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Fractional powers of the operator —|z|*A
in L,-spaces

Anna V. Abramyan, Vladimir A. Nogin and Stefan G. Samko

Abstract

We investigate fractional powers of the operator —|z|2A within the framework of
the spaces L,(R"). Negative powers are realized as Riemann-Liouville fractional inte-
grals of a strongly continuous semi-group, while positive powers, inverse to negative,
are constructed as Marchaud fractional derivatives of that semi-group.

1 Introduction

We consider fractional powers of the operator
—|z2A, (1.1)

where A is the Laplace operator in R". There are a number of papers devoted to inves-
tigation of fractional powers of second order translation invariant differential operators, in
particular, the classical operators of mathematical physics: the wave operator, the Klein-
Gordon-Fock and Schrédinger operators, the telegraph operator, and others (for references
and detailed analysis of the results we refer to the books [16]-[17] and the survey papers
[8],[9],[15]. We observe that positive fractional powers (—A)*/2f a > 0, of the operator
—A are known to be realized as hypersingular integrals (HSI), see the papers [13]-[14] and
the books [16]-[17]. The case of multidimensional differential operators, invariant with
respect to dilations (and rotations) is almost untouched. We can only mention the papers
[4] and [1], devoted to the investigation of fractional powers

a/2 a/2
- d\° =, 0P
<_Z<xk8_ack)) and (izxka_x,%> .
k=1 k=1

The goal of this paper is to fill in this gap with respect to the operator (1.1). Its
fractional powers are defined as follows. We base ourselves on the expansion

oo dn(m)

(e A)) = 5 30 S Yuule) [ 1ol

m=0 p=1

X(m+n—2—s)(m+s)(Mpn,)(s)ds, xeR", (1.2)



where {V,,,,(z)} is the orthonormal basis of spherical harmonics,

(Do) (5) = / T () dr

is the Mellin transform of the Fourier-Laplace coefficients

eonlt) = [ oo Voo

In view of (1.2) it is natural to define the negative powers (—|z|2A)~*/2p, Rea > 0, as
follows:

(e A) () = (o)) = 5 > 3 Yt o

m=0 p=1
X(m+n—2—35) " (m+ )My, (s) ds, v € Cy. (1.3)

As is shown in this paper, the operator Iy is extended as a bounded operator to the
whole space L,, 1 < p < oco. We obtain the integral representation for the potential
I{f, Rea >0, p € L,, via the Riemann-Liouville fractional integral of a certain strongly
continuous semi-group 7; and prove the inversion formula

DQI{@ 2
where D f is the Marchaud-type fractional derivative of the semi-group 7; (a realization
of the Balakrishnan formula). In fact, we obtain an explicit expression for the positive
powers (—|z|2A)*2f, Rea > 0.

The paper is organized as follows. Section 2 contains some auxiliary information, in
particular, for radial-spherical expansions and multidimensional integral operators with
homogeneous kernels. In Section 3 we define the negative powers I%p = (—|z|2A)~/2p,
Rea >0, by (1.3) and prove that the operator I is bounded in L,(R"), 1 < p < co. We
also obtain the following representation for the potentials I't¢ in terms of radial-spherical

convolutions: " p
I - ko [ 2 ’)—y .
1N = [ vk ({5 ) o, (14)

which is of special interest itself. In Section 4 we study the semi-group 7; generated by the
infinitesimal operator |z|?A and obtain the representation

13f)(x) = ﬁ / TP L)@ dt, o el (15)

for the potential I f. The equality (1.5) enables us to apply the HSI’s method for inverting
the potential f = I%p, ¢ € L, provided that n/(n — 2) < p < co. Within the framework
of this approach, in Section 5 the inversion is constructed as follows:

(Ly)
D f =lim D¢, (1.6)

where
1 dr

(DZf)(z) = W/a (£ — Tf)lf(%’)m-

Some of the results presented in this paper were announced in [2].
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2 Preliminaries

1°. Notation:
= é‘, xr € R™
Sp_1 1is the unit sphere in R™;
|Sp—1] is its Lebesgue measure;
d,(m) = (n+2m—2) (ZJ!F(T—_;))!! ,n > 2, is the dimension of the space of spherical harmonic
of order m;
(Fo)(€) = [gne(x) exp(iz - £) dx is the Fourier transform of ¢
L = L p(R"); el = [lellL,;
Ly(Ase) = {1 11 gy = [ (@) Pe) di < o0} w 2 0
0070(R+) is the class of infinitely differentiable functions on R, with a compact support
beyond the origin;

={0,1,2,... }
\ 0, A>0,
T AL A<O0;

By 2%, a € C, we denote the main branch (k = 0) of the multi-valued function z* =
exp(a[ln|z| + i arg z 4+ 2kmi]) analytic in the complex plane cutted along the negative real
semiaxis .

The end of the proof is denoted by B .

2°. Some properties of the Mellin transform (see [7, §2]). Let L°(0,00) be
the class of complex valued piece—v&;ise continuous functions f(x) on (0, +o00) with a finite

number of jumps and such that / |f(z)|dz < co. The following statements are valid.
0

Lemma 2.1 Let o(x)xt"! € L°(0,00) and let ¢(x) be piece-wise differentiable in some
neighborhood (rg — e, x9 + €) of a point xo > 0 and continuous at xy. Then

{+ix

1 —S
plao) = 5 lim . (M) (s)aq ds.

)at=t and g(x)att € Le(0,00), then the Mellin convolution h(x) =
exists and h(x)zt=t € L¢(0,00), and (MR)(s) = (Mf)(s)(Mg)(s),

o (2)

where Re s = .

Lemma 2. f(z)
dy
Y

3°. Radial-spherical expansions and multipliers (see [12]). Let ¢ € Cg5. The

expansion
[e'e) dn m)

o) = 55 D0 3 uule) [ lal "Moo,

m=0 p=1

where the series in the right-hand side converges absolutely and uniformly in any layer
0<a<|z| <p <o forall s € R, is known as the radial-spherical expansion.



Consider the operator

(Al = 5= > z Vo

m=0 p=1
x / 2] () M) (5) ds, € C55,
Re s={

generated by the sequence of measurable functions pu,,(s), defined on the straight line
Res = .

Theorem 2.1 ([12]). Letn > 2, 1 < p < o0, 2 = (A+n)/p and let the following
assumptions be satisfied

I) there exist numbers Ny € Zg_, Cy > 0 and Cy > 0 such that

o A+n
Pl [ —— <C eR\ {0
i (i) <o eervo)
where m = 0,1,..., Ny and k = 0,1 with C| not depending on & and m;
II) there exists a function M(&,n) : R x [Ng,00) — C such that M(&,m) = pm((A+
n)/p +i&) for all m > 3 and
. lak al
£ a—gkmM(f,ﬁ)‘SCm ¢ € R\ {0},n = No,
I=0,1,...,[(n+1)/2], k=0,1, where Cy does not depend on & and n.
Then [[Agell, R oy < O(CL+ Co)llell L, R7 2, » € C5os where b is some absolute
constant not dependmg on {pm(s)}e°

m=0"

4°. On the analyticity of an integral depending on a parameter. The following
lemma is known.

Lemma 2.3 ([16], Subsection 5.2 of Ch.1). Let f(x, z) be an analytic function with respect
to z € D C C for almost all x € Q C R"™ which is dominated by a function integrable in

x not depending on z: |f(z,2)] < F(zx) € Li(2). Then the integral / f(z,2z)dx is an
Q

analytic function in D.

5°. L,-mapping properties of operators with homogeneous kernels. The
following statement is contained in Theorem 1 from [6].

o) = [ ('|y|' " y> )

[e'e) 1
A =18, / k(p £)] p 11— 2)09/2 g df < o (2.1)
0 —1

Theorem 2.2 Let

and let the condition

be satisfied. Then K is bounded in L,(R",|z]*), 1 < p < oo, and ||K|| < A.



3 Fractional powers (—|z|?A)~%/2, Rea > 0, in L,-spaces

1°. Heuristic arguments. Applying the inverse Mellin transform in the equality

(M~ [2PAP)mp)(5) = (m +n =2 = s)(m + 5) (M) (s), ¢ € Cgy, (3.1)
we have
(=12 A@)mp(|z]) = % . :{!x\’s(m +n—2=s)(m+ s)(Mep,)(s) ds.

Expanding the function —|z|*(A¢)(z) into the Fourier-Laplace series (see [16], p.34), we
arrive at the equality

—J2P(Ap) (@) = D0 D V(@) (2 PAp)mu(l]) =
a2 2 ymu(x)/Res={|x| (m+n = 2= s)(m + 5)(Mpma)(s) ds,

where ¢ € C, » € R.

Basing on this equality, it is natural to define negative powers (—|z|?A)~*/2¢ = Iz
with Rea > 0 and s € R, by (1.3).

2°. Mapping properties of the operator Ig in L,. The following theorem provides
L,-estimates for the operator Ig defined in (1.3).

Theorem 3.1 Letn >2,1<p< oo, »x=n/p, Rea>0. Then

ITgells < Cllell
Jor ¢ € Cgy where C' does not depend on .

The statement of Theorem 3.1 follows from Theorem 2.1, when p # 2 and n = 2, or
pé&{n/(n—1),n/(n—2)} and n > 3. The proof being direct, we omit it. In the remaining
cases, the proof is derived from the Riesz interpolation theorem.

3°. Integral representation for the operator Iy, n > 3. We introduce the kernel

11—«

a o 2Cm4n—2)7
nlP) = A a)

where K, (z) is the McDonald function of order v. Its Mellin transform is given by

2m+n—2 2-n
gl ) pT, 0<p<oo

a—1
[Inp| > Ko (

(Mal)(s) = (m+n—2—5)"(m+5)"%2, —m <Res<m-+n—2, (3.2)

which is verified by means of the formula

0o 21171 T + 1 v
/ t" K, (at)cosh ptdt = vl (v ?) ¢ , (3.3)
0 (a? —p?)""2
1
a>0, V> Ip| <a

(see [11], formula 2.16.6.6; it may be also obtained from the formula more known formula
6.621.3 in [5] by use of some standard properties of the Gauss hypergeometric function).
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Lemma 3.1 LetRea>0,n>3, m¢€ Z?r and » € (0,n — 2). Then the representation

1 —s —a —a
27 Jre g’ (m+n—2—s)7*2(m +s)"*2(M)(s) ds =
o p dr
= o= — CSs 3.4
| a(®)ent  vecn, (3.4
18 valid.
o d
Proof. Denote h(g) = / ap, <§> w(r)% . Using the well-known properties of the

McDonald function (see, for example, [3]), it is easy to verify that pt=ta2 (p) € L(0, 00),
if 3¢ € (0,n—2). Hence, tt=1h(t) € L¢(0,00) and (9Mh)(s) = (M) (s)(Ma2)(s) by Lemma
2.2. Then Lemma 2.1 and relation (3.2) yield (3.4). |

Making use of Lemma 3.1 in (1.3), we have

[e's] dn m)

2] dp
Tg)(@) =D > Vule / ap, ( Pmp(p) =,
m=0 p=1 P p
0<sx<n-—2 ¢€CCgy . Taking into account the equality
d,(m
Z ym,u, ymu ) me(x, : U)a (35)
|Sn—1|
(see [16], formula 1.57), where the Legendre polynomial
—3)Im! n=2
o) = o) i<h<, (36)

(m+n—3)!

is defined via the Gegenbauer polynomial C2 (6), we obtain

(Ige)(@ =5 1|Zd / /n1 ro)a <|i|>p (x/.g)%da
~ IS 1|Zd / (Y)an, (” DP (- y)‘%, (3.7)

¢ € gy, 0 < 3¢ <n — 2. To represent the potential If¢ as a radial-spherical convolution,
we consider the kernel

koé( 7 |Sn 1| Zd (9)7

where Rea > 0, 0 < p < oo,and —1 <0 < 1.

Lemma 3.2 Letn >3, Rea >0, -1 <0<1,p>0and p#1. Then

|Inpl*—tp*z" [, oy Tt pteY
ka(p, 0) = / £ 1) dt = 3.8
N N V0 L M ey P 35
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21704 2-n e o 1 —
:—p:/ (ln23—1n2p) L S)di,
|Sn_1|r (5) 0 (1—2€S+S )2

where p — min (p, %) = psign(1=p),

Proof. We rewrite k,(p,0) as:

ko, 0) = ﬁ S @m+n - 2)a8 (p)Cu? (6). (3.9)

‘Sn71| m=0

Using the formula 8.432(3) from [5], we obtain

o _ “np|o¢—1 2_7“ > 2 a_q n—2
am(p)_ FQ( )204 1 . (t _1)2 exp _(m+ 9 )“Hp|t dt

whence
an’a—lpz_T”21—a 00 o2
ko(p,0) = 2 — 9 (0
(p ) ]Sn,1|(n—2)F2(%) T;)( m-+n ) ( )X

e [e% - 2
X / (t* —1)2 texp (—(m + nT)\ lnp]t) dt
1

by (3.9). Changing the order of integration and summation, we arrive at the equality

| 1np|a71p2—7" /OO 2 S g (=t
ko(p,0) = t“—1 (0" 0)dt,
(:0 ) |Sn_1|20‘—11“2(%) . ( )2 S, (p )
where -
m:O

0<z<1, —1<6<1. We have

Sn(z;0) = 2 zi (zn§2 izm(z:fz(ﬁ)> : (3.10)

n—2 dz —

Since (1 —2rt+1r?)~*=3>">_ C)(t)r™ (see [16], formula (1.16)), we obtain

2 d z 2 2 -
S, (2:0) = ) = -
(2:6) n—2 dz (1 —292+22> (1 —20z+ 22)2

which yields (3.8). |
We also need the following estimates for the kernel k,(p, 6).

Lemma 3.3 LetRea>0,n>3,0<p<oo, -1 <0< 1.



IIf-1<6<1/2,0<p<oo, then

| In p[Rea/2=1, 0<p<1/2
|In p[Reat 1/2<p<2,0<Rea <1

ka(p,0)] < C ¢ [In|Inp|], 1/2<p<2,Rea=1; (3.11)
1, 1/2<p<2Rea>1;

|1np|Rea/271p2fn’ 2 < p < 0.

) If1/2<60<1,0< p=min{p, 1/p} <0 —1/4, then

L1, 0<p<1/2
< Rea/2—1 ) ) ]
a0 < Climpeert{ L, D20 3.12)

III) Let 1/2 <0 < 1,0 —1/4 < p < 1. The following inequalities are valid:
a) if 0 <Rea < 2n — 2, then

[ka(p, 0)] < C [|p—1|Re/2D=(1 — 20p + p7)Ree—2m+2)/4 (3.13)

+|p . 1|1+(Rea/271)_(1 . 295+ ﬁZ)(Reaon)/Al + 1} = CuRea(p; 9)’

b) if Rea > 0 then

[ka(p,0)] < Clp — 1|Fee/2mD-rReal2zntl- = G (p; 6). (3.14)

Moreover, the constant C' can be chosen independent of o in a small neighborhood of
each point v of the half-plane Re av > 0.

The proof of lemma is reduced to the direct estimation of the right-hand side of (3.8).

e a%%@=/}ﬂ@m(%nﬁy)@- (3.15)

[yl
The following theorem provides the representation for the operator (1.3) in the form of a
radial-spherical convolution.

Theorem 3.2 LetRea >0,n>3,0<x<n-—2, p€Cgy. Then
(Ize)(z) = I%)(), (3.16)
where (Igp)(r) was defined in (1.3).

Proof. Let Rea > n — 1 first. Changing the order of integration and summation in (3.7),
we obtain (3.16). This interchange is justified by the inequality

- d
S antm [ et (1) Puler )| 2 < o 3.17)
— R" |yl ly|"
The last inequality follows from the estimates
d,(m) < Cm™2, (3.19)
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(see [16], inequality (1.55) and Corollary to Lemma 1.4) and the equality

[ (o) = a0

The validity of the equality in (3.16) for Re a > 0 isderived from the analyticity of its
both sides in the half-plane Re & > 0. The analiticity of the left-hand side is derived from
the uniform convergence of the series (1.3) in the half-plane Re v > 0 (for any fixed = # 0).
We omit the proof of this fact, because it is purely technical. Let us prove the analyticity
of the right-hand side of (3.16). Analyticity of the function k,(p, @) defined in (3.8) in the
half-plane Re a > 0 follows from Lemma 2.3 in view of the estimate

|(t2 . 1)a/2—1| < (tQ . 1)5/2—1 + (t2 . 1)N/2—1’

where t > 1, 0 < ¢ < Rea < N < oo. Then the application of Lemma 2.3 provides the
analyticity of the integral Ip, defined in (3.15), in the half-plane Re a > 0 by virtue of the
estimate

|mwﬁnso{

where 1/2 < # < 1 and § —1/4 < p = min{p,1/p} < 1 and the functions u, and v,
were defined in (3.13) and (3.14), the constant C' in (3.20) not depending on « in a small
neighborhood of each point a,, Re @ > 0. The integrability of the function in the right-hand
side of (3.20) - which is required by Lemma 2.3 - follows from the relations:

|z 1 x|

Un (m,l‘/-yl> g(xl-y’)ELl ({yGR”:§<|—y|<2}>,

us(p,0) +un(p,6), 0<e<Rea <N =2n-—2,

vs(p,0) +ur(p,0), 2n—4<d<Rea <L < o0, (3.20)

if v € (0,2n — 2], where

(1, if1/2<0<1,
5(9)_{0, if —1<6<1/2

- ] 1 x|
x / / / / n T
vy | =2 -y | (2 -y 6L(y€R:—<—<2>,
7(|y| ) et 2 |yl )
if v>2n—4. [ |

4°. Representation of the potential I7y, ¢ € L,. To extend (3.16) to the whole
space L,, we need the following theorem.

Theorem 3.3 Let Rea >0, n > 3 and n/(n —2) < p < oo. Then the operator I¢ is
bounded in L,.

The statement of Theorem 3.3 follows from Theorem 2.2. The latter is applicable in
view of the inequality

1/2
A S C (/ |lnp|Rea/271pn/P*1dp +
0
+/ ‘lnp’Rea/2—1pn/p+1—ndp + 1> _
2
=C (/ the /2= [oxp(—nt/p) + exp((n/p + 2 — n)t)] dt + 1) < 00.
In2
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Since the operators on both sides of the relation (3.16) are bounded in L, , if Re v > 0,
n > 3 and n/(n —2) < p < oo, this relation is extended by continuity to the whole L,
under the given restrictions on the parameters. [

4 Representation of the potential Iy via the Riemann-
Liouville fractional integral of a strongly continuous
semi-group

In this section we study the semi-group 7} generated by the infinitesimal operator |z|?A.
Our main goal is to prove the representation (1.5).

1°. Heuristic arguments.

The semi-group T}, t > 0, generated by the infinitesimal operator |z|?A is

(Tip)(z) = exp(t|a]A)p(z) = Y t—!(|I|2A)k90($), v € Cgy-
By virtue of (3.1) we obtain
T )(5) = 3 27 [T (2P A el)) .| (5) =

whence
1

(Ti0)mu(p) = 5—

i || ~*exp ((s +m) (s — m — n —+ 2)t) (Mppm,.) (s) ds.
Re s={

Expanding (T;¢)(x) into the Fourier-Laplace series, we have

(Tie)e) = 53 > Z Vo) [ ol
xexp ((s +m)(s —m —n+2)t) (M) (s) ds, (4.1)

where ¢ € Cgy, > € R.
2°. Mapping properties of the operator 7; in L,. The following theorem provides
the L, -estimates for the operator T},¢ > 0, defined in (4.1).

Theorem 4.1 Letn >2,1<p<oo,0<t <M and sc=n/p. Then [|[Tipl, < C|l¢lp,
¢ € Cg%, where the constant C = C(M) does not depend on t and .

10



The proof is reduced to the direct application of Theorem 2.1.

3°. Integral representation for the operator 7;. Here we obtain a representation
for the operator T;, defined in (4.1), in the form of a radial-spherical convolution. We
denote

1 1 2 2 — 2)?

where 0 < p < oo and t > 0 and use the following technical lemma.

Lemma 4.1 Lett >0, n>2, m¢€ Z?r, » € R. Then

% plexp ((s+m)(s —m —n+2)t)(MY)(s)ds =
T JRe s={
o d
:/0 (D)o, e (4.2)
Proof. We observe that
(OMBL,)(s) = exp ((s + m)(s — m — n+ 2)t), —00 < Re s < 00, (4.3)

which is a consequence of the formula 2.3.16(11) from [10]. To prove (4.2), we denote

i = | o (D) v ™

Since rt=1bt (r) and ri=1y(r) are in L¢(0,0) for any s € R, by Lemma 3.1 we obtain
that 71 H,(p) € L¢(0,00) and (MH,)(s) = (Embt )(s)(M)(s). Making use of Lemma 2.1
and equality (4.3), we arrive at (4.2).

Theorem 4.2 Letn >2,¢t>0, »x € R and ¢ € Cgy. Then

_ kd dy
@) = [ o () sia' -, (1.4)
where | o2 o2
h( )_ bt( ) 2\/_ exp (_( r;f) . (n:l ) t) p(2—n)/2 (45)
and
S,(6) =5 |Zd )exp (—m(m +n — 2)t) P,(6). (4.6)

Proof. From (4.1), in view of (4.2) we have

10 =3 3 Vuute) [, () [ et )

m=0 p=1

11



whence by virtue of (3.5) we obtain

(Trp)(z =I5 1|Zd / /Mm (' ') (2 - 0)%(&7—
—z/ o (5 et

Changing the order of integration and summation in (4.8), we obtain (4.4). This inter-

change is justified by the fact that
|z]
ity () Pate” )
||

zd YR

Indeed, the application of (3.15), (3.16) and (4.3) yields

CZ Lt (||yD|y|
:sz“/ t(r;\)w CZ )0

= C’Zm exp (—m(m +n — 2)t) < oco.

d
y<oo

IN

A(x)

|
The following theorem plays an important role in the justification of the inversion
formula for the potential I%¢p.

Theorem 4.3 Letn>2,t>0 and 1 <p < oo. Then
[ Teell, < Cellellps @ € Ly, (4.9)
where
C,=CO(1 +t ")eXp[ (Q—n—i- )t} ,
p p
with the constant C not depending on t.

Proof. The proof is obtained by direct application of Theorem 2.2 to the right-hand
side of (4.6). Let us show that A < C}, where A is the constant (2.1). The application of
(3.15) and (3.19) yields

B e
2\/_|Sn 1| 0 4t

x/ (Zd m) exp ( (m+n—2)t)|Pm(6-a|)d9§
Sn—

e T N (S P

1—|—Zm exp ( (m—i—n—Q)t)].
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Taking into account the formula 2.3.16(11) from [10] and the estimate
wcefctx S (615)76,

where t > 0, ¢ > 0, and x > 0, we have

A< Cexp [g (Q—n—l—%) t} x
(1 + Z "2 oxp (—(n — 2)tm) exp(—m%)}> <
< Cexp [g <2 —nt g) t] <1 + 2 i exp(—mt)) .

m=1
In view of the relation

> 2—n

t
1+t*™m —mt) =14+ ——— <14t
+ Zexp( mt) +exp()—1_ +

m=1

we obtain (4.9). |
We note that the above theorem provides sharper estimates for the norms ||T3||z,—r,
in comparison with those obtained in Theorem 4.1. It states that

T\l p, -1, < Cexp [E (Z—n—i—ﬁ) t} : t>0,1<p<oo, (4.10)
p p

where C' does not depend on ¢.
We also give the following point-wise estimate for (T3p)(x), which will be used in the
justification of the inversion formula for the potential I%y.

Lemma 4.2 Let p € C’é’% andn > 2. Then

/ 1 1
|(Tyo)(2)| < C|x|_1/r /@) exp{ <2 —n+ ) t} ., t>0,

where 1 <r < oo, x € R"\ {0} and C depends only on ¢, n and r.

The proof is based on the equality (4.7).
4°. Further properties of the operator 7;. Theorems 4.4 and 4.5 below show that
the family {7}}:>o is a semi-group strongly continuous in L,.

Theorem 4.4 Letn > 2,1 <p<oo and ¢ € L,(R"). Then

(TiTr o) (x) = (Trip) (), t>0,7>0. (4.11)

13



Proof. Since the operators on both sides of (4.11) are bounded in L,, it remains to verify
this equality for ¢ € Cg%. For such ¢(z) we have by (4.4)

(TTr0) () = /R T (%) S/ - o) ( /R h, (%) ST<y’-z’)so(z)£—|i) IZ_T/

L[ (5 (2) D) ([ s osio )

Application of the equalities

> d
/ ht(a/p)hT(p/b)Fp = h¢yr(a/b), t>0,7>0,a>0,b>0,
0

and

/ Si(a’ - 0)S, (0 - ) do = Srer (a4,
Snfl

obtained by simple calculations, yields (4.11). |
Theorem 4.5 Letn > 2 and ¢ € L,(R"), 1 < p < oco. Then

lim |7 — el = 0 (.12)

The verification of (4.12) is now easily obtained by means of the Banach-Steinhaus
theorem: the uniform estimate

sup ||ﬂ||Lp—’Lp <00
0<t<1

is a consequence of (4.9), while the proof of (4.12) for p € (g is direct.
The following theorem plays a crucial role in the justification of the inversion formula
for the operator I within the framework of L,-spaces.

Theorem 4.6 Let n > 3, Rea > 0. On functions ¢ € Cgy the operator (3.15) may be

represented as
1

)6 = fa7m / T (Tp) () d. (4.13)

Proof. Let Rea > 2n — 2. Substituting (4.4) into the integral on the right-hand side of
(4.13) and changing the order of integration, after simple calculations we arrive at the
left-hand side of (4.13).

The validity of (4.13) in the case Re a > 0 follows from the analyticity of both sides
in the half-plane Re @ > 0. The analyticity of the left-hand side follows from the uniform
convergence of the series (1.3) in the half-plane Re @« > 0 (as was mentioned in the proof
of Theorem 3.2). The analyticity of the right-hand side is evident in view of Lemma 3.2.
|
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5 Inversion of the potential f =1%, p € L,

1°. The case a > 0. Denote

D0 = | BT @ a0,
where
(E-T)'f() = g(‘”k (1) @he,
LA D) = /Ooo G;I—it)ldt, > (5.1)
Let N
(J%g)(t) = ﬁ/t o) — 0 dr, a0

be the Liouville fractional integral.
Theorem 5.1 Letn >3, a >0, and ¢ € L, withn/(n —2) < p < oo. Then

(Lyp)
lim (DI1°p) (2) = (x).

The proof is based on the following lemmas.

Lemma 5.1 Let p € ng’), a>0andn > 3. Then

(TX°9)(x) = (S (Tp)() (£), >0,

The proof is a matter of direct verification.
In the following lemma we use the identity approximation kernel

Al [773“-/ 2}

k(n) = nT (/2 4 1)se(/2,1)

(5.2)

where

(L)) = S (-1t < ! ) fw— k),

k=0
is the finite difference. The kernel k(n) is well known in fractional calculus ([17], Subsection
6.2 of Ch. 7). It is known that

k(n) € L1(0,00) and /000 k(n)dn = 1. (5.3)

15



Lemma 5.2 Let a > 0, p € Cgy and n > 3. Then for any € > 0 and t > 0 the following
equality holds:

1 I dr
s AT 0= -
- | @)@ an, 0<a<ar, (5.4)

Proof. Relations (5.3) for the kernel (5.2) are well-known (see, for example, [17], Subsection
6.2). The proof of (5.4) is based on the following auxiliary equality

AL [T 1) (2)] () = / " 0O (Trreg) () de (5.5)

where
1

Indeed, for any ¢ > 0 by Lemma 5.1 we have

l
A [(ToT*y Z ( ) (J(Tisep) (@) (t — kT) =

:§:@nk<é>fé%54mawm@w—¢+kﬂf2W&

Setting & = 0 — t, after simple transformations we obtain (5.5).
To prove (5.4), we take into account (5.5) and for any € > 0 obtain

- | ([ wowwae) T
o | T ([ Tonto ) e 5.6)

The interchange of order of integration is justified by the Fubini theorem applicable in view

of Lemma 4.2. The integral
> dr
I= /E gT(f)m~

proves to be dilatation of the kernel k(). Indeed, we have

O

ALY € L,(0,00),  0<a <2

1
— F(@/Q)( 6&/2 1 —a/2 _|_
l I (E—ke)+ 90‘/2_1d0
_1\k a/2
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and the formula 2.2.5(2) from [10] yields

e (1) (6-4) - 2(9)

Then from (5.6) we obtain

o) MO0 O - oy [ Beapbman )

|
The proof of Theorem 5.1. Application of Lemma 5.2 yields

@) = (1| [Tkt m)) @, e
0
Passing to the limit as ¢ — 0 in the Ly-norm in the last equality, we have
DT)(w) = [ k) (Tope)a) (5.9
0

The equality (5.8) is extended by continuity to the whole space L,, since the operators on
both sides of (5.8) are bounded in L,. From (5.3) we obtain

(D) (2) — p(x) = /0 ) k() [(Tepp) () — ()] dn,

with ¢ € L,, whence

1D — o, < / | T — @lydy — 0, = —0
0

by the Lebesgue dominated convergence theorem. (Existence of an integrable dominant
follows from (4.9) in view of the assumption p > n/(n — 2).) |

2°. The case Rea >0, Ima # 0. We observe that the approach developed in the
previous subsection for real o seems to be problematical in this case. The matter is that
we do not know, whether the normalizing constant s(a/2,1), defined in (5.1), vanishes
if Ima # 0 or not. This is an old problem, equivalent to solvability of some functional
equation, which was formulated in [18]. It still remains open. To overcome this difficulty
while inverting the potential f = I%yp in this case, we deal with HSI of the form (1.6) with
generalized differences instead of "usual” non-centered ones. See [16], Subsection 6.1 of
Ch. 3, for details on these generalized differences. We set

o (Lp) 1 o0 dt
D7 f =lim m/ (E—Tt)lf(l')ta/—2+1> [ > Rea,
where
(Thoef)(x) 1 ko ... ké‘i l
1 Tlt 1 k kT 1
I R e It
(Touf) (@) 1 k... k1 =

17



with

d= [ (ki-*k)

[>i>35>0
and
1 [ l
»(a/2,1) = dl/ ot (Z c; exp(—k:jt)) dt.
=0

The choice k; = a?, 0 < j <, where a > 1 satisfies the condition
a # exp(2rk/Im ), k=+1,42,...,

made in this subsection, provides the relation s(a/2,1) # 0 to be fulfilled (see [16], Lemma
3.38 for details).

Theorem 5.2 Let Rea >0, n > 3 and f = 1%, ¢ € L,, n/(n —2) < p < co. Then
D%f = .
The proof is similar to that of Theorem 5.1. It is based on the equality (5.4), where

l

k(n) = ()2, )T 1—|—a/2 chn k;)

Jj=

is an identity approximation kernel.
We note that Theorem 5.2 provides an explicit expression for the positive powers
(—|z[2A)*/2f, Re > 0 within the framework of L,-spaces.
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