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ABSTRACT. An apparatus is developed for solving multidimensional integral equa- 
tions with the kernel of a Riesz potential in R". The inverting operator is constructed 
with the help of so-called hypersingular integrals (HSI's). A connection between 
generalized Riesz potentials and the correspondmg HSI's is sought in terms of the 
Fourier transforms. A constructive description of the symbol of a potential is given, 
and for a number of important cases an efficient method for constructing the HSI's 
is also given. A special apparatus is constructed for regularization of divergent 
integrals on the sphere. The symbol of an HSI is also calculated, and it is determined 
in the form of a convolution with a generalized function. 

Bibliography: 49 titles. 

Introduction 
Generalized Riesz potentials are defined to be the following spatial potentials: 

with homogeneous "characteristic" B(x/l x l). The investigations in the present 
article deal with the inversion of the potentials K&. An apparatus is thereby 1. 

developed for solving multidimensional integral equations K& = f of the first kind 
'\ 

whose kernels have "power" singularities. In the one-dimensional case a fairly 
complete theory (invertibility, normal solvability, index, cases of solvability in closed 
form) has already been worked out for equations of the form 

with a function M(x, t) discontinuous at t = X (see [20]-[23], 1161-[19], and [3], 954). 
The equations K& = f we shall consider here are a certain analogue of them: the 
numerator is allowed to have a discontinuity at t = X of homogeneous function type. 
The nature of the multidimensional equations studied here turns out to be signifi- 
cantly richer because of typically multidimensional problems: in particular, the 
one-dimensional case is poor in homogeneous functions, admitting only those of the 
form @(X) = c, + c, sgn X, X E R'; moreover, interest in multidimensional equa- 
tions is increasing because the potentials (1) are the inverses of partial differential 
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equations for integral a. On the other hand, it should be pointed out that there are 
more complete results about the Fredholm property in the one-dimensional case (for 
n = 1 the specific nature of the one-dimensional singular integral equations with 
which the equations (2) are closely connected is essential in the case where the 
function M(x, t) is discontinuous). 

The question of an efficient representation of the symbol of the potential ( l )  has 
turned out to be interesting and meaningful. This representation involves divergent 
f.p.-integrals* over the sphere with a singularity on an (n  - 2)-dimensional section 
of the sphere, introduced in 92. Theorems on existence and representation by 
convergent constructions (regularizations) are established for such f.p.-constructions. 
The convergent constructions are in terms of the means of traces on planar sections 
of the sphere of functions defined on the sphere. These means, introduced in 9 1.5, 
turn out to be a convenient tool in the study of a number of (typically multidimen- 
sional) problems. In particular, we give an application of them to multidimensional 
singular operators (9 1.6). A constructive representation of the symbols of the 
potentids (1) (see 92.3) involves overcoming considerable hfficulties caused, on the 
one hand, by the use of techniques of f.p.-integrals over the sphere, and, on the other 
hand, by the "bad" behavior of the potential kernel at infinity. 

We construct the operator inverse to the potential (1) in the form of a so-called 
hypersingular integral (HSI) 

(see H). 
Is it possible to explicitly construct a homogeneous function Q(a) such that the 

operator (3) will be inverse to K,*? In the case of a Riesz potential (i.e., B(a ) s const) 
this is possible (see [25]), and &?(U)  r cmst. In 995 and 6 we give a, generally 
speaking, positive answer to this question for an arbitrary sufficiently smooth 
function 8(a) in the case where the symbol of the potential ( l)  is nondegenerate on 
the unit sphere (elliptic case), and we present a sufficiently efficient construction of 
the function Q(a) for the inverting hypersingular integral (3). We call it the 
characteristic of the HSI associated with the characteristic 8(a) of the potential. The 
cases of integral values a = 1,2,3,. . . are to a certain extent exceptional here. They 
are given special consideration. 

Results relating directly to HSI's are given in 94. In particular, the symbols 
of HSI's are computed and a positive answer (for arbitrary a > 0) is given to 
the question of regarding them as convolutions with the generalized function 
Q(xr)/(xr+". Simultaneously with this we give a result of independent interest 
asserting that any homogeneous differential operator P,(D) of order a can be 
expressed as an HSI with some characteristic that can be explicitly constructed. In 
proving thls result we obtain, in passing, a criterion found in [30] for the harmonicity 
of polynomials. 

In considering the invertibility of the potentials (1) in the framework of L,-spaces 
with the help of HSI's the latter are interpreted as limits of truncated HSI's in the 

* Editor's note. f.p.-integral stands for finite part of the integral-see 92, Definition 5 
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L,-norm. An essential role in the question of convergence of these truncations is 
played by the assertion (established in 996.1 and 6.2 and, moreover, of independent 
interest) that the kernel ki(x) = B(x')/(x("+" of the potential (1) serves as a 
"fundamental" solution of the hypersingular operator whose characteristic is associ- 
ated with B(x'). By a result in 94 (on the representation of homogeneous differential 
operators by HSI's), the formulas obtained contain the fundamental solutions of 
homogeneous elliptic differential operators. 

Some of the results presented here were announced in [27]. 
NOTATION. R" is the n-dimensional Euclidean space; x = (X,,  . . . ,X,), I x l =  

( x ~ + . - . + x ~ ) ~ / * ,  x '=x/IxI ;  j=( l ,O,  . 0 ,  U . X = U ,  . X ,  + . . . +  u n . x n ;  
X,-. , is the unit sphere in R" with center at the origin, I L,-, (= 2nn/*/I'(n/2); Y,, 
are the spherical harmonics of order k; (a), = a(a + 1) - - (a + k - 1); [a] is the 
integer part of the number a, and (a) is its fractional part; Fq = @(X) = 
jR* e'.yfq(t) dl; j (x)  = (27r)-"hn e-'x.'/(t) dt; 11 f 11, = 1 1  f IIL,(Rm); S is the Schwartz 
class of test functions; and D = ( a / a ~ , ,  . . . , a/axn). 

$1. Auxiliary facts and assertions 

I. On choice of a rotation smooth with respect to a parameter. Let T = rot, t be a 
rotation in R" carrying t E R" into T E R" in such a way that 

The point x E Rn\{O) is called the parameter of the rotation rot, t. For a fixed 
value of x the choice of the rotation is not uniquely determined by the single 
condition (1.1) for n 3 3, and rot, t denotes one of the possible rotations satisfying 
(1.1). For two different points x the choice of the rotation can be realized arbitrarily, 
and for a fixed value of t the function rot,t is a multi-valued function of the 
parameter X. Is it possible to determine a rule for choosing the rotations rot, t for all 
x E Rn\{O) according to the condition (1.1) in such a way as to obtain a single- 
valued function rot, t that is infinitely smooth in x (away from the origin)? Such a 
global choice-a single rule for all x E Rn\{O)-is possible in the planar case 
n = 2. But even in the case n = 3 every rotation has a one-dimensional set of fixed 
points (the set of singularities with respect to the variable X), which rules out the 
desired global choice. We show that for n 3 3 it is possible to choose a rotation 
rot,t that is infinitely smooth in x everywhere except on some subspace of 
dimension n - 2, for example, the coordinate space X: + X: = 0, k # j, k, j = 
1,2,. . . ,n. Such a rule of choice will be determined. 

Let A, be the matrix of the rotation rot, t, which, by (1.1), has the form 

We need to determine an orthonormal set of vectors lying in the hyperplane 
orthogonal to the vector x in such a way that their components br are infinitely 
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differentiable functions of the parameter X everywhere except on an (n - 2)- 
dimensional subspace. Let 

j v =  0 ,..., 0 ,  1 , O  ,..., 0 , v =  1 ,2  ,..., n ,  i- v- l l 
so that j' = j. We get the first of the vectors bv by projecting one of the unit 
coordinate vectors jv onto the plane orthogonal to X. For this, choose a unit vector 
jkl  different from x/J X I (in the case when x/l X ( turns out to lie on a coordinate axis) 
and let 

' = ( / k l ) j ~ - ( x k l / & l ) / ,  Ib1I=1. 

Here r = ] X [ ,  rk, = {T, and an analogous notation will be used in what 
follows: 

-/m, raaY - 2 2 rap - - r 2  - X - X - X etc. 

It is not difficult to see that b' . X = 0 and (b' l =  1. The subsequent process of 
constructing an orthogonal system is realized in the form 

where v = l , .  . . , n - 1, and the indices k,, . . . , k, E { l , .  . . , n)\{k,) are chosen in 
an arbitrary order. The projections of the vectors bv on the coordinate axes have the 
form 

Note that the last of the vectors bv is chosen in the form 

(compare with the constructions of Mikhlin in 922 (Chapter IV) of [ l  l], where he 
discusses the smoothness of a rotation with respect to the angular coordinates of the 
parameter X, which is always possible to achieve globally). A direct check shows that 
IbvJ=  1 and bvbp = 0 forv # p .  

The coefficients of the rotation thus constructed are, in fact, infinitely differentia- 
ble with respect to X everywhere except on the subspace {X: X: + X:" = 0) of 

n- l 

dimension n - 2. 
We write 

and introduce the conical neighborhoods 
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of the subspaces Ha.8 .  The intersection of all the cones a ,  p = l , .  . . , n, is 
empty for sufficiently small c, 0 < c < 2'/* (indeed, if X: + x i  c' I X l' for all 
a # p,  then by summing we would get that 2 1 X l 2  < E' I x l' ). 

THEOREM 1. Let q (a )  E Cn'(Z,,-,). I t  is possible to cover the space R" by finitely 
many cones V,,. . . , V,, and to construct in R" a rotation rot,t that is infinitely 
differentiable with respect to X in each of the cones V;, i = 1,. . . , N ,  in such a way that 
in the interior of each cone 

I ~:q(rot,  U )  l<  c l  X l-k, X E y.. i = l , .  . . , N .  (1.3) 

where c does not depend on a E 2,,-, or X E y ,  and ( k  m. 

PROOF. Since the intersection of all the cones v.8 is empty for 0 < E < 2'/', the 
cones R n \ ~ . B  cover the whole space R". Denote these cones by V,, . . . , V, and 
consider an arbitrary one of them y = R" Choosing k,,-, = a ,  and k,, = P,, 
we construct a rotation rot, a according to the above formulas. Then, taking account 
of the fact that the coefficients of the rotation matrix are homogeneous and the fact 
that xi l  + xi, 2 e2 I X for X E V;, we easily get the estimate (l  .3), where c depends 
on E but not o n x  E V;. 

2. The mapping 7 = ( a  + h)/l a + h l on the sphere. Let h E R". Let us consider 
the mapping on the sphere defined by the equality 

a) The case 1 h I <  1. The sphere is mapped onto itself in a one-to-one fashion, and 
the preimage a is found by the formula a = 7p(7) - h, where p(7) =l a + h l =  h - 7 

+ J ( h . 7 ) 2 +  I - 1 h t .  
b) The case I h l = 1. The transformation (1.4) maps the sphere 2,- ,\{h) with its 

point h deleted onto the hemisphere h 7 > 0, and the preimage a is found by the 
formula a = 27(h - 7) - h. 

c) The case I h I > 1. The points 7 run through the subset of the sphere 

and the mapping (1.4) is not one-to-one: each oint 7 E 2" has two preimages 

a -  =7p t (7 )  - h , w h e r e p , ( ~ ) =  h . 7 2  /'. 
REMARK 1. In the case ( h (< 1 not only is the whole sphere carried on to itself, but 

even each hemisphere based on a plane passing through the vector h is carried onto 
itself. 

3. Hdder functions on the sphere. Holder functions on the sphere can be defined 
directly by writing the Holder condition at points of the sphere, or in terms of the 
"translation" (l.4), or locally by projection onto a tangent hypersubspace. 

DEFINITION 1. We say that 

i f l f (a) -  f ( r ) ( 4 A ( ~ - r f f 0 r a l l o , r E 2 , - , .  
DEFINITION 1'. We say that 



178 S. G. SAMKO 

DEFINITION 1". We say that 

if the projection f*(Z) of the function f (a )  on the tangent hypersubspace at any 
point a, E X,-, is a Holder function of order A in some neighborhood of a, in this 
hypersubspace. 

The three definitions, in fact, coincide, and we shall write 

= C.? (2,- ,). c A ( z n -  ,) = Cl ( 

The equivalence of 1 and 1" is simple. Indeed, suppose that f ( a )  E cA(Z,,-  ,) in 
the sense of Definition 1. Since 1 Pr a  - Pr 7 l / [  U - 7 1 = sin y 2 c > 0  in a neighbor- 
hood of the point U,, the inequality ( f (  a  ) - f (  7 )  19 A ( a  - 7 f implies that 

The converse argument is also uncomplicated. It remains to show that I and 1' are 
equivalent. It is easy to see geometrically that I a  - a,, 191 h I . Therefore, 

Conversely, let f ( a )  E c?(z,- ,). In checking Definition 1 we try for arbitrary a  and 
7 on the sphere to find a vector h in the form h = h' 1 a  - T 1 , h' E Z,,- ,, such that 
T = (Ih. It is then necessary to find h' from the equation 

i.e., from the equation (h' + a ) / J  h' + a l =  7 ,  where a = a / (  a  - 7 ( . Here, generally 
speaking, Jal> 1, and h' is on the sphere if and only if  (see subsection 2, Case c)) 
( a  T ) ~  a ~ a f  - 1.  This condition, i.e., ( U  7)' 2 20 . 7 - 1 ,  is certainly satisfied. 
Consequently, the desired h' exists and, therefore, I f ( a )  - f ( 7 )  I G A l h f = 
A I D -  r f .  ' 

DEFINITION 2. We say that 

if f ( x / l x l )  E C [ ~ ] ( R " \ ( O } )  and (in case A is not an integer) the derivatives 
g ( x )  = (Dkf  ) ( X )  of order I k l =  [A] are Holder functions of order A - [ A ]  on the 
sphere: 

I g ( u ) - g ( ~ ) I 9 A l a - ~ f - [ ~ ~ ,  u , T € ~ , , - , .  ( I e6) 

Let C'(&,_ ,) = C(Z,-, ). The analogous class on the interval [ a ,  b]' is denoted by 
c A [ a ,  b]. 

DEFINITION 3. We say that 

if the following conditions hold: 
1) For A not an integer f ( a )  satisfies the conditions of Definition 2 with (1.6) 

replaced by 
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2) For A an integer f ( x / J  x l )  E C*-'(Rn\(0)), and the derivatives g(x )  = 
( ~ ~ f  ) ( X )  of order ( k l= h - 1 satisfy on the sphere a Lipschitz condition of the 
form 

2 
I s ( u )  - ~ ( ~ ) I < A I U  - 71ln [ U  - 71' U ,  7 E E,-'.  ( 1  -8) 

REMARK 2. It can be shown similarly to the preceding that in Definition 3 the 
Halder conditions (1.7) and (1.8) can be written in terms of the translation (1.4). 

4. Some formulas from the theory of spherical harmonics. Let Y,(x') = Ym,(x'), 
m = 0,1,2,. . . ,C( = l,. . . ,d(m), be an orthonormal basis of spherical harmonics of 
order m (see [33] or [34]), where d ( m )  is the dimension of the space of spherical 
harmonics of order m: 

( d ( m )  = 2 for n = 2). We shall use repeatedly the Funk-Hecke formula ([M], p. 20, 
or [l] ,  911.4) 

for any function f ( t )  E L ,(- l ,  1 )  (in the planar case n = 2 it is necessary that 
/l '(1 - t 2 ) - ' l 2  I f ( t )  l dt < m), where the constant h is computed by the formula 

with 
n - 2 ) / 2  

(l/C:+,--3)c,!, ( t ) , the Gegenbauer polynomial, for n 2 3, 

cos(m arccos t ), the Tchebycheff polynomial, for n = 2. 

We remark that for all n 2 2 

by Rodrigues* formula. Therefore, for differentiable functions f ( t )  it  is possible to 
write the constant h in the form 

n n / 2  
h = 2 m+(n-3)/2 ( m )  

/ l  ( 1  - r f ( t )  dr. (1.14) 
2m-'T(m + ( n  - 1)/2) - I  

The familiar formula from mathematical analysis 

z n ( n -  ' ) / 2  1 
! ( X ' - u ) d o =  f ( t ) ( l  - t2)(n-3) /2  dt, n = 2 , 3 ,  . . .  

- m - 1  ( - l ) )  - I  
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is a particular case of the Funk-Hecke formula (1.10). We mention other particular 
cases that will be important for us: 

*n/2- 1 
- - - 

2a 
r ( l  + a )  sin a* r((m - a)/2) imYm(x'), (1.16) 

T((m + n + a)/2) 

where Re a > -1, and 

(-Q>" =l pe-i(a*/2) W Y , a E C'. (1.17) 

From this, in particular, we get 

k = 0 ,  1 , . . . , m -  1 and k = m +  l , m + 3 , m + 5  ,... 

Moreover, 

cY,(x') if m is even and m # a + 2, a + 4,. . . , 
= (0 

(1.19) 
if misoddorm = a + 2, a + 4, ...; 

cY,(x') if misodd and m # a + 2, a + 4,. . . , 
= (0 

( 1 -20) 
ifmisevenorm = a + 2 , a  + 4, ..., 

where 

C = 21-a n / 2 r  (1 + a ) ~ - l ( ~  + + a)r-l( a - m  
2 

+ l ) .  

LEMMA l. Suppose that f(o) = Lak, Yk,(o) is an expansion of U function on Z,, - , in 
spherical harmonics. If f(a ) E c2"(Zn- , )for m > (n - 1)/2, then 

for r < 2m - n + 1. Conversely, if (1.21) holh for r 2 (n - 2)/2, then f(a) E 

Cm(Ln-l) for m G r - (n - 2)/2. 

Assertions like Lemma 1 are known for the Sobolev classes W,(")(Z,_ ,); (see, for 
example, [l  l], Chapter VI, 931), for a certain type of fractional class wiW(Z,-,) 
([42], p. 6), and for Cm(Zn-,) ([41], p. 232). Lemma 1, which is formulated for the 
classes Cm(Z,- ,), can be proved by standard means ([41], p. 232). 

5. Mean traces (on planar sections) of functions on the sphere. For a function 8(a) 
defined on the sphere X,-, we introduce certain means M,(x', y)  over (n - 2)- 
dimensional sections. In terms of these means we perform, in 92, a regularization of 
divergent f.p.-integrals over the sphere with a singularity on a planar section of the 
sphere. 
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Let U X' = y, - 1 c y C 1, X' = X/( X 1 , be the hyperplane cutting the sphere 
X,-, at the height ly l from its center along an (n - 2)-dimensional sphere orthogo- 
nally to the vector X. This (n - 2)-dimensional sphere with center at the point yx' 
and radius /- will be denoted by 

We introduce the mean of a function B(") defined on X,-, over the sphere (1.22). 
In the planar case n = 2 this is the arithmetic mean over two points: 

where 

are the points of intersection of 2, with the line passing through the point yx' and 
perpendicular to the vector X'. In the spatial case n a 3 the means Me(xr, y )  are 
given by the integral 

DEFINITION 4. The mean Me(xr, y )  is called the X'-mean (or the mean in the 
direction of the vector X') of the function B(") at the heighty; the quantity 

is called the equatorial X'-mean of the function 8(a). 
The following representation of the means Me(xr, y) in terms of a volume integral 

is valid ( n  2 3): 

where 

ex(") = B(rot, U ) ,  

and z , are the following points of P,-, : 

To prove (1.27), perform a change of the variable 7 E Z,"l2(0, l), induced by the 
rotation rot, U on 2,-, in (1.25), and then project the integral over the hemispheres 
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an > 0 and an 0 onto the (n - 2)-dimensional ball lying in their base: 

where B = (a2, . . . , on-, ), a = (0, 6, an), + I B l2 = 1 ,  a = (0, U,, . . . , a,,-, , a,, ). Rep- 
resentation (1.27) is obtained from this after projection on the base. 

An essential role in our subsequent constructions is played by the values 

LEMMA 2. If O(U) E c"(Z,- ,), h  > 0, then 

akMe(xl, 0) 
EC ' -~(Z,_ , ) ,  k = 0 , 1 ,  ..., [ X ] .  

ay 

PROOF. In the case,n = 2 the statement of the lemma follows in an obvious way 
"r from (1.2fi and (l .22). Suppose that n 2 3. From (1.30) we get 

According to Definition 2, it is necessary to show that 

for I m I =  [ X ]  - k .  The partial derivatives of the function 8(a) up to order 1 m 1 + k = 
[h] appear under the integral sign. They are Holder functions of order X - [ A ] .  
Therefore, i t  suffices to show that for Jj j=Im 1 + k = [ h ]  

Let us make use of the local smoothness of the rotation rot, a with respect to the 
parameter X, established in subsection 1. Breaking up the sphere X,-, into finitely 
many subsets CA-, , i = 1,. . . , N, by cones according to Theorem 1 and assuming 
that rot, a has been chosen for each of these subsets in such a way that rot, a is 
infinitely differentiable with respect to X ,  we can easily verify the Holder property 
on C:-,: 

=G A L ! - 2 ( 0 ,  l )  
I rot, a - rot, a ?-[*I dS, 4 A, I X - 
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for X, z E 2;- i = 1,2,. . . , n (continuity is checked in the case of integral X).  The 
lemma is proved. The next result is proved in exactly the same way. 

LEMMA 3. If B(u) E ~ ~ ( 2 , -  I), X > 0, then 

where 0 a < 1, m is a multi-index, and k is an integer such that ( m I + k =G [X]. 

We give explicit formulas for computing a k ~ e ( x ' ,  O)/ayk in the cases k = 1 and 
k = 2: 

(the equatorial X'-mean of the derivative d8/dxf = X' grad B(a) in the direction of 
the vector X') and 

where d 28(a)/dx'2 = X' grad(x' grad 8). The formulas (1.3 1) and (1.32) are 
derived from (1.30). 

REMARK 3. The derivatives d k ~ , ( x ' ,  y)/ayk of the X'-means of the function B(a) 
can be written as a certain combination of the X'-means of the derivatives of B(a). 
Namely, 

Indeed, from (1.25) we have 

Since 

(1.34) implies ( l  .33), by (1.25). 

6. Some applications of X'-means of traces over the sphere. Essential use will be 
made of the means M,(x', y )  in 52.2. Here we indicate some other applications of 
them. The first of the applications (Lemma 4) will also be used in what follows (52). 

a) Reduction of integrals over the sphere to one-dimensional integrals. 

LEMMA 4. Suppose that 8(a) E C(2,-,) and (1 - yZ)(n-3)/2 f ( ~ )  E U- 1,l)- 
Then 

where I2,1= 2 in the case n = 2. 
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PROOF. Let J be the integral on the left-hand side. Then 

Breaking the sphere into the hemispheres an > 0 and an 0, and projecting them 
onto the ball B"-'(0, 1) lying in their base, we get 

(in the notation of (1.28)). Passing here to iterated integration, we have 

2 1/2 where 6 E R " - ~ .  The substitution 6 = (1 - T, ) t,,, gives us 

(see the notation in (1.29)). By (1.27), we arrive at the right-hand side of (1.35). 
REMARK 4. Formula (1.35) allows us to reduce the computation of surface 

integrals of the form under discussion to the computation of one-dimensional 
integrals if the means MB(x', y )  of the function 8(a) over the planar sections 
perpendicular to the vector X' are known (a certain analogue to the Cavalieri 
principle!). Formula (1.35) can be regarded as a generalization of the Funk-Hecke 
formula (1.10)-(1 . l  1). However, to get the Funk-Hecke formula from (1.35) i t  is 
necessary to compute the means M8(x1, y)  for the spherical harmonics 8(o) = Y,,(u). 
We have not been able to find them directly (without resorting to the Funk-Hecke 
formula). Comparing (1.35) with the Funk-Hecke formula, we get the following 
corollary to Lemma 4 (taking account of the fact that f ( y ) is arbitrary). 

COROLLARY. The means M8(x', y ) of the spherical harmonics B(o) = Y,,(a) can be 
computed by the formula 

where the H,,,( y ) are the polynomials (1.12). 

Hence, in particular, the means M8(x', y)  of a linear ( m  = 1)  function, for 
example, 8(o) = oj, j = 1.2,. . . ,n ,  have the form 
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b) Application of the equatorial means to singular integrals. Let us consider the 
multidimensional singular integral 

Let 

be its symbol. It is known ([l l], Chapter IV, 922) that smoothness of the characteris- 
tic 8(t') in the cartesian coordinates of the point t '  implies the same smoothness of 
the symbol N(x') in the angular coordinates. Using the equatorial means Me(x', 0) 
of the characteristic 8(o) and the local smoothness of the rotation with respect to the 
parameter (established in subsection l), we show that 

i.e., that the symbol N(x') is actually smoother by one order than the characteristic 
and that smoothness of the symbol can be considered not only with respect to the 
angular coordinates but also with respect to the cartesian coordinates (a result which 
is apparently true also for 0 c X c -1). Using the well-known formula ([l l], Chapter 
IV, 922) 

Differentiating under the integral sign, we easily get that 

aiv X - = -/ 8(o) - Me(x',O) ok do - X,-, ( M,(x', 0) (1.42) 
axk Zn- 1 X ' U  1x1 

(the terms with aMe/axk disappear; it is easy to see that the equality 

holds). We remark that the formula (1.42) for differentiating the symbol can be 
reduced to the form 

where the integral is understood in the sense of the Cauchy principal value 
(regarding this, see 92.2). It is now more convenient for us to deal with its 
regularization (l .42). Performing the rotation a = rot, 7, in (1.42), we have 
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Here M,(x ', 0) E c"(X ,_ , ), by Lemma' 2. Using the local smoothness of rot, 7 with 
respect to X, we break up Zn - , by cones into subsets of local smoothness according 
to Theorem 1 and get that the first term also belongs to C"&,,_, ). Consequently, 
aN/ax, E C"& ,_ ,), which is what was required. 

7. On the rate of decrease of the Fourier coefficients of Holder functions with a 
weight. We have 

where a > 0, and c does not depend on N. 

PROOF. Let JN be the integral to be estimated. We have 

and, therefore, 

The estimate of the second and third terms is clear. The first is majorized by the 
quantity 

which is what was required. (The assertion of the lemma is known for the case 
p = 0: see [7], from which we borrowed the device for the proof.) 

REMARK 5. An analysis of the proof of Lemma 5 shows that i t  is preserved if the 
Holder property of the function f(x) is replaced by the more general condition 

I /(X + h) -/(X) )G c(h/ (X + h))" X > 0, h > 0. 

Lemma 5 admits the following generalization: 

LEMMA 6. Suppose that /(X, y) E c"[o, a ]  X [0, a2]), 0 < h G 1, and 0 4 p < 1. 
Then as N + oo 

where c does not depend on N. 

The nontrivial point here is in the fact that /(X, 6)  E CV2[0, a], but the estimate 
(1.43) is preserved. The proof is analogous to that of Lemma 5 with the single 
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difference that the first term on the left-hand side of (1.44) should be estimated as 
follows: 

with the obvious subsequent estimates. 

 LEMMA^. Iff(x) E ch[O,l],A > m  - l ,m = 1,2 ,..., then 

PROOF. For h 3 m the lemma follows in an obvious way from Taylor's formula. 
Let us therefore assume that m - 1 < X < m, By the definition of the class C ~ O ,  l ]  

m +  l we have -cx""'+' S f ("'-')(X) - f ("'-"(O) G cxh- . Integrating from 0 to X, we 
have -c,x"-"'+~ G f ("1-2)(~) - ~f (nr-I)(~) - f (n1-2)(0) 4 C , X ~ - ~ + * .  Integrating in 
a similar way m - 1 successive times, we arrive at (1.47). 

8. An integral representation. For a function f(y) of a single variable having 
derivatives up to order m the following formula is valid: 

where k = 0.1,. . . .m. 
Let us prove (1.48). Note that to the case k = m corresponds the Taylor formula 

with remainder in integral form. This formula will be applied to the left-hand side of 
(1.48), denoted by A. Performing the differentiation dm-k/dym-k according to 
Leibniz' formula, we get 

1 m-k 

A =  2 j 
d' 

+ k)m-k-'y 
j - m - l  

(m - l)! .- 1-0 dy ' 
X )(m)(t)(y - dt. 1 

Suppose first that k # 0; then j G m - 1, so that 

m-k dt 
f (m)(t) - f ( m ) ( ~ ) l  

j=o  Y 
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J , 
- a, - (-1) c,,,-k m - k - j  m - j 

k! , b, = ( - l )  k! CL-k. 

Obvio~Sly, 27~0" a, = 0, so that 

1 Y 
m-k  m-j- l 

A = [ f m ( t ) - f m ( ) ] b j ( 1 - )  dt. ( 1.49) 
Y 0 j=o  Y 

Further, 

m-k m-j- I 1 m-k 

2 b,(l -$)  =-( l  -;) 2 k ) ~ : - ~  
j = o  k! 

j=o  
a 

m-k J 

j= 0  

m-k 
i j  - (- l )  - z)' L=,/," 9 

d t .  / = o  l 
after whlch (1.49) becomes ( l  .48). 

Suppose now that k = 0. Then, analogously to the preceding, 
m - l  m m-j- I 

A - )  2 (-l)m-j-l C ( l  - ) . t  + f ( n l ) ( ~ )  

Y *  0 j=o 

which coincides with (1.48) for k = 0. 
REMARK 6. The representation (1.48) is preserved if  m is replaced by m - 1 

without changing k; this follows from the fact that 

The index k can then be assigned the values k = 0.1,. . . , m  - 1. 
9. On a certain finite sum. An important circumstance in the proof of Theorem 4 

on symbols of potentials in $2 will be the fact that we are able to compute the 
following finite sum: 

def min(k. jl 
(v - P)! 

A,,,.,= 2 (-1)" 
p = o  p! (k  - p)! ( j  - p)! 

- - (v - k)! 
( v - j ) ( v - j -  l )  - - - ( v - j -  k - l ) ,  

k! j! 
(1.50) 
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where v and j are arbitrary natural numbers, and k = 0,1,. . . , v. In particular, 

A k .  , ,V = O  f o r v a j  and k a v - j -  l .  (1 -50') 

PROOF OF (1 SO). Here it is necessary to distinguish the cases v 3 j and v G j - 1. 
Suppose first that v 3 j. Then for the values k = 0, l, .  . . ,v the sum A ,  ,,,, is 
symmetric in k and j: A,.., A,,,,,. Therefore, it suff iw to consider the case j c k. 
Then (1.50) reduces to the form 

J 
P P 2 (-1) C, (v - p)(v - p - I )  . - m  (v - j  + l ) .  k (k  - l )  a - .  ( k  - p + l )  

p=o 

= (v - k ) ( v -  k -  1) ( v -  k - j +  1). 

(1.51) 

Denoting the left-hand side here by a,.  ,,,, we form 

- k ( k  - l )  6 .  ( k  - p + l )  + (-  l)'+'k(k - I) - ( k  - j ) .  

Since C;*, , = C: + Cr-l, it follows easily from this that 

This recursion relation enables us to prove ( l  .5 1) easily by inductioi. 
Suppose that v j - 1. Then k G v j, and the required equality (1.50) reduces 

(unlike (l .5 1)) to the form 

- - (v - k)! 
(v - j ) (v  - j  - l )  (v - j - k + l) .  

j ! 

This can be proved by induction similarly to (1.5 1). 
10. The Fourier transform of the functions 1 X /@ ym(x'). Let a E C l .  We have 

[(2n)"y:(-iD)(-A)((a - m - n)/2)6(x) for a - m - n = 0,2,4,6, .  . . ,. 

for a + m # 0, -2, --4, -6,.. . 
a n d a - m - n # 0 , 2 , 4 , 6  ,..., 

for a + m = 0, -2, -4, -6,. . . , 
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where the Fourier transformation is understood in the sense of the distributions S', 
and the constants A,,,(a), B,,,(a), and C,,,(a) are computed by the formulas 

The cases a = 0 and 0 < Re a n are well known ([37], [ l  l], [39], [33]); the case 
a - m - n = 0,2,4,6,. . . is obvious, since it reduces to the computation of the 
Fourier transform of a polynomial. The general formula (1.52) was established in 
[3 11. 

92. The symbol of a generalized Riesz potential 

A generalized Riesz potential is defined to be an integral 

Following the terminology adopted in [l  l ]  for multidimensional singular (a = 0) 
integrals, we call the function 8(xt), X' = x/l x l , the characteristic of the potential 
(2. 1). 

In $55 and 6 the operator inverse to (2.1) is constructed (hypersingular construc- 
tion). It is clear that the question of inverting the potentials (2.1) is connected in 
some way or another with their symbols 

The present section contains an investigation of the symbol X,"(x) and, in 
particular, its representation by a surface integral over the sphere (see subsection 4). 

1. Preliminary discussion. The integral (2.2) may turn out to be divergent at 
infinity. The difficulties associated with divergence of the Fourier integral are easily 
resolved by regarding the Fourier transform of the function B(tf) I t p-" in the sense 
of generalized functions. However, for our purposes-an efficient construction of 
the inverse operator-it is required that the symbol %,"(X) be an ordinary and even 
a sufficiently smooth function on the sphere Z,,-, (the symbol is homogeneous of 
degree -a). For the construction of the operator inverse to the potential in the form 
of an HSI it turns out to be essential that the symbol behaves nicely: The property 
of annihilation of the kernel 8(tt) I t p-" by the corresponding HSI (see 96.1) is based 
on the smoothness of the symbol. Therefore, we begin with the question of existence 
of the integral (2.2) in the ordinary sense. 

It is clear that the integral (2.2) defines an ordinary function for 0 < a < n/2 if 
8(xt) is bounded (the L,-  and L,-theory of the Fourier integral is in effect). We shall 
see below that the integral (2.2) converges conditionally for 0 < a < (n + 1)/2 for a 
sufficiently smooth characteristic @(X'). A salient reason for this is the fact that it is 
valid in the simplest case of a Riesz potential ( 8  1): The Fourier transform of the 
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Riesz kernel I t P-" is a conditionally convergent integral if and only if 0  c a < 
( n  + 1)/2. Indeed, 

Using (1.15) and formula 3.915.5 in 161, it is not hard to get that 
(n-  2)/2 

l e i ~ x ' @  da = ~ ~ ( " - 1 ) / 2  

L- l 
Therefore, 

and the convergence of the integral as N -, W for 0  a (n + 1)/2 is seen from 
the asymptotic behavior of the Bessel function at infinity (cf. also formula 6.561.14 
in [6]). 

The Calderbn-Zygmund formula representing a symbol as an integral over the 
sphere (see (1.41)) is well known for multidimensional singular integrals. The 
analogous fact for the potentials (2.1) turned out to be connected with divergent 
integrals over the sphere with a singularity on a planar section of the sphere. Such 
f.p.-integrals are introduced and studied in subsection 2. A regularization of them is 
given in terms of the X'-means M@(x', y )  introduced in $1.2. Then a basic theorem 
on representing the symbol %,"(X) by the indicated f.p.-integrals is given (subsection 
3). Here the following goals are achieved at the same time (for a sufficiently smooth 
characteristic B(x')). 

a) It is shown that the Fourier transform (2.2) exists as a conditionally convergent 
integral for 0 a (n + 1)/2. 

b) The representation (2.34)-(2.34') (obtained for 0  a < (n + 1)/2) of the 
symbol %,"(X) by surface f.p.-integrals which make sense for a 2 (n + 1)/2 pro- 
vides an analytic continuation of %,"(X) with respect to a into the strip 0  < Re a < X,  
where X is the exponent of smoothness of the characteristic B(tJ). For a B (n + 1)/2 
the symbol %,"(X) is understood as the function (2.34)-(2.34') everywhere below. 

C) It is shown that smoothness of the symbol is ensured by sufficient smoothness 
of the characteris tic (see (2.86)). 

Moreover, in subsection 4 we take care that the function %,"(X) be the Fourier 
transform of the kernel B(t')J tP-" in the generalized sense for all admissible 
O < a < n .  

2. The Hadamard constructions of divergent integrals over the sphere. We consider 
the integrals 

where @(a) is a function defined on 2,- ,, X E R", and (-iy)" is understood as in 
(1.17). For a 3 1 the integral in (2.3) is divergent: the integrand has a singularity of 
order a  on the (n - 2)-dimensional section of 2,-, by the hyperplane a . X = 0 
orthogonal to the vector X .  
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To interpret the integral (2.3) for a 3 l in the spirit of the Cauchy-Hadamard 
construction, we excise from 2,-, a "hoop" containing the section a . X = 0, 
( a I = 1, by means of the two hyperplanes a . X = -t E,  and consider the integral 

J,(x) = / (-ix - 0)-"$(a) do. 
Cr.al>€ 

Following an idea of Hadamard ([36], 95.5.5), we make the following definition: 
DEFINITION 5. If the integral J&x) admits a representation 

L,/, for which Re A, > 0 and Ao(x) = lim,,o A,(x)~ exists, then we say that the finite - part (f.p.) of the integral (2.3) exists, and define ' 

f-P- / $(a) do 
= Ao(x ) . 

E,-, (-ix . a)"  

THEOREM 2. Suppose that $(a) E c~((z,_ ,), A > max(0, a - 1). Then the f. p.- 
integral (2.3) exists in the sense of Definition 5 and has the following representation 
( regularization) : 

where the prime on the summation sign means that the terms with indices k = a - 1, 
a - 3,. . . are omitted in the case of integral a. 

PROOF. It is necessary to consider the case a 3 l .  Applying Lemma 4 to the - 
integral (2.4), we have - 

From this, 

$(a) do - -- 1 ' n - 2  l 
L . a l > €  (-ix m a)" IxP 

The integral in the second term is equal to zero for integral a and k = a - l, a - 
3 ,.... But if a is not an integer or a is an integer but k # a - 1,a  - 3 ,..., then 
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simple computations with formulas 8.391 and 9.13 1.2 in [6] taken into account give 
us that 

(1 - y ) l  X 
Y k k - a I'((n - 1)/2)I'((k - a + 1)/2) I<,,,<, dy = i cos - 

2 
7T 

(-Q>" r ( ( n  - a + k)/2) 

2  ( n - 1 ) / 2  

v + 2ikcos(k - a)72&(1 - E ) n - a + k  k - a + 3  
a - k - l  € a -  I - k  2 9 ; E 2 ) .  

Then it is not hard to conclude that 

I aI'((n - 1)/2)ik 
if a is not an integer, or if a is an 

- - r ( ( a  + 1 - k)/2)I'((n - a: + k)/2) 

I i n t e g e r b u t k Z a -  1 , a - 3 ,  ..., 
0 if aisanintegerand k = a - 1, a - 3, .... 

(2.9) 

Therefore, the second line of (2.8) gives rise as E -. 0 to the second line of the 
required representation (2.6). We show that the first lines also coincide (after taking 
the limit as E + 0). To do this it suffices, by (2.7), to verify that 

which follows from (1.15). It remains to see that the first line in (2.8) converges as 
E 0. This follows from Lemma 7, and Theorem 2 is proved. 

The regularization obtained in Theorem 2 for the f.p.-integral is realized in terms 
of an integration over the sphere. It follows from (2.7)-(2.9) that this regularization 
(2.6) can be written in terms of a one-dimensional integration: 

where the prime on the summation sign means, as before, that the terms for 
k = a - 1, a - 3,. . . are omitted in the case of integral a. 

In subsection 3 we shall also make essential use of another regularization: 
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where the prime on the summation sign means that the term with k = a - 1 is 
omitted in the case of integral a,  and 

The representation (2.11) is obtained from (2.7) by a procedure completely 
analogous to that in (2.8). In certain problems it turns out to be more convenient to 
use the functions &&(X', y) instead of Me(xf, y )  (see (2.15) and (2.34')). We mention 
the useful formula 

which expresses ak&(xf, O)/ayk in terms of ajMe(xf, O)/ayj and can be obtained 
with the help of the Leibniz formula. 
REMARK 7. The regularization (2.6) contains a conditionally convergent integral 

(which is not absolutely convergent). Thus, taking 1 < a -C 2 for simplicity, we have 

for example, for B(o) = 7. As for the "one-dimensional" regularizations (2.10) and 
(2.1 l), they contain absolutely convergent integrals. 
REMARK 8. It is possible to regard a as complex in (2.3), with (-iy)" understood 

as in (1.17). The preceding considerations, in particular, Theorem 2, remain in force 
for A > max(0, Re a - 1). 
REMARK 9. Let us compare the generalized function f.p. l/(-#)" with the 

following more common distributions in the theory of generalized functions: 

Here it is convenient for us to regard them on the test space C,"(- l ,  1). It is easy to 
compute 

where the prime on the summation sign means that the term with k = a - 1 is 
omitted in the case of integral a (cf. (2.1 l)!). The f.p.-integrals for (2.14) are written 
similarly. The generalized functions (2.14), which are analytic in a everywhere except 
at a = 1,3,5,. . . , a = 2,4,6,. . . , and a = l ,  2,3,. . . , respectively, have poles at the 
excluded points. However, the generalized function l/(-iy)" used by us has not 
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poles but removable discontinuities at integral a. Namely, it is not hard to derive 
from the representation written above that 

1 1 1 - l 
lim f.p. - - S("'- 1) 

f.p. 7 + ( m  - l)! a-m (-iy)" (-i)"' 

The situation is analogous with the spherical f .p.-constructions (2.3). Namely, 

COROLLARY TO THEOREM 2. The f.p.-integral(2.3) with a function @(a) E cX(Zn-  ,), 
X > 0, is an analytic function of the parameter a in the halfplane Re a 1 + X with 
the exception of the values a = 1,2,3, . . . , at which it has removable discontinuities: 

@(U) da @(U)  da l a m - l ~ o ( ~ ' ,  0) 
lim f.p. / = f.p. j + , 

a - m  zn- ,  ( - id  U)" pm- ,  (+X' . a ) m  (m - l )  aym-'  
(2.15) 

where ~ ~ ( x ' ,  y)  is the function in (2.12). 

PROOF. Let us add Z&;k, to and subtract it from the sum EL=(]- ' under the 
integral sign in (2.11), taking [Re a ]  G N S X + 1 (so as not to diminish the 
smoothness of @(U)). If we then compute the terms subtracted, we get that (2.11) 
holds with [a] replaced by N for [Re a ]  N G X + 1. Since [Re a ]  G [A] + 1, it is 
possible to choose N = [X] + 1 independently of a .  Then in the formula (2.1 1) so 
transformed the integral will obviously be analytic in a,  and the sum Z'L:, outside 
the integral will have removable discontinuities at a = 1,2,3,. . . because the term 
with index k = a - 1 is omitted in the case of integral a. This gives (2.15). 

r - x e  integral (2.3) can be differentiated by the formula 
! 
l a 

- f.p. / @(U)  do 
= ai f.p. L a ) 

a+ l 
do. (2.16) 

a x k  E,-, (-ix a )"  . - l  (-ix a )  

We show that it holds for a < 1 when @(a) E ~ ' ( 2 , - , ) ,  X > a (though it is 
apparently true for any a). The formula is obvious in the case a < 0 (and trivial for 
a = 0). Therefore, its validity for 0 < a < min(1, X) will be ensured if we can show 
that the left-hand and right-hand sides are analytic in a for Re a < min(1, A). The 
analyticity of the right-hand side was noted in the corollary to Theorem 2, and that 
of the left-hand side can be seen after applying (1.35). - 

Let us regard an f.p.-integral as an operator acting on the functions @(a) defined 
on the sphere. The next theorem illustrates the loss of smoothness of a function @(a) 
when this operator is applied to it. 

THEOREM 3. Suppose that a > 0 and @(U) E ~ " 2 , - , ) ,  A > max(0, a - 1). Then 

under the conditions that a # 1,2,3,. . . and X - a # 0, 1,2,. . . . But if a or X - a is 
an integer, then CA+'-"(2,-,) should be replaced by C ~ + ~ - " ( Z , _  , )  in (2.17). I t  is 
possible to take X = 0 in the case 0 < a < 1. 

PROOF. By Lemma 2, it suffices for us to consider only the first term in the 
representation (2.6) of the integral (2.1,7); moreover, it suffices to consider the 
integral 
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['I-' ( jk /k  !)akMe(x', O)/ayk 1/2 Me(x', Y )  - Zlk=O 
dy. (2.18) 

(-Q)" 

Let us integrate by parts [a]  - 1 times here (assuming that a 2 2): 

where a,, b,, and c are constants, and 

(but if 0 < a < 2, we leave the integral (2.18) unchanged: J = Jl) .  The terms outside 
the integral in (2.19) belong to C'-"+ ' (E,-,), by Lemma 3. It remains to consider 
the integral J,(x). 

I. Thecasea # 1,2,3 ,... andh - a # 0, 1,2 ,.... It must beproved that 

D"J~(X) E C'-[P](Z,-~) (2.21) 

for all multi-indices m of length ( m 1 = [p], where p = h - a + l .  We have 

where 

f(., V )  = ~ ; ( a / a Y ) [ ~ I - ~ ~ e ( x ' ,  Y) .  

In the case 0 < a 1 the derivative DmJ,(x) does not have the form (2.22). This 
case will be handled separately. 

The subsequent arguments differ for {h) > {a) and {h) {a). We begin with 
the simpler former case. 

1". The case {h) > {a) for a > 1. By Lemma 3, 

f(x7 v )  E C '-[']-[a]+ l [ -  $ , + l ) *  
Obviously, h - [p]  - [a]  + 1 = A - [a] - [A - a ]  > 0. Moreover, in our case h - 
[p] - [a] + 1 = {h) < 1. Checking the required Holder property for (2.20), we have 
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which yields (2.21), since p - [p] = {A) - {a) in this case. 
2". The case {A) > {a) for 0 < a < 1. In this case we differentiate the f.p.-integral 

once at the very start according to formula (2.16), i.e., we consider the function 

(note that A - a + 1 > 1 for {A) > {a)). By (2.16), this leads to the consideration 
of the integral 

instead of (2.18), where Bk(a) = ak8(a) E c"Zn- ,). 
For this integral the condition (2.21) must now be checked for all multi-indices m 

of length 1 less than [ A  - a + l], i.e., I m (= [A - a]. This is done analogously to the 
estimates in (2.23): The corresponding function f(x, y)  = D,"M,jx', y) now be- 
longs to the class C~-["I+'(Z,-, X [ -  f , t]). 

3". The case {A) < {a) for 0 < a < 1. Let 

B(a) du X + h  
and X; = 

( X  + h ( '  
h E R". 

(-ix' 

It must be shown that 

for all X' E 2,-, and h E R" (1 h 1 =G l), where c does not depend on X' or h. We have 
.. 

1 - 
(-ix' U)" (-ixi - a)" 

The same operations used for deriving (1.35) are carried out in this integral. 
Applying the rotation a = rot, a,, for this, we get 

g(x') - d x ; )  = / Ox(4 
lx+h1* (2.25) 

X n -  I ( - i ~ , ) ~  (-i(o, + h rot, U))" 

sincex~~a=(x~a+h~a)Jx+h~-',andwecanassumethat~xJ= 1 (see(1.28)). 
Since 

for Ix l= 1, we can replace Ix + h I* by 1 in (2.25). In the integral thus obtained, 
denoted by J ,  we pass to integration over the hemispheres an > 0 and an < 0. If we 
then project onto the (n - 1)-dimensional ball lying in their base, we can pass to 
iterated integration (over a,  and with respect to the collection of remaining varia- 
bles) in the resulting (n - l)-fold integral.(') The result is 

( l )  The subsequent expressions relate to the case n 3 3; the planar case n = 2 is simpler and can be 
treated similarly with the appropriate simplifications. 
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['I-' ( jk /k  !)akMe(x', O)/ayk 1/2 Me(x', Y )  - Zlk=O 
dy. (2.18) 

(-Q)" 

Let us integrate by parts [a]  - 1 times here (assuming that a 2 2): 

where a,, b,, and c are constants, and 

(but if 0 < a < 2, we leave the integral (2.18) unchanged: J = Jl) .  The terms outside 
the integral in (2.19) belong to C'-"+ ' (E,-,), by Lemma 3. It remains to consider 
the integral J,(x). 

I. Thecasea # 1,2,3 ,... andh - a # 0, 1,2 ,.... It must beproved that 

D"J~(X) E C'-[P](Z,-~) (2.21) 

for all multi-indices m of length ( m 1 = [p], where p = h - a + l .  We have 

where 

f(., V )  = ~ ; ( a / a Y ) [ ~ I - ~ ~ e ( x ' ,  Y) .  

In the case 0 < a 1 the derivative DmJ,(x) does not have the form (2.22). This 
case will be handled separately. 

The subsequent arguments differ for {h) > {a) and {h) {a). We begin with 
the simpler former case. 

1". The case {h) > {a) for a > 1. By Lemma 3, 

f(x7 v )  E C '-[']-[a]+ l [ -  $ , + l ) *  
Obviously, h - [p]  - [a]  + 1 = A - [a] - [A - a ]  > 0. Moreover, in our case h - 
[p] - [a] + 1 = {h) < 1. Checking the required Holder property for (2.20), we have 
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where U, = (y, E, * {l - y2  - 1E12) and E = (El,.. . 
Performing the substitution E - [l- and then changing the order of integra- 

tion, we get J = J+ +J- , where 

and z ,  are the points in (1.29). The integrals J +  and J- are of a single type, so we 
estimate only J+ . Let X denote the inside integral in J+ , so that = %(X, E, h). It 
suffices to prove that 1 %(X, E, h) l <  c l h p-"+', where c does not depend on X, E, or 
h. We have 

def 
= X,  + X, + eX(z+ ) b = , ~ , .  

Estimate of X,. Since 

l ( l  - y2)(n-3)/2 - 1 l-lvl 
2 -1/2 - (((1 - Y  1 1 ( G c l y ( (l - y2)- 'I2 for n = 2), the boundedness of the func- 

tion e,(z+ ) gives us that 

I-]' I Y I  
1 1 

(2.26) 
I (-iy)" [ - i (y+hrot ,z+)]"  

From this, after the substitution y =) h ( T, we find that 

where h' = h/l h I and 

Obviously, 
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Further, 

the second term here disappears if a and b have the same sign. In our case a = T, 
b = T + h' rot, z'+ , and for 1 T ( sufficiently large (1 T ( > 2, by (2.27)) the signs of T 

and T + h' rot, z'+ coincide. Therefore, 

The second term is majorized by c l h 12-"; the integral in the first term can be 
estimated in the same way for 1 T 1 < 2, so that 

+ c  l h 1 2 - a / 1 / 1 h ' ~  1 T-U - ( T  - h'rot, i+ I d ~ ,  (2.28) 
2 

where 8, = (-  I h 1 T. [{v, /m /m). 
The remaining two integrals are of the same type, so we estimate only one of 

them. For this, let us apply the mean value theorem to the function f( S ) = (T + S)-". 
This gives 

-1-a (7 + S])-" - (7 + = a(7 + B) (S2 - S, ) ,  
where S,  < 8 < S,. For S, = 0 and S, = h'rot, Z+ we obtain 

1 T - ~  - ( T  + h'rot, Z+ )-a 1 G ~ T - I - ~ ,  

and then the first of the integrals in (2.28) is majorized by the quantity c  l h 1 ; 
similarly for the second. Therefore, I X ,  1 G c  I h I . 

Estimate of X,. Let us use the Holder property of @(a): 

It is not hard to see that Iz+ -z+ lY=,1G 0 l y (  , so that 

I K, I <  c / '  I Y  I* I (-Q)-. -[-i(y + hrot,z+ )-'l I dy. 
- 1 

Next, the integral X, can be estimated in exactly the same way as the integral 
(2.26), and for it the estimate ( X, 14 c I h (*+I - '  is obtained for X < a, and ( X2 I G c  
1 h 1 In l / (  h 1 for X = a. 

Estimate of X,. Let us show that I X, I G c  l h ( . We examine in detail the 
parentheses (y  + hrotxz+). Let a,,(x) be the coefficients of the matrix of the 
rotation rot,. Assume that the sphere is broken up into finitely many subsets X',- ,, 
v = 1,2,. . . ,N, according to Theorem 1, so that the rotation has coefficients ajk(x) 
that are infinitely differentiable on the X',-, (incidentally, we need only their 
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boundedness). The projections of the vector rot, z+ onto the coordinate axes are 

i = l, .  . . , n. Hence, 

where 

a = a(x)  = (a , , (x ) , -  - - 9 a n l ( x ) ) 9  (2.29) 

and b = b(x, 5 )  is the vector with components 

Obviously, l a 1 = l (since the a,, are the coefficients of a rotation matrix). Also 
( b l = 1, since b = rot, z + [,=,. Temporarily let 

After the substitution y = cos S, 0 s < T, the integral X, takes the following form 
in the notation of (2.29)-(2.3 1): 

77 

X, =/ ((-icoss)-" -(-i[(l + A )  coss + ~ s i n s ] ) - " )  sinsds. 
0 

Since 
B 

( I  + A ) c o s s  + Bsins = COS(S - (P). g, = arctan- 
1 + A '  

it follows that 
-l /2  

% , = [ I - ( ( ~ + A ) ' + B ~ )  I /  sins(-icoss)-'ds 
0 

+ ((l  + A ) ~  + B ~ )  -I"Ln(sin S(-icos S)-" - sin S[-icos(s - g,)]-U) ds 

= X; + X";. 

An estimate for X; is clear: 1 'X; I G c(( A I + ( B I) =G 2c I h 1 , whlle for S:;' we have 

n-cp sin(s + g,) l 'X;'' , G  cl/nsin S(-icos s)-"ds - 
0 

sin s ds 
G c 

o sin s ds 

(-icos S)" (-icos s ) ~  

Obviously, (g, I < (  B/(] + A )  ( G  c l h ( . Further, taking account of the fact that 
(COSSIP 1 / 2 i n n e i g h b o r h o o d s o f s = O a n d s = ~ , w e ~ e t / ~ ~ ~ ~ ~ c ~ ~ ~ ~ + ~ ( g , / ~  
c ( h I , which finishes the estimates. 

Gathering our estimates together, we get (2.24) for 0 c X a 1. 
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REMARK 10. In the case 0 < h = a < 1 we get that 

(see the estimates for X , ,  X, and X,). 
4". The case {h) {a) for a > l. Let us show that t h s  case reduces to the 

preceding one. Integrating by parts once more in (2.20), we come to the integral 

(note that [a] G h for {h) {a)). By Remark 3, it suffices to study the integral 

where @,(a) E c ~ - [ ~ ] ( z , -  ,). Since 

it suffices to study the integral 

(see (1.35)) using results of an obvious examination of the integral in (2.32) over 
1/2 <ly J< l .  If h - [a] 1, then &(X') E CA-"+ '(2,-,) by virtue of case 3", 
since {h - [a]) = {h) < {a). Suppose that h - [a] 1. Let 

h - [a] = p  + { h ) ,  p = [ h -  [a]] = [ h ]  - [a]. 
Let us perform p times (I m (= p )  the differentiation D" of J4(x) with respect to X. 

Generally speaking, this can be done by applying (2.16) p times. However, it is 
possible to avoid the p-fold application of this formula (which is undesirable for 
p > 1 because we have given its proof only for 0 < a 1). Let us proceed as follows. 
After applying (2.16) once, we arrive at an integral of the form 

For an analysis of it we need to examine 

Integration by parts leads to 

Application of Remark 3 leads to 
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where B,(xr) E C"-["]+ (E,,- ), and, consequently, to 

Carrying out a similar procedure p - 1. more times, we come to the necessity of 
proving that 

where 8,(u) E C"-["I-P(Z,-,). But this follows from the case 3", since { A  - [a ]  - 
p )  = { A )  < { a )  andA - a  + 1 - p =  { A )  - { a )  + 1 .  
' 11. The case a  = 1,2,3,. . . , A  - a  # 0,1,2,.  . . . It is necessary to examine the 

integral (2.22) for { a )  = 0. Operations analogous to those in (2.23) yield 

i.e., J , ( x ' )  E c:-"+'(E,- ,). 
111. The case a  # 1,2,3,. . . and A - a  = 0,  1,2,. . .. We apply successive differ- 

entiation with respect to x and integration by parts in the integral J4 (x r )  just as was 
done in 4". Performing this operation p times, where p = A - a, we arrive at an 
integral of the form J9(xr), where B,(u) E ~ ( ~ ( 2 , ~ -  ,). Since A - a  is an integer. 
{ A )  = {a) .  Then J9(xr)  E C:(E,,-,) on the basis of Remark 10, and then together 
with this we have J4(xr)  E C,"-"+ ' (2,- ,). But then J ( x )  E C,"-"+ ' (E,, - l ), too. 

IV. The case a  = 1,2,3,. . . and A - a  = 0, 1.2,. . .. Now both a  and A are 
integers. It is necessary to show that D"'J,(x) E C:(E,,- ,) for orders with I m (= A 
- a. The function f ( x r ,  y )  in (2.22) is in the class c ' (E, , - ,  X [ -  i, {l) for such 
orders. Repeating the operations in (2.23). we get 

this time, which is what was required. Theorem 3 is completely proved. 
3. Main representation theorem for the symbol of a potential. 

THEOREM 4. Suppose that B(u)  E C"%-, ). A > max(0. a  - 1 ) .  The limit 

%,"(X')  = lim ~ ( ~ r )  I (a-PI  e 1 r . r  . dt (2.33) 
N - o .  -(tj<N 

exists uniformly in X' for 0 < a  < ( n  + 1)/2, and the following representations are 
valid: 
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In  particular ( for n 3 3( )) 

%;(X) = - f . p .  / e(o) do + X /  X' grad 8(o) dSn-, . (2.36) 
2.-, (0  (x12 Z,X12(0,1) 

PROOF. A representation of the symbol %;(X) in the form (2.34) is not hard to 
obtain in the case 0 < a c l. Indeed, 

%;(X) = lim e ( ~ )  do/Neipa.xpa-' dp. 
N-m -Ln-, 0 

The inside integral converges as N -, ao for 0 a 1 and is equal to r ( a )  
X (-ix a)-" (see [6], 3.76 1.4 and 3.76 1.9). The possibility of taking the limit under 
the integral sign in (2.37) is based on the Lebesgue dominated convergence theorem, 
since (we substitute pa . X = p,) 

where c does not depend on N. 
The case a 2 l, unlike the case 0 < a < 1, involves very nontrivial difficulties. In 

proceeding to this case we shall be guided by the regularization (2.1 1) of the 
f.p.-integral. We have the representation 

where &(X', y)  is the function (2.12) and 

Ja(y) = / lpa- 'eip~dp = (-iy)-ay(a, -Q), (2.40) 
0 

y( a, z) being the incomplete gamma function ([6], 3.38 1.1). The representation (2.39) 
is obtained by passing to polar coordinates and using (1.35). 

We note the recursion formula 

- obtained by m-fold integration of the integral (2.40) by parts; here (1 - a), - 
(1 - aX2 - a) (-a + m), and P,"- ,(z) is the polynomial 

P ( z )  = z - ( a  - ) z 2  + + (- ( a  - I )  - ( a  - m + l)  

(2) For n = 2 the second term in (2.35) should be replaced by 

similarly in (2.36). 
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The following recursion relations hold for the polynomials P z ( z ) :  

P ; ( z )  = z m  + (1 - a ) P z ~ , ' ( z ) ,  (2 .43)  

P ; ( Z )  = LP;- I ( z )  + ( I  - a ) , ,  (2 .44)  
d 

m + 1  = m P z l ( z ) .  z pm 
(2.45)  

Since the symbol % ( X )  is homogeneous (%,"(X) = l x 1 - a % t ( ~ ' ) ) ,  it suffices to 
consider only its restriction to the unit sphere. Let m = [a ] ,  so that m G a < m + 1. 
On the basis of (2.33) and (2.39) we have 

where 

and 

The first term in (2.46) will be denoted by 

Passing to the limit as N + ca in (2.46), we get the representation (2.34)-(2.34') of 
the theorem. We next separate the cases of integral and nonintegral a .  

I .  The case where a is not an integer. 
a) Asymptotic behavior of the coefficients c J ( N ) .  Let us show that 

where 
2 r ( a )  a - j  p. = iJ cos --- 

j ! ( j - a + l )  2 77, 

the P/'+ '(2) being the polynomials in (2.42). We prove (2.50). We have 

The following formulas hold: 
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as can be proved by induction (the first with the use of (2.43), and the second with 
the use of (2.44)). With the help of (2.55) we conclude that 

Substitution of these integrals into (2.53) leads to 

From this it is not hard to get (2.50), taking formulas 3.76 1.4 and 3.76 1.9 in [6] into 
account. 

b) Asymptotic behauior of the integral IN(xt). The recursion formula (2.41) gives us 

where 

and 

I;, = ( l  - a ) m  A0 Ja_, (Ny)  dy. im  - I  Y m  

It will be shown below (see d)) that 

and that 

Let us now consider the terms I; for k = 0, l , .  . . ,m - 2 (the necessity of 
considering them arises for m 3 2). We apply the formula 
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(obtained by integrating by parts p + 1 times) to I$ for the choice p = m - 2 - k.  
This gives 

where Ak+,(y) = A(y)/yk+I. Below (see d)) it will be shown that 

uniformly in X' as N -, m. Therefore, 

Let us compute the quantities A:) ,( ? 1). Writing M, = ( a j ~ @ ( x ' ,  O))/a yJ, for 
brevity, we get by Leibniz' formula that 

Here 

for all 0 G p G v, if (n - 3)/2 > v. For the latter it suffices that (n - 3)/2 > m - 2, 
which is true. Therefore, from this (with the equality 

taken into account) we get 

where 
j - k  v- I 

+ = ( l )  S k . v s j 9  'k:VV, 

and 
min(v. j) ( k  + l -  v !  

min(v. j) 
- -- 2 ( - U P  

( k +  v - p ) !  
S k , v , j  = Z (-1lPC,!' 

p=o ( J  - P ) !  P !  .=o p!(v - p ) !  ( j - p ) !  
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Substitution of (2.62) into (2.61) yields 
m-2 m-l m-2 m-2 

-v-2 2 I; = -~"e '*  2 M, 2 ( l  - a), 2 (iN) Sk,v-k,j 
k=O j = O  k=O v = &  

m - l  m-2  m-2 
-NUeMiN M, 2 ( l  - a ) ,  2 ( - l ) ' + ' ( i ~ ) - ' - ~ ~ ~ , , - ~ , ,  + ~ ( l ) .  

Hence, 
m-2 m-l  m-2 

X I; = -NUeiN 2 M, 2 s , , , ( i ~ ) - ' - ~  
k=O j = O  v=O 

m- l  m-2 

-Nue-iN 2 q. 2 (- l)v+'s, , ,(i~)-y-2 + o(l), (2.63) 
j = o  v=O 

where 

The representation (2.63) then reduces to the form 

where 

Thus, the behavior of the integral IN(x') as N -+ W is determined by (2.58), (2.59), 
and (2.63'). 

c) Determination of the representation (2.34). By using the asymptotics (2.50), 
(2.56)-(2.59), and (2.63'), the representation (2.46) of the symbol %,*(X') can be 
reduced to the form 

Here the first line coincides with the right-hand side of (2.1 l), multiplied by I'(a), 
and already gives (2.34). Consequently, it  remains to show that the second and third 
lines in (2.64) disappear. But they contain increasing terms and, therefore, it is 
natural to expect that 
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After showing that (2.65) really holds, webconclude the derivation of (2.34). We 
have (taking account of the fact that (-j),+ , = 0 for v 2 j )  from (2.52) that 

Therefore, (2.65) reduces to the form 

where 

Here it is very essential that we were able to find the sum (2.67) in explicit form (see 
5 1.10). Applying (1.50), we reduce the desired relation (2.66) to the form 

The latter is a particular case of the formula 
Y 

2 (a)k(b + k + 1)"-k = 
( ~ ) " + l  - (b)u+l 

7 

k=O 
a - b  

which is easily proved by induction or by direct division of the polynomial 
(a),,, - (b),,, by the binomial a - b. This proves (2.65), and (2.64) becomes 
(2.34). 

d) Proof of the limits (2.58), (2.59), and (2.60). l ". For proving (2.58), we have 

Here it is possible to take the limit as N + W under the integral sign by the 
Lebesgue dominated convergence theorem, in view of the fact that A( y )  l y I-" is 
integrable in a neighborhood of y = 0 (see Lemma 7). Therefore, 

From this and formulas 3.761.4 and 3.761.9 in [6] we get 

lim 1; = (1 - a)m r ( a  - m )  
N + O ~  im 
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whlch gives (2.58). Because of the easily proved estimate 

with a constant c not depending on X', the limit (2.58) is uniform in X'. 

2". Observing that (2.59) is (2.60) for k = m - l, we shall prove (2.6) for 
k = 0,1,. . . ,m - 1. It is necessary to show that 

' (m-k- l )  ~ " - ~ / o  Ak+ l (y)eiN~ydy + 0, k = 0, l ,. . . ,m - l (2.70) 
N - o o  

(the estimates of the integral N" - "~O,  are analogous). The function A ~ ~ ; ~ - ' ) ( ~ )  
has, generally speaking, a singularity at y = 0 and behaves "badly" as y - 1. 
Lemma 5 suggests a rate of decrease of the integral in (2.70) sufficient to cancel the 
increasing factor Nu-". The crucial point here is the use of (1.48). Let us focus on 
the singularities at y = 0 and y = l,  taking separately l,,"' and l,',,. We apply to 
A ~ " + T ~ - ' ) ( ~ )  the representation (1.48), taking m - 1 instead of m on the basis of 
Remark 6. This gives 

1 .v ~ i y ~ ~ - - l ) ( ~ )  = ,l pm-,(+) [ni("-I)(x', t )  - M ( ~ I ) ( X ' ,  y) ]  dt, (2.71) 
Y O  

where Pm-,(z) is a polynomial of degree m - 2. The following lemma will be used. 

LEMMA 8. Let g( t ) E C' [0, a], 0 < X 4 1. Then the function 

where I b(t) )G c, satisfies a Holder condition of the form (1.45) on [0, a]. 

This is easily proved from the equality 

We apply this lemma to the function (2.71). Since A?("-')(X', y )  is a Holder 
function of order A, = min(1, X - m + 1) with respect to y for 0 y 1/2 (uni- 
formly in X'; see Lemma 3), the function (2.71) has, by Lemma 8, the form 

( m - k - l )  X - l  
A, + , (y)  = y O f( y), where f( y ) satisfies condition (1.45) for 0 G y G 1/2. But 
then Lemma 5 (together with Remark 5) asserts that 

Estimation of the remaining integral N"-~/,',, in (2.70) reduces to estimation of 
integrals of the form 
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According to (2.12), 

2 ("--3)/2 ' a V ~ , ( x f ,  y )  d ~ - ' ( l  - y ) 
n-2 dYj-v . (2.74) 

dyJ Y = O  ayv 

The means Me(xf ,  y )  have, by (1.25), the form 

where a ( x f ,  y, z )  E C ~ ( Z , - ,  X [ -  1, l ]  X [0, l]). Proceeding by induction, we get 
that 

where bv(xf,  y, z )  E C * - ~ ( Z , - ,  X [ -  1, l]  X [0, l ] ) .  Then it is not hard to get from 
(2.74) that 

dJMe(x' ,  y )  2 (n -2 ) /2 - j  
= ( l - ~  c , ( , , )  j = O . l  ..... m-l. 

dy ' 
(2.75) 

where c,(xf, y, z )  E c*-J(z.-, X [-  1, l]  X [0, l ] ) .  
Using our restriction a < ( n  + 1)/2, we see that [ a ]  g n/2. But then ( n  - 2) /2  

- j 0 for j = 0, l , .  . . ,m - 1 ( m  = [a]) .  Therefore, (2.75) can be written in the 
form 

where d,(xf, y, z )  E C*- ' (X, - ,  X [ -  1 .  l]  X [O. l]). Consequently, the integral (2.73) 
has the form 

where e,(xf, y, z ) . / , ( x f ,  y ,  z )  E C*--'(Z,,-, X [ -  1. 11 X [O. l ] ) .  
Applying Lemma 6 in (2.76), we conclude that 

and an analysis of the proof of Lemma 6 shows that c does not depend on X ' .  

The estimates (2.72) and (2.77) conclude the proof of the limit (2.70). 
11. The case where a is an integer. Suppose now that a = m is an integer. Much of 

what was just gone through remains in force. Therefore, we give only the signifi- 
cantly new points. 

a) Asymptotic behavior of the coefficients c,(N). The coefficients c,(N) in (2.46) 
have the same asymptotics (2.50) as before for j = 0, l , .  . . ,m - 2. But in the case 
j = m - 1 ,  (2.53) is replaced by 

1 N 
c,- , (N) = N ; v  / ynl-' ln -e - dy. 

( m  - l)!  -N I Y  I 
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l Let us determine the asymptotic behavior of this integral. From (2.55) we get that 
,is 

( y  "-leiy dy = -P:- I ] ( i z )  + i m ( m  - l ) ! ,  (2.79) 

where P,"_ , ( z )  is the polynomial in (2.42). Therefore, integrating in (2.78) and using 
(2.79), we get 

1 / N  P m - I ( i ~ )  eiY dy 
C m - , ( W  = ( m - l ) !  - -N  Y 

- - m - 1  i P  P - I  i y  

2 T / - P  e dy. i m  v=o 

Hence, by (2.54), 

and then 

where 

b) Asymptotic behavior of the integral IN(x') .  The representation (2.56) has order 
smaller by 1 : 

where I: is the integral (2.57) with a = m, and 

As for the sum Zr:; I:, its asymptotic behavior does not change and is gven by 
(2.63'). 

I 
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c) Determination of the representation (2.'34'). On the basis of the asymptotics 
expressed in a) and b) we now get, from (2.46), the following representation in place 
of (2.64): 

where the Q,- ,(z) are the same functions as in (2.64), and the R,.. ,(z) are the 
polynomials in (2.81). 

Let us show that z"Q,- ,(iz) imRm-,(iz), i.e., that 

Computing the coefficients, we arrive at a system of equalities equivalent to 
(2.85): 

u (m - l)!k! nc - I 1 2 (- 2 ;* 
(m - v + k - l)! (v - k)! k  =O k = n ~ - v  I 

v = 0 , 1 ,  ..., m - 2 .  

If the A,,,,, from (1.50) are substituted here, the left-hand side reduces to the form 

(-11, i ( m -  1 - v ) ( m -  v ) . . .  (m - 2 + k -  v) 

k=O (m - v + k - l)! 

which is what was required. 
By (2.85) and (2.84), we get finally that 

which, by (2. l l) coincides with (2.34'). Theorem 4 is completely proved. 
REMARK 11. Recall that the symbol %,"(X) of the potential (2.1) is given by a 

convergent integral (2.2) only when 0 < a (n + 1)/2. Everywhere below, the 
symbol %,"(X) is understood for (n + 1)/2 G a to be the right-hand side of the 
representation (2.34)-(2.34'). 

COROLLARY 1. The symbol %,"(X), X # 0, of a generalized Riesz potential is an 
analytic function of the parameter a in the strip 0 < Re a < A + 1. 
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This corollary follows from the representations (2.34)-(2.34') and the corollary to 
Theorem 2 (see (2.15)!). 

COROLLARY 2. The symbol %;(X), X # 0, of a generalized Riesz potential has order 
of smoothness less by a - 1 than that of the characteristic @(a) of the potential. 
Namely, 

where O < a < h +  1, h>O, a #  1,2,3 ,..., and h - a # 0 , 1 , 2  ,.... But if a or 
h - a is an integer, then %;(X') E c,"+'-"(Z,_,). I t  is possible to take h = 0 in the 
case 0 < a  < 1. 

Indeed, it suffices to apply Theorem 3 and Lemma 2 to the right-hand sides in 
(2.34) and (2.34'). 

REMARK 12. If a is not an integer, then the symbol %,"(X) can also be written in 
the form 

9(u) du 9(a)  do 
%,"(X) = r(a)cos E f.p. / 

2 
+ i r ( a )  sin f.p. / 

C,,-, Iu.x(Q 2 zn- (U . ' 

where (a  X)" = l a - X sgn(a X), and the f.p.-constructions in (2.87) are defined 
similarly to Definition 5. Moreover, 

in the case of 1) an even characteristic 9(a) and an odd integer a = 1,3,5,. . . and 2) 
an odd characteristic B(a) and an even a = 2,4,6,. . . . 

REMARK 13. In view of (2.37), we proved in Theorem 4 that 

lim / B(u) duiNeip"' p dp = r ( a )  f.p. 1 e ( ~ )  do 
l V - 0 ~  (-ix' 

for nonintegral a # 1,2,3,. . . , and this limit is uniform in X'; for a = 1,2,3,. . . the 
right-hand side should be replaced by the right-hand side of (2.34'). 

4. On the justification for passing to the symbol of a potential. The function %;(X), 
0 < a < n, which was constructed by the rule (2.34)-(2.34') and called the symbol of 
the potential, coincides with the (conditionally convergent) Fourier transform of the 
kernel of the potential for 0 < a < (n + 1)/2. We want to see that for all 0 < a < n 
the function %,"(X) coincides with the Fourier transform of the kernel, understood 
in the sense of S' distributions. We must show that 

( G P ) - =  '%(x)@(x). (2.89) 

Since %,"(X) is not a multiplier in S (and not even in the Lizorkin space * = d) 
(see [8] and [9]), which is more suited for these purposes, if @(a) B Cm(Zn- ,)), the 
Gel'fand-Shilov theorem ([5], Chapter 111, 93.7, Theorem 1) is not applicable, and it 
is necessary to justify the transition (2.89). 
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THEOREM 5. Suppose that B(a) E c A ( ~ , - , ) ,  h > max(0, a - l), 0 a < n. Then 
(2.89) holds: 

1 
e-jX.'X;(t)@ ( t )  dt = j - '(") q ( x  - r )  dt 

R" ( t J"-a 
(2.90) 

for all ~ ( t )  E s(R").(~) 

PROOF. Both sides of (2.90) are analytic in a for 0 Re a n. (For the left-hand 
side this can be verified directly with the help of Corollary 1 to Theorem 4 and the 
homogeneity of the symbol X,"(t), and for the right-hand side the analyticity is 
obvious.) Therefore, it suffices to prove (2.90) for 0 C a l.  We reduce (2.90) to the 
form 

It remains to refer to (2.37). The Lebesgue dominated convergence theorem allows 
us to pass to the limit under the integral sign in (2.91) (see (2.38)). 

COROLLARY. The symbol %,"(X) coincides with the generalized (in the sense of the S' 
distributions) Fourier transform of the kernel k,"(x) = @(X') I X P-" for all 0 c a n. 

53. Some general considerations about inversion of poten tials 
In the simplest .case of a Riesz potential K" (i.e., B = const) the inverse operator 

was constructed by us in [25] with the aid of so-called hypersingular integrals 
(HSI's). In the general case, when 8 r: const, the construction of the inverse operator 
is closely connected, in view of (2.89), with the properties of the function %;(X). In 
studying the operator in, for example, LP(Rn), we shall naturally be interested in 
how much the image Kt(Lp) dafers from the image Ka(Lp) of the Riesz potential. 
(Since ( K ~ ~ ~ = J  X J-a@(x), while ( ~ $ t p j =  %;(X') l X i-a+(~), the restriction of the 
symbol %,"(X) to the unit sphere could be called the "characteristic of the image 
distortion.") Let us begin with the following obvious statement : 

If X;(x/l X D is a p-multiplier, then K,"( L, ) C K "( L,), If, moreover, 1 /%,"(x/I X D 
is also a p-multiplier, then K,"( LP) = K"( L, ). 

On the basis of the study of %,"(X) camed out in $2, this leads to the following 
theorem. 

THEOREM 6. If e(u) E C"&._ ,), h a a + n - 1, then, always, Kt( L,) C K"( L,). 
If, moreover, 

%;(X/) # 0, X' E 2,- ,, (3.1) 

then K,"( L,) = K"( L,). 

( 3 )  For the validity of (2.90) it actually suffices that p ( x ) . E  L Z ( R N )  n L,( R")  and that ) c p ( x ) ) G  
c lx l -" .  a >a. and ( + ( x ) l G  c l x ( - ' ,  h > n - a, as IxI+ oo. 
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PROOF. By Corollary 2 to Theorem 4, %;(X') E C*-"+'(z,-,), and A - cl + l 2 
n here. But then a direct check of the conditions in the well-known theorem of 
Mikhlin on p-multipliers shows that %,"(X') is a p-multiplier. If %,"(X') # 0, then 
l/X,"(xt) is also a p-multiplier, by the same theorem of Mikhlin. Theorem 6 then 
follows from the above statement. 
REMARK 14. In the case p = 2 the condition A 2 a + n - 1 in Theorem 6 can be 

relaxed to A > max(0, CY - 1). 
When the symbol of the potential is nonsingular on the unit sphere, we shall call 

the case (3.1) elliptic. Clearly, in the elliptic case the inverse operator (K$)-' can be 
constructed in the form (K$)- l = ADa = DaA, where A is the multidimensional 
singular convolution operator having l/K$(xf) as its symbol, and D" is the 
hypersingular Riesz differentiation operator (the operator inverse to the Riesz 
potential K"; see [25]). Of considerably greater interest and substance here is the 
question of constructing the inverse operator directly in the form of a hypersingular 
integral (see (3)) with some characteristic !J(t'). This problem, which includes the 
explicit construction of the characteristic Q(t') from the characteris tic 8(t '), will be 
completely solved in 555 and 6. In 54 we shall first consider hypersingular construc- 
tions. 

L/ .---.- 
We remark that in the nonelliptic case, when condition (3.1) is violated, the 

inverse operator no longer has the form of the HS construction (3). The form of the 
inverse operator will be determined each time by the specific nature of the symbol's 
singularity. One such case, where the characteristic 8(u) of the potential is linear, 
8(u) = U - a  = U ,  a ,  + . - +an a,, was considered by us in [26]. Then the symbol 
%;(X) has the form 

and is a fortiori singular on the unit sphere (on the section of it by the hyperplane 
X - a = 0). This case involves the construction of an inverse operator of the form 

q (x )  = const 
n + a +  l 

dt 

with a certain "exotic" nature of convergence. (Unlike in the case of the usual HSI 
(3), which was truncated by excising a shrinking ball ( t (c E, in (3.2) the appropriate 
truncation here is achieved by excising the cylinder ( t E in R r  ' and cutting off 
the half-space 6 > N, with the convergence as E - 0 realized in the LP-norm and the 
convergence as N - W realized as convergence in measure.) In the conclusion of this 
section we give one more example of a characteristic 8(a) for which the image 
K,"(L,,) is different from Ka(Lp) and for which, consequently, the construction of 
the inverse operator (Kt)-  I does not have the form (3). Namely, let us consider the 
most elementary nonsmooth (discontinuous on a coordinate plane) characteristic 

8(x? = sgn X,, j = 1.2,. . . ,n. (3 -3) 

In this case 
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and F is the hypergeometric function of Gauss. 
Indeed, we have (restricting ourselves to formal expressions) 

where i= (t,,.  . . ,t,-,, t,,,,. . . ,ln). Since (sgn t , j=  2i/t, and (l(;)?= (~n)"-'G(f), 
it follows that 

- i ~ n ( a )  dt, 
- 

2 where p2 = J X ( ~  - x i .  
It is possible td express the singular integral thus obtained in terms of a 

hypergeometric function: 

which takes (3.5) into (3.4). 
For an even integer a the hypergeometric function in (3.6) can be expressed as a 

Jacobi polynomial 

see [6], 8.962.1. In the case of odd a = 2m + 1 it can be shown that 

1 3 1 (2m - l)!! ( l  - 2)"' h l + /z 
( 1 - m ;  - 2  2 l - 6 + ',-l(')' (3.7) 

6 
where P,- ,(z) = X;=, a,,, zk- '(l - z)"'-~ is a polynomial of degree m - 1 with 
coefficients 

- (2m - l)!! ( k  - l)! k-, (2 j - 2k - l)!! 
am,k  - 2,-k- 1 CA. m! j = k  (2 j - l)!! 
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(The formulas (3.6) and (3.7) are new, as far as the author knows.) The symbol (3.4) 
can thereby be computed in terms of elementary functions when a is an integer. In 
particular, 

4 r n I 2  ix, 
%,"(X) = 

- 3/21  1 X 

for a = 1 and a = 2, respectively. 
It follows from (3.4) that the symbol %-,"(X') vanishes at the points of the 

hyperplane X, = 0 and becomes infinite at two points of the sphere. Consequently, 
for any a the image of the potential K; with characteristic B(x) = sgn X, does not 
coincide with the image of the Riesz potential (an essential difference from the 
one-dimensional case; see [23], 95). 

$4. Hypersingular integrals with homogeneous characteristics 

Multidimensional hypersingular integrals (HSI's) were apparently first used by 
Stein ([33], pp. 161-162) in describing the space of Bessel potentials of order 
0 a < 2. An extension of HSI's to values a 2 2 can be made either in terms of the 
finite part of the integral (regularization of the generalized function r-"-") by 
subtraction of a partial sum of the Taylor series, or by taking finite differences. The 
latter approach is preferable in some respects (although it is equivalent, generally 
speaking, to the first; concerning this in the case of smooth functions see subsection 
4) and was used by Lizorkin [10], who introduced HSI's of the form 

with the central difference (AIr f )(X) and obtained a description of the spaces of 
Bessel potentials in terms of them in the general case (the construction (4.1) can be 
called the multidimensional analogue of the fractional derivative of Marchaud). 
More generally, hypersingular integrals are defined to be integrals of the form 

Q(x,  t )  dt.  

There are a number of references ([38], [M]-[49]) in which the integrals (4.1), (4.2) 
and integrals similar to them with a Taylor series remainder instead of a finite 
difference have been studied in the framework of spaces of Bessel potentials. In [24], 
[25], and [29] the author used the constructions (4.1) to introduce new spaces 
L,",,(Rn) of potentials of Riesz type. The action of the operators (4.2) was also 
studied in [24] and [29] in the framework of these spaces. We mention, in addition, 
the papers [12]-[15], in which HSI's of order 0 a 1 were examined from the 
point of view of their inclusion in the class of pseudodifferential operators. 
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The function &(X, t) will be called the characteristic of the HSI (4.2). Here we 
shall be interested in the case of a characteristic homogeneous in t and not 
dependent on X: Q = Q(t/J t 1). Let 

the choice of the normalizing factor dn,,(a) is indicated below in subsection 2. 
In this section we present without proofs some results needed in what follows for 

HSI's with homogeneous characteristics. Most of them were obtained by the author 
in [32], where proofs can be found. 

The notation (A1, f )(X) for the finite difference of a function f(x) of order l with 
step t E R" will be used both for the noncentered difference 

l 
k k  

( ~ \ f  )(X) = E ( -  1) Cl f (x  - kt), 
k=O 

and for the centered difference 
l 

1. Classification of hypersingular integrals. We introduce the following concept. 
DEFINITION 6. The integral (4.3) will be called an HSI of neutral type if it is 

constructed with the help of a noncentered difference, and an HSI of even (odd) 
type if it is constructed with the help of a centered difference or even (odd) order l. 

The integral (4.3) converges (on sufficiently smooth functions) for 

l >  a. 
In the case of an HSI of neutral type and with an even characteristic (Q(tr) = 

Q(-t')) the order of the differences can be lowered, because of the conditional 
convergence, to 

l > 2[a/2] (4.4) 

with the obligatory choice l = a for a = 1,3,5,. . . (see [25], where Q(tr) - 1). It is 
assumed everywhere below that l is so chosen. 

As explained below, the neutral type of HSI will have certain advantages over the 
even and odd types (this has already manifested itself in the possibility (4.4) of 
lowering the order l). It will be more universal in problems of inverting potentials. 
In particular, it makes sense to consider an HSI of even (odd) type only for even 
(odd) characteristics Q(tr). Namely, if the characteristic is arbitrary, and 

then 

Da"f=~:+f, D ; f = ~ ; f  - 

for integrals of even and odd type, respectively (integrals of even or odd type are 
annihilated in the case of a characteristic of the opposite parity). The relations (4.5) 
follow, for example, from (4.13) and (4.14). On the other hand, an HSI of neutral 
type has its own "peculiarities," which are reflected in the following remark. 
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REMARK 15. In the case a = 1,3,5,. . . an HSI of neutral type is identically 
annihilated when l > a: 

I t (A', ) (x)Q (h) dt = 0, 

on this can be found in [25] for the case 51 1). But if l = a ,  
then it converges (conditionally) if and only if Q(t/l t I) is even. 

2. The normalization constants dnVl(a). These constants are chosen in such a way 
that F(Dg f )  =I X pf(x) for D(tf) S l. This turns out to be possible also for HSI's of 
neutral and even types. But in the case of odd type D: f 0 for Q(t') = 1 ; therefore, 
for an HSI of odd type the constant dn,,(a) will be chosen from considerations of 
symmetry and analyticity. 

We introduce the following functions of the parameter a: 

I 

[A; ( a )  = (- l)*-'C';ka for a noncentered difference, 

(4.6) 
Furthermore, it is possible to write 

LEMMA 9. The zeros of the function A;(a) are the integers a = 1,2,. . . , l  - 1, and 
those of the function A;'(a) are the even integers a = 2,4,. . . , l  - 2 for even I and the 
odd integers a = 1,3,. . . , l  - 2 for odd l. 

THEOREM 7. For an HSI of neutral or even type the normalization constants d,,/(a) 
are analytic functions of the parameter a and can be computed by the formulas 

where 

We remark that for an even integer a the expression Al(a)/sin(an/2) is under- 
stood according to Lemma 9 as 

lim AI(5) 2 d = -(- - ~ / ( a ) .  
(-U sin([n/2) 7 d a  

For an HSI of odd type we start from (4.7) and, taking Lemma 9 into account, 
define 
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3. The symbol of a hypersingular integral. In terms o f  Fourier transforms we have 

(~n"fl'= q n " ( x ) i ( x ) .  (4.10) 

where qG(x)  is the symbol o f  the HSI. It has the form 

l / ( l  - e i x r $ 2 ( t ' )  dt for a noncentered difference, 

9n"(x)  = 
d,,,(a) 1 t r f a  

1 ( e ( i " " ) / 2  - e -(:X. r ) / 2  

jtr+a 
)I Sl(  t ' )  dt for a centered difference. 

d,,,(a) R" 

Formulas (4.10) and (4.11) are easy to prove for sufficiently nice functions f ( x )  (see 
[25], Appendix, where $2 G 1 ) .  Obviously, the symbol is homogeneous o f  degree a. 

THEOREM 8. Let $2(t') E L,(Z,-, ). The following representations of the symbol 
~ G ( x )  by surface integrals are valid:( 4, 

for HSI 's  of neutral, even, and odd types, respectively. 

COROLLARY 1. HSI ' S  do not depend on the order I for the choice (4.7)-(4.9) of the 
normalization constant d,,,(a). 

COROLLARY 2. The HSI ' S  of neutral and even types coincide in the case of an men 
characteristic $2(t') = L?( - t '). 

It can also be concluded from (4.12)-(4.14) that for the integers a = 1,2,3,. . . the 
HSI D," f is a homogeneous differential operator of order a for a suitable choice o f  
the type o f  HSI. Namely 

COROLLARY 3. For a = 2,4,6, . . . the symbol of an HSI  of neutral and even type, 
and for a = 1,3,5,. . . the symbol of an HSI  of odd type are polynomials: 

(4 )  In the case of an even characteristic S Z ( r ' )  the formulas (4.12) and (4.13) coincide and are true for 
HSI's of neutral type even for a = 1,3,5,. . . (cf. also the formula (2.34) for the symbols of potentials). 



where 6 = l for neutral or even type and 6 = -i for odd type, and the Q, are the 
spherical moments of the function Q(u):  

Q, =l u ~ Q ( o )  d o .  
2,- I 

4. The hypersingular integral as a convolution with f .p  St(xf) 1 X I-"-'. Is it possible 
to regard an HSI as a convolution with a generalized function of the form 
f .p . (Q(xf) / lx  j"+')? Theorem 9 below provides a positive answer, in general, to this 
question. By definition, 

where 

It is not hard to see that 

where the Q, are the spherical moments (4.16). Therefore, 

where the prime on the summation sign means that the terms with index I j (=  a are 
omitted when a is an integer, and ~ ( t )  is the characteristic function of the ball 
1t1< 1. 

THEOREM 9. Suppose that St(o) E L,(Z,-,) ,  and that f ( x )  E C'(R") and is 
bounded. Then 
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for HSI's of neutral, even, and odd types, respectively. In the cases of the integers a 
excluded- in (4.17)-(4.19) the HSI D; f is a homogeneour differential operator of order 
a: 

(a = 2,4,6,. . . for neutral and even types and a = l,  3,5,. . . for odd type). 

It is clear from Theorem 9 that the symbol D,*(x) of the HSI D,* f can be regarded 
as the Fourier transform of the generalized function const f.p. (fi(x')/(x )"+*) or, 
perhaps, of its even or odd component. Note, however, that this function does not 
convolute the Schwartz space S, for example, into itself, and, therefore, we cannot 
(as also in 92.4) justify the transition to Fourier transforms by a simple reference to 
the Gel'fand-Shilov theorem ( [ 5 ] ,  Chapter 111, 93.7, Theorem 1). The function 
fi(x')/J X rt" convolutes the Lizorkin space q = 6 into itself if fi(x') E Cm(Zt, - l ) .  

It is, however, possible to carry out the proof for fi(x') E L ,(Xt, - , ). Regarding 
fi(x')/l X r+" as an element of the class q ' ,  we may omit the f.p. symbol. 

THEOREM 10. Let fi(o) E L ,(Z,,- , ). Then 

for HSI's of neutral, even, and odd types, respec.tioe/r; the Fouricv- tt-tr)r.~fi)rnu trrcj 
understood in the sense of @'-distributions.(') 

5. Estimation of hypersingular integrals of .smooth decreasing functions. 

THEOREM 1 1. If fi(o) is bounded, and f(.u) E C'( R" ) trtld 
C c* 

I f ( 4  I <  . 1 (D.'f)(.u) l <  for 1.1 ( = l, 
( l  + 1X /) lV1 ( l  + 1x1)": 

where N I  > a and N, > n, then 

6. On smoothness of the symbols of hypersingular integrals. Comparing the symbol 
(4.12)-(4.14) of a hypersingular integral with the formula (2.34)-(2.34') for the 
symbol of a potential, we get the following result from Theorem 3. 

ASSERTION. The symbol D:(x), X # 0, of a hypersingular integral has order of 
smoothness greater by a + 1 than that of the characteristic fi(o): 

(') Here we do not make separate provision for the cases of integral values of a.  as in Theorem 9. These 
cases are contained in (4.21)-(4.23). The assertion D z ( s )  0 then obtained corresponds to the fact that 
the polynomials are indistinguishable from zero in the framework of the @' distributions (see [9] ) .  
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w h e r e h ~ O , a > O , a n d a #  1,2,3 ,... a n d h - a # 0 , 1 , 2  ,.... B u t i f a o r h - a i s  
an integer, then 

Indeed, in the case of a hypersingular integral of, for example, neutral type we 
have from (4.12) after differentiating [ a ]  + 1 times that 

for a multi-index m of length 1 m l =  [ a ]  + 1. It then remains to apply Theorem 3. An 
analysis of the proof of Theorem 3 shows that it is true also for integrals with 
singularities 1/J X a $ and sgn(x - a)/[ X a $ instead of l/(- ix a)". Therefore, it 
can be applied also in the case of hypersingular integrals of even and odd types. 

7. Hypersingular integrals with hannonic characteristic. In the case where S2(tr) = 
Y,,(tr) is a spherical harmonic we have 

THEOREM 12. The HSI is annihilated, 

in the following cases: a) an integral of neutral type and either an even integer a less 
thun m or a = m + 1, m + 2,. . . ; b) an integral of even type and either odd m or 
a = m - 2, m - 4,. . . ; c) an integral of odd type and either even m or a = m - 2, 
m - 4, .... 

In the remaining cases we have 

where f E S( R"), K "-" is a Riesz potential of order m - a,  D"-" = D;-" In= is 
the Riesz differentiation operator, and 

W here 

for the neutral, even, and odd types of hypersingular integral, respectively. 
8. Representation of homogeneous differential operators by hypersingular integrals. 

First of all we mention a result that follows from the "reduction formula" (4.24). 

COROLLARY. The differential operators 

where A is the Laplacian and Ym is a homogeneous harmonic polynomial of order m ,  
can be represented in the form of a hypersingular integral 
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where 
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and the HSI is of neutral or even type for even m and of odd type for odd m. 

Theorem 9 asserted earlier (see (4.20)) that differential operators are contained 
among the hypersingular integrals. The above corollary suggests that the converse 
statement is valid: all the homogeneous differential operators are contained among 
the HSI's. This is indeed so. Namely, 

THEOREM 13. Suppose that a = 1,2,3,. . . and P,( D) is a homogeneous differential 
operator of order a. There exists a homogeneous polynomial L?,(x) of order a such that 

where the HSI on the right-hand side is of neutral or even type for a = 2,4,6,. . . und 
of odd type for a = 1,3,5,. . . . The churacteristic L?,(tl) of the HSI cun he computed 
from the given polynomial P,( X)  by the formula 

where 

and the H,-2, are the Gegenbauer-Tchebycheff polynomiuls (1.1 2). In particular, /or 
a = 2  .- - 

95. Inversion of the potentials K&J by hypersingular integrals 

Our goal is to construct an operator inverse to Kt in the elliptic case (3.1). For a 
formal solution of the equation K& = f i t  is necessary, in view of (2.89), to form the 
convolution 

fP = (l/x;(x))- * 1, (5.1) 

where (1/3Ci(x) j is the Fourier transform of ]/%;(X). A justification of the 
operations in (5.1) in the framework of generalized functions encounters the difficul- 
ties mentioned earlier involving the fact that (l/%;? does not convolute "reasona- 
ble" classes of generalized functions into themselves. After studying the properties of 
the function (1/3C,"j (generalized, in general, and ordinary if the order of smooth- 
ness of 8(x') is high enough) and using Theorem 8, we shall find when the inversion 
of a potential is possible in the form of an HSI. We effectively construct this 
integral, which is a candidate for the inverse operator, and show that it really does 
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invert the potential. In the present section this will be done in the framework of 
C"-functions when the density g, of the potential is in the Lizorkin class @ ( R n ) ,  and 
then in 56 it will be done in the framework of the %-spaces with the corresponding 
(in the L,-norm) understanding of convergence for the HSI. The key role in the 
proof for %-densities is played by the property of "annihilation of the kernel of a 
potential by the HSI associated with it." 

The inversion of a potential by an HSI turns out to be certainly possible when a is 
not an integer and in a number of cases for a an integer (for example, when a 
characteristic @(a) is even for a = 1,3,5,. . . and odd for a = 2,4,6,. . . (see the 
table below)). We also dwell briefly on the cases where inversion in the form (4.3) is 
not possible. In these cases the inverse operator will be: either 1) the sum of an HS 
operator and a differential operator (equal to a hypersingular integral of "mixed 
type" (see (5.30)); or 2) the composition of an HS operator and a singular operator. 

1. Structure of the Fourier transform of the reciprocal of the symbol of a potential. 

LEMMA 10. Suppose that @(a) E ch(Z,,  - ,), where 

X > 2 a + 2 n -  1, 

and that the ellipticity condition (3.1) holds. Then 

where the Fourier transform is understood in the sense of the S' distributions, and 

moreover, w(x') E C(Z,,- ,), and P,(D) is a homogeneous differential operator of 
order a: 

PROOF. The expansion 
1 

converges, by (3.1), because the symbol %,"(X') is sufficiently smooth (this follows 
from (2.86)). We have 

(the proof that the Fourier transformation is applicable to a series in the sense of 
S'-distributions is not difficult). 



226 S. G.  SAMKO 

Applying (1.52), we obtain (5.3). Let us determine the nature of convergence of 
the series (5.4). From the asymptotic behavior of r ( z )  at infinity (see [6], 8.327) it 
follows that 

Therefore, (5.4) is majorized by the series 

Since the function (5.6) belongs to CA-"+' (En-, ) . by (2.86), the majorizing series 
converges on the basis of Lemma 1 if n + a - 1 < 2[(h - a + 1)/2] - n + 1, and 
for this it suffices that X > 2n + 2a  - 1. 

REMARK 16. Pa(D) f 0 in the case a = 2,4,6,. . . for an odd characteristic O(t') 
and in the case a = 1,3,5, . . . for an even characteristic. 

2. Representation of (l/%,")- by an f.p.-integral over the sphere. So far we have 
been able to determine from the symbol %,"(X') the function w(x') in (5.3) in the 
form of the series (5.4), assuming that we know the expansion of l/%;(x') in 
spherical harmonics. Is it possible to bypass thls expansion and express w(x') 
explicitly in terms of l/%,"(x')? The next theorem answers this question positively 
in terms of the f.p.-constructions on the sphere studied in 92.2. 

THEOREM 14. Suppose that O(u) E C~(Z, , -  ,), X > n + 2a  - 2, and that (3.1) 
holds. Then 

for a # 1,2,3,. . . . But if a = 1,2,3,. . . , then the following expression is added to the 
right-hand side of (5.8) (us in (2.34')): 

PROOF. First of all, we note that (l/Ki',"(o)) E C"& ' (Z,,-,), by the assertion 
(2.86), and, therefore, the right-hand side of (5.8) exists for h > n + 2 a  - 2, by 
Theorem 2 (and even belongs to ( Z,, - , ), by Theorem 3). It is necessary 
to prove the equality 

for ~ ( x )  E @(Ru). The left-hand side reduces to the form 
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and it remains to refer to Remark 13; it is not difficult to justify taking the limit 
under the sign of the integral over R" in (5.10), since +(t) 1 t I-"-" E S(Rn) for 

E @(R"). 

COROLLARY. An explicit expression for the function o(x') in t e r n  of the characteris- 
tic @(a) follows from (5.8) and (2.34) (for a # l ,  2,3,. . .): 

3. The associated characteristics. By virtue of the formal equality (5.1) and 
formula (5.3), we expect that the inverse operator (K,")- '  will be given by the 
equality 

4 ~ ' )  
~ ( x )  = f . ~ .  ~xl"+" * f if a is not an integer, (5.12) 

where Pa(D) is the differential operator (5.5). It can be reduced to the form 

where 

a - D = o,(a/ax, ) + . + an(i3/i3xn), and the H,,, are the polynomials (1.12). For 
this it suffices to substitute a,, from (5.4) into (5.5) and use the addition formula for 
spherical harmonics. For n 3 3 it is possible further to write 

while in the planar case n = 2 (for a an integer it is necessary that a = 1) 
Q,(.; D) = 20 D. Thus, 

where 

a ,  =-  dS, a2  = 
sin 5 

dE 

The arguments which led us to the form (5.12)-(5.13) for the inverse operator 
should so far be regarded as heuristic, and we must still prove that the inverse 
operator that we shall construct, starting from (5.12)-(5.13), really is the inverse. We 
shall ascertain when the construction (5.12)-(5.13) can be realized in the form of an 
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HSI, and this construction will be carried out. The decisive role here belongs to 
Theorem 9, which enables us to pass to the HSI (excluding the "polynomial" cases) 

The characteristic Q(x') in this case has, by Theorem 9, the form 

when we want to use an HSI D," f of neutral or even type (here w(x') must be even, 
according to (4.18), for even type). But in the case of an HSI of odd type 

(and then w(x') must be odd, according to (4.19)). 
DEFINITION 7. The characteristic !d(x') constructed from the characteristic B(x') 

according to the rule (5.17)-(5.17'), where w(x') is the function (5.4), (5.8), is called 
the characteristic associated with B(x'). Also, the HSI D," f with this characteristic 
!d(x') is said to be associated with the potential K&. 

For sufficiently smooth characteristics B(x ') E c A ( Z n  - , ) the associated character- 
istic !d(xr) exists as an ordinary function (continuous for X 2 2a + 2n - l), by 
Lemma 10. 
REMARK 17. If the characteristic &X') of a potential is even (odd), then so is the 

associated characteristic !d(xr) of the HSI; see (5.8) and (2.34)-(2.34'). 
REMARK 18. It can be shown that if the characteristic 8(t') depends only on a 

single variable, 8 = B(t,/l t I), then the characteristic D(,') associated with it also 
depends only on thls variable. Moreover, !d(t') can be constructed effectively in 
terms of an expansion in Gegenbauer-Tchebycheff polynomials. 

4. Inversion of potentials of noninteger order a by hypersingular integrals. The next 
theorem is a consequence of the constructions in subsections 2 and 3. 

THEOREM 15. Suppose that the characteristic @(X') of the potential K;g,. a + 
1,2,3,. . . , satisfies the smoothness assumption (5.2) and the ellipticity condition (3.1 ). 
Then the HSI of neutral type with characteristic !d(xr) associated with &X') inverts the 
potential Kt: 

D,"KB"g, g,, g, E @(Rn) .  (5.18) 

If B(x') is even (odd), then D," can also be taken of even (odd) type. 

PROOF. Since "nice" functions g, E @(Rn) are being considered, the equality 

for the symbols can be proved instead of (5.18). [The passage from (5.18) to the 
Fourier transforms is easy to justify, although Q,"(x) and %;(X) are not, in general, 
multipliers. To do this note that if g, E @, then K& is infinitely differentiable and 
decreases sufficiently rapidly at infinity, by Corollary 2 to Theorem 4 (see also 54.3 
and §2.4).] 
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1. Suppose that D," f is of neutral type. By (4.12), it must be checked that 

Both sides of the equality here are homogeneous of order a; therefore, it suffices to 
prove it on the sphere X,-,. Substituting Q(u) from (5.17), we make use of the 
expansion (5.4), (5.6). Equality (5.20) can be reduced to 

It is not particularly difficult to justify the termwise integration of the series on the 
left-hand side here. Then applying (1.16), we come to a comparison of the coeffi- 
cients of the Yk,(xr), which really turn out to be equal. 

2. Suppose that 8(xr) is even. Then so is O(xr) (see Remark l&. Therefore, (4.12) 
and (4.13) coincide, and the symbol q;(x) of an HSI of even type is given by the 
previous formula. Therefore, the preceding proof is preserved. 

3. Suppose that e(xr) is odd. We use an HSI of odd type. The preceding proof is 
preserved in principle, but the form of the formulas changes somewhat. It is now 
necessary to apply (4.14) instead of (4.12) and ( l  .20) instead of (1.16). 

We mention that the use of HSI's not of neutral type only for even or for odd 
characteristics 8(tr) is due to the essence of the matter; see (4.5). 

5. Inversion of potentials of even order a = 2,4,6,. . . by hypersingular integrals. 
The passage from the proposed inversion (5.3) to the HS construction is no longer 
always possible. According to Theorem 8, for a = 2,4,6,. . . we have that: A) an 
HSI of neutral or even type arises only if it is a differential operator; and B) an HSI 
of odd type can be used only for odd Q(xr) and, consequently, for odd 8(xf). 

A) Inversion by hypersingular integrals of neutral or even Vpe. In this case the 
symbol Gj),"(x) of an HSI is, by Corollary 3 to Theorem 8, a homogeneous 
polynomial of order a. Consequently, by (5.19), it is necessary that %:(X) = I /Pa(x), 
where P, (x )  is a homogeneous polynomial of order a. Hence, 

and we arrive at the following assertion: 
Inversion of a potential KZ of even order a = 2,4,6,. . . by an HSI D," of neutral or 

even type is possible if and only if the characteristic 8(xr) of the potential is the 
restriction to the unit sphere of the fundamental solution ( l / p a j  of some elliptic 
homogeneous differential operator Pa(D) of order a. 

In the case a = 2 it is possible to get the following more interesting statement. 

THEOREM 16. Potentials of the form 
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with real characteristic @(a) have an HSI of ieutral or even type as an inverse operator 
if and only i f  

@(a)  = k[p,(o)] (2 - t I  ) l 2  , (5.23) 

where P2(x) = A(x, X )  is a positive-definite quadrutic form of n uuriubles. Moreover, 

where Q(t')  = ( n  + 2)P2(tt) - tr P,, und p2(x) is the quudrutic form conjugute to 
Pz(x). 

PROOF. By the preceding assertion (see (5.21)), the symbol %,"(X) is the quantity 
1/P2(x) inverse to a quadratic form of n variables. Since P2(x) is even, the symbol 
%;(X) is then even. The symbol is real because the function @(a) is real. Conse- 
quently, the quadratic form P,(x) is real and of a definite sign. I t  is known ([4], 
Chapter IV, 52.2) that 

for a positive-definite form P,(x). Here p, is the quadratic form conjugate to PT (i.e.. 
such that the matrices corresponding to them are mutual inverses). 

We remark that if a quadratic form is positive definite, then the form conjugate to 
i t  is also positive definite. Indeed, by Sylvester's criterion, it is necessary to derive 
the positivity of the principal minors of the matrix for the form P, from the 
positivity of those of the matrix for P,. This follows from the relation 

between the principal minors of mutually inverse matrices ([2], Chapter I, W, (33)). 
But then it follows from (5.21) and (5.25) that the general form of the characteris- 

tics @(X') for which l/X;(x) is a quadratic form of definite sign is actually given by 
(5.23). The inversion formula (5.24) also follows from (5.25), since (5.25) means that 
the symbol 9 i ( x )  of the inverting operator is the polynomial 

The passage to the HSI in (5.24) is realized by (4.26) and (4.28). 
B) Inversion by hypersingular integrals of odd type. Unlike in case A), where the 

HS construction for a = 2,4,6,. . . works only for special characteristics @(a), an HS 
construction of odd type turns out to be admissible for any odd @(a). 
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THEOREM 17. Suppose that the characteristic 8(x') of a potential K& of even order 
a = 2,4,6,. . . satisfies conditions (3.1) and (5.2) and is odd. Then the HSI of odd type 
with the characteristic S2(x') associated with @(X') inverts the potential K&: 

D,"K& G g,, g, E @(Rn).  

The proof is the same as that of Theorem l5 (see case 3' in the proof of Theorem 
15; Remark 16 should also be taken into account). 

6. Inversion of potentials of odd order a = 1,3,5,. . . by hypersingular integrals. 
A) Inuersion by hypersingular integrals of neutral or even type. The following result 

is symmetric to Theorem 17. 

THEOREM 17'. Suppose that 8(x') satisfies conditions (3.1) and (5.2) and is even. 
Then for a = 1,3,5,. . . the HSI of neutral type (with the necessary choice I = a)  or 
even type with the characteristic &?(X') associated with 8(x1) inverts the potential K&. 

B) Inversion by hypersingular integrals of odd type. By Corollary 3 to Theorem 8, 
the symbol Q,"(x) of the HSI is a homogeneous polynomial of order a. Since the 
symbol %,"(X) of the potential takes finite values for X # 0, it follows from (5.19) 
that this polynomial must be elliptic. However, here a = 1,3,5, . . . , and obviously 
there are no elliptic polynomials of odd order with real coefficients at all, and none 
with complex coefficients for n 3 (see [35], Proposition 20.1). There remains the 
single case n = 2, and, consequently, a = 1. A polynomial P,(x) = c,x,  + c2x2 = C 

X, c = (c,, c,) E C,, with complex coefficients c, = a,  + ib,, c, = a, + ib, is 
elliptic if and only if 

We have the formula 

where d = (d,,  d,), d, = b, - b,i, and d, = -a, + ia,. Indeed, (1.52) (for n = 2 
and a = 1) gives us 

1 
F( X ,  + ix, ) = ~ ( " ~ , ; ; " ] = 2 ~ i  X ,  - ix, - - X ,  27zi + ix,' (5.28) 

I X l2 
which yields (5.27) in the case P,(x) = X ,  + ix,. The general formula (5.27) follows 
from (5.28) on the basis of the well-known ([43], p. 108) formula 

where A is a linear transformation in R". Formula (5.27) leads to the following 
theorem. 

THEOREM 16. Two-dimensional ( n  = 2) potentials (2.1) of integer order a = 1 admit 
inuersion in the form of an HSI of odd type if and only if their characteristics have the 
form 8(x') = l/(c X'), where c = (c,,  c,) E c2 and (5.26) holh, i.e., ifand only if 
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Moreover, 
., 

sgn(det c )  
cp(x,, x t  ) = 2a [ ( b ,  - b l i ) z  + ( - a 2  + i a I ) a / ] ,  ax2 

or, what is the same, c p  = DA f ,  where D; f is the HSI of odd type with characteristic 

For convenience the results obtained on inversion of potentials are summarized in 
a table. In it we assume that the characteristic @ ( X ' )  of the potential satisfies the 
smoothness condition (5.2) and the ellipticity condition (3.1). 

Table of invertibility of potentials by hypersingular integrals 

neutral 

Type of 
h ypersingular 

integral 

even 

odd 

a 

no reservations 

Condition on the characteristic 
B(t7 of the potential under which 
inversion by an HSI is possible 

operator of order a. In particular, 
for a = 2 

Characteristic of the 
invertieg HS integral 

4. . .  

r = 2.4,6,. . . 

B(t') even 

8(r') is the restriction to the sphere 
of the fundamental solution of a 
homogeneous elliptic differential 

B(t') odd 

Q (X') is a polynomial. In 
particular, for a = 2 

Q (X') = [ ( n + 2) F2( X') 

I # 2,4,6, ... 

! = 2,4,6,. . . 
B(t') even 

B(t7 is the restriction to the sphere 
of the fundamental solution of a 
homogeneous elliptic differential 
operator of order a. In particular, 
for a = 2 

B(r') = -[p2(t1)] (2 - n)/2 

a = 1,3,5. . . 

Q(x') = - 
sin( an/2) 

Q(xt)  is a  polynomial^ In 
particular, for a = 2 

Q( 
= '(( - 2)/2) 4- 

8n2 
X [(n + 2)F2(x1) - tr P2] 

possible only for n = 2, 
a = 1, and B(t7 = 
(c lx l  + c2x2)-l, Im cl& # 0 

sgn(1m c,c) 
Q(xl)  = , 

X [ {  c, - *c2 
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7. Inversion of potentials of integer order in the general case. In subsections 4-6 
we established (see the table) that inversion of the potentials K; by HSI's is always 
possible for a not an integer, while for a = 1,2,3,. . . it is possible without 
restriction in the case of a = 2,4,6,. . . and odd 8(x') and in the case of a = 1,3,5,. . . 
and even 8(x'). In the remaining cases the characteristic 8(x') is restricted to be of a 
special form (see Theorems 16 and 16'). 

Suppose now that 8(a) is an arbitrary characteristic satisfying conditions (5.2) and 
(3.1). On "nice" functions f E S( R") the inverse operator can always be constructed 
on the basis of (5.3) in the form 

however, it is not always possible to pass to an HSI. We single out the case (which 
generalizes somewhat the case of evenness or oddness) where the inverse operator 
can be formed from HSI's of different types. 

Let (A1[ f )'(X) and (Ayf )"(X) be the noncentered and centered differences, 
respectively . 

DEFINITION 8. An integral of the form 

will be called an HSI of mixed type. 
DEFINITION 9. A function defined on the unit sphere is said to be almost men 

(odd) of order a if it is the sum of an even (odd) function and the restriction 
P,- ,(X/] X I) to the sphere of some polynomial P,- ,(X) of degree a - 1. 

1. Let a = 2,4,6,. . . . The second term in (5.29) leads to an HSI (of odd type) on 
the basis of Theorem 9 (see (4.19)) if the function o(x') is odd. By (5.4), this is 
possible if a,, = 0 for k = a + 2, a + 4,. . . . For the function l/%;(x) this means 
almost oddness of order a.  

2. Let a = 1,3,5,. . . . The same Theorem 9 enables us to represent the second term 
in the form of an HSI bf neutral or even type. Here (4.18) and Remark 16 force the 
function o(x') to be even. We conclude from (5.4) that evenness of o(x') is almost 
evenness of order a of the function l/%;(x). 

As for the first (differential) term in (5.29), Theorem 13 allows us to write it also 
as an HSI. It will be of neutral or even type for a = 2,4,6,. . . and of odd type for 
a = 1,3,5,. . .: just the opposite of the second term in (5.29). We arrive at the 
following result. 

THEOREM 18. If l /%;(X) is almost odd (even) of order a for even (odd) a ,  then the 
operator inverse to the potential K& can be constructed in the form of an HSI of mixed 
type (5.30). 

In the general case, when neither almost evenness nor almost oddness necessarily 
holds, we restrict ourselves to the assertion that the inverse operator can be obtained 
in the form 
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where Pa(D) is the differential operator (5.3, D" is the Riesz differentiation 
operator (Da = D," InEl ), 

1 O, a = 2,4,6 ,..., 

and 

Ncp = p.v. L '((X - ')/Ix - ' 1 )  dt 
n ( X  - t(" 

is the multi-dimensional Calderbn-Zygmund operator with characteristic 

which has zero mean value. Here the a,, are the coefficients in (5.4) and (5.6). 

H. Inversion of the potentials K& by hypersingular integrals 

(extension; convergence in LP) 

Let us now invert the potential f = K&, by finding solutions rp(x) E L,(Rn), 
1 G p n /a .  The HS construction will no longer converge in the usual sense; it will 
be the limit in the LP-norm of the corresponding truncated HSI's. Two central points 
precede this result: the annihilation of the kernel of a Riesz potential by the 
associated HSI (subsection l), and the integral representation of the truncated HSI's 
(subsection 3). 

Let k,*(x) = 8(x')/)x r-" be the kernel of the potential. The conditions (5.2) and 
_C_--- 

7 3 . 1 )  for B(x') are assumed to hold. In this section the characteristic B(x') is assumed 
to be arbitrary when a is not an integer, even for a = 2,4,6,. . . , and odd for 
a = 1,3,5,. . . [so that Pa(D) E 0 in (5.29) (see Remark 16), and it is always possible 
to invert by an HSI (see Theorems 15, 17, and 17')l. 

Let 

denote a truncated HSI. 
1. The annihilation of the kernel of a potential by the associated hypersingular 

integral. 

THEOREM 19. The HSI with the characteristic S2(x') associated with B(x') annihilates 
the kernel of the potential: 

for all X E R" \{O). The interpretation of (6.2) in the framework of generalized 
functions ( over S )  is 

D"ka n e = 6, (6.3) 

where 6 = 6(x) is the delta function concentrated at the origin. 



PROOF. First of all we mention that the integral in (6.2) converges for x # 0. 
Formally, (6.3) follows from the relation (5.19) between the symbol 9,*(x) and the 
symbol %,"(X) in the case of the associated characteristics !2(tf) and B(t'). However, 
a direct justification of thls approach encounters essential difficulties connected with 
the bad behavior of k,"(x) as x -, 0 ("bad" for the HSI D,"). And, of course, it is not 
possible here to use the Gel'fand-Shllov theorem on passing from the convolution 
D,"k," to the product of the symbols. 

Plan of the proof: 1 ) We introduce the functioilal 

and prove that it has the representation 

where a*(x) = S2( -X), then show that this is a continuous functional in S( R"). 
2) Using the representation (6.5), we show that d l, from which it will follow 

that (G, v )  3 ( 6 ,  g,). 
3) On the basis of the definition (6.4) we derive the required equality (6.2) from 

2). 
1. Suppose for definiteness that the HSI D," is of neutral type. We have 

I 

+ 2 (- I)'c;/ k;(t) dt/ 
g,(t - vx) Q(-X') 

v =  l R" bi>e I X 

To get (6.5) it remains to justify passage to the limit under the integral sign. This 
can be done with the aid of the Lebesgue dominated convergence theorem with the 
estimate 

I (D;*.s)(x) I< 4 1  + I X I ) - " - ~  (6.6) 

taken into account (cf. Theorem 1 l), where c  does not depend on e. 
Let us show that the functional G is continuous (i.e., that G E S'). Suppose that 

g,,,,(x) -. 0 as m -- oo in the topology of S. From (6.5) we have 
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The second term can be estimated on the bakis of (6.6). In the first term D,".% can 
be estimated directly after application of the formula 

where 0 5 1 and I m (written out for the noncentered difference). The 
corresponding computations are not complicated and are omitted. 

2. Since (6 ,  p )  Ef ( 2 n ) " ( ~ ,  @), we have 

by virtue of (6.5). Since 

for p E S(Rn), we have 

( 6 ,  q ) =  (2n)"/ k i (x)F- ' [~i ) i ( -x)  V(-X)]  dx. 
R" 

Here we must carry over the Fourier transformation to the kernel ki(x), i.e.. prove 
the equality 

for functions #(X) of the form #(X) = q;(x)p(x), ~ ( x )  E S(R"). We established 
such an equality in Theorem 5 (with the footnote to that theorem taken into 
account). The condition I &X) l <  c lx I-", b > n - a, in that footnote holds by 
Theorem 1 1. 

3. In (6.4) we choose a function p(x) E C," with support in the shell q < ( X  (< N. 
By carrying out direct estimates, it is not hard to.get (with the smoothness of the 
kernel k;(xr) on X,-, taken into account) that 1 (D,",,k,")(x) l <  c for q X (c N ,  
where c depends on q and N but not on E. Then it is possible to take the limit under 
the integral sign in (6.4), and, since (G, p )  = p(O), we have 

From this we have (6.2), since q(x)  is arbitrary. 
2. Fundamental solutions of hypersingular operators. In essence, the preceding 

theorem gives the fundamental solution of a hypersingular operator. 

REPHRASED THEOREM 19. The kernel kt(x) of the potential K& is the fundamental 
solution of the hypersingular equation D; f = g, whose characteristic G(t ') is associated 
with 8(xf). 

The converse problem is interesting. Namely, suppose that we are given an HSI 
with nonsingular symbol. How can be find from its characteristic G(tf) the character- 
istic 8(tf) of some potential (2.1) for which G(t') is the associated characteristic? 
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That is, for the HS operator D3; is it possible to find the fundamental solution from 
its given characteristic? Knowing S2(t1), is it possible to compute 6(t1) effectively? 
The next theorem answers these questions (for simplicity we consider Cm-character- 
istics and use HSI's of neutral type, so that for a = 1,3,5,. . . the characteristic S2(t1) 
is taken to be even). 

THEOREM 19'. Let S2(a) E Cm(Zn-,). If the symbol of the HSI DnQ f is not singular 
on Z,, - , , then there exists a characteristic 6(a) E Cm(Zn - , ) such that 

where 6(x') is computed for a # 1,3,5,. . . by the formula 

A proof can be obtained by the expansion of l / q i ( a )  in a series of spherical 
harmonics and use of the formula 

where q (o)  = Z,., rp,,Yhp(a). This formula is true also for integers a if the summa- 
tion on the left-hand side is over the k having the same parity as a. 

We remark that. because of the inclusion of the differential operators in the scale 
of HS operators (obtained in Theorem 13). the formula (6.7) (as well as its analogue 
for a = 1.3.5,. . . and the similar formulas for HSI's of even or odd types) contain 
the fundamental solutions of elliptic homogeneous differential operators with con- 
stant coefficients. 

3. Integral representation of truncated hypersingular integrals. 

THEOREM 20. Let f (x)  = K& be a potential (2.1) with density q( t )  E L,(Rn), 
l g p n/a. Then 

where the kernel has the form 

where 
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corresponds to the cases of the noncentered or centered dqference in the HSI D,". 

PROOF. We have 

Suppose for definiteness that the HSI is of neutral type. Proceeding with (6.13), 
we have 

From this, after the substitutions t = l  6 1 y and 6 = ~ q ,  we get 

I 

X W(yo  2 ( - l ) v ~ q '  - q: - vy  ) dy 
I,,", IY r+. ,,=o 1 1  - V Y I  

which coincides with (6.8) and (6.9). The representation (6.10) is obtained by the 
- inversion y = t A  t with use of the equality I t' 1 t ( - vt ' I = I t - v[' I . 

REMARK 19. We emphasize that the representation (6.8) was obtained for arbitrary 
summable characteristics e(t ')  and Q(t ' )  on X,,-, that are not connected with each 
other in any way. We shall see below in subsection 5 that if Q(t ' )  is the characteristic 
associated with e(t'), then X, , ( E )  is an averaging kernel. 

4. The Fourier transform of the kernel of the representation. 

LEMMA 1 1. The Fourier transform of the kernel can be computed by the 
formula 

where X = 0 in the case of an HSI of neutral type, and X = 1 in the case of even or odd 
type. Also, 
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where 

T( -a, r )  is the incomplete gamma function, and L = k for h = 0, L = 1/2 - k for 
h = 

PROOF. Similarly to (4.1 l), we have, for the truncated HSI in terms of Fourier 
transforms, that 

(D;../ = %..(x)f(x). 

where 

Then, by (2.89), 

(~n"..f )-(X) = X;(x)%,,(x)@ ( 4 .  (6.17) 

On the other hand, the representation (6.8) yields 

(%.,f ,^(X) = %o,e(x)@(x). (6.18) 

Comparing (6.17) and (6.18), we get that 

which coincides with (6.14). The representation (6.15) follows from (6.14) by passage 
to polar coordinates with account taken of the formula 3.38 1.3 in [6]. 

5. The kernel of the representation as an averaging kernel in the case of associated 
characteristics. 

THEOREM 21. If 8(x') and S2(x1) are associated characteristics, then X,,,(X) is an 
averaging kernel: 

%,,,(X) E L,(R") and / X,,,(x)dx= 1. (6.19) 
R" 

PROOF. By the smoothness of the functions Q(tl) and 8(t1), we conclude from 
(6.10) that X, ,(X) is at least continuous in Rn\{O). The estimation for l [ ( +  0 is 
simple and foll'ows directly from (6.10): 

e 1 / "  El+ 0. (6.20) 

For ( C l +  0 we have 

1 %,,,(C) I" c/[ C I"+'*-", 1 C I +  m, (6.21) 

where l* = l for l > a and l* = l + 1 for 2[a/2] l G a. (Recall that the case 
2[a/2] < l G a is allowed for noncentered differences and even characteristics.) The 
estimate (6.21) is more difficult, and to obtain it we must now use the connection 

(9 In the case of a centered difference of even order the term with index k = 1/2 in the sum (6.16). which 
has a removable singularity, should be replaced by f ( - 1)'/2~,!/2 1 X I-*. 
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between the characteristics B(t') and G(t'): it is based on the annihilation property 
(6.2). Let us prove (6.21). By (6.2), 

- - - l j ~ ( t ' ) k i " ( t ' ,  t ) dt. 
dn,1(a)161" 14>Kl 

We introduce a function 

such that kka(6', t )  is a finite difference of the function W(s) of a single variable 
with step h = 1 at the point s = 0: 

(for fixed values of 6' and t). By the familiar identity 

we get that 

kka(6', t ) = 0 < ~ < 1 .  (6.25) 

Direct differentiation of W(s) by the Leibniz rule with the homogeneity of B ( 0 )  

taken into account gives 

where c does not depend on 6'. Then (6.21) for l > a follows from (6.23) and the 
boundedness of G(t'). But if 2[a/2] < I G a, then these arguments do not suffice. 

We make use of formulas for passing from a difference of order I to a difference 
of order I + 1 (see [25], (1.4) and (1 S)). In [25] the kernel X, ,(6) was estimated at 
infinity for the case G 8 z 1. The estimate in [25] could be made because i t  was 
observed that the integration in (6.22) and (6.23) was actually carried out not over a 
ball but over a shell. This device does not work here, and we shall transform the 
kernel %,,,(E) with the aid of the indicated passage. Namely, we apply the identity 

which we obtained in [25], $1. Here I = 1,3,5,. . . , and the function (P,'f )(X) is odd 
with respect to r. Using the evenness of G(tf), which follows (see Remark 17) from 
the evenness of 8(t'), which, in turn, is mandatory (see Remark 15) for an HSI of 
neutral type, we get 
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where c, = 1 for p = 1,2,. . . , ( l  - 1)/2, and c(,+,,,2 = f. Let I,([) be the generic 
term of the sum in (6.28). After the substitution t = 7/17 f we obtain 

where 

Then the estimates are performed similarly to (6.24)-(6.26) by introduction of the 
function 

here instead of (6.26) we get that 

and then (6.21) for 2[a/2] < l G a follows from (6.28) and (6.29). 
The estimates (6.20) and (6.21) imply that E L,(Rn). It remains to show 

that the kernel is normalized. For this, take cp(x) E @(Rn) in (6.8) and let E go to 
zero in (6.8). We get 

It remains to use the fact that (D," f )(X) = cp(x) for cp(x) E @(Rn) (see Theorems 
15, 17, and 17'). Theorem 21 is proved. 

6. Convergence in L, of the truncated hypersingular integrals and inversion of 
potentids in the framework of LP-spaces. On the basis of Theorem 20 we now arrive 
at the fact that the truncated HSI D,",, f converges (in the LP-norm) as E -. 0 on 
functions representable by potentials with p-summable densities, and it generates an 
operator inverse to the potential K& in the framework of the LP-spaces. Namely, 

THEOREM 22. Suppose that f(x) = K&, 1 p < n/a, and that conditions (3.1) and 
(5.2) hold for the characteristic B(x'). Then 

where Q(x') is the characteristic associated with B(x'). 

PROOF. By (6.8) and (6.19), 

and (6.30) is obtained from this by using the Minkowski inequality with a subse- 
quent passage to the limit under the integral sign justified by the Lebesgue 
dominated convergence theorem. The theorem is proved. 
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Thus, the hypersingular integral D," f with the associated characteristic inverts the 
potential K," in the framework of the LP-spaces, 

if convergence of the hypersingular integral is understood in the sense of conver- 
gence in Lp(Rn): 
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