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ON SPACES OF RIESZ POTENTlALS 
UDC 517.9 

S. G .  SAMKO 

Abstract. In connection with problems which arise in the theory of  integral equations 

of the fust kind with a potential-type kernel we investigate the space o f  Riesz potentials 

P(L ) = Cf = K ~ I ~ ;  E Lp(Rn), 1 < p < nla], where K~ is the Riesz integration operator 

j;ae ( &X) = lxlQax)). We give a description o f  the spa& Ia(L ) in terms of  difference a& P ! 
singular integrals, establish a theorem on denseness o f  C;(R") in Ia(Lp). and indicate a 

"weight"@ariant description of f(Lp).  

Bibliogaph y: 44 titles. 

The theory of Sobolev spaces of Bessel potentials, which are related to multiplication 

by (I  + P ( ~ ) ~ / ~  in Fourier transforms and which turn out to be very convenient in applica- 
tions, is well known ( [ l ] ,  [7] - [9], [l41 , [27] , [28], [44], etc.). Some problems, however, 
reduce (see, for example, [l81 - [20]) to the spaces Ia(Lp) of Riesz potentials, which are 

related to multiplication by PIa in Fourier transforms and which consist of functionsflx) 
whose derivatives @f are summable in R" to power p b I  which is independent of IPI. Our 

goal is a study of spaces of Riesz potentials in R". In this paper we consider the following 
basic questions: 1) a description of the spaces Ia(Lp) in terms of the Riesz derivatives 

Drf, which are the singular difference integrals introduced by E. M. Stein [42] for I = 1, 
0 < a < 2, and in their general form by P. I. Lizorkin [8] -[l01 , and which are the multi- 
dimensional analog of the fractional derivatives of Marchaud [38] (in the case of spaces of 

Bessel potentials, such a description is given in [9]); 2) the denseness of c in Ia(Lp); 3) 

bounds of the type lIDpflL 4 cllD~fllp, q 4 p. 0 < Ifl 4 a./ E L;,,. 
We note that for consideration of Riesz derivatives DFf we may successfully weaken 

the usual condition I > a to I > 2 [a/2]; moreover, it turns out that the case where a is an 

odd positive integer is to some extent exceptional, requiring us to take only I = a. 
In 9 1 there are auxiliary assertions (we call attention to one of them, on "annihilation" 

of the Riesz derivatives of odd integral order for I > a). In 92,  for spaces of Riesz poten- 
t i a l ~  we construct an integral representation, using which in 9 3  we give a description of the 

spaces Ia(Lp) in terms of Riesz differentiation. In 9 3  we also establish certain imbeddings 

of spaces. In 9 4  we clean up the question of existence of weak derivatives of orders Ipl a 
and their representation by Riesz derivatives. 9 5  contains a theorem on the denseness of 

-- 
AMS (MOS) subject clarsifimtionr (1970). Primary 46E35; Secondary 45A05. 
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C," in Ia(Lp). In view of the above-indicated "annihilation" of the derivatives ~ : "+ ' f  for 

I > 2m + I ,  it is necessary here to study the case a = 2m + 1 separately. And, finally, 56 
contains yet another variant of the description of the spaces Ia(Lp), in which information 

on a function f(x) is given in terms of weights. 

We should point out the work of C. S. Herz 1341, in which, in particular, the operation 

of integration was investigated in the scope of the spaces A:,,, which are related to Besov- 

Taibleson spaces. 

We remark that for consideration of weak derivatives in 54 we use in an essential way 

the space @ of functions f(x) E S which are orthogonal to  the polynomials and invariant 

relative to Riesz integration; this space was introduced by P. I .  Lizorkin in [7] and [8]. 

And, finally, we note that a description of the space Ia(L,) in the one-dimensional 

case was given in [l 8) and [20] . - 
NOTATION. R" denotes euclidean space, x = (X,, . . . , X,) E R", j = ( 1 , 0 ,  . . . ,0); 

/3 = (P1, . . . , p,,) is a multi-index, 1/31 = PI + - + p,,; 

a'? f A/ = -+ ... I-- , azf 
a.r; . a ~ : ,  

dx=dx, . . . dx.. (f. v) = $ f ( x ) g ( x ) d + ;  (,c,/) ( X )  =\(X-t),  tczRn; 
P 

x = rothy is the rotation in R" which se'nds y E R" to x E R" so that h/lh( = r o t h x  

C; = C,"(Rn) is the class of infinitely differentiable functions with compact support in 

R", and S is the class of infinitely differentiable functions which decrease at infinity faster 

than any power (see [2]).* @ is the subspace of S consisting of functions which are orthog- 

onal t o  the polynomials [7] ,  [8]; a (continuous) imbedding ZI C Z 2 ,  0 . l I Z 2  cl1 (lZ of 
two normed spaces will be denoted, as usual, by Z1 + Z 2 ;  and, finally, 

7Yanslator's note. The reference here is apparently t o  8 1 .10 in Chapter 1 o f  121, where S is 
used t o  denote the class o f  infinitely differentiable functions in R" which together with their derivatives 
approach zero more rapidly than any power o f  1 / k l  as Lrl -r m. 
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5 1. Auxiliary assertions 

The Riesz potential 

is defmed, according to a theorem of S. L. Sobolev [22], on all of Lp(Rn) for 1 < p  < nja. 

It is weU known ( [ 6 ] ,  [23], etc.) that 

for the choice of rn(a) indicated in (2) (at least for E S). Following Lizorkin [9], we put 

(In [9], for the defmition of TFf a fourth order entered difference was used instead of 

(A: f ~ x ) . )  It is obvious that the integral in (1 -3) converges (absolutely) for I > a for suffi- 

ciently smooth functions. We show that it converges conditionally for l > 2 [a/2]. (In 
other words, for I we can take the odd integer next to a.) We can see this immediately for 

f E S, and below, in 53,  we prove it for all of P(Lp). We shall assume that I is odd, since 
if 1 > 2 [a121 is even, then I > a. We have the identity (I = 1, 3,  5, . . . ) 

where 
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which is anti-invariant under reciprocals: ?,(1/~) = - ? / (T) .  The following identity in finite 

dimensions corresponds to (1.4): 

where the function ( e f ) ( x )  is odd in t .  In such a case the limit 
1-1 - 

-- " (A:'/) (X + RI) 
lirn d x = - 2  1 

2 I f k = ~ p  III"" R" 

exists, since l + 1 > a. 

It is not difficult to show that 

where dnPl(a) is the constant (3). It is calculated in the Appendix to this paper. Here we 

encounter a rather unexpected property: dnPl(a) = 0 for a = 1 ,  3, 5, . . . and l > a at the 

expense of the coefficient al(a), which vanishes for a = 1,2,  . . . , 1 - 1 .  The question 

arises naturally as to the vanishing of dnPl(a) for other values of a. We have the following 

result. 

LEMMA l .  Let a > 0. The roots of the equation al(a) = 0 consist preciseh of  the 
numbers a = 1,2, ... , l - l .  

PROOF. We have the equality 

whence it follows that Ql(m) = 0 ,  m = 1 ,  . . . , l - I ,  but @/(I)  = (- l y "  ' l !  # 0. (We note 

that the sum @,(m) for positive integers m is well known in combinatorial analysis; see [16] ,  

p. 50, or [37] ; it was used in [44] , p. 84.) It remains to show that Ql(a) # 0 if a # l ,  2 ,  

. . . , I - 1 .  For this we find the analog of (1.7) for nonintegral a. The natural means for 
this is the Hadamard fractional integrodifferentiation.P = ( x d / d ~ ) ~  (see [32] or [ 2 6 ] ,  
formula (23.17.1)): - 

( d o )  = 0 ,  X > 0) ,  which has the property 

l..: : :.;- p; 
".<;- 
. . . . . ., 
! . .  . -..- .- 
p:::: :L , - . . .,.-- l;:-. . . ,. 
.~. . .- . .>. 

1 -- :.cr l;;.:?.:' 
, ".. . . 

/"-l .+..-.d.. 
. 

l..... . . - ... . . . 
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It follows immediately frorrl ( l  .9) that 

l 
k H" [ ( l  I ) ' - l ]  ( X )  = 2 (- I )  Gk-"xk, 

k= I 

from which we obtain 

' AI (a) = -Ha / ( l  - I )  -1 l (X) lx=,' 
and then 

A t  (a) = - r(1 -a) , O<a<l, a # 1 , 2  ,..., 1-1. 

In fact, for 0 < a < 1, (1.1 1) follows from (1 -10) by (1.8'), and for the remaining values 

of a it can be obtained by analytic continuation with respect to  a. It follows from (1.1 1) 

that axa) # 0 for the values of a indicated in (1 .l 1). In addition, 

( - l (a) > 0 a > l, (I -12) 

and, consequently, @&a) # 0 also for a > I .  It is not difficult to obtain a proof of (1.12) 

by induction, using the easily verified recursion formula 

l 
-AI+, ( a +  1) =AI,, (a)-&(a). 
l +  1 

We shall not dwell on this. 

With regard to (1.6) and Lemma 1 we define the Riesz derivative Daf by the equation 

where I is any positive integer greater than 2[a/2] if a f 1, 3,  S, . . . , and I = a if a = 1, 
3, 5, . . . . For the choice of dn,'(a) indicated in (3) the derivatives (1.13) are independent 

of I, since 

and we shall sometimes write Daf instead of DPf, understanding in what follows the integral 

in (1.13) as conditionally converging in L,(Rn): 

Pi'f) (X) E lim ( ~ t , n  (X), 1 > 2 [f ] . 
E-D 

where D:, f is the "truncated" Riesz derivative: 
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In view of the sudden emergence of the "annihilation" of the Riesz derivatives of odd 

integral order: 

we shall indicate yet another proof of ( l  .17), without passing to the Fourier transform; the 

proof is limited to the case a = I .  We have the following result. 

LEMMA 2. Let 0 < a < 2 and let f(x) be such that cf exists as the limit (1 .l 5) for 

1 = 1. Then this is so also for l = 2, 3, . . . , and 

TPf =AI (a)  T:f. (1.18) 

In fact, since 

we have 

1-1 

T? J = TP,. + (- I ) ~ c ~ ~  d t )  . 
k=1 111 >E I Inta 

Making the substitution kr -+ t in the first integral and (k + 1)t -+ t in the second, 

we obtain 

and hence 

which coincides with (1.18) and proves Lemma 2 and, together with it, also (1.17) for 

a =  l .  

We note that Daf = (- A)*)mf, f E S, for a = 2m, m = 1, 2, . . . , by (1.14), and in 

general 

D=\ - ~ ~ - 2 ~  (--A)'"\ = (-A)mDu-zmj, f E S ,  (1.19) 

for a Z 2m. In $ 4  we shall show the validity of (1.19) also in the setting of spaces of Riesz 

potentials. 

In what follows we use the following lemmas, which can be easily proved. 

LEMMA 3. If a(x) E C;, then: 1) the representation 

r ..... ,. .. .. 

. . -  
r l..: '.= :- 
I . -  

holds, where I$(x, t)l clt12(1 + ~ r l ) - ~ ( l  + Cx - tl)-'; 2) 
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LEMMA 4 .  The integral 

admits the bound y;(t) c(1 + ~tl)"-(I+ ')P+', where E > 0 is arbitrarily small and c = 

C(€), for p > n/(l + l), and the bound T;(t) G c(1 + Itl)-' for p > n/L 

In $4 we shall rely on some properties of the Riesz transform R = {R,, . . . , R,}, 

which was investigated in 1231 , [29] , [30] , [35] , 1361 , [ h ]  , etc. It is well known ([l  2 )  , 
Theorem 1.20) that the action of the operators Ri reduces in the range of the Fourier 

transformation to multiplication by - ixi/lrl, so that 

R 

(R, R) =z R;- -I 
j=l 

and the operators Ri are bounded in Lp(Rn), 1 < p < W (by a theorem of Mihlin [l21 on 

multipliers). The Riesz transform relates the Poisson operator P, to  the Poisson adjoint - 
operators Namely, let 

where a E R I  and j = 1, . .. , n; then (see G .  0. Okikiolu [39] ; [41], p. 485) 

Fo , j f=RiPof~PoRjf ,  f = L p ( R n ) ,  I < P < ~ -  (1.27) 

In $5 we use the following result. 

LEMMA 5. Let K ( X )  E L ,  (Rn) n L,(Rn), r > l ,  and let 
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Then llKN f  l l p  + 0 as N -* -, 1 < p < m. 

PROOF. In view of the uniform bound llKNllp 'G llJ(ll,  - Il f  ll , , ,  according to the 

Banach-Steinhaus theorem [5] it is sufficient to verify that K N f  -IT-, 0 on a dense set in 

Lp(Rn) ,  for example, for f  E C;. By means of simple transformadons it is not difficult to 

arrive at the bound 

where 1 < v  < p and c = c(supp f; n, p, r, v )  is independent of N. 

52 .  The spaces L;,, and Ia(Lp) .  Integral representations 

DEFINITION 1. We denote by L;,, = Li, ,(Rn),  1 < p  < 00, 1 < r < -, 0 < a < m, 

the class of functions f (x )  for which 

for arbitrary I > 2 [ a / 2 ]  (I = a for a = 1,  3 ,  5, . . .). 
DEFINITION 2 .  Let 1 < p < n/a  and 0 < a < n. Denote by Ia(Lp)  the class of func- 

tions f (x)  which can be represented by a Riesz potential f (x)  = (Kacp)(x) with density cp E 

LP(RR).  
It is obvious that Ia(Lp)  C Lpa by a theorem of Sobolev [ 2 2 ] .  The fundamental 

result of 5 9 2  and 3 will consist in the assertion that L;, = Ia(Lp)  n L, in the case 1 < p  
< n / q  p S r S p,. Hence, in particular, it will follow that for the indicated values of p and 

r the definition of the space L;,, is independent of the choice of I > 2 [ a / 2 ] .  

LEMMA 6. Let f (x )  = (Kacp)(x), 0 < a < n, and d x )  E Lp(Rn) ,  1 < p  < n/& Then 

(A$) (X) = I t Ia J h.a (5) V (X -! 1 1 r0trD dip (2 -2) 
P 

where 1 = 1 ,  2 ,  . . . and 

In fact, 

which coincides with (2.2). 
The following information relative to the kernel k,,,(E) is essential for what follows. 

LEMMA 7. Suppose that I > 2 [a121 . Then 
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S kr.. (E) dE = 0; (2.4) 
R" 

moreover, k,,,(U E L ,  (Rn ) in the case l > a, and in the case 2 [a121 < I a the integral in 
(2.4) is understood as conditionally convergent : 

PROOF. 1 ) We show that 

which also ensures that kI,,([) belongs to the class L, (Rn)  for I > a. We use the notation 

+ a-n 
w ( s ) = v i 1 ( a ) I E + s i I  O < s < I ,  

so that kZ,,(t) = (A: w)(o). By the well-known (1381 ; [24], 93.3, formula (4)) identity 

h h 

(A~w)  (S) = .. .S w(O(s+sI + ... + SI) ds, ... dsr, h E R', 
0 0 

we obtain that kIPa(t) = wO)(s + 0)l,=,, 0 < 0 < I, SO that 

I kt.a (E) I c I E + 07 I -"-lm, 

as required. 

2) For an odd positive integer l we have 

for arbitrary N > 0. In fact, 

Replacing the index of summation k by I - k in the second term in the right side, we obtain 

that it differs from the first by the factor (- 1)' = - 1, which proves (2.6). 

3) It remains to  verify (2.4). For an odd I it is obvious in view of (2.6). Let I be 

even. Then I > a and kI,,([) E L,(Rn). In (2.2) we take p(x) E a. Then also f = Kap E 

(see [7]). We let t + 0 in (2.2). Since ~(~:f)(x)l < cltl' for f E (compare with (1.21)), 

and I > a, it is necessary t o  obtain that 
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Here, by a theorem of Lebesgue ( [ l  3 )  , Chapter V1, 53 ,  Theorem I )  we may pass t o  the 

limit under the integral sign, which yields (2.4). Lemma 7 is proved. 

In the following theorem we obtain an integral representation for the truncated Riesz 

derivative Dtef:  In what follows we shall not stipulate every time that 1 = a in the case of 

an odd positive integer a. 

THEOREM I .  Let f ( x )  = Kaq, 0 < a < n, and cp E Lp(Rn),  1 p < n/a . Then 

where 

moreover, 

PROOF. We have 

Hence after the substitution t = rotyq and y = E [  (and then q = r/1r12) we obtain 

-. 
k = O  

(Die/) P-) ' d n l  P) yn (a) J 1 g in dS J .." 1 m I"" 

4 
1 

- a-n 
- 

d5 ITI<IY S I k=o - l k - k  =l dr.  

Since 
4 

l = I 4 I l r J j - k -  ,= ~ ~ l r ( 2 ~ - 2 r l k + k 2 - =  ( r - k j l ,  (2.1 0 )  
I T  l 

(2.9) coincides with (2.7), and it remains to show that K1,,(lyl) E L ,  (Rn). Since 
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as It1 -+ 0,  we have also IJ(,,,(I yI)I G c, IylU-" as lyl -- 0. We estimate K,,,(lyl) as 

lyl -+ 
If I > a ,  then by (2.4) and (2.5) 

Let 2[a/2] < I G a ,  so that I is odd. In this case the summability of K 1,,(1 yl) on R" can 

be obtained at the expense, represented by equation (2.6), of integrating not over the 

sphere Itl < Iyl, but over the layer lyl - 112 < ltl < J y l  + 112. Namely, by (2.6) we 

have, for ly1 > 112, 

so that, taking account of (2.5), 

l I eX1.a (1q.I) l <  
d,,, (a) IYI" 1 I 

IYI- --< l~ I< lYl+- -  
a 

a- I 1 a-l 
(2.12) 

( l  I Y l" + )  ( I - )  (G I v l  

as I yI -+ m, which guarantees the condition Kl,,(l yl) E L,  (Rn). Equation (2.8), which 

is a consequence of the choice of the normalizing constants rn(a)  and dnSl(a), can be 

established by indirect means: we choose cp(x) E Q, so that f(x) E Q, and in (2.7) it is 

possible to  pass to  the limit as E -+ 0, which yields the equality 

Since Daf = q (for f, cp E Q, this is obviously at the expense of passing t o  the Fourier 

transforms), hence (2.8) follows. Theorem 1 is proved. 

The following result follows immediately from Theorem 1. 

THEOREM 2. For 'any choice of I > 2 [a121 the operator D; is a left inverse of 

the Riesz operator Ka in L,(Rn): 

In fact, from (2.7), taking (2.8) into account, we have, applying the generalized 
Minkowski inequality, 

]D:~-P%< 1 I ~ ~ ~ , ( i y I ) w ~ ( . o , e y ) d y + ~  

R" 

by Lebesgue's theorem on passing to  the limit under an integral sign. 

The following theorem, which extends the representation (2.2) to the case where 
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the information on representability of f ( x )  by a Riesz potential is replaced by the condi- 

tion f ( x )  E L;,,, also allows us below, in Theorern.4, t o  obtain a description of the 

space I ,(Lp). 

THEOREM 3. Let f ( x )  E L,(Rn) and DPf E Lp(Rn), where 1 < p < n/a, p G r G 

p, and l > 2 [ 4 2 ]  . Then for the difference (A; f )(X) we have the representation (2.2) 

for m > a: or, what is the same, 

where 

so that 

t 
m 

a.,,, ( X )  = z z  (- I ~ - - k ' l ~ - " ~  
k=o 

( I u ~ . ~ ~ ~ = L : ( ~ ) ~  and (2 .15)  

where c = c(n, a, m)  is independent of h. 

PROOF. Letting lp, = Dzf and Alp = amPh * lp, we have 

l +X (-l)'c;va 5 am.h(x-f)df 
1 - y jCtU 

v==] P It- yl>VE 

Since m > a,  we have am,,(x) E L,(Rn) (see the proof of the fact that kl,,(t) E L,(Rn) 

for I > a). Therefore we may change the order of integration in (2.16), so that 

hence after the substitution y -+ ~ y ,  T -+ E I Y ~ T  we find that 

l a- n 

Aye = dr.  
j T ja+" 

Setting T = roty(t/lt12), we obtain 



which, taking account of (2.10), reduces to 

Hence the equality (2.13) to be proved is obtained as E + O ,  taking account of (2.8). We 

justify the passage to the limit in (2.17), having carried it out in the metric of Lr(Rn). In 

the left side this is possible since the operator A is bounded from Lp(Rn) into L,(Rn) for 

p < r < p ,  (for p r <p ,  bouildedness of A follows from a theorem of Young on con- 
volutions, since amBh(x) E Lq(Rn) for I < 4 < n/(n - a); and for r = p, it follows from a 

theorem of Sobolev). For the right side we have, applying a generalized Minkowski inequality 

and taking account of (2.8), 

by a theorem of Lebesgue on passing to  the limit, since A r f  E Lr(Rn) and X,,,(lyl) E 

L, (R"). n 

The second of the equations (2.15) is a consequence of the formula rJ[x) = 

k'(x*h)f(x), and the first we obtain from the equality 

m a-n 
h I ~ . . ~ I ~ = I ~ I ~ J ~ ~ ~ - ~ ~ ~ ~ ~ - ~ -  h-0 1111 

resorting to  the rotation X = rotht. And finally, the agreement of (2.13) with (2.2) follows 

from 

Theorem 3 is proved. 

$3. The spaces Ia(Lp) and L;,, (continued) 

The following result is the fundamental assertion of this section. 

THEOREM 4 (a description of the space Ia(Lp)). In  order that f(x) E Ia(Lp) it is 
necessary and sufficient that 

in addition. 
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PROOF. Necessity of the condition f ( x )  E L P ,  follows from a theorem of Sobolev 

[22]  ; the condition DPf E L P ,  from Theorem 2.  Consequently, Io (Lp)  n L, c L;,r. It 

remains t o  prove the reverse inclusion. Let f ( x )  E L,;,,. According t o  Theorem 3 we have 

the representation (2.13). Noting that the right side in (2.13) is ( A r K o D a f ) ( x ) ,  we obtain 

It is not difficult to  see that functions which have identically coinciding finite differences 

may differ only by a polynomial (for this it is sufficient to  pass t o  the Fourier transform 

in S': 

and t o  use a theorem on  the general form of a functional which is concentrated at a point- 

see [ 3 ] ,  Chapter 11, 94.5). Since the functions f E Lr(Rn) and KaDaf E Lpo(Rn)  d o  not 

"contain" polynomials, we have 

f =Ka DUf E IQ ( L p ) ,  (3.4) 

which proves Theorem 4.  We note that in the case of a space of Bessel potentials (r = p)  

the equality Ia (Lp)  fl L P  = L;,p follows from resuIts of Lizorkin [g] - [10]. 

.... In fact, if a # 1, 3, 5 ,  then it is sufficient t o  verify that DPf E LP for f E C; at 

least for I > a. We have 

by (1.22). If a = 1, 3,  5 ,  ..., then I = a, and a similar bound can be obtained with the 

help of (1.4). 

COROLLARY 2. I f  f E L,(Rn) and Daf E Lp(Rn),  l < p  < n/a ,  p < r pa, then 
Da-€f E Lpc(Rn),  0 < E < a, and 

l\ D3-%Upe 9 - P D"/ up- 
We introduce a norm in L%,(Rn) by the equation 

THEOREM 5 (On imbedding of the spaces L;,, with respect t o  the parameter r). 

1.;,r,  + L,;.r*t (3 -7) 

i f1  < p < n / ~ a n d p < r ,  < r 2  < p a .  

The theorem is a consequence of (3.2) and the interpolational inequality 
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In fact, for f E LE,,, according to (3.4) we have l l f l l p a  G cllDaf lip by a theorem of Sobolev, 

and then 

THEOREM 6 (on imbedding of the spaces L;,, with respect t o  the parameter a). 

if 1 < p < n/a, p G r p, and 0 < E < a; in particular, 

PROOF. Let f(x) E L;,,. By (3.4), f = Ka-'K'Daf- Hence, according t o  Theorem 2 

we have Da-'f = KCDaf, SO that by the Sobolev theorem 

But then 

IIflI a-g 4 ~ I I f l l  a . 
L ~ e  .r L P . ~  

COROLLARY. L;,, - + L a - '  p,,r+6,ifl < p < n / ( ~ , p < r < p , , O < ~ < a a n d O < 6 <  

P, - 1- 

We also note certain properties of Riesz potentials which are related t o  the modulus of 

continuity. Let f(x) E L;,,, 1 < p < n/a, p G r < p, and I > a (a # 1,  3 ,  . . .). Then 

Hence (3.10) follows from (2.2) in view of the fact that kL,( t )  E L I ( R n )  for I > a. 

The estimate (3.1 l ) ,  which is due t o  Hardy and Littlewood [33] in the onedimensional 
periodic case, also follows from (2.2), in view of property (2.4) of the kernel kl,,(t). (Con- 

cerning the one-dimensiorial nonperiodic case, see also [ l 71  and [20] .) 
In concluding this section we note that (as follows from Theorem 4) in the description 

Iff(LP) = {f: f E L,,, Daf E LP,  oj(f, h) = o(lhIa)) of the space Ia(Lp), which was ob- 
tained in [ l81 and [20] in the one-dimensional case, the last condition is a consequence 
of the first two. 

94. On weak derivatives of integral order in Ia(Lp) 

In this section we shall show: 1) the existence of weak derivatives DPf of integral order 

(01 G a for functions f(x) E L, which have a Riesz derivative DQf E L, (Theorem 7); 2) the 
validity of (1.19) for such functions (Theorem 8). A weak derivative will be understood in 

the sense of generalized functions over @. Namely, we shall say that a locally summable 

function f(x) E S' has a weak (generalized) derivative DPf if there exists a locally summable 

function g(x) E S' such that 

. - . * -. - ... -. .. . 
L., ,,. .,.. 
S-;::.;: 

'" 
r~ ,?.-%>- 
555 
v-  :,..-? . . ~ ~  - 
. .. 

. . .  ec-Lzc ..-.-a- . . .. . m ..--- -. 
L.--... , -... :.. . . . . . -. 
I - > . '  

. . . . . . * . . , .L... - . . - - - > , . . .- 
l.. :,. L... 



(2, to) = ( - - 1)lB' ( f ,  ~ " o ) ,  o c= rb, (4.1) 
def 

and then DPf = g. A certain inconvenience of defi"ition (4.1), which consists in the fact 

that it determines the function g(x)  "to within an additive polynomial" (Lizorkin, [8]),  is 

not crucial here. 
For a > IPI we introduce the ("quasi-Riesz") potential 

which is in a sense similar t o  the Riesz potential K ~ - I ~ ' ~ ,  since DP(ltla-") = c(t)ltla-IPI-", 

where c(t) is a bounded function. The operator (4.2) can be represented as the composite 

of a Riesz potential with a Riesz transform: 

a-IS1 .- B a-IBI Kg ' P - R K  cp. (4 -3) 

where p E LP, l < P  < n/(a - IPI), and 

Bn R ~ = R ?  ... R,,; 

the Rj are the operators (1.24). In fact, since 

IBI B K;''w = (- 1) D Kaw = (- l)"l/eDBw (4-5) 

(at least for w E a), (4.3) is obvious for p E (pass t o  the Fourier transform). The validity 

of  (4.3) for cp E LP follows from the boundedness of  the operators in (4.3) and the fact that 

@ is dense in the LP-spaces, which was established b y  Lizorkin in [8] (see also [I 0 ]  , Appen- 
dix l). 

THEOREM 7. Functions f(x) E Ia(Lp) have al l  weak derivatives DPf of integral order 

101 a; moreover, 

In  addition, the derivatives Pf can be expressed in terms of the Riesz derivatives by the 
formula 

B IBI @f = R D f &$-'B' D"fj1) (4.7) 

PROOF. The existence of D I @ ~  E Lpa-IPI and the second of the bounds (4.6) are 

established in Corollary 2 of Theorem 4 .  The second inequality in (4.7) follows from (4.3) 

and the equation K a - I P ' D ~  = D I @ ~ ,  f E P(Lp). For a proof of the remaining equality in 

(4.7) it remains t o  show in accordance with (4.1) that ( K ~ Q - I ~ I D ~  a) = (I, (- D ~ w ) .  For 

101 < a this follows from the following chain o f  equalities: 

( l )  In accordance with (4.3). we assume that K ;  = R@ in the case IPI = a (= 1,  2, 3. . . .). 
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in which the first and the third are justified by Fubini's theorem, the second follows from 

( 4 . 9 ,  and the fourth from (3 .4) .  

For IBI = a it is necessary to  justify the equality 

(RBq,o)=(-l)'"(fllp,o"o), O E ( D ,  (4.8) 

where cp  = DQf E L P .  First we verify that 

In fact, since 

I (R%, a)  14 U R ' ~ , + ~ ,  - IIrpL - U m b ,  
and 

R IL(F R U) I<$ R ~ I ~ ~ , + ~ ~ , I T [ ~  1 m j P l .  

the left and right sides in (4.9) are bounded functionals in Lp(Rn),  and therefore it is suffi- 

cient t o  verify that they agree o n  the dense set Ip. Since  pp E Ip for p E Ip, by (4.4) it 

is sufficient to  verify that 

! K , ' $ , C I ) = - - ( ~ F , R ; ~ ~ ,  q > , s ~ c ~ .  

We put 

i X -  - l ' j dt. 

In view of Fubini's theorem and the formula 

j l i x  j' I ( X , ~ ) ~ ~ =  j d y  J f ( . ~ , ~ ) n ~  
& I ~ - Y I > E  4" Ix-y\>e 

we obtain 

But then 

(Ricp, (11) = lim (R/.Ev, m )  = -1im (9, Rj.e6>) = -((V, R;@). 
E - 0  E+O - (L.) ( L ¶ )  

which proves (4.10), and together with this also (4.9). Equality (4.8) follows from (4.9) if 

we write it in the form (RPp,  U )  = (- 1)IPi(cp, K Q ~ @ w )  by  Fubini's theorem and consider 

that = R P w  for w E @ (pass to  the Fourier transform). And, finally, (4.6) follows 

immediately from (4.7).  Theorem 7 is proved. 

Turning t o  the question of replacement of even order Riesz derivatives f b y  a 
power of the Laplacian (- A)mf applied to  functions f ( x )  E IQ(Lp) ,  we formulate the follow- 

ing lemma, which is essentially a consequence of the equalities 

which are well known for sufficiently "good" functions w ,  for example. w E @. Everywhere 

below (- A)m is understood in the weak sense. 
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LEMMA 8. Let 2m cr < n/p, m = 0 ,  1 ,  . . . .  Then 

( _-L\ jm JjaT _ ~ a 7 2 f . q  
W 

for p E LP, and 

Ka ( -A)"[ := ,ya- '"'1, 

if (-A)m f E LP and f E L,, 1 < r < n/(a - 2m). 

From this we obtain the following result. 

THEOREM 8. If f (x)  E IQ(Lp), 1 < p  < n/a, a 2 2m, then 

PROOF. Let f (x)  = KQp E Ia(Lp). Then it follows from (4.1 1) and Theorem 2 that 

D ~ - ~ " ( - A ) " K ~ ~ ~  = cp. Comparing this with the fact that Daf = tp also by Theorem 2,  we 

obtain the first o f  equations (4.13). The second can also be proved using (4.1 1): 

(- A ) m ~ a - m f  = ( - ~ ) m ~ a - 8 m ~ a - m ~ ' m q  = ( - A ) ~ K " ? ~  = cp. 

The theorem is proved. 

COROLLARY. The odd order Riesz derivatives D2"+'L m = 0,  1 ,  .... 2, + 1 a, 
of a function f E Ia(Lp)  can be expressed in terms of weak derivatives by the formula 

In fact, since af/axj = R,D1f according t o  (4.7), we have 

by  (1.25). But then (4.14) follows from (4.13). 

In concluding this section we note that it is not difficult t o  show that the description 

(3.1) of the space Ia(Lp)  remains equivalent if we replace Daf by D ~ - ~ " ( - A ) " ~  or 
(- A)"D"-~"~ in (3.1). 

$5. Denseness of C; in L;,,(Rn) 

THEOREM 9. The space C; is dense in L;,,(Rn) for 1 < p < n/a and p S r S p,. 

For a proof of this theorem we shall employ the usual means-approximation of a 

function by its average and a "reduction". And while the approximation of f ( x )  E L;,,(Rn) 

by the average can be accomplisl~ed easily by the fact that both the mean and the norm (3.6) 

are translation invariant, the approximation by the "reduction", which is not translation in- 

variant, encounters significant difficulties, which are related t o  the use of conditional con- 

vergence, reinforcing the necessity to work in spaces LP and L, with distinct values p and r 

(in particular, in the limit case r = p,). This difficulty can be  overcome by proving dense- 

ness via induction (Lemma 9), which we base on  the imbedding (3.9), having considered the 

case of odd integral a beforehand. 
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First of all we show that for a function f (x )  E L;,,(Rn) its average 

( X )  = j a (1)  1 (X-61) dt =C- n L;., ( r ) ,  
P 

where the function a( t )  E C: is normalized by the condition JRna( t )  dt  = 1 ,  converges to 

/ ( X )  in the norm of L;,,(Rn). We have 

and we need consider only the second term. Since D: f6 = (D: f )6  by Fubini's theorem, we 

have 

in view of boundedness of the averaging operator in Lp(Rn) .  Consequently, the average 

commutes with the Riesz differential on functions from Lgr(Rn):  Daf6 = @ a f ) 6 ,  and 

therefore 

IIDa(f - f8)  I l p =  lIDaf-(Daf)811pL-D.~ 

It remains t o  approximate f(x) by a function with compact support. 

Let ~ ( x )  be an arbitrary function from C; with carrier in the ball bl < 2, which is 

identically one for Ixl  1 and such that b(x ) (  9 1. It is necessary t o  show that the 
"reduction" 

approximates f  ( X )  in L%,r(Rn) as N -+ 00. We put 

so that it is necessary t o  show that llvNfl --, 0 as N -+W, if f  E LLr(Rn) .  For this it 

is sufficient t o  show that 

- D ( V  RP v f E Ia (LP). (5 -3) 

which constitutes the basis of the difficulty. 

1. Justification of  (5.3) for 0 < a < 1. Taking Da = D; for 0 < a < 1, we have 

/ 

where 

It is obvious that vNDaf + 0. We show that 
LP 
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B,; ;T' 0 
P 

for all f E LP,  (3 Ia(Lp)) .  By ( l  . 2 l )  we have 

and then 

which after the substitution t + Nt, x --+&X and an application of Lemma 4 yields the 

uniform bound - J  : G: t 

where c, is independent of N. Therefore by the BanachSteinhaus theorem it is sufficie; &tl";.L"'. , , , R  .:S>- ; : 

to  verify (5.6)  on a dense set in L.L. Assuming therefore that f E C; and its support lies 
I 

in the ball < a ,  we obtain 

Since Cx - tl > It1 - a/N for < o/N and It1 > 2a/N, we have from (5.1 0 )  

where N > No > a ,  as required. 

2 .  Extension of  a  theorem on denseness t o  the case (Y > 1 (a f 1, 3 ,  5 ,  . . . ). The 

validity of the theorem on denseness of C; in Ia(Lp)  can be obtained for 0--by 

extension of the method of induction to the general case. 471 



LEMMA 9. Let m = 1 . 2 ,  . . . .  n - 1 .  If the theorem on derzseness of C: it1 IU(I,,) 
. .  holds for 0 < a < m, then it holds also for m < a < m. + 1 (a f l ,  3, 5, .).(') 

PROOF. It is necessary to show that 

g D a ( v N f ) I p z O ,  rn<a<nz+ 1, (5.1 1 )  

for f E Ia(Lp) under the assumption that C; is dense in 17(Lq) for 7 < m. By the formula 

I 

( ~ ; a f )  (X) = 2 C: (A:") ("1 (A:- h (x  -4 
h =o 

we have 

where 
( A : , ~ )  (.v) (A:-~J) ( X  - kl)  

B . .  = 1 - df, k = 1 , 2  ,..., t, 
RR 

j 1 1"" 
so that in the proof we need 

... ~ P s ~ j j P N ~ ~ O y  ~ E I ~ ( L ~ ) ,  k = 1 ,  , l .  (5.13) 

The idea of the proof of (5.13) consists in the fdowing. We shall prove the following 

assertion, which is stronger than (5.13): 

where 0 < rk < m, k = 1, 2, ..., 1. From the feasibility of (5.14) for rk < m  < a will 

follow, by the imbedding (3.9), the feasibility of (5.13). For a proof of (5.14) we first 

obtain the uniform bound 

.... for a certain choice of 7, E (0, m), k = 1, 2, I; the constant c is independent of N. 

After this, by the Banach-Steinhaus theorem, (5.14) remains to be verified on a dense set in 

I ~ ~ ( L ~ ~ ) .  Since < m ,  we have (by assumption!) that C: serves as such a set. Verifica- 

tion of (5.14) for f E C: concludes the proof of Lemma 9. 
We are using the possibility (provided by Theorem 4) of assuming that I > a in sub- 

sequent estimates. (The choice I > a is essential; the case a = l ,  3 ,  5,  .... which forces 

the choice I = a, is considered separately.) 

1) We obtain the uniform bound (5.15). Using Lemma 3,  we have 

and then 

(') The case a = m for m = 1 ,  3, 5 ,  ... is excluded from consideration. 
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I (A::'/) ( X  - k t )  J P d x  dt 
(5.1 6) 

P N 

If k = l, then 

and after the substitution X -+ Nx, t +Nr and application of Lemma 4 we obtain 

if k = 1, 2, . . . , 1 - 1, then, applying the Hblder inequality with exponents p, = q, /p  and 

p2  = n/p(a - 7,) to  the inner integral in (5.15), we obtain 

We apply (3.10), according to  which 

if I - k > 7,. Therefore, taking y, > I - k, we obtain 

Applying Lemma 4 to the inner integral (which reduces to the condition yk > a - k 
- l ) ,  we have 

under the condition a - k < y,. The uniform bound (5.15) follows from (5.17) and (5.19) 

under the choice yk E (a - k, I - k) n (0, m) for k = 1, 2, . . . , 1 - 1 (it is obvious that 

this intersection is nonempty) and y, E (0, m). 

2. We verify (5.14) for f E Cr.  Extending (5.18) (which is valid also for k = 0, we 

have, by Lemmas 3 and 4, 



Nk ((I + l t l 
P 

If k = l,  then from the above follows 

where 0 p S l - k. The integral on the right converges and the right side approaches 

zero, if we take p E (l - k - y,, min{l - k, l - a) ) .  Lemma 9 is proved. 

REMARK. It follows from (5.12) and (5.15), according to (3.1), that the space IQ(Lp)  
is invariant under the "reduction" (5.1): 

3. Justification of  (5.3) for a = l ,  3 ,  5 ,  . . . . Let a = 2m + l ,  m = l ,  2 ,  .. . . Since 
v N f  E Ia(Lp)  according to  (5.20), the Riesz derivative D~"" ' ( v N f )  can be replaced by 

weak derivatives in accordance with (4.14). By boundedness of the Riesz transform in 

Lp(Rn),  1 < p  < m, it remains to show that 

It is obvious that aAm(vNf)/axi  can be represented in the form 

where the c , , , ~  are constants; k and s are multi-indices. Here all the weak derivatives LYf 
exist, and LYf E L P l k ,  by Theorem 7 .  It remains to show that 

For Ikl = 0 we have 

since P f  € L p ( R n )  for IS( = 2m + I = a. l e t  Ikl > 0. Applying the Holder inequality with 

exponents p ,  = n/lk[p and p2 = n/(n - Iklp) in (5.21),  we obtain 



since P f  E Lplk,(Rn).  Theorem 9 is completely proved. 

REMARK. The proof of Theorem 9 on denseness in the excluded case a = 1 ,  3, 5 ,  

. . . , which was carried out by passing t o  the weak derivative, could have been accomplished 

entirely within the framework of  Riesz derivatives. However, the calculations for this are 

significantly more complicated. We shall indicate briefly such a proof in the case a = 1 .  
The limit passage (5.6) is necessary in the proof. By (1.20) we have 

where 

We omit the bounds for qN f, which are similar t o  the bounds for BNf  in (5.7)-(5.10) and 

are based o n  an application of the Banach-Steinhaus theorem. For a bound on the operator 

A N V j  we use its similarity to  the Riesz transform (1.24). We represent it in the form 

- 
where P N P j  is the Poisson operator (1.26), and KN,,  is the convolution operator KN,; f  = 

KN,j  * f  with summable kernel 
n+1 - - 

KN./  ( t )  = ti (1 t  l2 + NZ) ' - t j  I t  I-" (1 t  ( + N)-l E L1. 

Applying (1.27), we obtain 

AN.if = cnRjf --cnP~Rjf + K N . ~ ~ ,  

and then 

Here the first term approaches zero by the fact that R, f  E Lp,(Rn), and the second by  

Theorem 5. 

; --..-- 
L., G..--:..:.:. . . - 
F ;-;-..y.. ..,- . . . . , - , .  . ,.:. . .--+ 
l . . . . - . . . ~ .  

, . .  ..-. . . ~ 

. . .  
, ,. . . . . . .: . .  . 
;z,-:s:.:d 
P'. .L '," , -2r.c; 7; 
p:.w<. .: . . . 



ON SPACES O F  I<ll:SZ POTENTIALS 

$6. A description of Ia(Lp)  in terms of weights 

THEOREM 10. In order that f ( x )  E Ia (Lp ) ,  1 < p  < nla, it is necessary and sufficient 

that 

whereI>2[a/2] ( I =  & f o r a =  l , 3 ,  5 ,  ...) in t h e n e c e s s i t y p a r t a n d I > 2 a ( a +  l , 3 , 5 ,  

.. .) in the suffciency part. 

PROOF. Necessity. The well-known inequality 

[ I x rap 1 ( K ~ P )  (I) IP dx < C (n, P, U) [ ( P  P, 1 < P < L , 
a (6-3) 

is the multidimensional analog of an inequality of Hardy and Littlewood [25] which is 

established in [43] (compare [31]) ,  and which is a special case of the multidimensional 

generalization of a theorem of Schur, Hardy and Littlewood on integral operators with a 

homogeneous kernel (see [40] , [41] ,  [l  l ]  and [2 l ]  ). It is obvious that (6.1) follows from 

(6.3), and (6.2) follows from Theorem 2. 

Sufficiency. As was shown in the proof of Theorem 4 ,  the representability of f(x) by 

a Riesz potential turns out to be a consequence of the integral representation (2.13). We 

shall prove that it holds also under the assumptions (6.1) and (6.2). It  is not difficult to see 

that the proof of Theorem 3 is valid also under the assumptions (6.1) and (6.2) up to  formula 

(2.17). We show that in (2.17) it is possible to  pass to the limit in the norm of Lp(a; Rn), 

if I > 2a. In the left side of (2.17) this is obvious in view of the fact that it generates an 

operator which is bounded from Lp(Rn) into Lp(a; Rn), according to (6.3). The right side 

represents the operator 

Here A p  f E Lp(a; Rn), since 

Jmrhp(a,,,< (1 s l h  l!aiiIkp(cnll,. 
The operator B, is uniformly bounded with respect to E in Lp(a;  Rn). In fact, since I > 2a, 

we have (1 + I [ I ) ~ K ~ , , ( ~ [ ~ )  E L ,  (Rn )  by (2.1 l ) ,  and therefore 

By the Banach-Steinhaus theorem it is sufficient to verify passage to the limit in the right 

side of (2.17) for f E CF. We have, by (2.8), 
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by Lebesgue's theorem on passing to a limit, since Kl,cr(~[~) E L,(Rn), and A:/ E C: C Lp 
Theorem 10 is proved. (We note that the limit in (6.4) can also be obtained if we use not 

uniform boundedness of B e ,  but the property of continuity "in the whole" of functions 

from weight spaces, which were established by T. S. Pigolkina [l S] .) 
REMARK. Theorem 10 obviously remains valid if we replace (l + Lrl)-Q by bra in 

its formulation. It is clear that in the necessity part the weight hi-" is preferable, and in 

- the sufficiency, the weight (1 + Lrl)-Q. 

Appendix 

We calculate the constant dnrl(cu) in (1.6). We have 

I  

dt; 
k=O 

that is, 

It is not difficult to  show that here (at least for f E S) a limit passage in the norm of 

L2(Rn) for I > 2[ ( r /2 ]  is possible, so that 

/\ [l - c i ( t . x ) ] l  

T:! ( X )  = i ( X )  l dt .  
. . 

R" 
Here for I a! < I + 1 (I is odd) the integral on the right converges conditionally, as can be 
shown with the help of (1.4). Making the substitution t = rot,(lyl/x), we obtain 

where 

. ~ . -  
L.. . . . .  .... -. 
KZ.' -::.L 
K 2  ::-X.:: 
3 .. - ...... , ....... ........... .. -. * ..-...- .. 
! .. . - . . . . . . .  
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" - 1  

n-I - l 
Z ' a  

2 ( j  2 (-- 
C: cos ky 

- dy - 

Let 0 < a < l .  Using the equality E:=,(- I)~c: = 0 and taking account of formula 3.761.4 

from [4],  we reduce the remaining integral to the form 

I m 
l d y =  -- sin ky 2 (-1,"~:.  k -dy 
a 

k=o ya 

which yields the value of dnPl(a) indicated in (3). For the remaining values a 2 1 the 
required result can be obtained by analytic continuation with respect to  a. 

We note that it is easy to show that d@Aa)/da # 0 in (3)  for positive integral values of a. 
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