{\infty} \sum_{\mu=1}^{d_n(m)} \mathcal{Y}_{m\mu}(x') \int_0^\infty b_m^t\left(\frac{|x|}{r}\right) \int_{S_{n-1}} \varphi(r\sigma) \mathcal{Y}_{m\mu}(\sigma) d\sigma \frac{dr}{r}, \quad (4.7)$$

whence by virtue of (3.5) we obtain

$$\begin{aligned}
(T_t\varphi)(x) &= \frac{1}{|S_{n-1}|} \sum_{m=0}^{\infty} d_n(m) \int_0^{\infty} \int_{S_{n-1}} \varphi(r\sigma) b_m^t \left(\frac{|x|}{r} \right) P_m(x' \cdot \sigma) \frac{dr}{r} d\sigma = \\
&= \frac{1}{|S_{n-1}|} \sum_{m=0}^{\infty} d_n(m) \int_{\mathbf{R}^n} \varphi(y) b_m^t \left(\frac{|x|}{|y|} \right) P_m(x' \cdot y') \frac{dy}{|y|^n}.
\end{aligned} \tag{4.8}$$

Changing the order of integration and summation in (4.8), we obtain (4.4). This interchange is justified by the fact that

$$A(x) : \equiv \sum_{m=1}^{\infty} d_n(m) \int_{\mathbf{R}^n} \left| \varphi(y) b_m^t \left(\frac{|x|}{|y|} \right) P_m(x' \cdot y') \right| \frac{dy}{|y|^n} < \infty.$$

Indeed, the application of (3.15), (3.16) and (4.3) yields

$$\begin{aligned}
A(x) &\leq C \sum_{m=1}^{\infty} m^{n-2} \int_{\mathbf{R}^n} b_m^t \left(\frac{|x|}{|y|} \right) \frac{dy}{|y|^n} \\
&= C \sum_{m=1}^{\infty} m^{n-2} \int_{\mathbf{R}^n} b_m^t \left(\frac{1}{|y|} \right) \frac{dy}{|y|^n} = C \sum_{m=1}^{\infty} m^{n-2} (\mathfrak{M} b_m^t)(0) \\
&= C \sum_{m=1}^{\infty} m^{n-2} \exp(-m(m+n-2)t) < \infty.
\end{aligned}$$

■

The following theorem plays an important role in the justification of the inversion formula for the potential $\mathbf{I}^{\alpha}\varphi$.

Theorem 4.3 *Let $n \geq 2$, $t > 0$ and $1 < p < \infty$. Then*

$$\|T_t\varphi\|_p \leq C_t \|\varphi\|_p, \quad \varphi \in L_p, \tag{4.9}$$

where

$$C_t = C(1+t^{1-n}) \exp \left[\frac{n}{p} \left(2 - n + \frac{n}{p} \right) t \right],$$

with the constant C not depending on t .

Proof. The proof is obtained by direct application of Theorem 2.2 to the right-hand side of (4.6). Let us show that $A \leq C_t$, where A is the constant (2.1). The application of (3.15) and (3.19) yields

$$\begin{aligned}
A &= \frac{\exp(-(n-2)^2 t/4)}{2\sqrt{\pi t} |S_{n-1}|} \int_0^{\infty} \exp \left(-\frac{(\ln \rho)^2}{4t} \right) \rho^{(2-n)/2+n/p-1} d\rho \times \\
&\quad \times \int_{S_{n-1}} \left(\sum_{m=0}^{\infty} d_n(m) \exp(-m(m+n-2)t) |P_m(\theta \cdot \sigma)| \right) d\theta \leq \\
&\leq C \frac{\exp(-(n-2)^2 t/4)}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} \exp \left(-\frac{x^2}{4t} + \left(\frac{2-n}{2} + \frac{n}{p} \right) x \right) dx \times \\
&\quad \times \left[1 + \sum_{m=1}^{\infty} m^{n-2} \exp(-m(m+n-2)t) \right].
\end{aligned}$$

Taking into account the formula 2.3.16(11) from [10] and the estimate

$$x^c e^{-ctx} \leq (et)^{-c},$$

where $t > 0$, $c > 0$, and $x > 0$, we have

$$\begin{aligned} A &\leq C \exp \left[\frac{n}{p} \left(2 - n + \frac{n}{p} \right) t \right] \times \\ &\quad \times \left(1 + \sum_{m=1}^{\infty} [m^{n-2} \exp(-(n-2)tm) \exp(-m^2t)] \right) \leq \\ &\leq C \exp \left[\frac{n}{p} \left(2 - n + \frac{n}{p} \right) t \right] \left(1 + t^{2-n} \sum_{m=1}^{\infty} \exp(-mt) \right). \end{aligned}$$

In view of the relation

$$1 + t^{2-n} \sum_{m=1}^{\infty} \exp(-mt) = 1 + \frac{t^{2-n}}{\exp(t) - 1} \leq 1 + t^{1-n}$$

we obtain (4.9). \blacksquare

We note that the above theorem provides sharper estimates for the norms $\|T_t\|_{L_p \rightarrow L_p}$ in comparison with those obtained in Theorem 4.1. It states that

$$\|T_t\|_{L_p \rightarrow L_p} \leq C \exp \left[\frac{n}{p} \left(2 - n + \frac{n}{p} \right) t \right], \quad t > 0, \quad 1 < p < \infty, \quad (4.10)$$

where C does not depend on t .

We also give the following point-wise estimate for $(T_t\varphi)(x)$, which will be used in the justification of the inversion formula for the potential $\mathbf{I}^\alpha\varphi$.

Lemma 4.2 *Let $\varphi \in C_{0,0}^\infty$ and $n \geq 2$. Then*

$$|(T_t\varphi)(x)| \leq C|x|^{-1/r'} t^{-1/(2r)} \exp \left\{ \frac{1}{r} \left(2 - n + \frac{1}{r} \right) t \right\}, \quad t > 0,$$

where $1 < r < \infty$, $x \in \mathbf{R}^n \setminus \{0\}$ and C depends only on φ , n and r .

The proof is based on the equality (4.7).

4°. Further properties of the operator T_t . Theorems 4.4 and 4.5 below show that the family $\{T_t\}_{t \geq 0}$ is a semi-group strongly continuous in L_p .

Theorem 4.4 *Let $n \geq 2$, $1 < p < \infty$ and $\varphi \in L_p(\mathbf{R}^n)$. Then*

$$(T_t T_\tau \varphi)(x) = (T_{\tau+t} \varphi)(x), \quad t > 0, \tau > 0. \quad (4.11)$$

Proof. Since the operators on both sides of (4.11) are bounded in L_p , it remains to verify this equality for $\varphi \in C_{0,0}^\infty$. For such $\varphi(x)$ we have by (4.4)

$$(T_t T_\tau \varphi)(x) = \int_{\mathbf{R}^n} h_t \left(\frac{|x|}{|y|} \right) S_t(x' \cdot y') \left(\int_{\mathbf{R}^n} h_\tau \left(\frac{|y|}{|z|} \right) S_\tau(y' \cdot z') \varphi(z) \frac{dz}{|z|^n} \right) \frac{dy}{|y|^n} \\ \int_{\mathbf{R}^n} \varphi(z) \left(\int_0^\infty h_t \left(\frac{|x|}{\rho} \right) h_\tau \left(\frac{\rho}{|z|} \right) \frac{d\rho}{\rho} \right) \left(\int_{S_{n-1}} S_t(x' \cdot \sigma) S_\tau(\sigma \cdot z') d\sigma \right) \frac{dz}{|z|^n}.$$

Application of the equalities

$$\int_0^\infty h_t(a/\rho) h_\tau(\rho/b) \frac{d\rho}{\rho} = h_{t+\tau}(a/b), \quad t > 0, \tau > 0, a > 0, b > 0,$$

and

$$\int_{S_{n-1}} S_t(x' \cdot \sigma) S_\tau(\sigma \cdot y') d\sigma = S_{t+\tau}(x', y'),$$

obtained by simple calculations, yields (4.11). \blacksquare

Theorem 4.5 *Let $n \geq 2$ and $\varphi \in L_p(\mathbf{R}^n)$, $1 < p < \infty$. Then*

$$\lim_{t \rightarrow 0} \|T_t \varphi - \varphi\|_p = 0 \quad (4.12)$$

The verification of (4.12) is now easily obtained by means of the Banach-Steinhaus theorem: the uniform estimate

$$\sup_{0 < t < 1} \|T_t\|_{L_p \rightarrow L_p} < \infty$$

is a consequence of (4.9), while the proof of (4.12) for $\varphi \in C_{0,0}^\infty$ is direct.

The following theorem plays a crucial role in the justification of the inversion formula for the operator \mathbf{I}^α within the framework of L_p -spaces.

Theorem 4.6 *Let $n \geq 3$, $\operatorname{Re} \alpha > 0$. On functions $\varphi \in C_{0,0}^\infty$ the operator (3.15) may be represented as*

$$(\mathbf{I}^\alpha \varphi)(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty t^{\alpha/2-1} (T_t \varphi)(x) dt. \quad (4.13)$$

Proof. Let $\operatorname{Re} \alpha > 2n - 2$. Substituting (4.4) into the integral on the right-hand side of (4.13) and changing the order of integration, after simple calculations we arrive at the left-hand side of (4.13).

The validity of (4.13) in the case $\operatorname{Re} \alpha > 0$ follows from the analyticity of both sides in the half-plane $\operatorname{Re} \alpha > 0$. The analyticity of the left-hand side follows from the uniform convergence of the series (1.3) in the half-plane $\operatorname{Re} \alpha > 0$ (as was mentioned in the proof of Theorem 3.2). The analyticity of the right-hand side is evident in view of Lemma 3.2. \blacksquare

5 Inversion of the potential $f = \mathbf{I}^\alpha \varphi$, $\varphi \in L_p$

1°. The case $\alpha > 0$. Denote

$$(\mathbf{D}_\varepsilon^\alpha f)(x) = \frac{1}{\varkappa(\alpha/2, l)} \int_\varepsilon^\infty (E - T_t)^l f(x) \frac{dt}{t^{\alpha/2+1}}, \quad \alpha > 0,$$

where

$$\begin{aligned} (E - T_t)^l f(x) &= \sum_{k=0}^l (-1)^k \binom{l}{k} (T_{kt} f)(x), \\ \varkappa(\lambda, l) &= \int_0^\infty \frac{(1 - e^{-t})^l}{t^{1+\lambda}} dt, \quad l > \lambda. \end{aligned} \quad (5.1)$$

Let

$$(J^\alpha g)(t) = \frac{1}{\Gamma(\alpha)} \int_t^\infty g(\tau) (\tau - t)^{\alpha-1} d\tau, \quad \alpha > 0$$

be the Liouville fractional integral.

Theorem 5.1 *Let $n \geq 3$, $\alpha > 0$, and $\varphi \in L_p$ with $n/(n-2) < p < \infty$. Then*

$$\lim_{\varepsilon \rightarrow 0} {}^{(L_p)} (\mathbf{D}_\varepsilon^\alpha \mathbf{I}^\alpha \varphi)(x) = \varphi(x).$$

The proof is based on the following lemmas.

Lemma 5.1 *Let $\varphi \in C_{0,0}^\infty$, $\alpha > 0$ and $n \geq 3$. Then*

$$(T_t \mathbf{I}^\alpha \varphi)(x) = (J^{\alpha/2} (T_{(\cdot)} \varphi)(x))(t), \quad t > 0.$$

The proof is a matter of direct verification.

In the following lemma we use the identity approximation kernel

$$k(\eta) = \frac{\Delta_1^l [\eta_+^{\alpha/2}]}{\eta \Gamma(\alpha/2 + 1) \varkappa(\alpha/2, l)}, \quad (5.2)$$

where

$$(\Delta_\tau^l f)(x) = \sum_{k=0}^l (-1)^k \binom{l}{k} f(x - k\tau),$$

is the finite difference. The kernel $k(\eta)$ is well known in fractional calculus ([17], Subsection 6.2 of Ch. 7). It is known that

$$k(\eta) \in L_1(0, \infty) \quad \text{and} \quad \int_0^\infty k(\eta) d\eta = 1. \quad (5.3)$$

Lemma 5.2 *Let $\alpha > 0$, $\varphi \in C_{0,0}^\infty$ and $n \geq 3$. Then for any $\varepsilon > 0$ and $t > 0$ the following equality holds:*

$$\begin{aligned} & \frac{1}{\varkappa(\alpha/2, l)} \int_\varepsilon^\infty \Delta_\tau^l [(T_{(\cdot)} \mathbf{I}^\alpha \varphi)(x)](t) \frac{d\tau}{\tau^{\alpha/2+1}} = \\ & = \int_0^\infty k(\eta) (T_{t+\varepsilon\eta} \varphi)(x) d\eta, \quad 0 < \alpha < 2l. \end{aligned} \quad (5.4)$$

Proof. Relations (5.3) for the kernel (5.2) are well-known (see, for example, [17], Subsection 6.2). The proof of (5.4) is based on the following auxiliary equality

$$\Delta_\tau^l [(T_{(\cdot)} \mathbf{I}^\alpha \varphi)(x)](t) = \int_0^\infty g_\tau(\xi) (T_{t+\xi} \varphi)(x) d\xi, \quad (5.5)$$

where

$$g_\tau(\xi) = \frac{1}{\Gamma(\alpha/2)} \Delta_\tau^l [\xi_+^{\alpha/2+1}] \in L_1(0, \infty), \quad 0 < \alpha < 2l.$$

Indeed, for any $t > 0$ by Lemma 5.1 we have

$$\begin{aligned} \Delta_\tau^l [(T_{(\cdot)} \mathbf{I}^\alpha \varphi)(x)](t) &= \sum_{k=0}^l (-1)^k \binom{l}{k} (J^{\alpha/2} (T_{t+\xi} \varphi)(x)) (t - k\tau) = \\ &= \sum_{k=0}^l (-1)^k \binom{l}{k} \frac{1}{\Gamma(\alpha/2)} \int_0^\infty (T_\theta \varphi)(x) (\theta - t + k\tau)_+^{\alpha/2-1} d\theta. \end{aligned}$$

Setting $\xi = \theta - t$, after simple transformations we obtain (5.5).

To prove (5.4), we take into account (5.5) and for any $\varepsilon > 0$ obtain

$$\begin{aligned} & \frac{1}{\varkappa(\alpha/2, l)} \int_\varepsilon^\infty \Delta_\tau^l [(T_{(\cdot)} \mathbf{I}^\alpha \varphi)(x)](t) \frac{d\tau}{\tau^{\alpha/2+1}} = \\ & = \frac{1}{\varkappa(\alpha/2, l)} \int_\varepsilon^\infty \left(\int_0^\infty g_\tau(\xi) (T_{t+\xi} \varphi)(x) d\xi \right) \frac{d\tau}{\tau^{\alpha/2+1}} = \\ & = \frac{1}{\varkappa(\alpha/2, l)} \int_0^\infty (T_{t+\xi} \varphi)(x) \left(\int_\varepsilon^\infty g_\tau(\xi) \frac{d\tau}{\tau^{\alpha/2+1}} \right) d\xi. \end{aligned} \quad (5.6)$$

The interchange of order of integration is justified by the Fubini theorem applicable in view of Lemma 4.2. The integral

$$I = \int_\varepsilon^\infty g_\tau(\xi) \frac{d\tau}{\tau^{\alpha/2+1}}.$$

proves to be dilatation of the kernel $k(\xi)$. Indeed, we have

$$\begin{aligned} I &= \frac{1}{\Gamma(\alpha/2)} \int_\varepsilon^\infty \left(\sum_{k=0}^l (-1)^k \binom{l}{k} (\xi - k\tau)_+^{\alpha/2-1} \right) \frac{d\tau}{\tau^{\alpha/2+1}} = \\ &= \frac{1}{\Gamma(\alpha/2)} \left(-\frac{2}{\alpha} \xi^{\alpha/2-1} \tau^{-\alpha/2} \Big|_\varepsilon^\infty + \right. \\ &+ \left. \sum_{k=0}^l (-1)^k \binom{l}{k} k^{\alpha/2} \int_0^{(\xi - k\varepsilon)_+} \frac{\theta^{\alpha/2-1} d\theta}{(\xi - \theta)^{\alpha/2+1}} \right) \end{aligned}$$

and the formula 2.2.5(2) from [10] yields

$$I = \frac{1}{\Gamma(\alpha/2 + 1)\xi} \sum_{k=0}^l (-1)^k \binom{l}{k} \left(\frac{\xi}{\varepsilon} - k \right)_+^{\alpha/2} = \frac{1}{\varepsilon} k \left(\frac{\xi}{\varepsilon} \right).$$

Then from (5.6) we obtain

$$\frac{1}{\varkappa(\alpha/2, l)} \int_{\varepsilon}^{\infty} \Delta_{\tau}^l [(T_{(\cdot)} \mathbf{I}^{\alpha} \varphi)(x)](t) \frac{d\tau}{\tau^{\alpha/2+1}} = \frac{1}{\varkappa(\alpha/2, l)} \int_0^{\infty} (T_{t+\varepsilon\eta} \varphi)(x) k(\eta) d\eta. \quad (5.7)$$

■

The proof of Theorem 5.1. Application of Lemma 5.2 yields

$$(T_t \mathbf{D}_{\varepsilon}^{\alpha} \mathbf{I}^{\alpha} \varphi)(x) = \left(T_t \left[\int_0^{\infty} k(\eta) (T_{\varepsilon\eta} \varphi)(\cdot) d\eta \right] \right)(x), \quad \varphi \in C_{0,0}^{\infty}.$$

Passing to the limit as $t \rightarrow 0$ in the L_p -norm in the last equality, we have

$$(\mathbf{D}_{\varepsilon}^{\alpha} \mathbf{I}^{\alpha} \varphi)(x) = \int_0^{\infty} k(\eta) (T_{\varepsilon\eta} \varphi)(x) d\eta. \quad (5.8)$$

The equality (5.8) is extended by continuity to the whole space L_p , since the operators on both sides of (5.8) are bounded in L_p . From (5.3) we obtain

$$(\mathbf{D}_{\varepsilon}^{\alpha} \mathbf{I}^{\alpha} \varphi)(x) - \varphi(x) = \int_0^{\infty} k(\eta) [(T_{\varepsilon\eta} \varphi)(x) - \varphi(x)] d\eta,$$

with $\varphi \in L_p$, whence

$$\|\mathbf{D}_{\varepsilon}^{\alpha} \mathbf{I}^{\alpha} \varphi - \varphi\|_p \leq \int_0^{\infty} |k(\eta)| \|T_{\varepsilon\eta} \varphi - \varphi\|_p d\eta \rightarrow 0, \quad \varepsilon \rightarrow 0$$

by the Lebesgue dominated convergence theorem. (Existence of an integrable dominant follows from (4.9) in view of the assumption $p > n/(n-2)$). ■

2°. The case $\operatorname{Re} \alpha > 0$, $\operatorname{Im} \alpha \neq 0$. We observe that the approach developed in the previous subsection for real α seems to be problematical in this case. The matter is that we do not know, whether the normalizing constant $\varkappa(\alpha/2, l)$, defined in (5.1), vanishes if $\operatorname{Im} \alpha \neq 0$ or not. This is an old problem, equivalent to solvability of some functional equation, which was formulated in [18]. It still remains open. To overcome this difficulty while inverting the potential $f = \mathbf{I}^{\alpha} \varphi$ in this case, we deal with HSI of the form (1.6) with generalized differences instead of "usual" non-centered ones. See [16], Subsection 6.1 of Ch. 3, for details on these generalized differences. We set

$$\mathbf{D}^{\alpha} f = \lim_{\varepsilon \rightarrow 0} \frac{1}{\varkappa(\alpha/2, l)} \int_{\varepsilon}^{\infty} (E - T_t)^l f(x) \frac{dt}{t^{\alpha/2+1}}, \quad l > \operatorname{Re} \alpha,$$

where

$$(E - T_t)^l f(x) = \frac{1}{d_l} \begin{vmatrix} (T_{k_0 t} f)(x) & 1 & k_0 & \dots & k_0^{l-1} \\ (T_{k_1 t} f)(x) & 1 & k_1 & \dots & k_1^{l-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (T_{k_l t} f)(x) & 1 & k_l & \dots & k_l^{l-1} \end{vmatrix} = \frac{1}{d_l} \sum_{j=0}^l c_j (T_{k_j t} f)(x),$$

with

$$d_l = \prod_{l>i>j \geq 0} (k_i - k_j)$$

and

$$\varkappa(\alpha/2, l) = \frac{1}{d_l} \int_0^\infty t^{-\alpha-1} \left(\sum_{j=0}^l c_j \exp(-k_j t) \right) dt.$$

The choice $k_j = a^j$, $0 \leq j \leq l$, where $a > 1$ satisfies the condition

$$a \neq \exp(2\pi k / \operatorname{Im} \alpha), \quad k = \pm 1, \pm 2, \dots,$$

made in this subsection, provides the relation $\varkappa(\alpha/2, l) \neq 0$ to be fulfilled (see [16], Lemma 3.38 for details).

Theorem 5.2 *Let $\operatorname{Re} \alpha > 0$, $n \geq 3$ and $f = \mathbf{I}^\alpha \varphi$, $\varphi \in L_p$, $n/(n-2) < p < \infty$. Then $\mathbf{D}^\alpha f = \varphi$.*

The proof is similar to that of Theorem 5.1. It is based on the equality (5.4), where

$$k(\eta) = \frac{1}{\varkappa(\alpha/2, l) \Gamma(1 + \alpha/2) \eta} \sum_{j=0}^l c_j (\eta - k_j)_+^\alpha$$

is an identity approximation kernel.

We note that Theorem 5.2 provides an explicit expression for the positive powers $(-|x|^2 \Delta)^{\alpha/2} f$, $\operatorname{Re} \alpha > 0$ within the framework of L_p -spaces.

References

- [1] A.V.Abramyan and V.A.Nogin, On fractional powers of some dilation invariant differential operators. Izv. vuzov. Matematika (1994), No.4, 79-83.
- [2] A.V.Abramyan, V.A.Nogin and S.G.Samko. Fractional powers of the operator $-|x|^2 \Delta$ in L_p -spaces. Differents. Uravnen. (1996), Vol.32, No.2, 275-276.
- [3] H.Bateman, A.Erdelyi et al. Higher transcendental functions, Vol.2. McGraw-Hill Book Company, Inc, New York-Toronto-London (1954), 327 p.
- [4] G.P.Emgusheva and V.A.Nogin. Riesz derivatives with non-standard truncation and their application to inversion and description of potentials commuting with dilations. Dokl. AN SSSR, Vol.300, No.2, 277-280.
- [5] I.S.Gradshteyn and I.M.Ryzhik. Tables of integrals, sums, series and products. Moscow, Fizmatgiz (1963), 1100 p.
- [6] N.K.Karapetians. On necessary boundedness conditions for an operator with a quasi-homogeneous non-negative kernel. Mat. Zametki, Vol.30, No.5 (1981), 787-794.

- [7] O.I.Marichev. Method of calculation of integrals of special functions. Minsk, Nauka i tekhnika (1978), 312 p.
- [8] V.A.Nogin and S.G.Samko. Method of approximating inverse operators and its applications to inversion of potential-type integral transforms. Integral Transforms and Special Functions, Vol.8, No.1-2 (1999), 1-14.
- [9] V.A.Nogin and S.G.Samko. Some applications of potentials and approximative inverse operators in multidimensional fractional calculus. Fractional Calculus & Applied Analysis, Vol.2, No.2 (1999), 205-228.
- [10] A.P.Prudnikov, Yu.A.Brychkov and O.I.Marichev. Integrals and series. Moscow, Nauka (1981), 800 p.
- [11] A.P.Prudnikov, Yu.A.Brychkov and O.I.Marichev. Integrals and series. Additional Chapters. Moscow, Nauka (1986), 800 p.
- [12] B.S.Rubin. Fourier analysis of radial-spherical convolutions in \mathbf{R}^n . Izv. vuzov. Matematika, Part I - 9 (1989), 53-60; Part II - 10 (1989), 36-44.
- [13] S.G.Samko. On the spaces of Riesz potentials. Izv. Akad. Nauk SSSR. Ser. Mat. (1976), Vol.40, No.5, 1143-1172.
- [14] S.G.Samko. Spaces $L_{p,r}^\alpha(\mathbf{R}^n)$ and hypersingular integrals. Stud. Math. (PRL) (1977), Vol.61, No.3, 193-230.
- [15] S.G.Samko. Inversion theorems for potential-type integral transforms in \mathbf{R}^n and on S^{n-1} . Integral Transforms and Special Functions, Vol.1, No.2 (1999), 145-163.
- [16] S.G.Samko. Hypersingular integrals and their applications. In: International Series "Analytical Methods and Special Functions", Vol.5, Gordon & Breach Sci. Publ., London-New York (2000), 370 p. (to appear)
- [17] S.G.Samko, A.A.Kilbas and O.I.Marichev. Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach Sci. Publ., London-New York (1993), 1012 p.
- [18] S.G.Samko and S.M.Umarkhadzhiev. Application of hypersingular integrals to multi-dimensional integral equations of the first kind. Trudy Math. Inst. Steklov, Vol.172 (1985), 299-312.

The authors' addresses:

Anna V. Abramyan and Vladimir A. Nogin
*Dept. of Math and Mech
 Rostov State University
 ul. Zorge, 5, 344104
 Rostov-na-Donu, Russia*

Stefan G. Samko
Unidade de Ciências Exactas
Universidade do Algarve
Campus de Gambelas
Faro, 8000, Portugal