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THEIR SYMBOLS AND INVERSION
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S. G. SAMKO

ABSTRACT. An apparatus is developed for solving multidimensional integral equa-
tions with the kernel of a Riesz potential in R”. The inverting operator is constructed
with the help of so-called hypersingular integrals (HSI’s). A connection between
generalized Riesz potentials and the corresponding HSI's is sought in terms of the
Fourier transforms. A constructive description of the symbol of a potential is given,
and for a number of important cases an efficient method for constructing the HSI's
is also given. A special apparatus is constructed for regularization of divergent
integrals on the sphere. The symbol of an HSI is also calculated, and it is determined
in the form of a convolution with a generalized function.
Bibliography: 49 titles.

Introduction
Generalized Riesz potentials are defined to be the following spatial potentials:

(ko) = [ D2 D oy, 0

with homogeneous “characteristic” #(x/|x|). The investigations in the present
article deal with the inversion of the potentials KJp. An apparatus is thereby
developed for solving multidimensional integral equations Kjp = f of the first kind
whose kernels have “power” singularities. In the one-dimensional case a fairly
complete theory (invertibility, normal solvability, index, cases of solvability in closed
form) has already been worked out for equations of the form

f”l_fi(ft”lt__)acp(t)dt:f(x)' (—0o<a<b< ) (2)
with a function M(x, t) discontinuous at ¢ = x (see [20]-[23], [16]-[19], and [3], §54).
The equations Kjp = f we shall consider here are a certain analogue of them: the
numerator is allowed to have a discontinuity at # = x of homogeneous function type.
The nature of the multidimensional equations studied here turns out to be signifi-
cantly richer because of typically multidimensional problems: in particular, the
one-dimensional case is poor in homogeneous functions, admitting only those of the
form #(x) = ¢, + ¢,sgn x, x € R'; moreover, interest in multidimensional equa-
tions is increasing because the potentials (1) are the inverses of partial differential
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equations for integral a. On the other hand, it should be pointed out that there are
more complete results about the Fredholm property in the one-dimensional case (for
n =1 the specific nature of the one-dimensional singular integral equations with
which the equations (2) are closely connected is essential in the case where the
function M(x, t) is discontinuous).

The question of an efficient representation of the symbol of the potential (1) has
turned out to be interesting and meaningful. This representation involves divergent
f.p.-integrals* over the sphere with a singularity on an (n — 2)-dimensional section
of the sphere, introduced in §2. Theorems on existence and representation by
convergent constructions (regularizations) are established for such f.p.-constructions.
The convergent constructions are in terms of the means of traces on planar sections
of the sphere of functions defined on the sphere. These means, introduced in §1.5,
turn out to be a convenient tool in the study of a number of (typically multidimen-
sional) problems. In particular, we give an application of them to multidimensional
singular operators (§1.6). A conmstructive representation of the symbols of the
potentials (1) (see §2.3) involves overcoming considerable difficulties caused, on the
one hand, by the use of techniques of f.p.-integrals over the sphere, and, on the other
hand, by the “bad” behavior of the potential kernel at infinity.

We construct the operator inverse to the potential (1) in the form of a so-called

hypersingular integral (HSI)

fﬂ(ﬂ’,f)(X)g(L) . o)

Jefrre 2]
(see §4).

Is it possible to explicitly construct a homogeneous function £(o¢) such that the
operator (3) will be inverse to K3? In the case of a Riesz potential (i.e., 8(o) = const)
this is possible (see [25]), and (o) = const. In §§5 and 6 we give a, generally
speaking, positive answer to this question for an arbitrary sufficiently smooth
function #(o) in the case where the symbol of the potential (1) is nondegenerate on
the unit sphere (elliptic case), and we present a sufficiently efficient construction of
the function Q(o) for the inverting hypersingular integral (3). We call it the
characteristic of the HSI associated with the characteristic (o) of the potential. The
cases of integral values a = 1,2,3,... are to a certain extent exceptional here. They
are given special consideration.

Results relating directly to HSI’s are given in §4. In particular, the symbols
of HSI's are computed and a positive answer (for arbitrary a > 0) is given to
the question of regarding them as convolutions with the generalized function
Q(x")/|x . Simultaneously with this we give a result of independent interest
asserting that any homogeneous differential operator P,(D) of order a can be
expressed as an HSI with some characteristic that can be explicitly constructed. In
proving this result we obtain, in passing, a criterion found in [30] for the harmonicity
of polynomials.

In considering the invertibility of the potentials (1) in the framework of L ,-spaces
with the help of HSI’s the latter are interpreted as limits of truncated HSI’s in the

* Editor’s note. f.p.-integral stands for finite part of the integral—see §2, Definition 5.
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L, -norm. An essential role in the question of convergence of these truncations is
played by the assertion (established in §§6.1 and 6.2 and, moreover, of independent
interest) that the kernel kj(x) = 6(x")/|x["** of the potential (1) serves as a
“fundamental” solution of the hypersingular operator whose characteristic is associ-
ated with §(x’). By a result in §4 (on the representation of homogeneous differential
operators by HSI’s), the formulas obtained contain the fundamental solutions of
homogeneous elliptic differential operators.
Some of the results presented here were announced in [27].

NoOTATION. R” is the n-dimensional Euclidean space; x = (x;,...,x,), |x|=
(xf+ - +xHV2 x'=x/|x|; j=(1,0,...,0), 0-x=0, %, + -+ +0, * X,;
2,_, is the unit sphere in R” with center at the origin, |=,_,|= 27"/?/I(n/2), Yiu

are the spherical harmonics of order &; (a), =a(a + 1) ---(a + k — 1); [a] is the
integer part of the number a, and {a} is its fractional part; Fp = ¢(x) =
frn €™ () dt; f(x) = 2m) "fpn e (1) 8 IS, =) fllz,rmys S is the Schwartz
class of test functions; and D = (9/9x,,...,3/3x,).

§1. Auxiliary facts and assertions

1. On choice of a rotation smooth with respect to a parameter. Let 7 = rot, be a
rotation in R” carrying ¢ € R" into r € R” in such a way that

Ixi|=rotxj, j=(1,0,...,0). (1.1)

The point x € R"\{0} is called the parameter of the rotation rot  ¢. For a fixed
value of x the choice of the rotation is not uniquely determined by the single
condition (1.1) for n = 3, and rot .7 denotes one of the possible rotations satisfying
(1.1). For two different points x the choice of the rotation can be realized arbitrarily,
and for a fixed value of ¢ the function rot,7 is a multi-valued function of the
parameter x. Is it possible to determine a rule for choosing the rotations rot, ¢ for all
x € R"\{0} according to the condition (1.1) in such a way as to obtain a single-
valued function rot ¢ that is infinitely smooth in x (away from the origin)? Such a
global choice—a single rule for all x € R"\{0}—is possible in the planar case
n = 2. But even in the case n = 3 every rotation has a one-dimensional set of fixed
points (the set of singularities with respect to the variable x), which rules out the
desired global choice. We show that for n = 3 it is possible to choose a rotation
rot, ¢ that is infinitely smooth in x everywhere except on some subspace of
dimension n — 2, for example, the coordinate space x; + x? =0, k #j, k, j =
1,2,...,n. Such a rule of choice will be determined.

Let A, be the matrix of the rotation rot , ¢, which, by (1.1), has the form

x _
rxlel' nl

Ay=| oo , (65,....00) =V, v=1,2,...,.n— 1.
Znpl.. . pnl
I |’l n

We need to determine an orthonormal set of vectors lying in the hyperplane
orthogonal to the vector x in such a way that their components 5/ are infinitely
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differentiable functions of the parameter x everywhere except on an (n — 2)-
dimensional subspace. Let

j"={0,...,0,],0,...,0}, v=12,...,n,
N
y—1
so that j' =j. We get the first of the vectors b” by projecting one of the unit

coordinate vectors j* onto the plane orthogonal to x. For this, choose a unit vector
j*1 different from x /| x | (in the case when x/| x | turns out to lie on a coordinate axis)

and let
b' = (r/r )i* — (xi/re J(x/r), IW=1.
Here r =|x|, r, = \/r2 - xf' , and an analogous notation will be used in what

follows:

= 2 _ 2 2 — [z _ 2 _ 2_ .2
rB——\/r Xq =™ Xg, ToBy \/r Xy~ Xg— Xy, €tc.

[+

It is not difficult to see that b' - x = 0 and |b |= 1. The subsequent process of
constructing an orthogonal system is realized in the form

r v—1 '

kiky: ko Xk, Xk . X,
b=—jc+ 3 jki— X,

Thiks: -k, i=1 Thikso ko Thiky ok, Tivky ki Thiky ok,

where » = 1,...,n — 1, and the indices k,,...,k, € {1,...,n}\{k,} are chosen in
an arbitrary order. The projections of the vectors b” on the coordinate axes have the

form

0,

(12)

i
—_l .
b = { Ty kS hiky ok !

i

ki, kyyooisk,—y;
k,;
kl,n vy

t

. v

-1 ~1
X Xi kg ey Thoky ok

Note that the last of the vectors b” is chosen in the form
0, izkl,"‘ikn—z;

-1,2
- 2 2 TR .
by~ = xk"(xk._. + xk") , I =kpe
2 2

xkrl—l(xkrr—l + xkn

(compare with the constructions of Mikhlin in §22 (Chapter IV) of [11], where he
discusses the smoothness of a rotation with respect to the angular coordinates of the
parameter x, which is always possible to achieve globally). A direct check shows that
|b”|=1and b*b* = 0 for v % p.

The coefficients of the rotation thus constructed are, in fact, infinitely differentia-
ble with respect to x everywhere except on the subspace {x: x’,f"_l + x,f" =0} of
dimension n — 2.

We write

O,p={x1x,=x3=0}, a+#8§,
and introduce the conical neighborhoods

VR = (x:p(x, I, 5) <elxl) = {x: x2 + x < 2| xF)
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of the subspaces II, ;. The intersection of all the cones Ve a,8=1,...,n, is
empty for sufficiently small ¢, 0 <& <2'/2 (indeed, if x2 + xj <&?|x] for all
« # B, then by summing we would get that 2| x ? < €| x[*).

THEOREM 1. Let ¢(0) € C™(Z,_,). It is possible to cover the space R" by finitely

many cones V,,...,V, and to construct in R" a rotation rot t that is infinitely
differentiable with respect to x in each of the cones V,, i = 1,...,N, in such a way that
in the interior of each cone

|qu>(rotxo)|<c|x|'lq, x€V,., i=1,...N, (1.3)

where ¢ does not depend on o € Z,_, or x € V;, and |k |< m.

PROOF. Since the intersection of all the cones V,*# is empty for 0 < e < 2'/2, the
cones R"\V*# cover the whole space R". Denote these cones by V,,...,Vy and
consider an arbitrary one of them ¥V, = R"\V,%#. Choosing k,_, = «; and k, = B,,
we construct a rotation rot, o according to the above formulas. Then, taking account
of the fact that the coefficients of the rotation matrix are homogeneous and the fact
that x} + x3 = &?| x[* for x € ¥}, we easily get the estimate (1.3), where ¢ depends

onebutnotonx € V.
2. The mapping r = (0 + h)/|o + k| on the sphere. Let 7 € R". Let us consider

the mapping on the sphere defined by the equality
=|ZT+:|’ sES, | (1.4)

a) The case | h|< 1. The sphere is mapped onto itself in a one-to-one fashion, and
the preimage ¢ is found by the formula ¢ = 7p(7) — h, where p(7) =|e + h|=h -7
+(h-t) +1—|hE.

b) The case |h|= 1. The transformation (1.4) maps the sphere Z,_\ {4} with its
point 4 deleted onto the hemisphere 4 - 1 > 0, and the preimage o is found by the
formulac = 27(h - 7) — A.

) The case |h|> 1. The points 7 run through the subset of the sphere

sh= {TZ|T|=1,|COS(h,T)|>\/1—1/|h|2}, (1.5)

and the mapping (1.4) is not one-to-one: each point 7 € 2" has two preimages
0.=1m.(r)—h wherep.(r)=h-r=\(h-7)>+1—|hP.

REMARK 1. In the case | #|< 1 not only is the whole sphere carried onto itself, but
even each hemisphere based on a plane passing through the vector 4 is carried onto

itself.
3. Holder functions on the sphere. Holder functions on the sphere can be defined

directly by writing the Holder condition at points of the sphere, or in terms of the
“translation” (1.4), or locally by projection onto a tangent hypersubspace.
DEerINITION 1. We say that

flo) € CHZ,-)), 0<A<I,

if|f(6) — f(t)|<sA|o— 7 foralle,r € Z,_,.
DEFINITION 1’. We say that

fle)eCcMZ,-)), O0<A<I,
if |f(6) — f(o,)|< A|hPforallo € Z,_,and h € R", |h|< 1/2.

T:0h
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DEFINITION 1”. We say that
flo) eCXM(Z,-), O0<A<l,
if the projection f*(%) of the function f(o) on the tangent hypersubspace at any
point g, € 2, _, is a Holder function of order A in some neighborhood of g, in this
hypersubspace.
The three definitions, in fact, coincide, and we shall write
CMZ,-)=CMNZ,-) = CM E,-).

The equivalence of 1 and 1" is simple. Indeed, suppose that f(¢) € CN(Z,_,) in
the sense of Definition 1. Since |Pro — Pr7|/|o — r|=siny = ¢ > 0 in a neighbor-
hood of the point oy, the inequality [f(a) — f(7)|< A|o — [ implies that

|f*(Pro) — f*(Prr)|<cd|Pro — Prr.
The converse argument is also uncomplicated. It remains to show that | and 1’ are
equivalent. It is easy to see geometrically that |0 — o, |<| /| . Therefore,

[f(r) = f(o)I< Ao — 7' =|f(0) = f(o}) I< A| R

Conversely, let f(6) € CNZ,_,). In checking Definition 1 we try for arbitrary ¢ and
T on the sphere to find a vector 4 in the form h = h’|o — 7|, i’ € Z,_, such that
T = 0,. It is then necessary to find 4’ from the equation

o+ hlo—1] _

lo+ h'|o — 7| -7

i.e,, from the equation (A’ + a)/|h’ + a|= 7, where a = o /|0 — 7|. Here, generally
speaking, |a|> 1, and A’ is on the sphere if and only if (see subsection 2, Case c))
(a- 1) =|af — 1. This condition, i.e., (¢ - )2 > 20 - T — 1, is certainly satisfied.
Consequently, the desired 4’ exists and, therefore, |f(a) — f(t)|<A|hP =
Ale — 1P

DEFINITION 2. We say that

fle) € CNE,-).  A>0,
if f(x/|x]) € CAI(R"\{0}) and (in case A is not an integer) the derivatives
g(x) = (D*f)(x) of order |k|= [A] are Holder functions of order A — [A] on the
sphere:
1g(0) —g(r)[<Alo— P, o reZ, (1.6)
Let C 0(E,,_,) = C(Z,_,)- The analogous class on the interval [a, b]‘ is denoted by
C*Ma, b].
DEFINITION 3. We say that
fle) €CL(Z,-1),  A>0,

if the following conditions hold:
1) For A not an integer f(o) satisfies the conditions of Definition 2 with (1.6)

replaced by

2

. i
o — 7]’ o, TEZ, (1.7)

|g(c) —g(r)|<A|o— P PMIn
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2) For A an integer f(x/|x[) € C* '(R"\{0}), and the derivatives g(x) =
(D*f)(x) of order |k|=A — 1 satisfy on the sphere a Lipschitz condition of the
form

18(c) —g(1)|< Ao — r|ln—=——, o,7ES, . (1.8)
o — 7]

REMARK 2. It can be shown similarly to the preceding that in Definition 3 the
Holder conditions (1.7) and (1.8) can be written in terms of the translation (1.4).

4. Some formulas from the theory of spherical harmonics. Let Y, (x") = Y, (x"),
m=0,1,2,...,u0 = 1,...,d(m), be an orthonormal basis of spherical harmonics of

order m (see [33] or [34]), where d(m) is the dimension of the space of spherical
harmonics of order m:

(n+m—3)! (1.9)
m!(n—2)! '
(d(m) = 2 for n = 2). We shall use repeatedly the Funk-Hecke formula ({40], p. 20,
or(l1], §11.4)

dim)=(n+2m-—2)

[ Y(0)f(x' - 0) da =AY, (x), x'=%, (1.10)
2u—l

for any function f(¢) € L,(—1,1) (in the planar case » = 2 it is necessary that

SL,(1 =37 12|f(t)| dt < o), where the constant A is computed by the formula

)f' () =) H (1) at, (1.11)
~1

2q(n=1/2

T T({(n—1),2

with
H (1) = (1/C™, .-3)C"~272(t), the Gegenbauer polynomial, for n = 3,
cos(marccos t), the Tchebycheff polynomial, for n =
(1.12)

We remark that for alln = 2

1) = (3] G T 1
(1.13)

by Rodrigues’ formula. Therefore, for differentiable functions f(¢) it is possible to
write the constant A in the form
n/ 2
m—1 / (
2 (m+ (n—=1)/2)

)OI g () @ (1.14)

The familiar formula from mathematical analysis

’. win” /2 (n—3)/2 _
.[\:"_,f(x 0)do = I‘(( 1)/2)_/ f(1)(1 = 12) d, n=2,3,..

l (1.15)
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1s a particular case of the Funk-Hecke formula (1.10). We mention other particular
cases that will be important for us:

) Y, (0)(~ix"-0)%do
7"/27! I'(m—a)/2)

e I'(l1 + a) sinaw M((m+n+a)/2) i"Y, (x'), (1.16)

where Re a > -1, and
(_l.y)a =|y 'ae-i(au/Z)sgny, a€ECl. (1.17)

From this, in particular, we get

Y, (o)(~ix" - 0)“de =0,

. (1.18)
k=0,1,....m—1 and k=m+1,m+3, m+5,...
Moreover,
Y, (a)|x' - afdo
n—1
_[eY,(x) ifmisevenandm #a+ 2,a+4,..., (1.19)
0 ifmisoddorm=a+2,a+4,...; ’
Y, (a)|x' -ofsgn(x’-a)da
n—1
_[eY (x) ifmisoddandm #a + 2,a +4,..., (1.20)
0 ifmisevenorm=a+ 2,a + 4,..., ’

where

— Hl—a n/2 f{m+n+ta fa—m
¢ =27 2T(1 + )T~ T2 T (25T 4 1))

LeEMMA 1. Suppose that f(o) = 2Za,,Y, (o) is an expansion of a functionon Z,,_, in
spherical harmonics. If f(a) € C*™(Z,_,) for m > (n — 1)/2, then

Z|ag, k" < oo (1.21)

for r<2m —n+ 1. Conversely, if (1.21) holds for r = (n — 2)/2, then f(c) €
C™Z,_))form=<r—(n—2)/2.

Assertions like Lemma 1 are known for the Sobolev classes WS™(Z,_,); (see, for
example, [11], Chapter VI, §31), for a certain type of fractional class Wi*(Z,_))
([42], p. 6), and for C*(Z,_,) ([41], p. 232). Lemma 1, which is formulated for the
classes C™(Z,_,), can be proved by standard means ([41], p. 232).

5. Mean traces (on planar sections) of functions on the sphere. For a function 6(o)
defined on the sphere =,_, we introduce certain means My(x’, y) over (n — 2)-
dimensional sections. In terms of these means we perform, in §2, a regularization of
divergent f.p.-integrals over the sphere with a singularity on a planar section of the

Isplrcre.———
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Let 6-x"=y, -1<y <1, x"=x/|x|, be the hyperplane cutting the sphere
2, _, at the height |y | from its center along an (n — 2)-dimensional sphere orthogo-
nally to the vector x. This (n — 2)-dimensional sphere with center at the point yx’

and radius {1 — y2 will be denoted by
=5 x 1= 7). (1.22)

We introduce the mean of a function 8(¢) defined on Z,_, over the sphere (1.22).
In the planar case n = 2 this is the arithmetic mean over two points:

My(x', y) = 0((’*);0(0), n=2, (1.23)

where

=i+12_‘/~_2i2_;i'___2) 4

[x ™ ]x]

are the points of intersection of =, with the line passing through the point yx’ and
perpendicular to the vector x’. In the spatial case n = 3 the means M,(x’, y) are

given by the integral

1
My(x', y) = Ho)ds
(X2 ) 2,211 "‘}’2)("——2)/2 fzileW'- 1=y ©)

1 8(yx' +7/1—y?) as,. (1.25)

|E,. 21 /=2 0.1

DEFINITION 4. The mean My(x’, y) is called the x’-mean (or the mean in the
direction of the vector x’) of the function 8(o) at the height y; the quantity

My(x',0) = — 8(c) dS (1.26)
(2,-2] X 50,1

is called the equatorial x’-mean of the function §(o).
The following representation of the means M,(x’, y) in terms of a volume integral

is valid (n = 3):

1 6(z,)+6(z_)
¢ = z X d§, 1.27
Mﬂ(x ’ y) IE"_ZI-/‘B" 2(0 b l — I£|2 £ ( )
where
6.(0) = 8(rot, 0), (1.28)

and z . are the following points of Z,,_,
=(n &=y s1-18F 1 -y*), §€B8720,1). (129

To prove (1.27), perform a change of the variable 1 € =*_,(0, 1), induced by the
rotation rot 6 on Z,_, in (1.25), and then project the integral over the hemispheres
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o, > 0 and g, < 0 onto the ( n — 2)-dimensional ball lying in their base:

fz 0. 1) (yj+°°1— Z)dS"
=|E,.1—2|{f 6y 61 —y2 T —16F 1 —y7)ds

a,>0
+/ (y"’h — ¥ -1 5P \/l—yz)dsa}, (1.30)

where 6 = (o0,,...,0,_,),06 =(0,6,0,), 6} + |6 = 1,0 =(0,0,,...,0,_,, 9,). Rep-
resentation (1.27) is obtained from this after projection on the base.
An essential role in our subsequent constructions is played by the values
3*M,(x’,0)
ayk

Mﬂ(x,’ y)

k=0,1,2,....

LEMMA 2. If0(c) € CMZ,_,),A >0, then
k ’
IMy(x',0) A4, ), k=0,1,.. [A]
ayk

PROOF In the case n = 2 the statement of the lemma follows in an obvious way
from (1. 21) and (1.22). Suppose that n = 3. From (1.30) we get

0*My(x',0) _ 1 o, (i + o1 =37) )0 ds,.

dy*k [ 2,21 /5i_,0.1)ap*

According to Definition 2, it is necessary to show that

k
fE‘ © l)Dxmj_"e"(yj * oyl _yz) =0 dS, € C*N(Z, )
7200,

dy
for | m|=[A] — k. The partial derivatives of the function 8(o) up to order |m| +k =
[A] appear under the integral sign. They are Holder functions of order A — [A].
Therefore, it suffices to show that for |j|=[m| +k = [A]

f (D76)(rot o) dS, € CAM(E, ).
1,0,

Let us make use of the local smoothness of the rotation rot, o with respect to the

parameter Xx, established in subsection 1. Breaking up the sphere Z, _, into finitely
many subsets 2, _,, ., N, by cones according to Theorem | and assuming

that rot, o has been chosen for each of these subsets in such a way that rot, o is
infinitely differentiable with respect to x, we can easily verify the Holder property

onZ!_,
L, ., |(D#)rot o) = (DB)(rot fa}) | ds,
=] 0.1

<4 [rot,0 —rot,of "N dS < A, |x — z} 7]
2h-200. 1)
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for x,z € 2! _,,i=1,2,...,n (continuity is checked in the case of integral A). The

lemma is proved. The next result is proved in exactly the same way.
LeEMMA 3. If6(a) € CNZ,_,), A > 0, then

9
dy

where 0 < a < 1, m is a multi-index, and k is an integer such that |m| +k <[A].

= ( )kMAx: y) € CMK(E, X [-a, a)),

We give explicit formulas for computing 0*My(x’,0)/3y* in the cases k = 1 and
k=2

aM,(x’,0) 1 dé(a)
= ds, 1.31
dy |2n—z|'/.;,; (. dx’ (1.31)

(the equatorial x’-mean of the derivative df/dx’ = x’ - grad 8(o) in the direction of
the vector x’) and

3*M,(x’,0) 1 d%(o) n 38 )
~ = L% s, — 6,~—dS, 1.32
dy? |2,-2] (/ 2§01y  dx’? E, fz: £0.1) ° 39 (1.32)

where d?0(¢)/dx’* = x’ - grad(x’ - grad ). The formulas (1.31) and (1.32) are

derived from (1.30).
REMARK 3. The derivatives 3*M,(x’, y)/dy* of the x’-means of the function §(o)
can be written as a certain combination of the x’-means of the derivatives of 8(a).

Namely,
' My (x'y) 1 S lx
v 3y 11—, 2 | T Masan (X' ¥) = YMoyasson(x'2 )| (133)
k=1

Indeed, from (1.25) we have

aMg(x,, y) 1 z Xy Ty a0
= — = "+ 1/l — y? ) dS,.
ay lzn—ZI 2:;2(0.|)k§| | x| A —yz aak (yx T 4 ) 7

(1.34)

Since

~1/2 Xy _ y
lx[(1=y%) 1-y?

- X j >
xe|x|7 =7 p(1 = y?) (yﬁﬂkvl—y“),
(1.34) implies (1.33), by (1.25).

6. Some applications of x’-means of traces over the sphere. Essential use will be
made of the means M,(x’, y) in §2.2. Here we indicate some other applications of
them. The first of the applications (Lemma 4) will also be used in what follows (§2).

a) Reduction of integrals over the sphere to one-dimensional integrals.

LEMMA 4. Suppose that (a) € C(Z,_,) and (1 — y2)"=I/2f(yy e L(—1,1).
Then

L 00)(x o) do=13,1 [ Myl y)(1 =y T M) dy, (139)

“~n—1i

where |Z,|= 2 in the case n = 2. _
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PROOF. Let J be the integral on the left-hand side. Then
J=f (rot, 0)f(a,) do.
n—1

Breaking the sphere into the hemispheres o, > 0 and ¢, <0, and projecting them
onto the ball B (0, 1) lying in their base, we get

O (r T =17F) + 8, (r, -1 =17F )] f(m) ===

L=

J= [
B"™ Y0, 1)

=7, m)

(in the notation of (1.28)). Passing here to iterated integration, we have
1
J = f_lf("'l) dr,

W U i B O (e i
f<y/i—rF 1— 12— |&f

where ¢ € R"2, The substitution ¢ = (1 — 732)"/%¢,,, gives us
ox(z+) + ox(z— ) d§

(n 32
7= fodng f = e

(see the notation in (1.29)). By (1.27), we arrive at the right-hand side of (1.35).

REMARK 4. Formula (1.35) allows us to reduce the computation of surface
integrals of the form under discussion to the computation of one-dimensional
integrals if the means My(x’, y) of the function 6(g) over the planar sections
perpendicular to the vector x’ are known (a certain analogue to the Cavalieri
principle!). Formula (1.35) can be regarded as a generalization of the Funk-Hecke
formula (1.10)-(1.11). However, to get the Funk-Hecke formula from (1.35) it is
necessary to compute the means My(x’, y) for the spherical harmonics 8(o) = Y,,(0).
We have not been able to find them directly (without resorting to the Funk-Hecke
formula). Comparing (1.35) with the Funk-Hecke formula, we get the following
corollary to Lemma 4 (taking account of the fact that f(y) is arbitrary).

(1.36)

COROLLARY. The means My(x', y) of the spherical harmonics 8(a) = Y,(0) can be
computed by the formula

My(x’, y) = H,(y)Y,(x), (1.37)

where the H,(y) are the polynomials (1.12).

Hence, in particular, the means M,(x’, y) of a linear (m = 1) function, for
example, §(o) = 0,J = 1,2,...,n, have the form

X

M, (x y) = Ile (1.38)




. GENERALIZED RIESZ POTENTIALS 185

b) Application of the equatorial means to singular integrals. Let us consider the
multidimensional singular integral

qusznal(ttl;)qp(x—z)dz (Ln_lﬂ(o)dUZOJ. (1.39)
Let
N(x') =/R"0(t')|z|-"e'*"dz (1.40)

be its symbol. It is known ([11], Chapter IV, §22) that smoothness of the characteris-
tic 6(¢’) in the cartesian coordinates of the point ¢’ implies the same smoothness of
the symbol N(x’) in the angular coordinates. Using the equatorial means My(x’,0)
of the characteristic (o) and the local smoothness of the rotation with respect to the

parameter (established in subsection 1), we show that

6(+)e CMZ,_)), A=1, =Nx)eCcC™(Z,_)),
i.e., that the symbol N(x’) is actually smoother by one order than the characteristic
and that smoothness of the symbol can be considered not only with respect to the

angular coordinates but also with respect to the cartesian coordinates (a result which
1s apparently true also for 0 < A < 1). Using the well-known formula ([11], Chapter

1V, §22)

do (1.41)

—-x'-0

N(x’) =/ 6(o)In
zn—l
(whereln y =1In|y| + % — % sgn y, y € R'), we have
1

do.

do + M,,(x’,O)f In
=

n—1

N(x") =L [6(c) — My(x’,0)]In

n—1

-x'-0
Differentiating under the integral sign, we easily get that

oN 6(a) — My(x’,0) X, ,
a =) T e — Tz, 1M (x00) (1)

n—1

(the terms with dM,/dx, disappear; it is easy to see that the equality

0 In 1 =Tk _
dx, —x'-0 |xP x-oO

holds). We remark that the formula (1.42) for differentiating the symbol can be
reduced to the form

N _ 6(o)
5x_,(__p'v'/;: x_aakdo,

n—1

where the integral is understood in the sense of the Cauchy principal value
(regarding this, see §2.2). It is now more convenient for us to deal with its
regularization (1.42). Performing the rotation ¢ = rot _ 7, in (1.42), we have

N 1 O(rot, 1) — My(x’,0) Xk ,
T et

|
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Here My(x’,0) € C*( Z,_1), by Lemma 2. Using the local smoothness of rot , r with
respect to x, we break up X, _, by cones into subsets of local smoothness according
to Theorem 1 and get that the first term also belongs to C*(Z,_,). Consequently,

dN/dx, € CN(Z,_,), which is what was required.
7. On the rate of decrease of the Fourier coefficients of Holder functions with a

weight. We have
LEMMA 5. Let f(x) € C(0,a),0 <A< 1,and0<pu<1.Thenas N - «©

[ xf(x)e dx < ———— (1.43)
0

Nmin()\.l ~-un)’
where a > 0, and ¢ does not depend on N.

PROOF. Let J,, be the integral to be estimated. We have
— m/N+a _ _7_7_ e — 1 iNx
=[x ) e e
and, therefore,
1 a - mTNTH 7 iNx
= — » — —_—_— _—
Jy ZL/N[x f(x) (x N) f(x N)]e " dx

/N f(x)e™ «  flx)e™
—_— ——dx.
+/0 5 oF dx +L_”/N T X

The estimate of the second and third terms is clear. The first is majorized by the

quantity
1 pa o 1 pe T Ty
— —n — - = l L | I VR - — d
ZL/Nx f(x) f(x N)’dx+2 ”/Nf(x N), x ! (x N) | Ix
<cN"‘+cN—'+“/”N|x‘“—(x—w)"‘|dx
<N A4 N7 (1.44)

which is what was required. (The assertion of the lemma is known for the case
p = 0: see [7], from which we borrowed the device for the proof.)
REMARK 5. An analysis of the proof of Lemma 5 shows that it is preserved if the

Holder property of the function f(x) is replaced by the more general condition
If(x + k)= f(x)|<c(h/(x+h), x>0,hr>0. (1.45)

Lemma 5 admits the following generalization:

LEMMA 6. Suppose that f(x, y) € CM[0,a] X [0,a%]),0<A<1,and 0<p<1.
Thenas N -

./(;ax—"f(_x,&)eiNde‘gwﬁﬁ, (146)

where ¢ does not depend on N.

The nontrivial point here is in the fact that f(x,vX) € C*/?[0, a], but the estimate
(1.43) is preserved. The proof is analogous to that of Lemma 5 with the single

-
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difference that the first term on the left-hand side of (1.44) should be estimated as

follows:
[;Nf(x,\/;)—f(x—%,‘/x—%) \/— ‘/x-—' dx
=cN*‘_'—()‘V2faNx—“|\/;— Vx — o P dx,

with the obvious subsequent estimates.

LEMMA 7. If f(x) € CM0,1,A>m — 1,m = 1,2,..., then

—<c x‘l
ﬂ

m—t _k

f(x) = T 5/ %0

k=0

< cxMin(A.m), (1.47)

PROOF. For A = m the lemma follows in an obvious way from Taylor’s formula.
Let us therefore assume that m — 1 < A < m. By the definition of the class C*[0, 1]
we have —cx* ™™ ¥ < f(m=(x) — f(m=1(Q) < cx* ™', Integrating from 0 to x, we
have —c x*™"+2 < f(m=2(x) — xf("=(Q) — (" D(0) < ¢, x*~"*2. Integrating in
a similar way m — 1 successive times, we arrive at (1.47).

8. An integral representation. For a function f(y) of a smgle variable having
derivatives up to order m the following formula is valid:

am=+ | f(y) — 215 (f0)y /)Y

e ey
= [T = 0 = m = 0 = )0 = 170
(1.48)

where k =0,1,....m

Let us prove (1.48). Note that to the case kK = m corresponds the Taylor formula
with remainder in integral form. This formula will be applied to the left-hand side of
(1.48), denoted by A. Performing the differentiation d™ */dy™ % according to
Leibniz’ formula, we get

. . d’
A= ——o D" *7Ci_ (1 + k) meiejy! ™" —
( 1), E (- m k( Ym—k 154 dy
< [ 1m0 = 0" a
0
Suppose first that k 5= 0; then j < m — 1, so that
(m) m—k
4= (_])m-kf ()’) a,
Y =
m—k b dt
+j§0 = —m/ [£(0) — F(y)] P

[ o
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where

(_ l)jcri— m—k—jm
o =g =)L,
Obviously, 275 a; = 0, so that

A= L LU0 -1 T b(1-4)" )
2 0 j=0 / Y

Further,

2ol 5] = H L) g e aa )
S g cvenfi-3)

m—k
—i 2 (=Y Ci(1 —2) .- ,/VJ

after which (1.49) becomes (1.48).
Suppose now that & = 0. Then, analogously to the preceding,

, m—1 m—j—1 (m)
—_ " (em _\m—i— ! f™(y)
4 yzfof (t),go( 1) c,,,_,(l y) di +

_oom o\ 1(y)
S -2

ytlo \y

2 (0 - pmon[2) e

which coincides with (1.48) for k = 0.
REMARK 6. The representation (1.48) is preserved if m is replaced by m — 1
without changing &; this follows from the fact that

dm-l—k (ym—l —0
dym—-l—k k+1 ’

Y

The index k can then be assigned the values &k =0, 1,..., m— 1.

9. On a certain finite sum. An important circumstance in the proof of Theorem 4
on symbols of potentials in §2 will be the fact that we are able to compute the
following finite sum:

def min( k. j) o (V - P)!
s = Eo (=1 p!(k—p)(j—p)
:_(”k—!jfj)!(,,_j)(,,_j_1)...(,_j_k_1), (1.50)
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where » and j are arbitrary natural numbers, and k = 0, 1,...,». In particular,
Ay ;,=0 forv=j and k=v»—j—1. (1.50")

ProoF OF (1.50). Here it is necessary to distinguish the cases » = jand y <j — 1.
Suppose first that » =>j. Then for the values kK =0,1,...,» the sum 4, ;, is
symmetric in k and j: 4, , ; = 4, ,. Therefore, it suffices to consider the case; < k.

Then (1.50) reduces to the form

S (~1PCHy— =k = 1)< (=4 1) k(k = 1) o (k= o+ 1)
=(wv—k)v—k—1)--- (v —k—j+1).
(1.51)

Denoting the left-hand side here by o, ; ,, we form
J

Gyre =2y =1 (v =j)+ Z (=)'l —p)r—p=1) - (v—))
=1

k(k=1) - (k=p+ 1)+ (=1 k(k=1) - (k—J).
Since C% | = CF + C*7', it follows easily from this that
Ok j+tw — (” _j)ok.j.y - kok-—l.j.j-—l'

This recursion relation enables us to prove (1.51) easily by inductio:..
Suppose that v < j — 1. Then k& < » <, and the required equality (1.50) reduces

(unlike (1.51)) to the form

S ct
A P ) peny ey
=(_J—k')l(l'—_])(l'—j"'l) (V—_]:'—'k+1).

This can be proved by induction similarly to (1.51).
10. The Fourier transform of the functions | x Y, (x’). Let a € C'. We have

{28
| x|
Y, (x')
A4, ., fora+m+#0,—-2,-4,—6,...
(a) 2= F
ande —m—n+0,2,4,6,...,
- Y,
B, .(a) Cn,m(a)+ln ] Iili fora +m=0,—2,—4,—6,...,

(21r)"Ym(—iD)(—A)((a —m—n)/2)8(x) fora —m—n=0,2,4,6,...,
(1.52)
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where the Fourier transformation is understood in the sense of the distributions S’,
and the constants 4, ,(a), B, ,,(«), and C, ,(a) are computed by the formulas

I'(a+m)/2)
A — -m2a n/2 i
nm(@) = 172% I'{(n—a+m)/2)
_1\k:my—m—2k n/2 +
Bnm(a):( 1)%im2 m g mte
: I'(k+m+n/2) 2
I"(n/z + k) mk 2 (-1 C
C la)=Ind4+T"(1) + ———+
The cases « = 0 and 0 < Re a < n are well known ([37], [l 1], [39], [33]); the case
a—m—n=0,2,4,6,... is obvious, since it reduces to the computation of the

Fourier transform of a polynomial. The general formula (1.52) was established in
[31].
§2. The symbeol of a generalized Riesz potential
A generalized Riesz potential is defined to be an integral

Ko = 0((7;I)t/|!,{:tl)q>(t)dt. 0<a<n. (2.1)
- —

Following the terminology adopted in [11] for multidimensional singular (a = 0)
integrals, we call the function 8(x’), x’ = x/| x|, the characteristic of the potential
(2.1).

In §§5 and 6 the operator inverse to (2.1) is constructed (hypersingular construc-
tion). It is clear that the question of inverting the potentials (2.1) is connected in
some way or another with their symbols

Xix) = [ e (22)

The present section contains an investigation of the symbol K (x) and, in
particular, its representation by a surface integral over the sphere (see subsection 4).

1. Preliminary discussion. The integral (2.2) may turn out to be divergent at
infinity. The difficulties associated with divergence of the Fourier integral are easily
resolved by regarding the Fourier transform of the function §(¢')|¢1*”” in the sense
of generalized functions. However, for our purposes—an efficient construction of
the inverse operator—it is required that the symbol J;(x) be an ordinary and even
a sufficiently smooth function on the sphere Z,_, (the symbol is homogeneous of
degree —a). For the construction of the operator inverse to the potential in the form
of an HSI it turns out to be essential that the symbol behaves nicely: The property
of annihilation of the kernel §(¢”)|1|*~" by the corresponding HSI (see §6.1) is based
on the smoothness of the symbol. Therefore, we begin with the question of existence
of the integral (2.2) in the ordinary sense.

It is clear that the integral (2.2) defines an ordinary function for 0 < a <n/2 if
0(x") is bounded (the L,- and L,-theory of the Fourier integral is in effect). We shall
see below that the integral (2.2) converges conditionally for 0 < a <(n + 1)/2 for a
sufficiently smooth characteristic #(x’). A salient reason for this is the fact that it is
valid in the simplest case of a Riesz potential (§ = 1): The Fourier transform of the

-
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Riesz kernel |¢]"" is a conditionally convergent integral if and only if 0 < a <
(n + 1)/2. Indeed,

lim _/I;KNItI“_”e"""dt: lim _/(;Np"—'dP/;”_le””"°do.

N=owo N-+w
Using (1.15) and formula 3.915.5 in [6], it is not hard to get that
. 2 (n—2)/2
z.-lelpx'ado = 2”("_”/2(;]_;"') J(n—z)/z(Plxl)‘
Therefore,
lim [t e dy = M lim /Nmp"""/z.f —ns(p)dp
N-oc ‘<N [x* ~Nowx Jo (n—2)/2

and the convergence of the integral as N — oo for 0 <a < (n + 1)/2 is seen from
the asymptotic behavior of the Bessel function at infinity (cf. also formula 6.561.14
in [6]).

The Calderon-Zygmund formula representing-a symbol as an integral over the
sphere (see (1.41)) is well known for multidimensional singular integrals. The
analogous fact for the potentials (2.1) turned out to be connected with divergent
integrals over the sphere with a singularity on a planar section of the sphere. Such
f.p.-integrals are introduced and studied in subsection 2. A regularization of them is
given in terms of the x’-means My(x’, y) introduced in §1.2. Then a basic theorem
on representing the symbol K, (x) by the indicated f.p.-integrals is given (subsection
3). Here the following goals are achieved at the same time (for a sufficiently smooth

characteristic (x")).
a) It is shown that the Fourier transform (2.2) exists as a conditionally convergent

integral for0 <a < (n + 1)/2.

b) The representation (2.34)-(2.34") (obtained for 0 <a <(n + 1)/2) of the
symbol X (x) by surface f.p.-integrals which make sense for a = (n + 1)/2 pro-
vides an analytic continuation of J(x) with respect to a into the strip 0 < Re a <A,
where A is the exponent of smoothness of the characteristic 8(¢"). For a = (n + 1)/2
the symbol Hj(x) is understood as the function (2.34)—(2.34’) everywhere below.

c) It is shown that smoothness of the symbol is ensured by sufficient smoothness
of the characteristic (see (2.86)).

Moreover, in subsection 4 we take care that the function J4(x) be the Fourier
transform of the kernel 8(¢')|¢]*~" in the generalized sense for all admissible
O0<a<n.

2. The Hadamard constructions of divergent integrals over the sphere. We consider
the integrals

J(x) = -—M—;dc, a>0, (2.3)
S, (—ix - o)

where 8(o) is a function defined on £ _,, x € R”", and (—iy)® is understood as in
(1.17). For a =1 the integral in (2.3) is divergent: the integrand has a singularity of
order a on the (n — 2)-dimensional section of £, _, by the hyperplane ¢ - x =0
orthogonal to the vector x.
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To interpret the integral (2.3) for « = 1 in the spirit of the Cauchy-Hadamard
construction, we excise from X,_, a “hoop” containing the section o - x =0,
[o|= 1, by means of the two hyperplanes ¢ - x = *¢, and consider the integral

Jx)=[ (~ix-0)7"8(c)do. (2.4)
-ol>e
Following an idea of Hadamard ([36], §5.5.5), we make the following definition:

DEFINITION 5. If the integral J(x) admits a representation

& I
J(x) = ALx) + B alx)e™ + b(x)In 2,

for which ReA, >0 and Ay (x) = limt_,er(x)%r exists, then we say that the finire
part (f.p.) of the integral (2.3) exists, and define ~

Be)do_ 4(x). (2.)
=, (—ix-a)

THEOREM 2. Suppose that (o) € CMZ,_,), A > max(0, « — 1). Then the f.p.-
integral (2.3) exists in the sense of Definition 5 and has the followmg representation

(regularization):

f.p.

/. _/ 8(c)do _ _ 6(o) — Szt (x' - 6)*/k1-8%M,(x’,0) /dy* e
Pl (=ix-0)® Yz, (—ix-0)®
2g(n+1)/2 [al—,' ik

+ Ixf* 2o kT((a+1—k)/2)T((n —a+k)/2)

k ’ O
Mp(x",0) (2.6)
ayk
where the prime on the summation sign means that the terms with indices k = a — 1,
a — 3,... are omitted in the case of integral a.

PROOF. It is necessary to consider the case a = 1. Applying Lemma 4 to the-
integral (2.4), we have

2
L My(x,
/ 0(.a)doa=|2n—z| 1 —5) 3)/2—0(’f f)dy. (2.7)
b-dl>e (—ix - o) [X [ Jep<pi<t (—iy)

From this,

[ 6(c)do_ _ |2,

k-a>e (—ix - 0)® |x [*

2)("-3)/2Mo(x")’) _z[al ]()’k/k') kMo(x 0)/3y* dy

X
e/M<pi<l (—iy)®
> { [a]—1 1 — \(n—3)/2

+l n—Z\ 2 kl' a Ma(x O)f ( y ) — y dy. (2.8)
xS ¢/M<pI<1 (—iy)

The integral in the second term is equal to zero for integral a and k = a — 1, a —
3,.... But if @ is not an integer or a is an integer but k #a — 1, @ — 3,..., then
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simple computations with formulas 8.391 and 9.131.2 in [6] taken into account give
us that

(n—3)/2
[ 4= TV gy = thoos K@, D = D/T(k —a + 1)/2)
e<p<l (—iy)® 2 I'((n—a+k)/2)
v 2icos(k - a)/ZO(l 2)"”"/2F(1 n—a+k k—a+3 52)
a—k—1 a1k ’ 2 ’ 2 ’ )
Then it is not hard to conclude that
2)(n—3)/2 k

f'p'/_ll(l—{—iy)“ 2 gy

mI((n = 1)/2)i* if a is not an integer, or if a is an
T(a+1—k)/DT(n —a + £),2) 8o

integerbutk #a — 1, — 3,...,

0 ifaisanintegerandk =a—1,a —3,....
(2.9)

Therefore, the second line of (2.8) gives rise as ¢ —» 0 to the second line of the
required representation (2.6). We show that the first lines also coincide (after taking
the limit as € — 0). To do this it suffices, by (2.7), to verify that

/ (x ) do =|Z,_,] (1

keo>e (—ix’ - a) e/H<| y<l (—‘)’)a

which follows from (1.15). It remains to see that the first line in (2.8) converges as
¢ — 0. This follows from Lemma 7, and Theorem 2 is proved.

The regularization obtained in Theorem 2 for the f.p.-integral is realized in terms
of an integration over the sphere. It follows from (2.7)—(2.9) that this regularization
(2.6) can be written in terms of a one-dimensional integration:

- 8(o)do
(. [ Sloddo_
2, (—ix’ - o)
n— ! — Sl y* k1) M, 0) /0y*
) ZI/I (1 _yz)( 3)/2M0(x »y) Pyl ()’ / ) 0(" )/ Y dy
(—ip)*
{a}]—1 . ’
Fp(n+1)/2 2’ i* d*M,(x’,0) ,
o kK'T((a+k—1)/2)T((n —a+k)/2) dy*
(2.10)
where the prime on the summation sign means, as before, that the terms for

k=a—1,a— 3,... are omitted in the case of integral a.
In subsection 3 we shall also make essential use of another regularization:

tp. [ 0(°)d° =/ My(x', y) = B (/K1) My(x,0) /35" ,

(n—3)/2
- y?) y*

dy,

n-—l(—lx -1 ( ly)
[al*’l i*cos((a — k)/2)m 3*My(x’,0)
T2 okt D) o
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where the prime on the summation sign means that the term with k = a — 1 is
omitted in the case of integral «, and

- N (n=3)/2 ,
Mﬂ(x H y) =){:lzn—Z'(l _y2) Mﬂ(x 3 y) (212)

The representation (2.11) is obtained from (2.7) by a procedure completely
analogous to that in (2.8). In certain problems it turns out to be more convenient to
use the functions M,(x’, y) instead of M,(x’, y) (see (2.15) and (2.34")). We mention
the useful formula

akMo(x’, O)
ayk
Y& k! (1) 0~ 2M,(x’,0)

= 2gr(n=1)/2

which expresses 9¥M,(x’,0)/9y* in terms of 3/M,(x’,0)/dy/ and can be obtained
with the help of the Leibniz formula. ,

REMARK 7. The regularization (2.6) contains a conditionally convergent integral
(which is not absolutely convergent). Thus, taking 1 < a < 2 for simplicity, we have

16(a) — My(x',0)]
L e

for example, for (o) = 0. As for the “one-dimensional” regularizations (2.10) and
(2.11), they contain absolutely convergent integrals.

REMARK 8. It is possible to regard a as complex in (2.3), with (—iy)* understood
as in (1.17). The preceding considerations, in particular, Theorem 2, remain in force
for A > max(0,Re a — 1).

REMARK 9. Let us compare the generalized function f.p.1/(—iy)* with the
following more common distributions in the theory of generalized functions:

do = o0,

n—1

1 sgn y 1 P
fp. —, fp. ——, fp. —. (2.14)
P PyE Prys

S

Here it is convenient for us to regard them on the test space C5°(— 1, 1). It is easy to
compute

f (<p(y) fl o(y) — 25" (0(0) /k 1) y* p

iy)® -1 (—ip)*
=1/ ik cos((k — o T
e g,

where the prime on the summation sign means that the term with k =a — 1 is
omitted in the case of integral a (cf. (2.11)!). The f.p.-integrals for (2.14) are written
similarly. The generalized functions (2.14), which are analytic in a everywhere except
ata=135,..., a=2,46,...,anda=1,2,3,..., respectively; have poles at the
excluded points. However, the generalized function 1/(—iy)* used by us has not
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poles but removable discontinuities at integral a. Namely, it is not hard to derive
from the representation written above that

§(m=1),

cm—1
lim f.p. 1 — = 1 — f.p. —1"7 S L —
a—m (—ly) (—1) y (m - l)'

The situation is analogous with the spherical f.p.-constructions (2.3). Namely,

COROLLARY TO THEOREM 2. The f.p.-integral (2.3) with a function 6(a) € CNZ,_)),
A >0, is an analytic function of the parameter a in the half-plane Re a < 1 + A with
the exception of the values a = 1,2,3,..., at which it has removable discontinuities:

= 9m IM,(x,0
lim f.p.f _b(o)do — = f.p.f o(o)do,,, + = a("f )
a—m 2,1 (—ix' - ) 2, (—ix’ - a) (m—1)! ay™

y

(2.15)
where My(x’, y) is the function in (2.12).

PROOF. Let us add 2} k., to and subtract it from the sum Z{31 ™' under the
integral sign in (2.11), taking [Rea]<N <A + 1 (so as not to diminish the
smoothness of 8(o)). If we then compute the terms subtracted, we get that (2.11)
holds with [a] replaced by N for [Rea] < N <A + 1. Since [Rea] <[A]+ 1, it is
possible to choose N = [A] + 1 independently of a. Then in the formula (2.11) so
transformed the integral will obviously be analytic in a, and the sum 3'}X; outside
the integral will have removable discontinuities at @ = 1,2, 3,... because the term
with index K = a@ — 1 is omitted in the case of integral a. This gives (2.15).

The integral (2.3) can be differentiated by the formula

9 8(c) do . 0,8(o)
— f.p. ——— = aif.p. do. (2.16)
0x, [E,,-,("iX'O)a P ‘/;,,_l(—ix-o)a-H

Ty
{

We show that it holds for @ <1 when 6(o) € CNZ,_,), A > a (though it is
apparently true for any a). The formula is obvious in the case a < 0 (and trivial for
a = 0). Therefore, its validity for 0 < a < min(l, A) will be ensured if we can show
that the left-hand and right-hand sides are analytic in a for Re a < min(1, A). The
analyticity of the right-hand side was noted in the corollary to Theorem 2, and that

__of the left-hand side can be seen after applying (1.35).

Let us regard an f.p.-integral as an operator acting on the functions 8(o) defined

on the sphere. The next theorem illustrates the loss of smoothness of a function 6(o)

when this operator is applied to it.
THEOREM 3. Suppose that a > 0 and 8(o6) € CMZ,_,), A > max(0, a — 1). Then

fpf Heddo_ccrnimaz ) 2.17)

s, (—ix’ - o)

under the conditions that a % 1,2,3,... and A —a % 0,1,2,.... But ifaor A — a is
an integer, then C’*' %2 _,|) should be replaced by CX*'~%(Z _ ) in (2.17). It is
possible to take A = 0 in the case 0 < a < 1.

ProoF. By Lemma 2, it suffices for us to consider only the first term in the

representation (2.6) of the integral (2.17); moreover, it suffices to consider the
| integral
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J(x) =fl/2 Mol y) = Bty (¥*/k!)0 kM”(x,’O)/aykdy. (2.18)
172 (=iy)*

Let us integrate by parts [a] — 1 times here (assuming that a = 2):

[a]—2 k ’ k ’
*M,(x",1/2 a*M,(x’,—1/2
Jx)= 3 [ak o(x /)+bk o(x, ~1/2) +eli(x), (2.19)
k=0 ay dy
where a,, b,, and c are constants, and
72 | 317 IMy(x, y) alal= M, (x’,0) dy
Ji(x) = f fa]—1 [:1—1 e lal+] (2.20)
1/2 dy dy (—iy)

(but if 0 < a < 2, we leave the integral (2.18) unchanged: J = J;). The terms outside
the integral in (2.19) belong to C*~**(Z,_,), by Lemma 3. It remains to consider

the integral J,(x).
I. Thecase a % 1,2,3,... and A — a # 0,1, 2,.... It must be proved that

DI (x) € (S, ) (2.21)
for all multi-indices m of length [m|= [u], where p = A — a + 1. We have

D™Ji(x) =f_l|/j2 f(x(,—yi)}’;{fj’()) dy, {a} =« ;-[a], (2.22)

where
f(x, ) = D7 (3/3y)" " ' My(x", »).
In the case 0 < a < 1 the derivative D”J|(x) does not have the form (2.22). This

case will be handled separately.
The subsequent arguments differ for {A} > {a} and (A} < {a}. We begin with

the simpler former case.
1°. The case {A\} > {a} for a > 1. By Lemma 3,

f(x,y) € CrIlelr (3 X [~1,1]).
Obviously, A — [p] — [a] + 1 = A — [a«] — [A — a] > 0. Moreover, in our case A —

(p] — [a] + 1 = {A} < 1. Checking the required Holder property for (2.20), we have
(" y) = f(x, 0)]
[ D™ (x) — D"J(z)|< ~
1 | fm<tx'—z| |
NI AR O
b<be'— 2 Iy *
+f % ) = A2 )1 &
' —z]<pi<1/2 [y |l T
N 76,0 = (.01
b=z 1<pi<1/2 |y
=21y dy a2 —1—(a)
<2/ |+”+2c|x z’| f—” dy

<c |x =z [M ey (2.23)
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which yields (2.21), since p — [pn] = {A} — {a} in this case.
2°. The case {A} > {a} for 0 < a < 1. In this case we differentiate the f.p.-integral
once at the very start according to formula (2.16), i.e., we consider the function

a/ ) 45, k=12...n
I, (—ix- o)

(note that A —a + 1 > 1 for {A} > {a}). By (2.16), this leads to the consideration
of the integral

dy

1/2 M,k(x’, y) = M, (x',0)
J(X) :f . ] +a

=172 (—iy)
instead of (2.18), where 8, (¢) = 0,0(0) € CNZ,_)).

For this integral the condition (2.21) must now be checked for all muiti-indices m
of length 1 less than [A — a + 1], i.e., {m|= [A — a]. This is done analogously to the
estimates in (2.23): The corresponding function f(x, y) = DMy (x', y) now be-
longs to the class C*#I* (S X [— 4, 1]).

3°. The case (A} < {a} for 0 < a < 1. Let

6(o) do x+h .
x’) = ————— and x,= , h € R".
8(x) /;:,,_.(—ix’-o)“ olx+h
It must be shown that
18(x") — g(x;) < c|aft!™e (2.24)

forallx’ € 2,_, and & € R" (| h|< 1), where ¢ does not depend on x’ or h. We have

g(X’)—g(Xi,)=f;_~9(0)[ ) 1 i ! }do.

(—ix" - o) (—ixy-0)®

n

The same operations used for deriving (1.35) are carried out in this integral.
Applying the rotation o = rot, o,,,, for this, we get

1 |x + h[”
(—io))* (—i(o, + hrot, o))"

g(x") — g(x;) =j;_ ) 0x(v)[ } do, (2.25)

n

since x, -6 = (x-o0+ h-o)|x + h|”!, and we can assume that | x|= 1 (see (1.28)).
Since

Nx+hPF—1=|(1+2x - &+ [RR)Y? — 1|< 2|h|

for |x|=1, we can replace |x + A[* by 1 in (2.25). In the integral thus obtained,
denoted by J, we pass to integration over the hemispheres o, > 0 and o, < 0. If we
then project onto the (n — 1)-dimensional ball lying in their base, we can pass to
iterated integration (over o, and with respect to the collection of remaining varia-
bles) in the resulting (7 — 1)-fold integral.(') The result is

(') The subsequent expressions relate to the case n = 3; the planar case n = 2 is simpler and can be
treated similarly with the appropriate simplifications.
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where
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case will be handled separately.
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the simpler former case.
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(p] — [a] + 1 = {A} < 1. Checking the required Holder property for (2.20), we have
(" y) = f(x, 0)]
[ D™ (x) — D"J(z)|< ~
1 | fm<tx'—z| |
NI AR O
b<be'— 2 Iy *
+f % ) = A2 )1 &
' —z]<pi<1/2 [y |l T
N 76,0 = (.01
b=z 1<pi<1/2 |y
=21y dy a2 —1—(a)
<2/ |+”+2c|x z’| f—” dy

<c |x =z [M ey (2.23)
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1 ! e
J = d o, a
N Y Joer ){ ~)" [~y + krot,0,)]" }ﬁ R

] ] d§
+[ 4 0 o_ - ’
f yf ( ){( —iy)® [—i(y +hrot o_)]" }‘/1 -yt —|¢F

thrc L = (}’, E’ * 1 - }’2 - |£|2) andﬁ = (gl’-- . ,5"—2)-
Performing the substitution £ — §/1 — y2 and then changing the order of integra-
tion, we getJ = J_ +J_, where

dé

J. = —
} fe,.-zw-n 1= 1P
i - 1 1
o (1 (1= 2" 3)/2{ _ }0 L) dy,
f_l( r) (=ip)*  [—i(y+hrot,z.)]" )

and z .. are the points in (1.29). The integrals /, and J_ are of a single type, so we
estimate only J, . Let K denote the inside integral in J  , so that X = H(x, & h). It
suffices to prove that |¥K(x, &, A)|< c|hP ="', where ¢ does not depend on x, &, or

h. We have
_ (n 32 z 1 - 1
X= f [ 1]0(+){( —iy)” [—,’(y+hrot,z+)]°}dy

1 1 1
+f_|[0x(z+) - 0x(z+)|y=0]{(_iy)a [—i(y + hrotxz+)]"}dy

| 1 1
+0_‘:(Z+)Iy=of—|{(_’:y)a - [—’(y+ hl’OtxZ+ )]"}dy

def
=K, + XK, +6,(2, ) =oK;

Estimate of X ,. Since
n—3)/2
|(1 =y~ 1)< cly|
(|1 =y~ 2= 1|<c|y|[(1 —y?)~'/% for n = 2), the boundedness of the func-
tion 8,.(z ) gives us that

! 1 1
(K |<cf |»] —~ ~ dy. (2.26)
1 /—II (=iy)® [—i(y+ hrot, z,)]"
From this, after the substitution y =| 4| 7, we find that
%, |< | hpef " ‘ 1 _{ dr,
I/|h| (- ——i(-r + h'rot, 7, )]

where ' = h/| h| and

=(,h|7,f\/1 —IhlzTZ,\/l—'lhlsz ﬁ—|§,2)

Obviously,
|hr I'Otx Z+ |< 1 (2.27)
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Further,
1 1

(—ia)®  (=ib)*

the second term here disappears if @ and b have the same sign. In our case a = 7,

=71+ h'-rot, Z, , and for | 7| sufficiently large (| 7[> 2, by (2.27)) the signs of 7
and 7 + h’rot, 7 coincide. Therefore,

1 1

1
- + (aw/2) sgna __ ,(aw/2) sgnb|.
, a la | b |a fe € |’

|al®

<

—u [ 1/14] | 1
Hi|<sc|h[® riins p —| dt
| ll I l /—l/|h|| I ITI |T+h I'Otx2+|
1—a [? 1 1 1 d
telh| ./_2|T| 7| |r+hr0t 2, |* T

The second term is majorized by ¢ | [*”% the integral in the first term can be
estimated in the same way for | 7 [< 2, so that

. 1/|h -«
|5, < clhP=+ clafe [P re — (s 4+ hrot, 2,) 77| dr
2

A [P (s o, 22) @

where £, = (= |k |7 &1 — |h P72, y1 = | A [2e2 1 = | €P).

The remaining two integrals are of the same type, so we estimate only one of
them. For this, let us apply the mean value theorem to the function f(s) = (7 + s)™~
This gives

(r4+s5) " = (r+s) “=alr+8)"""%(s,—5,),
wheres, <8 <s,. Fors, = 0and s, = h’'rot  Z, we obtain
|77~ (r+h'rot, %, ) © |< ar™ 179,

and then the first of the integrals in (2.28) is majorized by the quantity c|4|;
similarly for the second. Therefore, | X, |<c|h|.
Estimate of K. Let us use the Holder property of (o):

<k|rot,z, —rot, z,[,—o|= K|z, =z, ]|,=0] -
Itis not hard to see that |z, —z, |,—4|< V2 |y|, so that

1 . —a . -—Qa
| K, |< c/_l|y|"|(—zy) —[~z(y+hrotxz+) ]|dy.

Next, the integral K, can be estimated in exactly the same way as the integral
(2.26), and for it the estimate | K, |< c| A |**'~* is obtained for A < a, and | X, [< ¢
|A|Inl/| k| for A = a.

Estimate of K. Let us show that |¥;|<c|h|. We examine in detail the
parentheses (y + hrot,z, ). Let a;,(x) be the coefficients of the matrix of the
rotation rot .. Assume that the sphere is broken up into finitely many subsets Z),_,,
v=1,2,...,N, according to Theorem 1, so that the rotation has coefficients a;,(x)

that are infinitely differentiable on the =’_, (incidentally, we need only their
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boundedness). The projections of the vector rot, z, onto the coordinate axes are

n—1

(rot, z, )jzyajl(x) +yl=y*| X ajk(x)'fk p Fyl— lﬂz Ax)],

k=2

i=1,...,n. Hence,
h-tot .z, =yh-a+1—y*h-b,
where
a=a(x) = (a,,(x),...,a,(x)), (2.29)

and b = b(x, £) is the vector with components

n—1

b= 3 apé— + V1 —|&]a;,(x) (2.30)

k=2
Obviously, |a|=1 (since the a;, are the coefficients of a rotation matrix). Also
|b|=1,since b = rot, z, |,—,. Temporarily let
A=h-a, B=h-b (|4|<|h|,|B|<|h]). (2.31)
After the substitution y = cos s, 0 < s < 7, the integral K, takes the following form
in the notation of (2.29)-(2.31):

X, =/:{(—icoss)“a —(—i[(1 + A) coss + Bsins]) °} sin s ds.

Since

(I + A4) coss + Bsins = \/(1 + 4)* + B? cos(s — p), @ = arctan l fA :
it follows that
K, =[1 = ((1 +4) + BZ)‘Vz]'/: sins(—icoss) " ds
+((1+4) + BZ)—l/Z/Oﬂ{sin s(—icoss) * — sins[—icos(s — ¢)] "} ds

=%+ X",
An estimate for K; is clear: | H;|< c(|4| +|B|) <2c|h|, while for X7 we have

79 sin(s + @)

l(}{;///,<c

/ﬂsin s(—icoss) “ds —f
0

-9 (—icoss)”

m sinsds  (77%® sinsds 7—osin(s + @) — sin s
SC/ —/ / . a ds

o (—icoss)” ? (—zcoss) ~9 (—icoss)
scf sin § ds'—f—cfo SdeSa telol.

n—¢ (—icoss)® -9

Obviously, |@|<|B/(1 + A)|<c|h|. Further, taking account of the fact that
| cos s[> 1/2 in neighborhoods of s = 0 and s = =, we get | K |<c|@? + c|p|<
c| h|, which finishes the estimates.

Gathering our estimates together, we get (2.24) for0 <A <a < I.
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REMARK 10. In the case 0 <A = a < 1 we get that

6(c)(—ix'-a) “da€ CLZ,_))

a—1

(see the estimates for K, I, and K,).
4°. The case {A} < {a} for a > 1. Let us show that this case reduces to the

preceding one. Integrating by parts once more in (2.20), we come to the integral
N (12 (3/8y)“ My(x', y)
S(x) = f N
-2 (=iy)
(note that [a] < A for {A} < {a}). By Remark 3, it suffices to study the integral

dy

My (x', y)
N (172 Mg,

dy,
172 (=iy)'®
where 6,(0) € C*1e)(Z, _)). Since
(1) == 2
it suffices to study the integral
1 My (x', y) (n—3)/2 1 6,(o) de
J(x)=[ —————(1 —y3)"" dy = —=— —L T (2.32)
¢ f—l (—iy)® ( ) Py /;,,-2 (—ix’ - a){®

(see (1.35)) using results of an obvious examination of the integral in (2.32) over
12<|y|< 1. If A —[a] <1, then J(x") € C*"**(Z,_,) by virtue of case 3°,
since {A — [a]} = {A} < {a}. Suppose that A — [a] = 1. Let

A=la]=p+ (A}, p=[A—[a]]l =[A] - [a].

Let us perform p times (| m |= p) the differentiation D™ of J,(x) with respect to x.
Generally speaking, this can be done by applying (2.16) p times. However, it is
possible to avoid the p-fold application of this formula (which is undesirable for
p > 1 because we have given its proof only for 0 < a < 1). Let us proceed as follows.
After applying (2.16) once, we arrive at an integral of the form

9 ~1—{a
—-J4(x)=f.p./ 0,(c)(—ix-0) " ds,  6,(0) € CPl(E,_)).
axk En—l
For an analysis of it we need to examine
N (12 My (x', y) — My (x',0)
I5(x") '"/ .\ +{a)
=172 (=)

dy.

Integration by parts leads to

, 1/2 4 , CN—~{a
I(x) = [ 55 Malx ) (=) .

Application of Remark 3 leads to
) 1/2 , \—{(a
F(x) = [ My (%, y)(=ip) ™ ay,
-1,2
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where 8;(x") € C*[91* (3 _ ), and, consequently, to

Jy(x’) =/ 8,(0)(—ix" - o) do.

2n—l
Carrying out a similar procedure p — 1, more times, we come to the necessity of
proving that

6,.(0)do

Jo(x") =f *—m e ChrIT(E, ),
P (‘—ix, . U)

where 6 (o) € C*~1I77(Z _ ). But this follows from the case 3°, since {A — [a] —
p}={A}<{a}landA—a+1—p={A} — {a} + L
" II. The case a = 1,2,3,...,A—a#0,1,2,.... It is necessary to examine the
integral (2.22) for {a} = 0. Operations analogous to those in (2.23) yield

|(D7)(x) = (D)) |< el x' = [1n .
ie, Ji(x) € CYTHE, _)).

III. The case a # 1,2,3,... and A —a = 0,1,2,.... We apply successive differ-
entiation with respect to x and integration by parts in the integral J,(x") just as was
done in 4°. Performing this operation p times, where p = A — a, we arrive at an
integral of the form Jy(x’), where 8,(0) € C*)(Z,_,). Since A — « is an integer,
{A} = {a}. Then Jy(x") € C{(Z,_,) on the basis of Remark 10, and then together
with this we have J(x’) € C}72*(Z, _)). But then J(x) € CA7**!(Z,_)). too.

IV. The case a =1,2,3,... and A —a =0,1,2,.... Now both a and A are
integers. It is necessary to show that D™/ (x) € CLY(Z,_,) for orders with |m|= A
— a. The function f(x’, y) in (2.22) is in the class C'(Z,_, X [— 3, 3]) for such
orders. Repeating the operations in (2.23), we get

, . , ) , 2
| (D"))(x") — (D J)(2)|<c|x"=z'|In |x"—z'|"

this time, which is what was required. Theorem 3 is completely proved.
3. Main representation theorem for the symbol of a potential.

THEOREM 4. Suppose that 6(c) € CNZ,_,). A > max(0, a — 1). The limit

LJC:‘(X’) = A}im jl‘l Ng(tf) | I,a—nei.\'-( dt (2.33)
- <

exists uniformly in x’ for 0 < a <(n + 1)/2, and the following representations are
valid:

¥5(x') = T(a) /.p. [ blo)ds a2 (234)

Sey (—ix - 0)*’

a—1 da—1ay ’
6(o) do 4 J Mo(X,O)’ a=1.23.....

o (—ix - a)® | x| ay*~!

Kg(x) =T(a)f.p. f2
(2.34")
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In particular ( for n = 3(?))

%,;(x)‘—‘ipuf 6 )do+— 6(o)ds,_,, (2.35)
2 [x] X500,

200) = _ 6(c) . .
Ko (x) = f.p. ’[,.-|(o x) leZ/E: o ‘. grad 8(o)dS,_,.  (2.36)

PROOF. A representation of the symbol H;(x) in the form (2.34) is not hard to
obtain in the case 0 < a < 1. Indeed,

%;(x)=Nh'l1:°fz 0(o)dof0”e"p°'*p“—'dp. (2.37)

The inside integral converges as N » oo for 0 <a <1 and is equal to I'(a)
X (=ix - 6)™* (see [6), 3.761.4 and 3.761.9). The possibility of taking the limit under
the integral sign in (2.37) is based on the Lebesgue dominated convergence theorem,

since (we substitute po - x = p,)

the"“"""‘p""l dp' <clo-x|7% (2.38)
0

where ¢ does not depend on N.
The case a = 1, unlike the case 0 < a < 1, involves very nontrivial difficulties. In

proceeding to this case we shall be guided by the regularization (2.11) of the
f.p.-integral. We have the representation

. 1 ~
[ e=iepnaeyde= N[ TNy [ x DM, Dy, (239)
<N -

where M,(x’, y) is the function (2.12) and
| B . y—a .
J(y) =fop“ e®rdp = (—iy) "v(a, —ip), (2.40)
v(a, z) being the incomplete gamma function ([6], 3.381.1). The representation (2.39)

is obtained by passing to polar coordinates and using (1.35).
We note the recursion formula

J(y)= [e"Pa_\(iy) + (1 = @) pdyem(¥)], m<a, (241)

1
()"
obtained by m-fold integration of the integral (2.40) by parts; here (1 — a),, =
(1—a)2—a) - (-a + m), and P5_,(z) is the polynomial

Pi(z2)=z"""—(a—Dz" 2+ -+ (=)™ a—1) - (a—m+1)

= mél (1 —a)zm 'k, (2.42)
k=0

(%) For n = 2 the second term in (2.35) should be replaced by
” X3 Xy X3 X
2ol -2 o)
IXI[ [x|" x| | x| | x|

similariy in (2.36).
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The following recursion relations hold for the polynomials P2(z):

PXz)=z"+ (1 — a)P2Z)(2), (2.43)
PX(z) =zP2_\(z) + (1 — a),, (2.44)
;P”’“ = mP™_(2). (2.45)

Since the symbol K/(x) is homogeneous (H(x) =| x| *H;(x")), it suffices to
consider only its restriction to the unit sphere. Let m = [a], so that m < a <m + 1.
On the basis of (2.33) and (2.39) we have

a . H m_ 1 BJM (X’,O)
Hi(x) = lim [ A(y)(Ny)dy + T ¢(N)—=>,  (2.46)
N—oo /-1 j=1 dy’
where
0/My(x’,0
A(») = Aly, x) = y(x, ») - 2 j—éi—) (247
and
c(N)-——.— ny(Ny)dy, j=0,1,....om— 1. (2.48)

J!
The first term in (2.46) will be denoted by
L
In(x) = N* [ 4()J(Ny) dy. (2.49)

Passing to the limit as N = oo in (2.46), we get the representation (2.34)-(2.34") of
the theorem. We next separate the cases of integral and nonintegral a.

I. The case where a is not an integer.
a) Asymptotic behavior of the coefficients ¢ (N ). Let us show that

¢(N)=8+- fa._ [Q,-(iN)e"N+(~1)’Qj(—iN)e-fN]+o(1), (2.50)
jia—j—1)
where
— zr(a) j a—j .
'Bj_j!(j—a-kl)lcos 5=, (2.51)

m—1 —
0,(2) = 2B *(z) — B () = 2 - CcE

v=1

the P/*(z) being the polynomials in (2.42). We prove (2.50). We have
N“_
¢,(N) = f yfdyf p e dp
Na—_/ 1 a—j—l N
~i=24 e’ d . levdy [ p*™2dp
f p pf_pNy y =" f_Ny nyNp
1 . N o N S
{N""f_'f yle” dy —f |y [F~ ! sgn’ ye'” dy]. (2.53)
~N ~N

T a—j— 1)

The following formulas hold:

N . 1
Jply =
./,Nye dy ij+l

[P/+'(iN)e™ — Pi*1(=iN)e ], (2.54)
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fNy"”'e:i-vdy = (Ii)"’[N"_”'e:’NP”‘f_l(tiN) + (1 - a)m/Ny"_'"—'e:"-”dy],
0 0
(2.55)

as can be proved by induction (the first with the use of (2.43), and the second with
the use of (2.44)). With the help of (2.55) we conclude that

' ] . . m—i i .
f_Nlel"‘ sgn’ ye'” dy = {N" ’"[P" {(iN)e¥ + (=1)""7Pa_,(—iN)e 'N]

NelV + (—1)"e iy
+(l—a)m‘/(; )Em+l_a dy}.

Substitution of these integrals into (2.53) leads to

1 N a—m—1[ iy m=j —i

— a=m=1lgiv 4 (—1 | dy.
i'"j!(a—j—l)foy [e (=1)"e ]y

From this it is not hard to get (2.50), taking formulas 3.761.4 and 3.761.9 in [6] into

account.
b) Asymptotic behavior of the integral I,(x"). The recursion formula (2.41) gives us

Iy(x) = N"‘ mfl A)Ey) ,(zyN)e‘)’Ndy

cj(N) =

_ m—|
d U Dayeen (AR =S G, (256)
where
k ( “)k a—1—k ()’) eiN
="t v e (2.57)
and

, l =) yraem (1 A
1~=(——.;l—N f %Ja-m(Ny)dy-

! -1
It will be shown below (see d)) that
Iy = r<a>f AW) 4 (2.58)
(= ty)
and that
I)(,"_| - 0. (2.59)

N-—-oo
Let us now consider the terms [/ ,’& for k=0,1,...,m — 2 (the necessity of
considering them arises for m = 2). We apply the formula

! eV gy = < _ L fO(DeN — fO(=1)e N
f"f(y) > v§0( & (iN)""!

+ (%)p"’l‘/‘jlf(l"”)(y)e’wydy
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(obtained by integrating by parts p + 1 times) to /% for the choice p = m — 2 — k.
This gives
m—2—k yAs:ll(l)eiN _Ag:l](l)e_”v

=(1—a)kNa v§0 (—1) (iN)"+k+2

+im(1L = a) Ve [ AT (p)e™
-1
where 4, (y) = A(y)/y**'. Below (see d)) it will be shown that
N"""[l ARV eN dy 50, k=0,1,....m—2,  (2.60)
-1

uniformly in x” as N - . Therefore,

m—2 m—2 m—k—2
S =NV S (-, 3 (—1y—eal)
k=0 k=0 »=0 (iN)
— "‘e_”vm—2 —a "y ———Akﬂ( ) + o(1 2.61
N k§0(1 )k 2 ( ) (N)y+k+2 ( ) ( . )

Let us compute the quantities 4%),(=1). Writing M, = (3"M,(x’,0))/9y’, for
brevity, we get by Leibniz’ formula that

A(V) (+1) — é C'—— dar* ( ~1- k) a* M (X’ y) mz—] jyj
k+1\— - v— ) ] ’ - .
Here

at r -, ,

dyp. [Mo(x ’y)] Iy=:l = 0

forall0 < u < », if (n — 3) /2 > ». For the latter it suffices that (n — 3)/2 > m — 2,
which is true. Therefore, from this (with the equality

dm —_ a—m
" =(—=1)"(—a)my

taken into account) we get
-1

A=) = (=) ()7 ke 1 S (+1)’(T')‘.
r=0 Jj=n JTH
m—1
= 2 AljSk:.v.j’ (262)
j=0
where
y— - —k
Slj-,y,j:(—l) lSk.v.j’ Sk.v.j:(—l)j Sk.v.j
and
min(», ;) (k + l)v—p. 1 min(», j) (k+ V—}L)!

Sers= 2 (CVGTETAE=T 2 GV IR TG

l p=0 r=0
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Substitution of (2.62) into (2.61) yields

m—2 m=—1 m—2 —2
Eﬂ—N“”EME(kuZOM”%mk,
k=0 j=0 k=0 v=k
_ m—1 m—2 m—2 iy -
—NeTNE MY (1—a) 2 (=1)(N)TTIS, o +o(1).
Jj=0 k=0 v=k
Hence,
m—2 m—1 m=—2
S 1= NV S M3 s, (V)
k=0 j=0 ~»=0
m—1 m—2 i _
NN T M Y (—1)s, ,(iN)TT +0(1),  (2.63)
j=0 r=0
where

S 2 (1- a)kSk,v—k,j'
k=0

The representation (2.63) then reduces to the form

ZOIN- N“mz M[Q,(iN)e™ + (—1)',(—iN)e™™]| + o(1), (2.63')

Jj=

where
. m—2
Qj(z) =2 Sy,jz—y—z-
v=0

Thus, the behavior of the integral I, (x’) as N — oo is determined by (2.58), (2.59),

and (2.63").
¢) Determination of the representation (2.34). By using the asymptotics (2.50),

(2.56)—-(2.59), and (2.63’), the representation (2.46) of the symbol Hf(x’) can be
reduced to the form -
8 Mg(x O)

y!

+ lim N° go {[ . Q’(I.Z "~ Q'j(iN)JefN

N—oco T CEN,

+PWb%tﬁB—Q(w4 }y%%g (264)

Here the first line coincides with the right-hand side of (2.11), multiplied by I'(a),
and already gives (2.34). Consequently, it remains to show that the second and third
lines in (2.64) disappear. But they contain increasing terms and, therefore, it is

natural to expect that

¥5(x) = Ta) [ A (=) "y + 2 B

Qj(z) .
a—j=D -9 (2.65)
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After showing that (2.65) really holds, we'conclude the derivation of (2.34). We
have (taking account of the fact that (—;),,, = 0 for » = j) from (2.52) that

m—2

Qj(z) = 2 [(“j),+| — (1 - a)v+l]z_y_2-
v=0
Therefore, (2.65) reduces to the form
d k! (=1 — (1 —a), 4,
l—a),_,———A4, ;, = , 2.66
k§0( a)v k(l’—k)' k.j.wv _]'(a __j_ l) ( )
where
min(k, /) (v — )"
A, ., = — 1) — £l . (2.67)
ks ,ZO ) G= =

Here it is very essential that we were able to find the sum (2.67) in explicit form (see
§1.10). Applying (1.50), we reduce the desired relation (2.66) to the form
’ . _(l_a)v+|—(_j)v+|
3 (=@ kot D=
The latter is a particular case of the formula

d — (b

2 (a)k(b tk+1),_, = (a),+ (b)y+1 ’

— a—b

k=0
which is easily proved by induction or by direct division of the polynomial
(a),+; — (b),,, by the binomial a — b. This proves (2.65), and (2.64) becomes
(2.34).

d) Proof of the limits (2.58), (2.59), and (2.60). 1°. For proving (2.58), we have

r — (1 _a)m lA(y)dy Ny a—m—1,ip
Iy = - j(; e /(; ) e'?dp

lm

y

Here it is possible to take the limit as N — oo under the integral sign by the
Lebesgue dominated convergence theorem, in view of the fact that A(y)|y|™* is
integrable in a neighborhood of y = 0 (see Lemma 7). Therefore,

lim I;,: (1 —.'ma)m {/(’)IA(}’) dy/(;oopa—m—leip dp

N-o0 i ya

m (OA(YAY) (® (=1 =i
_ a—m 0 dol .
D[ EE [ e e

From this and formulas 3.761.4 and 3.761.9 in [6] we get

+/01 (—l)mf(—y)dyj;fv.vpa—m—le—ip dp}. (2.68)

1 —_
lim I}, = (—_mi)ﬂr(a —m)
N-ooo 1

% e(a—m)(m‘/Z)fl A()’) dy + e—(a+m)(ﬂi/2)f0 A()’) d)’}
o J° -1 |yF
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which gives (2.58). Because of the easily proved estimate
! IR S *® a—~m=—1,ip
)foA(y)( iy) dny'p e dp|< e

with a constant ¢ not depending on x’, the limit (2.58) is uniform in x’.
2°. Observing that (2.59) is (2.60) for Kk = m — 1, we shall prove (2.6) for

k=0,1,...,m — 1. Itis necessary to show that

Na—m/]A(m—k ”(y)e'”"dy - 0, k=0,1,....m—1 (2.70)
0

(2.69)

k+1
— o0

(the estimates of the integral N* ™/, are analogous). The function A{" 7%~ V(y)
has, generally speaking, a singularity at y =0 and behaves “badly” as y — 1.
Lemma 5 suggests a rate of decrease of the integral in (2.70) sufficient to cancel the
increasing factor N*~ ™. The crucial point here is the use of (1.48). Let us focus on
the singularities at y = 0 and y = 1, taking separately f;/? and [,,. We apply to

A{m757D(y) the representation (1.48), taking m — 1 instead of m on the basis of

Remark 6. This gives

—k 1 t P -
A (y) =5 Pm_z(—)[M‘"’ D(x', 1) = M D(x, p)] dr, (2.71)
y©Jo Y

where P,_,(z) is a polynomial of degree m — 2. The following lemma will be used.

LEMMA 8. Let g(t) € C0, a], 0 < A < 1. Then the function

f(y)= i foyb(i) [g(¢) — g(y)] at

where |b(t)|< c, satisfies a Hélder condition of the form (1.45) on [0, a].

Thas is easily proved from the equality
f+m) =) =[(y+mn) —y‘*]f()'{?(t)[g(yt) ~g(O)]dt+(y+m7"

xj()’[g(yr +ht) — g(y + h) — g(yt) + g(»)]b(¢) a.

We apply this lemma to the function (2.71). Since M("~"(x’, y) is a Holder
function of order A, = min(l, A — m + 1) with respect to y for 0 <y < 1/2 (uni-
formly in x’; see Lemma 3), the function (2.71) has, by Lemma 8, the form
AT kTD(y) = proT1f( ), where f( y) satisfies condition (1.45) for 0 <y < 1 /2. But

k+1
then Lemma 5 (together with Remark 5) asserts that

m—a C

a—m| Y2 j(m—k=1) iN N — -
e [ ACTE () ydy‘écN)\o =m0 (27)

Estimation of the remaining integral N~ ™| /2 in (2.70) reduces to estimation of
integrals of the form

m—1. (2.73)

.y

d/M
Ne— m/ o(x y) tNydy, j:0,1,-

j
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According to (2.12),
d'My(x', ) " M,(x', y) d/(1 = y2)" P
dy’ ay” | .
The means M,y(x’, y) have, by (1.25), the form

My(x', y) = a(x, .1 =2},

where a(x’, y, z) € CNZ,_, X [~1,1] X [0, 1]). Proceeding by induction, we get

that
aPMa(xly )’) _ 1/2—» , / 2
ayv —(l_yz) bv(x’y’ l—y )’

where b,(x’, y,z) € C**(Z _, X [—1,1] X [0, 1]). Then it is not hard to get from
(2.74) that

j
=12, .13 ¢ (2.74)
»=0

d'/M ’ _ .
R
y
(2.75)

where ¢,(x’, y, z) € C*(Z,_, X [—1,1] X [0, 1]).
Using our restriction a < (n + 1)/2, we see that [a] < n/2. But then (n — 2)/2
—j=0forj=0,1,...,m — 1 (m = [a]). Therefore, (2.75) can be written in the

form
dea(x" y) _
—dyf— =
whered(x’, y, z) € Cr/(Z,_, X [—1,1] X [0.1]). Consequently, the integral (2.73)
has the form

N“—mfll/z"j(x', yl—y?)avdy = N"_"'eiNLI/zﬂ(-"' vy )e My, (276)

where e,(x’, y, z). fi(x', y, 2) € C*/Z,_, X [~ 1, 1] X [0.1]).
Applying Lemma 6 in (2.76), we conclude that

dj(x’,y, l—yz), j=0,1...., m—1,

a—»nt

0, (2.77)

__My(x’, y) |
Ne—m /l yj—m 9(X y)elN)'dy <
1

/2 oy’

—>
Nmin(l.A—m+ B

and an analysis of the proof of Lemma 6 shows that ¢ does not depend on x’.

The estimates (2.72) and (2.77) conclude the proof of the limit (2.70).

I1. The case where a is an integer. Suppose now that a = m is an integer. Much of
what was just gone through remains in force. Therefore, we give only the signifi-
cantly new points.

a) Asymptotic behavior of the coefficients c¢,(N). The coefficients ¢;(N) in (2.46)
have the same asymptotics (2.50) as before for j = 0, 1,...,m — 2. But in the case
Jj=m—1,(2.53) is replaced by

o 1 N m— N (A%
Cn—1(N) = m/_Ny 'In Tk dy. (2.78)
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Let us determine the asymptotic behavior of this integral. From (2.55) we get that
/zy’"_'e’ydy —P’" (iz) + i™(m = 1)1, (2.79)

where P (z) is the polynomial in (2.42). Therefore, integrating in (2.78) and using
(2.79), we get

Cm_|(N) — im(ml_ 1)' /—N Pm—l(iy) eiydy

TS g,

v=0

Hence, by (2.54),

 (N)= mm}: ( +13)'[PF,+](iN)eiN_P’v+l(_iN)e—iN]

+2i"'“"[N§l—;—}idy,
0

and then
_(N) = im[eMR,,_,(iN) — e"™R,,_o(—iN)] + ="' + o(1), (2.80)

where

Ryo()= 3 o pri() =S ((““ S l) (2.81)

y=o (x+ 1)1 4=0 p! s=l+p

b) Asymptotic behavior of the integral I,,(x"). The representation (2.56) has order
smaller by 1:

N « . i
In(x) = [1 Ay R (N )e N dy

+ (1- m)m—lN/—]lA(y)y—-m+IJl(Ny) dy = mizm + I, (2.82)

im—l K=0
where 1% is the integral (2.57) with @ = m, and
L,=i"""(m- 1)!Nfl A(y)y m*! dy/lei"”"dp
-1 0
1 . m i
= (m = ! [ A =p)"(1 = &) dy

= I'(m )f' A(_yl))dy o(1). (2.83)

As for the sum Z7'=2 I, its asymptotic behavior does not change and is given by
(2.63).
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¢) Determination of the representation (2:34°). On the basis of the asymptotics
expressed in a) and b) we now get, from (2.46), the following representation in place

of (2.64):
150 = 1) e+ 2 8

+ fim {ew[imxm_z(w) —N”’Qm—l(iN)]

) M,,(x o) ey 0™ My(x’,0)
T —————————————— l
aym-—l

. 3" M,(x’,0
—e iR, _(~iN) = (=N)"@,_(=iN)]) ayf,(_, 3

(2.84)

where the Q,,_,(z) are the same functions as in (2.64), and the R,,_,(z) are the

polynomials in (2.81).
Let us show that z"Q,_ _,(iz) = i™R,, _,(iz), i.e., that

270 (z) =(=1)"R,,_,(2). (2.85)
Computing the coefficients, we arrive at a system of equalities equivalent to
(2.895):

, — 1)tk! (=1’ sl

—1) K (m A, —,

k§0( ) (m—u-i-k—l)!(v—k)! kdw (m_z—")'/\:mE—yls
v=20,1,..., m— 2.

If the 4, ; , from (1.50) are substituted here, the left-hand side reduces to the form

(m—1=»)(m—v»)--- (m—2+k—v)
(=1 ‘z: (m—v+k—1)

__ =D g 1

_(m—2—v)!k§0m—l+k—v’

which is what was required.
By (2.85) and (2.84), we get finally that

1o(x', y) — 2024 (»7) /i1 (3/My(x’,0)) /3y’
Hj(x) = (e [ H 2 2 ((y-,)y/)ﬂ( (. 0)/3y
t/cos(a — j)/2m 3/My(x’, O) ey 0% 'My(x, O)
+2r( )/20 ] (J—a+ 1) ay/ i aya |

which, by (2.11) coincides with (2.34"). Theorem 4 is completely proved.

REMARK 1. Recall that the symbol H;(x) of the potential (2.1) is given by a
convergent integral (2.2) only when 0 <a < (n + 1)/2. Everywhere below, the
symbol Kj(x) is understood for (n + 1)/2 < a to be the right-hand side of the

representation (2.34)~(2.34%).

COROLLARY 1. The symbol K j(x), x # 0, of a generalized Riesz potential is an
analytic function of the parameter a in the strip 0 < Rea <A + 1.
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This corollary follows from the representations (2.34)—(2.34’) and the corollary to
Theorem 2 (see (2.15)!).

COROLLARY 2. The symbol K j(x), x # 0, of a generalized Riesz potential has order
of smoothness less by a — 1 than that of the characteristic (o) of the potential.
Namely,

8(c) € C*(2,-)) = Hg(x") € CAe*Y (3, ), (2.86)

where 0 <a <A+ 1, A>0, a#1,2,3,..., and A —a #0,1,2,.... But if a or
A — a is an integer, then H(x') € CY*'"%(Z,_,). It is possible to take X = 0 in the
case 0 <a <.

Indeed, it suffices to apply Theorem 3 and Lemma 2 to the right-hand sides in

(2.34) and (2.34).
REMARK 12. If « is not an integer, then the symbol XK (x) can also be written in

the form

6(c)do , . . am 6(o) do

Ka(x) = (a)cos 2 fp. + iT(a) sin 2Z f.p. ,

0( ) ( ) 2 p /E”_l |0 . xla I (a) 1 2 p 2"—1 (o 'x)a
(2.87)

where (o - x)* =|o - x|"sgn(o - x), and the f.p.-constructions in (2.87) are defined
similarly to Definition S. Moreover,

wi® ! a“"AZf,,(x',O) (2.88)

S}C:(X): lea aya—l

in the case of 1) an even characteristic #(¢) and an odd integer a = 1, 3,5,... and 2)
an odd characteristic (o) and an even a = 2,4, 6,....
REMARK 13. In view of (2.37), we proved in Theorem 4 that

_b(o)do

i (=ix’ - 0)"

N . ,
lim 6(a)d oo xpe~ldp = T'(a) f.p.
Jm [ (c)do[ et dp = T(e) £p. [

n—1

for nonintegral a # 1,2, 3,..., and this limit is uniform in x’; fora = 1,2,3,... the
right-hand side should be replaced by the right-hand side of (2.34").

4. On the justification for passing to the symbol of a potential. The function HJ(x),
0 < a < n, which was constructed by the rule (2.34)-(2.34") and called the symbol of
the potential, coincides with the (conditionally convergent) Fourier transform of the
kernel of the potential for 0 < a < (n + 1)/2. We want to see that forall0 <a <n
the function H'(x) coincides with the Fourier transform of the kernel, understood
in the sense of S’ distributions. We must show that

(Kgp) = Hg(x)é(x). (289)

Since H;(x) is not a multiplier in S (and not even in the Lizorkin space ¥ = é

(see [8] and [9]), which is more suited for these purposes, if 8(o) & C*(Z,_,)), the

Gel'fand-Shilov theorem ([5], Chapter III, §3.7, Theorem 1) is not applicable, and it
is necessary to justify the transition (2.89).
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THEOREM 5. Suppose that 6(a) € CNZ,_,), A > max(0, ¢ — 1), 0 < a < n. Then
(2.89) holds:

(zi)nflene""'%é"(f)Q‘?(t)dt =fRn|zf,,t:).,¢(x — 1) dt (2.50)

for all (1) € S(R™).()
PrOOF. Both sides of (2.90) are analytic in « for 0 < Re a < n. (For the left-hand
side this can be verified directly with the help of Corollary 1 to Theorem 4 and the

homogeneity of the symbol HJ(¢), and for the right-hand side the analyticity is
obvious.) Therefore, it suffices to prove (2.90) for 0 < a < 1. We reduce (2.90) to the

form

f e™ =1 (1) dt =/mp""I dpf 6(0) do/ e™Pe ™% (5) ds
R" 0 2rl—l R

n

or
—~ix- (Y a a — 1 —ix-ta Nu—lio‘l
jme %a(t)cp(t)dt—A}ﬂj;ne (p(x)dxj%—la(o)do/()p e dp.
(2.91)

It remains to refer to (2.37). The Lebesgue dominated convergence theorem allows
us to pass to the limit under the integral sign in (2.91) (see (2.38)).

COROLLARY. The symbol Kj(x) coincides with the generalized (in the sense of the S’
distributions) Fourier transform of the kernel k§(x) = 8(x’)|x|"™" for all 0 < a < n.

§3. Some general considerations about inversion of potentials

In the simplest case of a Riesz potential K“ (i.e., § = const) the inverse operator
was constructed by us in [25] with the aid of so-called hypersingular integrals
(HST’s). In the general case, when 8 = const, the construction of the inverse operator
is closely connected, in view of (2.89), with the properties of the function Kg(x). In
studying the operator in, for example, L,(R"), we shall naturally be interested in
how much th? image Kg(L,) differs froin the image K“(L,) of the Riesz potential.
(Since (K%)=|x|™%p(x), while (Kgp) = Hg(x")| x| *@(x), the restriction of the
symbol H;(x) to the unit sphere could be called the “characteristic of the image
distortion.”) Let us begin with the following obvious statement:

If Xg(x/|x)) is a p-multiplier, then K;(L,) C K*(L,), If, moreover, 1 /Xg(x/|x))
is also a p-multiplier, then Kg(L,) = K*(L,).

On the basis of the study of HJ(x) carried out in §2, this leads to the following
theorem.

THEOREM 6. [f (o) € CNZ,_,),A = a + n — 1, then, always, K§(L,) C K%(L,).
If, moreover,
Ke(x)#0, x €Z,_,, (3.1)

then K3(L,) = K*(L,).

(*) For the validity of (2.90) it actually suffices that p(x) € L,(R") N L (R") and that [@(x}|<
clx|7%a>a, and |§(x)[<c|x|7P b>n—a, as|x|— .
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PrOOF. By Corollary 2 to Theorem 4, ¥J(x) € C* **Y(Z,_)),andA —a + 1 =
n here. But then a direct check of the conditions in the well-known theorem of
Mikhlin on p-multipliers shows that H/(x’) is a p-multiplier. If H/(x") # 0, then
1/H4(x’) is also a p-multiplier, by the same theorem of Mikhlin. Theorem 6 then
follows from the above statement.

REMARK 14. In the case p = 2 the condition A = a + n — 1 in Theorem 6 can be
relaxed to A > max(0, a — 1).

When the symbol of the potential is nonsingular on the unit sphere, we shall call

the case (3.1) elliptic. Clearly, in the elliptic case the inverse operator (KZ) ™! can be
constructed in the form (K§)~' = AD* = D°4, where A4 is the multidimensional
singular convolution operator having |/Kj(x’) as its symbol, and D* is the
hypersingular Riesz differentiation operator (the operator inverse to the Riesz
potential K*; see [25]). Of considerably greater interest and substance here is the
question of constructing the inverse operator directly in the form of a hypersingular
integral (see (3)) with some characteristic £(¢’). This problem, which includes the
explicit construction of the characteristic £(¢’) from the characteristic 6(z"), will be
completely solved in §§5 and 6. In §4 we shall first consider hypersingular construc-
tions. ,
" We remark that in the nonelliptic case, when condition (3.1) is violated, the
inverse operator no longer has the form of the HS construction (3). The form of the
inverse operator will be determined each time by the specific nature of the symbol’s
singularity. One such case, where the characteristic #(o) of the potential is linear,
f(6)=0-a=g0,a, + - +o,a,, was considered by us in [26]. Then the symbol
H4(x) has the form

-

Ky (x) = const|x|"*(x" - a)

and is a fortiori singular on the unit sphere (on the section of it by the hyperplane
x - a = 0). This case involves the construction of an inverse operator of the form

(&/)(x —ad) (3.2)

| t |n+a+l

o0
p(x) = constf d¢

0 R"
with a certain “exotic” nature of convergence. (Unlike in the case of the usual HSI
(3), which was truncated by excising a shrinking ball | ¢|< ¢, in (3.2) the appropriate
truncation here is achieved by excising the cylinder |¢|< e in R*' and cutting off
the half-space { > N, with the convergence as ¢ — 0 realized in the L, -norm and the
convergence as N — oo realized as convergence in measure.) In the conclusion of this
section we give one more example of a characteristic 8(¢) for which the image
Kg(L,) is different from K*( L,) and for which, consequently, the construction of
the inverse operator (Kg)~' does not have the form (3). Namely, let us consider the
most elementary nonsmooth (discontinuous on a coordinate plane) characteristic

8(x’)=sgnx;,, j=12,...,n. (3.3)
In this case
ip,(a)x, 1 3 x}
Ky(x) = ’ F(l,l——;—;—’), (3.4)
0 (1xP - x-z)(m—])/mI2 2727 |xP
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where

l +a n—a
— 3 +a (n—1)/2 —1
g (a) =27 F( 7 )F ( 5 ),

and F is the hypergeometric function of Gauss.
Indeed, we have (restricting ourselves to formal expressions)

Ko(x) = F( lsif_ti) _ (2717)" (sgnt) » Il_f%)
=28 L (egn s,y © (1(7)].

T @) ItF
where £ = (f,,...,8,_y, t,41,...,1,). Since (sgn t,) = 2i/t, and (1(1)) = (2m)"~'8(1),
it follows that

K (x) = zYn(a) B [t_lj® 6({)J _ iy,,ia)f 8(t) dt

T |t'a rRrt;|t — xf°
_ lYn(a) dt,
/ = [(t, = %) +1%p|™
_ LY.n_(i)/“’ dg (3.5)

2 2ya/2 ’
= x,)(§ +¢%)
where p* =|xf — x}.

It is possible to express the singular integral thus obtained in terms of a

hypergeometric function:

2/rT((1 + a)/2) xpl-e

/'°° dt _
—o0 (1 — x)(12 + p2)*? I'(a/2) x2 + p?
a 3 x?
—-=: 2 3.6
XF[1,1 2’2’x2+p2)’ (3.6)

which takes (3.5) into (3.4).
For an even integer a the hypergeometric function in (3.6) can be expressed as a

Jacobi polynomial

2
pU/2(0-a)/2) l_~x :
(a=1)/2 2324 p2)’

see [6], 8.962.1. In the case of odd a = 2m + 1 it can be shown that

1 3 1@m=1)1 (12" +f
- - el = 3.7

F(l 2~ ™ 2’ ) 2 m)" /; ln _ \/— + P,_(z2), (3.7)
where P,_(z) = 27, a,, .2 (1 — z)"* is a polynomial of degree m — 1 with

coefficients

(Zm—l)"(k ! k(27 — 2k — D!,
am,k om= k— | 2( 1) (2] ])" Cm
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(The formulas (3.6) and (3.7) are new, as far as the author knows.) The symbol (3.4)
can thereby be computed in terms of elementary functions when «a is an integer. In

particular,

(n=1)/2; sgn x, x P — x?
%;(x) — 27 ] en / n | 12 ,
T((n=1)/2) IxI " (x| +x,)
4"/ ix;

A (R Vo RN e

for @ = 1 and a = 2, respectively.

It follows from (3.4) that the symbol Kj(x’) vanishes at the points of the
hyperplane x; = 0 and becomes infinite at two points of the sphere. Consequently,
for any a the image of the potential Kg with characteristic §(x) = sgn x; does not
coincide with the image of the Riesz potential (an essential difference from the
one-dimensional case; see [23], §5).

§4. Hypersingular integrals with homogeneous characteristics

Multidimensional hypersingular integrals (HSI’s) were appai'ently first used by
Stein ([33), pp. 161-162) in describing the space of Bessel potentials of order
0 < a < 2. An extension of HSI’s to values a = 2 can be made either in terms of the
finite part of the integral (regularization of the generalized function r~"~¢) by
subtraction of a partial sum of the Taylor series, or by taking finite differences. The
latter approach is preferable in some respects (although it is equivalent, generally
speaking, to the first; concerning this in the case of smooth functions see subsection
4) and was used by Lizorkin [10], who introduced HSI’s of the form

f"————————(A[’f)(x)dt (4.1)

|t|n+a

with the central difference (&, f)(x) and obtained a description of the spaces of
Bessel potentials in terms of them in the general case (the construction (4.1) can be
called the multidimensional analogue of the fractional derivative of Marchaud).
More generally, hypersingular integrals are defined to be integrals of the form

f"%g(x, t) dr. (4.2)

There are a number of references ([38], [44]-[49]) in which the integrals (4.1), (4.2)
and integrals similar to them with a Taylor series remainder instead of a finite
difference have been studied in the framework of spaces of Bessel potentials. In [24],
[25]), and [29] the author used the constructions (4.1) to introduce new spaces
L; (R") of potentials of Riesz type. The action of the operators (4.2) was also
studied in [24] and [29] in the framework of these spaces. We mention, in addition,
the papers [12)-[15], in which HSI’s of order 0 < a < | were examined from the
point of view of their inclusion in the class of pseudodifferential operators.
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The function Q(x, ¢) will be called the characteristic of the HSI (4.2). Here we
shall be interested in the case of a characteristic homogeneous in ¢ and not
dependent on x: & = Q(¢/|t)). Let

a —_ 1 (Alt‘f )(x ) !
the choice of the normalizing factor d,, ,(«) is indicated below in subsection 2.

In this section we present without proofs some results needed in what follows for
HSI’s with homogeneous characteristics. Most of them were obtained by the author
in [32], where proofs can be found.

The notation (&', f)(x) for the finite difference of a function f(x) of order / with
step ¢t € R" will be used both for the noncentered difference

i
(8f)(x) = Z (=1 CH(x — ki),
k=0
and for the centered difference
i
(A f)x) = 3 (=D CH(x + (I/2 = k)r).
k=0

1. Classification of hypersingular integrals. We introduce the following concept.

DEfFINITION 6. The integral (4.3) will be called an HSI of neutral type if it is
constructed with the help of a noncentered difference, and an HSI of even (odd)
type if it is constructed with the help of a centered difference or even (odd) order /.

The integral (4.3) converges (on sufficiently smooth functions) for

> a.

In the case of an HSI of neutral type and with an even characteristic (§(¢') =
Q(~-t)) the order of the differences can be lowered, because of the conditional
convergence, to

1>2[a/2] (44)

with the obligatory choice / = a for a = 1,3, 5,... (see [25], where Q(¢') = 1). It is
assumed everywhere below that / is so chosen.

As explained below, the neutral type of HSI will have certain advantages over the
even and odd types (this has already manifested itself in the possibility (4.4) of
lowering the order /). It will be more universal in problems of inverting potentials.
In particular, it makes sense to consider an HSI of even (odd) type only for even
(odd) characteristics (¢’). Namely, if the characteristic is arbitrary, and

Q) =0, (x) + 0 (x), . (x) =) 129(_"') ,

then _
Def=Dg f, DGf=Dg f (4.5)

for integrals of even and odd type, respectively (integrals of even or odd type are
annihilated in the case of a characteristic of the opposite parity). The relations (4.5)
follow, for example, from (4.13) and (4.14). On the other hand, an HSI of neutral
type has its own “ peculiarities,” which are reflected in the following remark.
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ReMARK 15. In the case « = 1,3,5,... an HSI of neutral type is identically
annihilated when / > a:

rma o
ayer /an (A/,f)(x)ﬂ(m) dr =0,

for any f an&@éetaﬂs on this can be found in [25] for the case £ = 1). Butif / = a,
then it converges (conditionally) if and only if 2(¢/|¢]) is even.

2. The normalization constants 4, ,(«a). These constants are chosen in such a way
that F(DS f) =[x Pf(x) for Q(¢*) = 1. This turns out to be possible also for HSI’s of
neutral and even types. But in the case of odd type D§ f = 0 for Q(¢") = 1; therefore,
for an HSI of odd type the constant d,, ,(a) will be chosen from considerations of
symmetry and analyticity.

We introduce the following functions of the parameter a:

[ !
A(a) = 3 (=1)*7'Cckk* for a noncentered difference,

k=0

[//2] a
Al(a) =23 (- l)k—lC,"(-l— — k) for a centered difference.

k=0 2

OEE

A

(4.6)

Furthermore, it is possible to write

a

!
5=k

!
7=k

-1k for even /,

A/ (a) = .

/

—1*ck sgn(-z- —~ k) for odd /.

(1
2 (
k=0
2 (
k=0

“

LEMMA 9. The zeros of the function A)(«a) are the integers a = 1,2,...,l — 1, and
those of the function A} («) are the even integers a« = 2,4,...,l — 2 for even [ and the
odd integers a = 1,3,...,1 — 2 for odd |.

THEOREM 7. For an HSI of neutral or even type the normalization constants d, ()

are analytic functions of the parameter a and can be computed by the formulas

,1(0) = B(a) s (47)

where
g(n/2+1)

B.(a) = 2°T(1 + a/2)T((n + ) /2)

(4.8)

We remark that for an even integer a the expression A4,(a)/sin(aw/2) is under-
stood according to Lemma 9 as

. A/(f) __2_ _ a/2 d
sh—r-r; sin(ffr/Z)_ﬂ( ) EA'(Q)'

For an HSI of odd type we start from (4.7) and, taking Lemma 9 into account,

I define
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A"(a)
= 4.9
n I(a) B ( )cos(avr/2) ( )
3. The symbol of a hypersingular integral. In terms of Fourier transforms we have
(D3/) = Dg(x)/(x), (4.10)

where 9g(x) is the symbol of the HSI. It has the form

[
dn./(a)

1 — ix-t
f ( |t|"e+" ) Q(t’) dr for a noncentered difference,
Da(x) =<

(e(ix-r)/z _ e—(ix-l)/Z)l

1
d, (a) f [efe

Q(t’) dt for a centered difference.

(4.11)

Formulas (4.10) and (4.11) are easy to prove for sufficiently nice functions f(x) (see
[25], Appendix, where € = ). Obviously, the symbol is homogeneous of degree a.

THEOREM 8. Let Q(t') € L(Z,_,). The following representatzons of the symbol
D(x) by surface integrals are valid:(*)

: M{(n + )/2) ) de.
Dalx) = e +a)/2) cos(avr/Z)f (e )d
a®1,3,5,..., (412
. D((n + a)/2) |
Da(x) = VAT § )/2)f Q(o)|x - " do, (4.13)
af N r((n+oz)/2)
@g(X)——z = ”/21,((1+a)/2)f Q(o)|x-of*sgn(x -0)ds  (4.14)

for HSI’s of neutral, even, and odd types, respectively.

COROLLARY 1. HSI’s do not depend on the order | for the choice (4.7)-(4.9) of the
normalization constant d, (a).

COROLLARY 2. The HSI’s of neutral and even types coincide in the case of an even
characteristic Q(t) = Q(—1').

It can also be concluded from (4.12)—(4.14) that for the integers a« = 1,2, 3,... the
HSI D§ f is a homogeneous differential operator of order a for a suitable choice of
the type of HSI. Namely

COROLLARY 3. For a = 2,4,6,... the symbol of an HSI of neutral and even type,
and fora = 1,3,5,. .. the symbol of an HSI of odd type are polynomials:

« 78 %
Dg(x )-2B(a),ﬂz_ TR (4.15)

(*) In the case of an even characteristic 2(¢’) the formulas (4.12) and (4.13) coincide and are true for
HSTI’s of neutral type even for a = 1,3,5,... (cf. also the formula (2.34) for the symbols of potentials).
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where & =1 for neutral or even type and § = ~i for odd type, and the Q; are the
spherical moments of the function §(o):
Q. =f 6/Q(o) do. (4.16)

J

n—1

4. The hypersingular integral as a convolution with f.p. (x’)|x|~" " Is it possible
to regard an HSI as a convolution with a generalized function of the form
f.p.(R(x")/1x["**)? Theorem 9 below provides a positive answer, in general, to this

question. By definition,

Q(x f(x—1t)— P ~Y(x) Q) f(x—1)
Lo Gpe /= 8 0’ et [ T
(R 1/Q(¢')
+M§ T A2 (D’f )(x)E.p f T
where

PR = 3 ('R0, I>a

| fsi—1

It is not hard to see that

: Q/ | —a), ljlF*a,
f.p. e de =4
P fuo e {o, 1= a,

where the {2, are the spherical moments (4.16). Therefore,

p 2L [ gy M) XOR ),

|"+a |t|n+a
’ (—Ql)mﬂj j
+ 2 W(D f)(x),

| A=i—1

where the prime on the summation sign means that the terms with index |j|= a are
omitted when a is an integer, and x(¢) is the characteristic function of the ball

1< 1.

THEOREM 9. Suppose that Qo) € L(Z,_,), and that f(x) € C'(R") and is
bounded. Then

a _ _sin(a'rr/Z) Q(x’) . _ 417
(DG f)(x) 8 (a) f'p’lxl"“ f,  a#2,46,...; (417

sin(ar'rr/Z)f Q(x) +Q(—x") «f, a=2,4,6,..; (4.18)

(D§f)(x) = - B(a) P 2jxpre
(Daf)(X)=—°°j§?Z§2) f.p. Q(x;’;’?f:x') s f, a#1,35,..., (419
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for HSI’s of neutral, even, and odd types, respectively. In the cases of the integers a
excluded in (4.17)—(4.19) the HSI D§ f is a homogeneous differential operator of order

a:

a x) = (—l)[a/Z]” & Jf M x
(D50 =55 |,,2=a 71 (D)) (4.20)

(e =2,4,6,... for neutral and even types and « = 1,3,5,... for odd type).

It is clear from Theorem 9 that the symbol Dg(x) of the HSI Dg f can be regarded
as the Fourier transform of the generalized function constf.p.(2(x")/|x["**) or,
perhaps, of its even or odd component. Note, however, that this function does not
convolute the Schwartz space S, for example, into itself, and, therefore, we cannot
(as also in §2.4) justify the transition to Fourier transforms by a simple reference to
the Gel'fand-Shilov theorem ([5], Chapter III, §3.7, Theorem 1). The function
2(x")/| x"** convolutes the Lizorkin space ¥ = ® into itself if Q(x) € C®(Z,_))-
It is, however, possible to carry out the proof for Q(x’) € L,(Z,_,). Regarding
§(x")/| x|""* as an element of the class ¥’, we may omit the f.p. symbol.

THEOREM 10. Let Q(0) € L(Z,_,)- Then

pi(x) = - hem2) | BL | (@21
o~ _ sin(am/2) | Q(x") + Q(—x’)
D3(x) = - 2T F[ oL ] (4.22)
o  _ cos(am/2) | Q(x) — Q(—x')
D(x) = -2 F[ PTaE } (4.23)

for HSI's of neutral, even, and odd tvpes, respectively:. the Fourier transforms are
understood in the sense of ®'-distributions.(*)

5. Estimation of hypersingular integrals of smooth decreasing functions.
THEOREM 11. If Q(0) is bounded, and f(x) € C'(R") and

[(Df)(x)|< forlj|=1.

|f(x)|<—cv—,
(I +[x))™

(
(1+1xp™
where N, > a and N, > n, then

| (Dg‘;f)(x) Is C(l + |X |)—min(u+N(.N3.u+n).
6. On smoothness of the symbols of hypersingular integrals. Comparing the symbol

(4.12)-(4.14) of a hypersingular integral with the formula (2.34)-(2.34") for the
symbol of a potential, we get the following result from Theorem 3.

ASSERTION. The symbol D§(x), x # 0. of a hypersingular integral has order of
smoothness greater by a + 1 than that of the characteristic §(0):

Q(o) € CMZ,_)) = Dg(x) € C*r (2, ).

(®) Here we do not make separate provision for the cases of integral values of a, as in Theorem 9. These
cases are contained in (4.21)-(4.23). The assertion D§(x) = 0 then obtained corresponds to the fact that
the polynomials are indistinguishable from zero in the framework of the @’ distributions (see [9]).
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where A =20, «a >0, and a # 1,2,3,... and A —a % 0,1,2,.... But if a or A — a is
an integer, then
Dg(x) € Cy* v I(Z,1).

Indeed, in the case of a hypersingular integral of, for example, neutral type we
have from (4.12) after differentiating [«] + 1 times that

I 0"Q2(0) do
D™Dg(x) = const_/ - o
2n—l (—lx ! U)

for a multi-index m of length | m|= [a] + 1. It then remains to apply Theorem 3. An
analysis of the proof of Theorem 3 shows that it is true also for integrals with
singularities 1 /] x - o/* and sgn(x - 0)/|x - o[* instead of 1/(—ix - ¢)° Therefore, it
can be applied also in the case of hypersingular integrals of even and odd types.

7. Hypersingular integrals with harmonic characteristic. In the case where £2(¢") =

Y, (") is a spherical harmonic we have

THEOREM 12. The HSI is annihilated,

W1 (& f)(x)
D’mf_d,,.,(a)fn Ha& Y(m)d‘o

in the following cases. a) an integral of neutral type and either an even integer a less

thah mor a = m + 1, m+ 2,...; b) an integral of even type and either odd m or
a=m-—2, m—4,. .., c)an integral of odd type and either even m or a = m — 2,
m—4,. ...

In the remaining cases we have
D§ f=AY,(D)D*""f fora=m,

m—a (4.24)
D§ f=AY (D)K™™%f fora<m,

where f € S(R"), K™ * is a Riesz potential of order m — a, D*™" = D§™ " |o=; is
the Riesz differentiation operator, and

T'((n+ a)/2)T(1 + a/2)
F((n+a+m)/2)T(1 +(a—m)/2)’

A=E

where

m‘ﬂ/COS%E, EZ(_I)M/:!, E—_-(_l)(m+l)/2

for the neutral, even, and odd types of hypersingular integral, respectively.
8. Representation of homogeneous differential operators by hypersingular integrals.
First of all we mention a result that follows from the “reduction formula” (4.24).

m +
E=(-1) cos = 7

COROLLARY. The differential operators
P(D) =AY, (D), a=2k+m, k=0,1,2,...,m=0,1,2,...,
where A is the Laplacian and Y,, is a homogeneous harmonic polynomial of order m,
can be represented in the form of a hypersingular integral

Ay, (D)j( (All’tﬁ(ax) Ym(ﬁ) dt, (4.25)

n I(a) R"
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where

m +
p=(=0)"er (54 m+ k) /(252 k) o[ 24 ko4 1),
and the HSI is of neutral or even type for even m and of odd type for odd m.

Theorem 9 asserted earlier (see (4.20)) that differential operators are contained
among the hypersingular integrals. The above corollary suggests that the converse
statement is valid: all the homogeneous differential operators are contained among
the HSI’s. This is indeed so. Namely,

THEOREM 13. Suppose that a = 1,2,3,... and P(D) is a homogeneous differential
operator of order a. There exists a homogeneous polynomial  ( x) of order a such that

_ f)(x)
St n,(a)/ m”“ Q(Itl)dt’ (4.26)

where the HSI on the right-hand side is of neutral or even type for « = 2,4,6,... and
of odd type for « = 1,3,5,.... The characteristic Q.(t') of the HSI can be computed

from the given polynomial P,(x) by the formula

Q.(1) =/ P(o)K(t - o) do, | (4.27)

n- |

where
__ (=1)"*"'r(ny2)
Hly) = I'(1 +a/2)T((n + a)/Z)Ja%
[a/2]

x 3 (5 + a— k) d(a— 26)H, 5,(»).

and the H,_,, are the Gegenbauer—Tchebycheff polynomials (1.12). In particular, for

ax =2
- .

‘ ' -'--I' S
Q1) —_;—” : sz(z ) + "ter. E , (4.28)

§5. Inversion of the potentials K¢ by hypersinguiar integrals

Our goal is to construct an operator inverse to K in the elliptic case (3.1). For a
formal solution of the equation K¢ = f it is necessary, in view of (2.89), to form the

convolution
¢ = (1/H;(x)) = /, (5.1)

where (1/Kj(x)) is the Fourier transform of 1/X;(x). A justification of the
operations in (5.1) in the framework of generalized functions encounters the difficul-
ties mentioned earlier involving the fact that (1/H; ) does not convolute “reasona-
ble” classes of generalized functions into themselves. After studying the properties of
the function (1 /3{;")~ (generalized, in general, and ordinary if the order of smooth-
ness of #(x’) is high enough) and using Theorem 8, we shall find when the inversion
of a potential is possible in the form of an HSI. We effectively construct this
integral, which is a candidate for the inverse operator, and show that it really does
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invert the potential. In the present section this will be done in the framework of
C>-functions when the density ¢ of the potential is in the Lizorkin class ®(R"), and
then in §6 it will be done in the framework of the L,-spaces with the corresponding
(in the L -norm) understanding of convergence for the HSI. The key role in the
proof for L ,-densities is played by the property of “annihilation of the kernel of a
potential by the HSI associated with it.”

The inversion of a potential by an HSI turns out to be certainly possible when « is
not an integer and in a number of cases for a an integer (for example, when a
characteristic 8(o) is even for « = 1,3,5,... and odd for a = 2,4,6,... (see the
table below)). We also dwell briefly on the cases where inversion in the form (4.3) is
not possible. In these cases the inverse operator will be: either 1) the sum of an HS
operator and a differential operator (equal to a hypersingular integral of “mixed
type” (see (5.30)); or 2) the composition of an HS operator and a singular operator.

1. Structure of the Fourier transform of the reciprocal of the symbol of a potential.

LEMMA 10. Suppose that 8(e) € CN(Z,_,), where
A>2a+2n—1, (5.2)

and that the ellipticity condition (3.1) holds. Then
w(x’
fip (x7)

- |x|n+a ’

a not an integer,
( L.a)(x): (5.3)
K p. w(x’) +P(D)8(x), a=12,3,...,

| In+a

where the Fourier transform is understood in the sense of the S’ distributions, and

F'((n+a+k)/2) .. _ Yeu(o)
)= SO e W =L i

(5.4)

moreover, w(x’)y € C(Z,_,), and P(D) is a homogeneous differential operator of

order a:

(a/2] d(k)
P(D)=i"3 2 Guozp Vo2 (DA (5.5)
k=0 pu=0
Proo¥. The expansion
oy = 2 T (5.6)
( ko

converges, by (3.1), because the symbol H;(x’) is sufficiently smooth (this follows
from (2.86)). We have

F—‘(Sés ) - F_l{lxrgakuykp(x’)J B E;,a"#rl[lxlay"“(x,)]

(the proof that the Fourier transformation is applicable to a series in the sense of
S’-distributions is not difficult).
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Applying (1.52), we obtain (5.3). Let us determine the nature of convergence of
the series (5.4). From the asymptotic behavior of I'(z) at infinity (see [6], 8.327) it
follows that

I'(z+a) +b
—L ~ 2975, 5.7
r (Z - b) z— 00 g ( )

Therefore, (5.4) is majorized by the series

218, 1" Y (X)) < 2 lag, ke

k.p k.p
Since the function (5.6) belongs to C* (2 _,) by (2.86), the majorizing series
converges on the basis of Lemma l if n+a— 1 <2[(A—a+ 1)/2] —n + 1, and

for this it suffices that A > 2n + 2a — 1.
REMARK 16. P(D) =0 in the case a = 2,4,6,... for an odd characteristic 8(¢")

and in the case a = 1, 3, 5,. for an even characteristic.

2. Representation of (1 /‘}C, by an f.p.-integral over the sphere. So far we have
been able to determine from the symbol ¥;(x’) the function w(x’) in (5.3) in the
form of the series (5.4), assuming that we know the expansion of 1/Xj(x’) in
spherical harmonics. Is it possible to bypass this expansion and express w(x’)
explicitly in terms of 1/J(;(x’)? The next theorem answers this question positively
in terms of the f.p.-constructions on the sphere studied in §2.2.

THEOREM 14. Suppose that 8(¢) € CNZ,-,), A>n+ 2a — 2, and that (3.1)
holds. Then

w(xy=Lrta) do 5.8
() (2n)" I-p z. %;(o)(ix’-o)"“ 5:8)

fora#1,2,3,.... Butifa = 1,2,3,..., then the following expression is added to the
right-hand side of (5.8) (as in (2.34")):
i"te1 a"+a—‘M|/ﬂ\‘;(_x'~0)
(2‘”)" ayn+a—| .

ProoF. First of all, we note that (1/X;(0)) € C* *"Y(Z,_,). by the assertion
(2.86), and, therefore, the right-hand side of (5.8) exists for A>n + 2a — 2, by
Theorem 2 (and even belongs to C*~"~22*%(Z _ ), by Theorem 3). It is necessary

to prove the equality

o(x)dx _T(n+a) r ¢(x) | do
[ =P R e L e = 69

for (x) € ®(R"). The left-hand side reduces to the form

| xPp(x) 1o o
e =Ty e, ey fe e @

‘-'u—l

(p(t)dt/‘ /NM ipatt/Mgnta=l gy - (5.10)

—— lim
(2'”')" N—oc _[" Itln-’-a

n—1 ; )
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and it remains to refer to Remark 13; it is not difficult to justify taking the limit
under the sign of the integral over R” in (5.10), since ¢(¢)|¢|”*™" € S(R") for
¢(t) € O(R").

COROLLARY. An explicit expression for the function w(x’) in terms of the characteris-
tic §( o) follows from (5.8) and (2.34) ( fora #+ 1,2,3,...):

olx) = I'(n+ a) do |
(x) = (27)"'T(a )f > (ix’-o)"“f.p.fzn_l(—-ia-7)_“0(7)d7

(5.11)

3. The associated characteristics. By virtue of the formal equality (5.1) and
formula (5.3), we expect that the inverse operator (KZ)~! will be given by the

equality

p(x) = f.p. |w(|f+?' xf if a is not an integer, (5.12)
w(x’) .
(p(x)zf.p.l—xlT‘;*f'f' Pa(D)f ifa= 1,2,3,..., (513)

where P( D) is the differential operator (5.5). It can be reduced to the form

T(n/Z) 0. (o D)
P(D) = 2772 s T Ha(e) do, (5.14)
where
[a/2]
Q.0; D)= % d(a—2k)AH,_,,(0 - D),
k=0

o-D=o04(3/0x,)+ - +0,(3/3x,), and the H,, are the polynomials (1.12). For
this it suffices to substitute a,, from (5.4) into (5.5) and use the addition formula for
spherical harmonics. For n = 3 it is possible further to write

[a/2]
n—2+2a— 4k
Q.(0; D)= X o ——AC{"3P/*(o - D),

k=0

while in the planar case n =2 (for a an integer it is necessary that a = 1)
Q.(0; D) =20 - D. Thus,

P(D) :alaixl-PazB—i; forn=2,a=1, (5.15)

where
i r2n cosé i 27 siné
a, =— —d¢, a, =— ——d¢.
! "T/(; KHy(e®) : 77-[) Ky (e*)
The arguments which led us to the form (5.12)—(5.13) for the inverse operator
should so far be regarded as heuristic, and we must still prove that the inverse

operator that we shall construct, starting from (5.12)—(5.13), really is the inverse. We
shall ascertain when the construction (5.12)-(5.13) can be realized in the form of an
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HSI, and this construction will be carried out. The decisive role here belongs to
Theorem 9, which enables us to pass to the HSI (excluding the “polynomial” cases)

w(x) + f=Dgf. (5.16)

‘e IX |n+a
The characteristic (x’) in this case has, by Theorem 9, the form

Bi(a)
Q(x') = -——"—— ’ 2,4,6,..., 5.17
(x) Sln(a'ﬂ'/Z)w(x )9 a;é y Ty VY . ( )
when we want to use an HSI Dgf of neutral or even type (here w(x’) must be even,
according to (4.18), for even type). But in the case of an HSI of odd type

N __ B(a) , ,
Q(X)—_m“(")’ a#1,3,5,... (5.17')

(and then w(x") must be odd, according to (4.19)).
DEFINITION 7. The characteristic £(x’) constructed from the characteristic §(x”")

according to the rule (5.17)-(5.17’), where w(x’) is the function (5.4), (5.8), is called
the characteristic associated with §(x’). Also, the HSI D§f with this characteristic
£2(x’) is said to be associated with the potential K Je. ,

For sufficiently smooth characteristics 8(x") € C*(Z,_,) the associated character-
istic £(x’) exists as an ordinary function (continuous for A = 2a + 2n — 1), by
Lemma 10.

REMARK 17. If the characteristic #(x’) of a potential is even (odd), then so is the
associated characteristic 2(x’) of the HSI; see (5.8) and (2.34)-(2.34).

ReMARK 18. It can be shown that if the characteristic 8(¢’) depends only on a
single variable, 6 = 6(¢,/|¢|), then the characteristic £(¢) associated with it also
depends only on this variable. Moreover, £(¢’) can be constructed effectively in
terms of an expansion in Gegenbauer-Tchebycheff polynomials.

4. Inversion of potentials of noninteger order a by hypersingular integrals. The next
theorem is a consequence of the constructions in subsections 2 and 3.

THEOGREM 15. Suppose that the characteristic 8(x’) of the potential Kjp. a =
1,2,3,..., satisfies the smoothness assumption (5.2) and the ellipticity condition (3.1).
Then the HSI of neutral type with characteristic Q(x’) associated with 8(x') inveris the

potential Kj:
DSKip = o, @ € ®(R"). (5.18)
If 8(x’) is even (odd), then D§ can also be taken of even (odd) type.
PROOF. Since “nice” functions ¢ € ®(R") are being considered, the equality
PDI(x)Hg(x) =1 (5.19)

for the symbols can be proved instead of (5.18). [The passage from (5.18) to the
Fourier transforms is easy to justify, although D3(x) and K (x) are not, in general,
multipliers. To do this note that if ¢ € ®, then Ko is infinitely differentiable and
decreases sufficiently rapidly at infinity, by Corollary 2 to Theorem 4 (see also §4.3

and §2.4).]
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1. Suppose that Dg f is of neutral type. By (4.12), it must be checked that

Cix - 0)do = 20""D20((1 + a)/2) cos(am/2) 1
[, 8 )d T(n + a),2) o) O

=1

Both sides of the equality here are homogeneous of order a; therefore, it suffices to
prove it on the sphere Z,_,. Substituting 2(¢) from (5.17), we make use of the
expansion (5.4), (5.6). Equality (5.20) can be reduced to
 T((n+a+k)/2)
2 (_l) aku I‘ —
(k= a)/2)

zn-l k.p

. 1 +
= —sin amr(""”/zl‘( 3 a)I‘(l + —;—) kZ 3 Yeu( %)
-

Y, (o)(—ix"-0)%do

It is not particularly difficult to justify the termwise integration of the series on the
left-hand side here. Then applying (1.16), we come to a comparison of the coeffi-
cients of the Y, ,(x"), which really turn out to be equal.

2. Suppose that 6(x’) is even. Then so is 2(x’) (see Remark 1;)' Therefore, (4.12)
and (4.13) coincide, and the symbol 9J(x) of an HSI of even type is given by the
previous formula. Therefore, the preceding proof is preserved.

3. Suppose that 8(x’) is odd. We use an HSI of odd type. The preceding proof is
preserved in principle, but the form of the formulas changes somewhat. It is now
necessary to apply (4.14) instead of (4.12) and (1.20) instead of (1.16).

We mention that the use of HSI’s not of neutral type only for even or for odd
characteristics 8(¢’) is due to the essence of the matter; see (4.5).

5. Inversion of potentials of even order a = 2,4,6,... by hypersingular integrals.
The passage from the proposed inversion (5.3) to the HS construction is no longer
always possible. According to Theorem 8§, for & = 2,4,6,... we have that: A) an
HSI of neutral or even type arises only if it is a differential operator; and B) an HSI
of odd type can be used only for odd Q(x’) and, consequently, for odd 6(x").

A) Inversion by hypersingular integrals of neutral or even type. In this case the
symbol 9j(x) of an HSI is, by Corollary 3 to Theorem 8, a homogeneous
polynomial of order a. Consequently, by (5.19), it is necessary that %:(x) = 1/P(x),
where P (x) is a homogeneous polynomial of order a. Hence,

2~ (1 . (521)

Ix I’l a
and we arrive at the following assertion:
Inversion of a potential K§ of even order a = 2,4,6,... by an HSI D§ of neutral or
even type is possible if and only if the characteristic 6(x’) of the potential is the
restriction to the unit sphere of the fundamental solution (1/P,) of some elliptic

homogeneous differential operator P,( D) of order a.
In the case & = 2 it is possible to get the following more interesting statement.

THEOREM 16. Potentials of the form

ngq.'} = 0((X - t)/’fz_' tl) (P(t) dr :f(X), n= 3, (522)
R" |x —t]
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with real characteristic §(o) have an HSI of neutral or even type as an inverse operator
if and only if

8(a) = =[Py(0)]* """, (5.23)

where P)(x) = A(x, x) is a positive-definite quadratic form of n variables. Moreover,

o(x)= =10 =2/ qap 5 p);

4pn/2
T((n—2)/2
= = (g’;(n/;)/ ),/det p,D2f, f€S, (5.24)

where Q(t’) = (n + 2)152( t’y —tr 152, and 1;2( x) Is the quadratic form conjugate to
Py(x).

PROOF. By the preceding assertion (see (5.21)), the symbol H;(x) is the quantity
1/P,(x) inverse to a quadratic form of n variables. Since P,(x) is even, the symbol
Hg(x) is then even. The symbol is real because the function (o) is real. Conse-
quently, the quadratic form P,(x) is real and of a definite sign. It is known ([4],
Chapter 1V, §2.2) that

1 _ ' ( L)‘ (5.25)
[Py(x)]"727% 272" 2[((n - 2)/2)|det P, \ P,

for a positive-definite form P,(x). Here P, is the quadratic form conjugate to P, (i.e.,
such that the matrices corresponding to them are mutual inverses).

We remark that if a quadratic form is positive definite, then the form conjugate to
it is also positive definite. Indeed, by Sylvester’s criterion, it is necessary to derive
the positivity of the principal minors of the matrix for the form P, from the
positivity of those of the matrix for P,. This follows from the relation

.4 -/
ll 12 LY l _,,

xS 3~

A

’

il [’2 Y
1 2
12

- pP

>0

A

n
n

between the principal minors of mutually inverse matrices ([2], Chapter I, §4, (33)).

But then it follows from (5.21) and (5.25) that the general form of the characteris-
tics 6(x’) for which 1,/XK(x) is a quadratic form of definite sign is actually given by
(5.23). The inversion formula (5.24) also follows from (5.25), since (5.25) means that
the symbol Dg(x) of the inverting operator is the polynomial

[ = 2/2) G p b ().

4qn/?

The passage to the HSI in (5.24) is realized by (4.26) and (4.28).

B) Inversion by hypersingular integrals of odd type. Unlike in case A), where the
HS construction for @ = 2,4, 6,... works only for special characteristics §(o), an HS
construction of odd type turns out to be admissible for any odd 6(o).
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THEOREM 17. Suppose that the characteristic 8(x’) of a potential Kgo of even order
a = 2,4,6,... satisfies conditions (3.1) and (5.2) and is odd. Then the HSI of odd type
with the characteristic (x’) associated with §(x’) inverts the potential K Jo:

DiKjp =9, @€ ®(R").

The proof is the same as that of Theorem 15 (see case 3 in the proof of Theorem
15; Remark 16 should also be taken into account).

6. Inversion of potentials of odd order « = 1, 3, 5,... by hypersingular integrals.

A) Inversion by hypersingular integrals of neutral or even type. The following result
1s symmetric to Theorem 17.

THEOREM 17°. Suppose that §(x’) satisfies conditions (3.1) and (5.2) and is even.
Then for a = 1,3,5,... the HSI of neutral type (with the necessary choice | = a) or
even type with the characteristic §2(x’) associated with (x') inverts the potential K gp.

B) Inversion by hypersingular integrals of odd type. By Corollary 3 to Theorem 8,
the symbol J(x) of the HSI is a homogeneous polynomial of order a. Since the
symbol K;(x) of the potential takes finite values for x ¥ 0, it follows from (5.19)
that this polynomial must be elliptic. However, here a = 1,3,5,..., and obviously
there are no elliptic polynomials of odd order with real coefficients at all, and none
with complex coefficients for n = 3 (see [35], Proposition 20.1). There remains the
single case n = 2, and, consequently, « = 1. A polynomial P,(x) = ¢,x;, + ¢,x, = ¢
x, ¢ =(c,¢,) € C?, with complex coefficients ¢, = a, + ib;, ¢, = a, + ib, is
elliptic if and only if

_ 19 b,
detc = a, b, #* 0. (5.26)
We have the formula
(1/(c-x))= 2mi s?(jet <) , detc##0, (5.27)

where d = (d,,d,), d, = b, — b,i, and d, = —a, + ia,. Indeed, (1.52) (for n =2
and a = 1) gives us

1 _ Xl - ix2 _ _xl - ixZ _ 277'1
F(-"l +ix2) —F( | x 2 ) = 2m | x[? Tox tixy” (5:28)

which yields (5.27) in the case P,(x) = x, + ix,. The general formula (5.27) follows
from (5.28) on the basis of the well-known ([43], p. 108) formula

(f(4-))(x) =Idet A]”'f(4*"'x),
where A4 is a linear transformation in R". Formula (5.27) leads to the following
theorem.

THEOREM 16. Two-dimensional (n = 2) potentials (2.1) of integer order a = 1 admit
inversion in the form of an HSI of odd type if and only if their characteristics have the
form 8(x’) = 1/(c - x"), where ¢ = (c,, ¢,) € C*? and (5.26) holds, i.e., if and only if

— o(t, 1) dt, dt, _
Kow _'{[ c(x) — tll) +cy(x, — 13) = flxiox2)-
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Moreover,

‘P(xl’ x,) =

sgn(d:t c) [
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-

(b, = b) +(

a, + ia,) fz

|

or, what is the same, ¢ = D, f, where Dy, f is the HSI of odd type with characteristic

Q(x') = 2 sgn;det c) l

X X
by = byi) =+ (—ay +ia)) % |.
(b = B+ (e i) 2

For convenience the results obtained on inversion of potentials are summarized in
a table. In it we assume that the characteristic §(x’) of the potential satisfies the
smoothness condition (5.2) and the ellipticity condition (3.1).

Table of invertibility of potentials by hypersingular integrals

Type of Condition on the characteristic .
hypersingular a 0(t") of the potential under which Characteristic of the
ypersing ) . P X . inverting HS integral
integral inversion by an HSI is possible
neutral a#1,2,3 no reservations Q(x) = —Mw(x’)
e sin(aw/2)
4. ..
Y i 1 ial. [
a=2,4,6,...(0(¢) is the restriction to the sphere Q(); )u;s 2 1{30 yn?_mzl n
of the fundamental solution of a| Parhcwanlora =z )
homogeneous elliptic differential] (x") = =[(n + 2)P(x")
operator of order a. In particular, N L
fora=2 tr Pz] 8"
A — - N12—m)/2 -
6(1') = =[P(1)] xr( 22 ) /aecr,
— I I — B ( ) ’
a=13,5... f(t") even Qx) = sm(a'rr/2) w(x’)
even a 7 2,4,6,... 8(t") even Q(x) = ———B—"(—)—w(x’)
T sin(am/2)
a=2,4,6,...0(t") is the restriction to tl?e sphere Q(x") is a polynomial. In
of the fundamental solution of a . _
. . . ,|particular, fora = 2
homogeneous elliptic differential r 5
operator of order a. In particular,9 (x') = (n—2)/2) [det P,
fora =2 82
8(r') = =[ Py(1)]* " X[(n+2)Py(x") = tr Py]
odd a#1,3,5... 0(t'y odd Qx) = —Mw(x’)
cos(am/2)
a=1,3,5... |possible only for n = 2, , sgn(Im ¢,¢)
a=1, and 6(t) = 9()6)=———W2
(Clxl + C2X2)—|, Im C|(.-'2 # 0
[{ ¢y — icy

Xy

—(c, +ic —_—

( | 2)} |x|
+i{c, + ic,

+(c,—ic2)}%]
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7. Inversion of potentials of integer order in the general case. In subsections 4-6
we established (see the table) that inversion of the potentials K§ by HSI’s is always
possible for a not an integer, while for « = 1,2,3,... it is possible without
restriction in the case of a = 2,4, 6,... and odd 8(x’) and in thecaseof a = 1, 3,5,...
and even 6(x’). In the remaining cases the characteristic 8( x’) is restricted to be of a
special form (see Theorems 16 and 16’).

Suppose now that (o) is an arbitrary characteristic satisfying conditions (5.2) and
(3.1). On “nice” functions f € S(R™) the inverse operator can always be constructed
on the basis of (5.3) in the form

(k&) 'f=P(D)f+ fp. l";(l’i) «f, a=123,..., (5.29)

however, it is not always possible to pass to an HSI. We single out the case (which
generalizes somewhat the case of evenness or oddness) where the inverse operator

can be formed from HSI’s of different types.
Let (&, f)Y(x) and (A”f)"(x) be the noncentered and centered differences,

respectively.
DEFINITION 8. An integral of the form

f”9|(f/|’|)(A',f)'(x) + Qz(t/ltl)(A':'f)"(x)‘dt (5.30)

| t|n+a

will be called an HSI of mixed type.

DEFINITION 9. A function defined on the unit sphere is said to be almost even
(odd) of order a if it is the sum of an even (odd) function and the restriction
P,_(x/|x]) to the sphere of some polynomial P, _,(x) of degree a — 1.

1. Let a = 2,4,6,.... The second term in (5.29) leads to an HSI (of odd type) on
the basis of Theorem 9 (see (4.19)) if the function w(x’) is odd. By (5.4), this is
possible if a, =0fork=a+ 2, a+4,. .. For the function 1/%Kg(x) this means
almost oddness of order a.

2. Leta = 1,3,5,.... The same Theorem 9 enables us to represent the second term
in the form of an HSI of neutral or even type. Here (4.18) and Remark 16 force the
function w(x’) to be even. We conclude from (5.4) that evenness of w(x’) is almost
evenness of order « of the function 1/H(x).

As for the first (differential) term in (5.29), Theorem 13 allows us to write it also
as an HSI. It will be of neutral or even type for a = 2,4,6,... and of odd type for
a=1,3,5,...: just the opposite of the second term in (5.29). We arrive at the
following result.

THEOREM 18. If 1 /K (x) is almost odd (even) of order a for even (odd) a, then the
operator inverse to the potential Ko can be constructed in the form of an HSI of mixed
type (5.30).

In the general case, when neither almost evenness nor almost oddness necessarily
holds, we restrict ourselves to the assertion that the inverse operator can be obtained
in the form

(Kg) ' =P(D)+ (M + N)D°,

.
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where P,(D) is the differential operator (5.5), D® is the Riesz differentiation
operator (D* = D§ |q=1),

0, a=2,4,6,...,
A=< T(n/2) do _
vz fz_ Tota): O L3S
and
t)/|[x —t
Nq)'—‘p.v./" ((x |x)ll ) o(1) dt

is the multi-dimensional Calderén-Zygmund operator with characteristic

(x") = n/ZE( kI‘((;(-Z/kz))/Z) FYk#(x'), k+0, k*a,a—2,...,

which has zero mean value. Here the g, , are the coefficients in (5.4) and (5.6).
§6. Inversion of the potentials K jp by hypersingular integrals
(extension; convergence in L, )

Let us now invert the potential f = Ko, by finding solutions ¢(x) € L,(R"),
1 < p <n/a. The HS construction will no longer converge in the usual sense; it will
be the limit in the L,-norm of the corresponding truncated HSI’s. Two central points
precede this result: the annihilation of the kemel of a Riesz potential by the
associated HSI (subsection 1), and the integral representation of the truncated HSI's

(subsection 3).
Let kg(x) = 6(x")/| x|""* be the kernel of the potential. The conditions (5.2) and

(3.1) for 8(x’) are assumed to hold. In this section the characteristic #( x’) is assumed
to be arbitrary when a is not an integer, even for a = 2,4,6,..., and odd for
a=13,5,... [so that P,(D) = 0 in (5.29) (see Remark 16), and it is always possible
to invert by an HSI (see Theorems 15, 17, and 17°)].

Let

. 1 (M S)(x) of ¢
Dn.zf-'d".l(a)/l;” Yoz 9(,,|)dt (6.1)

denote a truncated HSI.
1. The annihilation of the kernel of a potential by the associated hypersingular

integral.
THEOREM 19. The HSI with the characteristic (x") associated with 8( x") annihilates
the kernel of the potential:

(DSkS')(x)* (a)f" Al I‘,;‘;+£x)sz(z') dr=0 (6.2)

for all x € R"\{0}. The interpretation of (6.2) in the framework of generalized
functions (over S) is
Dgkg = 0, (6.3)

where 8 = 8(x) is the delta function concentrated at the origin.
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Proor. First of all we mention that the integral in (6.2) converges for x # 0.
Formally, (6.3) follows from the relation (5.19) between the symbol D3(x) and the
symbol K;(x) in the case of the associated characteristics £(z") and 6(z"). However,
a direct justification of this approach encounters essential difficulties connected with
the bad behavior of kg(x) as x — 0 (“bad” for the HSI D§). And, of course, it is not
possible here to use the Gel’fand-Shilov theorem on passing from the convolution
Dgkg to the product of the symbols.

Plan of the proof: 1) We introduce the functional

(G.g)=lim [ 9(x) (D§.k3)(x) dx (6.4)
and prove that it has the representation
(G 9)= [ ki(x)(Dg5)(x) dx, (6.5)

where *(x) = £(—x), then show that this is a continuous functional in S(R").
2) Using the representation (6.5), we show that G = 1, from which it will follow

that (G, )= (8, ).
3) On the basis of the definition (6.4) we derive the requlred equality (6.2) from

2).
1. Suppose for definiteness that the HSI D§ is of neutral type. We have

1 kg(x) o/
d ,(a) 6*0{'[ ( )dxf>e| |"+a Q(t)dt

! vevya [ Ty ka(t) —
+y§I(_1) Cry L"¢(x)dfo t|>,,,_,|x—et|"+“9(| —tl)dt}

x—

=1 hm{ Kg(x) ax W’Tzr%:")dz

(a) e—0 H>e
+ 2 (1) C,f ko(t)dth)e VT,.)g( 2, }

= tim [ ki(x)(DF-,.)(x) d.

To get (6.5) it remains to justify passage to the limit under the integral sign. This
can be done with the aid of the Lebesgue dominated convergence theorem with the

estimate
|(Dg. @)(x)[<c(1+]x]) " " (6.6)

taken into account (cf. Theorem 11), where ¢ does not depend on .
Let us show that the functional G is continuous (i.e., that G € S§’). Suppose that
@,,(x) = 0asm — oo in the topology of S. From (6.5) we have

[(Granis [ _ (N (Dgp) ()l de+ [ 1k (x)(Dgpn)(x) | .
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The second term can be estimated on the basis of (6.6). In the first term Dg.g,, can
be estimated directly after application of the formula

LoV (=1)
@x =3 3 ECED ophyx— ),

!
kl=m »=0 k!
where 0 <£{<1 and /> m (written out for the noncentered difference). The
corresponding computations are not complicated and are omitted.

2. Since (G, 9) = (27)"(G, §), we have
(G.9)=[ Ki(x)(D35)(x)ax.
by virtue of (6.5). Since
Dg.¢ = (27)"F'[Dg.(x)e(—x)] = 2m)"F'[DG(—x)eo(—x)]

for p € S(R"), we have
<G, q>>= (27)"/Rnk§(x)F_'[6D§(—x)cp(-—x)] dgc.

Here we must carry over the Fourier transformation to the kernel k§(x), i.e.. prove
the equality

[ 250 () = [ 53(x)0(x)
for functions y(x) of the form y(x) = @S(x);(_x_), o(x) € S(R"). We established
such an equality in Theorem 5 (with the footnote to that theorem taken into
account). The condition |J(x)|<c|x|™®, b>n— a, in that footnote holds by
Theorem 11.

3. In (6.4) we choose a function ¢(x) € C§° with support in the shell n <|x|< N.
By carrying out direct estimates, it is not hard to.get (with the smoothness of the
kernel kg(x") on Z,_, taken into account) that |(Dg kg)(x)|< ¢ for n <|x|<N,
where ¢ depends on 7 and N but not on &. Then it is possible to take the limit under
the integral sign in (6.4), and, since (G, ¢ ) = ¢(0), we have

[ e(x)(Dgki)(x) dx =0.

n<[x<N

From this we have (6.2), since ¢(x) is arbitrary.
2. Fundamental solutions of hypersingular operators. In essence, the preceding
theorem gives the fundamental solution of a hypersingular operator.

REPHRASED THEOREM 19. The kernel ki(x) of the potential Kjop is the fundamental
solution of the hypersingular equation D3 f = g, whose characteristic Q(t’) is associated
with 8(x’).

The converse problem is interesting. Namely, suppose that we are given an HSI

with nonsingular symbol. How can be find from its characteristic £2(¢’) the character-
istic 8(¢’) of some potential (2.1) for which Q(¢’) is the associated characteristic?
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That is, for the HS operator D is it possible to find the fundamental solution from
its given characteristic? Knowing £(¢°), is it possible to compute 8(¢") effectively?
The next theorem answers these questions (for simplicity we consider C*-character-
istics and use HSI’s of neutral type, so that for a = 1,3, 5,... the characteristic (¢")
is taken to be even).

THEOREM 19'. Let Q(0) € C*(Z,_,). If the symbol of the HSI Dg f is not singular
on 2, _,, then there exists a characteristic (o) € C*(Z, ) such that

Dﬂ(lo(lx))—t}( ), O<a<n,

where 8(x') is computed for a # 1,3, 5,... by the formula

I'(n— a) do . 6.7
6(x) = (27)" f'p.fz,._, Da(e)(—ix" - a)" " (6.7)

A proof can be obtained by the expansion of 1/9g(¢) in a series of spherical
harmonics and use of the formula

3 T'((k + a)/2)
T'((k+n—a)/2) Prn

r(a),f.p.f _olo)de k123,
20gn/2 S, (—ix’ - 0)

YA;&(X )

k.p

where @(0) = 2, , 9,,Y;,(0). This formula is true also for integers a if the summa-
tion on the left-hand side is over the k& having the same parity as a.

We remark that, because of the inclusion of the differential operators in the scale
of HS operators (obtained in Theorem 13), the formula (6.7) (as well as its analogue
fora = 1,3,5,... and the similar formulas for HSI’s of even or odd types) contain
the fundamental solutions of elliptic homogeneous differential operators with con-
stant coefficients.

3. Integral representation of truncated hypersingular integrals.

THEOREM 20. Let f(x) = Kgo be a potential (2.1) with density ¢(t) € L,(R"),
| <p<n/a. Then

(D5.1)(x) = [ Hoo()o(x — &) dt, (6.8)
where the kernel X, 4(£) has the form
! (44k5)(4/1£))
= — Q d 6.9
Xool® = g i i nire /e (69
=——-—1——— la di 6.10
e J RN ) e (6.10)

where

! Y
e = 3 Coqu-er(fig=a) e
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or

{
kg*(§,1)= 2 (-1)'¢qt
v=0

" ( |t]& ~ (1/2 = »)t’ (6.12)

'—(%—”)gla 111E = (1/2 = »)t'|

corresponds to the cases of the noncentered or centered difference in the HSI D,

PROOF. We have

(D3 f)(x) = mfmqv(s) d%» (A’kﬁ)lff,_ $) Q(r)dr.  (6.13)

Suppose for definiteness that the HSI is of neutral type. Proceeding with (6.13),
we have

(D4.)(x) = gy [ o(x = )t

Q(’) Y~y — —n(g_Pt)
X |)1>c|t,"+a 2( 1) Ce|£ Vtr’ 0 |£"th dt

From this, after the substitutions ¢t =|£|y and £ = &, we get

) o o(x — en)
(05.)() = 7= [
9 a0 2( 1)”C,”|n'—vy|"_"0(l:_—ly_)dy
|.1>|/mly|"+° =

(&k5)(m)

which coincides with (6.8) and (6.9). The representation (6.10) is obtained by the
- inversion y = t/]¢ [ with use of the equality |¢' || —wt’|=|t — »¢']|.

ReMARK 19. We emphasize that the representation (6.8) was obtained for arbitrary
summable characteristics 6(t") and Q(¢’) on Z,_, that are not connected with each
other in any way. We shall see below in subsection 5 that if Q(¢’) is the characteristic
associated with ("), then Hg 4(£) is an averaging kernel.

4. The Fourier transform of the kemel of the representation.

LEMMA 11. The Fourier transform of the kernel K g o(£) can be computed by the

formula
X I (") (1— eix'-l)l . .
G, 4(x) = =2 2T/ DXQ (1) d, (6.14)
a0(x) d, (a) -[4>m Ha
where A = 0 in the case of an HSI of neutral type, and X = 1 in the case of even or odd
type. Also,
Kao(x) = Hs(x) [ R(0)A(x - o) do, (6.15)
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where

1 ! - \a -
A(y) = S (—D CH—iky)°T(—a, —iky), ~1<ys<1, (6.16)
dn,l(a) k=0
I'(—a, z) is the incomplete gamma function, and k = k for A=0, k =1/2 — k for
A=1(%
PROOF. Similarly to (4.11), we have, for the truncated HSI in terms of Fourier
transforms, that

(D§./)(x) =95 (x)f(x),
where
_ eix-t)’

I (1
DS =
Q.B(X) d,,_,(a) '/|:1>e |tln+a
Then, by (2.89),

ﬂ(tr)e—-i()\/Z)x'- ' dt.

(D§.. /) (x) = Hg(x)Dg (%) (x). (6.17)
On the other hand, the representation (6.8) yields '
(Dg.f)(x) = Hg o(x)$(x)- (6.18)

Comparing (6.17) and (6.18), we get that
9Aﬁu.a(") = K (x)Dg (x) =1

which coincides with (6.14). The representation (6.15) follows from (6.14) by passage
to polar coordinates with account taken of the formula 3.381.3 in [6].
5. The kernel of the representation as an averaging kernel in the case of associated

characteristics.
THEOREM 21. If 0(x’) and Q(x’) are associated characteristics, then Kgq 4(x) is an
averaging kernel:

Kqo(x) € L(R") and j;"%gya(x)dx—_-l. (6.19)

PrOOF. By the smoothness of the functions §(¢’) and 6(¢’), we conclude from
(6.10) that Hg 4(x) is at least continuous in R"\{0}. The estimation for |{|- 0 is

simple and follows directly from (6.10):

| Ko o) IS c/1EP72,  |€]=0. (6.20)
For |¢|- 0 we have
|Hg o(€) IS c/IEFT7%,  |€]- oo, (6.21)

where /* =/ for /> a and /* =1/+ 1 for 2[a/2] <[/ < a. (Recall that the case
2[a/2]) <l < a is allowed for noncentered differences and even characteristics.) The
estimate (6.21) is more difficult, and to obtain it we must now use the connection

() In the case of a centered difference of even order the term with index k = {/2 in the sum (6.16), which
has a removable singularity, should be replaced by (—1)!/2C}/%|x|™“.
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between the characteristics 6(¢’) and 2(¢’): it is based on the annihilation property
(6.2). Let us prove (6.21). By (6.2),

! (4k5)(¢)
Ko o(¢) = ——r—— 2 Q(¢) dr 6.22
Q.8 d,,',(a)|ff"'/|;1<l/;ﬂ ltln+a ( ) ( )

Q(t)ky(¢, 1) dr. (6.23)

1
o dn,/(a) 1€ '/|:1>$€i

We introduce a function

_ vacnal 1E1E — st/
W(s)=lt+s¢r 0(__—||t|§’—st’| , 0=ss5<1, (6.24)

such that k5%(¢’, t) is a finite difference of the function W(s) of a single variable
with step 4 = 1 at the point s = 0:

kge (¢, 1) = (8'W)(0)
(for fixed values of ¢’ and ¢). By the familiar identity

(4 )(s) =f0"- . fo"W‘“(s b5, e s) ds, oo ds,

we get that
kpe(¢, 1) = wi(q), O0<n<l. (6.25)

Direct differentiation of W(s) by the Leibniz rule with the homogeneity of 8(o)
taken into account gives

n+l—a

|kg®(&, ) 1< c/ (1 +11)) v ] oo, (6.26)

where ¢ does not depend on £’. Then (6.21) for / > a follows from (6.23) and the
boundedness of Q(¢’). But if 2[a/2] </ < a, then these arguments do not suffice.
We make use of formulas for passing from a difference of order / to a difference
of order / + 1 (see [25], (1.4) and (1.5)). In [25] the kernel K, 4(£) was estimated at
infinity for the case & = @ = 1. The estimate in [25] could be made because it was
observed that the integration in (6.22) and (6.23) was actually carried out not over a
ball but over a shell. This device does not work here, and we shall transform the
kernel X, 4(¢) with the aid of the indicated passage. Namely, we apply the identity

(I—1/2
(A f)x)=(Bf)x) = T (&) x—kt) - %(A’i"f)(x + 1_;_1_[)

k=1
(6.27)

which we obtained in [25], §1. Here / = 1,3,5,..., and the function (P/f }(x) is odd
with respect to ¢. Using the evenness of ©(¢’), which follows (see Remark 17) from
the evenness of 8(t’), which, in turn, is mandatory (see Remark 15) for an HSI of

neutral type, we get
(I+1)/2

Ko o(é) = ! 2 i‘—f (AI’Hkg)(f/—“t)sz(t')dz, (6.28)
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where ¢, = 1 for p = 1,2,...,(/ — 1)/2, and ¢4y, = 3. Let I,(§) be the generic
term of the sum in (6.28). After the substitution t = 7/| 7> we obtain

= 1 ‘T’ .I+I.n ’ T T
L(£) —Igrjwm ) kirle(g, 1) dr, (6.29)
where
. ST | &=+ ) (rNR) )
kirhe(g r) = —1)Cl lmr— (n+ e .
[} (E ) ygo( ) ! ll ("L V)g 'a (Ig"—(#'i"ll)(‘f/l‘rlz)l

Then the estimates are performed similarly to (6.24)-(6.26) by introduction of the
function

£~ (u+s)(rA7P) ) b<s<l.

W(s)=|t— (u+ S)f'l"_"o(|g' — (e +s)(r/\T])]

here instead of (6.26) we get that

n+i+1l—a

k58, 1)< ¢/ (1 + 1) ,

and then (6.21) for 2[a/2] < ! < a follows from (6.28) and (6.29).

The estimates (6.20) and (6.21) imply that ¥, 4(£) € L \(R"). It remains to show
that the kernel is normalized. For this, take ¢(x) € ®(R") in (6.8) and let ¢ go to
zero in (6.8). We get

(D3/)(x) = 9(x) | Hqo(£) d.

It remains to use the fact that (Dg f }(x) = @(x) for p(x) € P(R") (see Theorems
15, 17, and 17’). Theorem 21 is proved.

6. Convergence in L, of the truncated hypersingular integrals and inversion of
potentials in the framework of L ,-spaces. On the basis of Theorem 20 we now arrive
at the fact that the truncated HSI Dg , f converges (in the L,-norm) as ¢ —» 0 on
functions representable by potentials with p-summable densities, and it generates an
operator inverse to the potential KZp in the framework of the L ,-spaces. Namely,

THEOREM 22. Suppose that f(x) = Kjp, | < p < n/a, and that conditions (3.1) and
(5.2) hold for the characteristic 8(x’). Then

E%IIDS,ef— q’”p = 0’ (6'30)

where §(x’) is the characteristic associated with 8(x’).

PROOF. By (6.8) and (6.19),
(Dg../)(x) = 9(x) = [ Hoo(6)[o(x — ef) — @(x)] d¢

and (6.30) is obtained from this by using the Minkowski inequality with a subse-
quent passage to the limit under the integral sign justified by the Lebesgue
dominated convergence theorem. The theorem is proved.
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Thus, the hypersingular integral D§ f with the associated characteristic inverts the
potential K in the framework of the L,-spaces,

DiKjp =@, 9 EL,(R"), 1<p<n/a,

if convergence of the hypersingular integral is understood in the sense of conver-
gence in L,(R"):

def _.
D3f = lim Dg . f.
-0 ’
(L,
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