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ON SPACES OF RIESZ POTENTIALS

UbC 517.9
S. G. SAMKO

Abstract. In connection with problems which arise in the theory of integral equations
of the first kind with a poientlal'type kernel we inveshgate the space of Riesz potentials
Ia(L ) = {j x° ;€L (R ) 1 <p< n/a} where K is the Riesz integration operator
(K p(x) = el w(x)). We give a description of the space I (L ) in terms of dnfferenct:./oﬁ-
singular integrals, establish a theorem on denseness of C0 (R ) inlrl (L ), and indicate a
“wenght",’vanant description of " (L ).

Bibliography: 44 titles.

The theory of Sobolev spaces of Bessel potentials, which are related to multiplication

by (1 + [x|2)*/2 in Fourier transforms and which turn out to be very convenient in applica-
tions, is well known (1], [7]1—[9], [14], [27], [28], [44], etc.). Some probléms, however,
reduce (see, for example, [18]—[20]) to the spaces / *(Lp) of Riesz potentials, which are
related to multiplication by [x|® in Fourier transforms and which consist of functions f{x)
whose derivatives Dff are summable in R™ to power P which is independent of |5]. Our
goal is a study of spaces of Riesz potentials in R™. In this paper we consider the following
basic questions: 1) a description of the spaces I“(Lp) in terms of the Riesz derivatives
Dff, which are the singular difference integrals introduced by E. M. Stein [42] for /=1,
0 < a <2, and in their general form by P. 1. Lizorkin [8] -[10], and which are the multi-
dimensional analog of the fractional derivatives of Marchaud [38] (in the case of spaces of
Bessel potentials, such a description is given in [9]); 2) the denseness of Cg in 1"(Lp); 3)
bounds of the type IDfll, < clD§fN,,q <p, 0 <Ifl<a,fELS,

We note that for consideration of Riesz derivatives Dj'f we may successfully weaken
the usual condition I > a to I > 2[a/2]; moreover, it turns out that the case where a is an
odd positive integer is to some extent exceptional, requiring us to take only / = a.

In §1 there are auxiliary assertions (we call attention to one of them, on “annihilation
of the Riesz derivatives of odd integral order for / > a). In §2, for spaces of Riesz poten-
tials we construct an integral representation, using which in §3 we give a description of the
spaces I"‘(Lp) in terms of Riesz differentiation. In §3 we also establish certain imbeddings
of spaces. In §4 we clean up the question of existence of weak derivatives of orders || < a
and their representation by Riesz derivatives. §5 contains a theorem on the denseness of
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1090 S. G. SAMKO

Cq inI%(L,). In view of the above-indicated “annihilation™ of the derivatives D} ¥ f for
I>2m + 1, it is necessary here to study the case a = 2m + 1 separately. And, finally, §6
contains yet another variant of the description of the spaces I%(L,), in which information
on a function f(x) is given in terms of weights.

We should point out the work of C. S. Herz [34], in which, in particular, the operation

(o4

a.p which are related to Besov-

of integration was investigated in the scope of the spaces A
Taibleson spaces.

We remark that for consideration of weak derivatives in §4 we use in an essential way
the space ® of functions f(x) € S which are orthogonal to the polynomials and invariant
relative to Riesz integration; this space was introduced by P. I. Lizorkin in [7] and [8].

And, finally, we note that a description of the space 1°‘(Lp) in the one-dimensional
case was given in [18] and [20].

NOTATION. R™ denotes euclidean space,x = (x,, ... ,x,) ER", j = (1,0,...,0);

DB' _ __a}ﬂlf ,

oxt .. .ax,ﬁ,"

B=(B,-..,B,) is a multiindex, |g| = B, + - -+ + B,;

a;! 62
Af:_aﬁﬁ" +axf”
o n

dx—=dx, ... dx. (f, @)= | [()g(x)dx; (cf) (x) = (x—1), te=R™;
R?

1
@A) (x) = ) (— D'CIf (x —kty =T —7)'f;

@ (o)) =1 @D Ve V=W ey 7= P
Fo=9(x)= j eeDp (t)dt, pg = ,,Zpa (ap-<n);
R? ' g
L (@ Ry =[5 § _LE@P .

, (w5 Ry =f ;Hm)npd« ]

x = rot,y is the rotation in R™ which sends y € R" to x € R” so that h/|h| = rot,jE

Co = Cg (R™) is the class of infinitely differentiable functions with compact support in
R™, and S is the class of infinitely differentiable functions which decrease at infinity faster
than any power (see [2]).* & is the subspace of S consisting of functions which are orthog-
onal to the polynomials [7], [8]; a (continuous) imbedding Z, C Z,, || - Iz, <cll-llz ,of
two normed spaces will be denoted, as usual, by Z — Z,; and, finally,

* Transiator’s note. The reference here is apparently to §1.10 in Chapter 1 of [2], where S is
used to denote the class of infinitely differentiable functions in R” which together with their derivatives
approach zero more rapidly than any power of 1/Ix| as lx| — oo,
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1l
Ar(a) = ) (=) Cike, )
k=)
n+1

L G P ER T

a \ -1 (n ——a) X )

7/ 2

&

— +1
2 o
29 - l(a)’ '(1#2.4,6""’
2or (14— r (22 in22
+2 r 2 sin 2
d,,,‘((l)—: 3 (3)
x> n
2 2.,
. (—1) = 2_1 a iﬂl(a)r (1:2'4:6""'
I‘(1+2-)r("+°) da
| 2 2/

§1. Auxiliary assertions

The Riesz potential

lx_tln-(l'

Ko = = [ 2, rer, 0<e<n .1
a Rﬂ

is defined, according to a theorem of S. L. Sobolev [22], on all of Lp(R") for 1< p < nfa.
It is well known ([6], [23], etc.) that

AN an
Ko (x) =|x [P (x) (12)
for the choice of v, (@) indicated in (2) (at least for ¢ €5). Following Lizorkin [9], we put

P (x)
——Kdt, ‘a>0. (1'3)

|
Tipm= |
o 1t

(In [9], for the definition of T}f a fourth order centered difference was used instead of
(4 FXx).) It is obvious that the integral in (1.3) converges (absolutely) for I > a for suffi-
ciently smooth functions. We show that it converges conditionally for I > 2[a/2]. (In
other words, for I we can take the odd integer next to a.) We can see this immediately for
FE S, and below, in §3, we prove it for all of I“(L-p). We shall assume that / is odd, since
if 1> 2]af2] is even, then { > a. We have the identity (! =1, 3,5, ...)

w=e@+ [+l

T T 1 +1
2 2
T T

(r—n", (1.49)

where
i+

9",(1:):%(1~1)’(1:+1)1: 2
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which is anti-invariant under reciprocals: ?,(1/7) = - P(7). The following identity in finite
dimensions corresponds to (1.4):

-1

.,

) (®) =(Pif) (£) — SV ARY) (6 - hty— L Ay (x4 LEY Y,
P 2 L 2 )

k=)

where the function (P/f)(x) is odd in . In such a case the limit

: 23] +1
. s Al ke @"p <x+ i )
T LA P S( il dt~——§ 2 ) 1.5y
&0 lll)f» Itln'HI s Rn ’14& ,tlﬂ-}u
exists, since [ + 1 > a.
It is not difficult to show that
/N N p
(TN (0) =dus (@) | 2 (x),  feS, (1.6)

where d,, [(a) is the constant (3). It is calculated in the Appendix to this paper. Here we
encounter a rather unexpected property: d, (@)=0fora=1,3,5,...and I > ex at the
expense of the coefficient al(a), which vanishes fora = 1,2, ... ,1— 1. The question
arises naturally as to the vanishing of d,, /(@) for other values of a. We have the following
result.

LEMMA 1. Let o > 0. The roots of the equation (f,(a) = 0 consist precisely of the
numbers a = 1,2, ..., 1—1.

Proor. We have the equality

Aimy=—[x D0 x|, m=12.....1 (1.7)
dx x=1

whence it follows that @(m) = 0,m =1, ..., 1~ 1,but @) = (-1yY*' 1t £ 0. (We note
that the sum (f,(m) for positive integers m is well known in combinatorial analysis; see [16],
p- 50, or [37]; it was used in [44], p. 84.) It remains to show that G,(a) #0ifa#l,2,

» { — 1. For this we find the analog of (1.7) for nonintegral . The natural means for
this is the Hadamard fractional integro-differentiation H® = (xd/dx)® (see [32] or [26],
formula (23.17.1)):

o (f)dt 18
I‘(p) ( )1 - B> 0, (1.8)
. [-nj+ _ -n) ,
H! P = (x .g_) wi Hl { u}q) }]) {’u} ( ) g +lrp, !J-<O (18)
dx dt |
((0) = 0, x > 0), which has the property
i]!»l (XZ)»_—_- Xk’ }\’> 0, 50 <.U.< ~o, (19)

AM
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It follows immediately from (1.9) that

L
H (=0 =11 (¢) =3 (— 1)*ClRmxr,

k=1
from which we obtain
Aif@)= —H 11— —11()|,_, (1.10)
and then
1
. ! (0 — Y~ at
.,/41((’-)— P(1—a)j » O<a<l) u#l)2)-..,["_‘]. (1‘11)
(1]

1\¢@
(=)

t
In fact, for 0 < a < 1, (1.11) follows from (1.10) by (1.8"), and for the remaining values

of a it can be obtained by analytic continuation with respect to a. It follows from (1.11)
that @(a) # O for the values of « indicated in (1.11). In addition,

(=)@ >0, a>l (1.12)
and, consequently, (f,(a) # 0 also for @ > I. Tt is not difficult to obtain a proof of (1.12)

by induction, using the easily verified recursion formula
1
141
We shall not dwell on this.
With regard to (1.6) and Lemma 1 we define the Riesz derivative D®f by the equation

(BiF) (%) 1
dt — N
S | t‘n+a dn,l (@) ( lf) (X) (].13)

A at1)y=44, (2) — A ((1)

a A
X)=—
D:f) (x) 4@

where ! is any positive integer greater than 2[ef2] if @ #1,3,5,... ,andl=aifa=1,

3,5, ... . For the choice of d,, /(@) indicated in (3) the derivatives (1.13) are independent
of 1, since

~ .

Dif (x)=|x % (x), feS, (1.14)

and we shall sometimes write D°f instead of DJ'f, understanding in what follows the integral

in (1.13) as conditionally converging in L (R"):

©Ff) () Ehiim OFf) (), 1>2(5]. L.15)
Ly

where Di’e fis the “truncated” Riesz derijvative:

1

Dz of = T;!.sf

1 (A% ()
d

= dt. (1.16)
0 (@) d, ;@) jtme

II>e
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In view of the sudden emergence of the “annihilation” of the Riesz derivatives of odd

integral order:
Tif=0, [ >a=2mn+1, (1.17)

we shall indicate yet another proof of (1.17), without passing to the Fourier transform; the
proof is limited to the case a = 1. We have the following result.

LEMMA 2. Let 0 < a <2 and let f(x) be such that T‘,”f exists as the limit (1.15) for
1= 1. Then this is so also for 1 = 2,3, ... ,and

Tif = A (a) TEf. (1.18)

In fact, since

I-1
A ) =D (— D)'CLiIf (¢ —kt) —f (x-—kt —1)],

k=0

we have

I-1 .
) — B — —Flx— hl—
The =T + 3 (— 1)”6?.,( L S LR IO (Ll "dt).
k=1 i>e [£] i >e L¢]
Making the substitution kf — ¢ in the first integral and (k + 1)t — ¢ in the second,
we obtain

1- .
Tiel =Tief + 3 (— D'CLUGH )T o f—£T® . ),
' k+1

e
k=1 “k
and hence

TP = [1 + S' (— )*C: (& + 1)"—k“)] Tof»
1 k=1
which coincides with (1.18) and proves Lemma 2 and, together with it, also (1.17) for
a=1.
We note that D°f = (- A)™f, f€S, fora=2m, m=1,2,..., by (1.14), and in
general

f Dﬂ-‘M( —A) /;___( A) Du-zm[’ fES, (]19)

for a 2 2m. In §4 we shall show the validity of (1.19) also in the setting of spaces of Riesz
potentials.
In what follows we use the following lemmas, which can be easily proved.

LEMMA 3. If a(x) € C,, then: 1) the representation

a(x)y-—aix—i)= Z o (cj P x, 1) (1.20)

1+|t

holds, where [Y(x, D] < cltl?(1 +Ix)72(1 + Ix — #))~2; 2)
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| (Ada) (x) | < ¢ ““L—— , (1.21)

{

H<1+ T

1 ey (1.22)
< , 1, 1=1,2,3,....
(I)P(a)) \C(1+|ll> p> l

LeEMMA 4. The integral

M= [ ——— 1=123..,

R [T +x— kel
R=0

{1.23)

admits the bound J#(t) <'c(1 + 1t[y* U+ VY€ where € > 0 is arbitrarily small and ¢ =
o(€), for u> n/(I + 1), and the bound J§(t) < c(1 + |t]y™ for u> n/lL

In §4 we shall rely on some properties of the Riesz transform R = {Rl , s R
(Rif) (= tim

[ —>
n &'p(; It| >e

—f(x—tdt, (1.29)

which was investigated in [23], [29), [30], [35], [36], [44], etc. It is well known ([12],
Theorem 1.20) that the action of the operators R; reduces in the range of the Fourier
transformation to multiplication by - ixj/lxl, so that

(R' R) ZZ R?—: '—1 (1.25)

j=1

and the operators Rj are bounded in LP(R"), 1 < p <o (by a theorem of Mihlin [12] on
multipliers). The Riesz transform relates the Poisson operator P, to the Poisson adjoint
operators T”a, ;- Namely, let

a f(x—~t)dt

(Paf) ()= =
R (P ar) ®
Fuh 9=+ | UAaLLy (1.26)
i (tptat
| where a ERY andj =1, ..., n; then (see G. O. Okikiolu [39]; [41], p. 485)
Pojf = RiPof =PaRif, fEL, (R, 1< p< oo. (1.27)

In §5 we use the following result.

LEMMA 5. Let K(x) € L, (R™) N L,(R"), r> 1, and let

Knf = Ni S o (’-‘;’)m) dt, f@)e L,(RY).
A
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Then IlKNfllp —0as N — oo, 1 <p oo,

Proo¥r. In view of the uniform bound ILKNH <Kl - ]lfllp, according to the
Banach-Steinhaus theorem [5] it is sufficient to verify that KNf—> 0 on a dense set in
L (R”) for example, for f € Cg’. By means of simple transformaﬁons it is not difficult to

arrive at the bound

n 1 1_

p'r ~
Knil,<eN e P gl - 11,
where | <v <p and ¢ = c(supp f; n, p, r, v) is independent of M.

§2. The spaces L; , and 1"‘(Lp). Integral representations

DEFINITION 1. We denote by L, = L7 (R™), 1 <p <o, 1 <r <o, 0 << oo,
the class of functions f(x) for which

fiosL,®)  ad  Dif =L, (R @

for arbitrary I > 2[af2] = afora=1,3,5,..)).

DEFINITION 2. Let 1 <p <n/aand 0 < a <n. Denote by 1°’(Lp) the class of func-
tions f(x) which can be represented by a Riesz potential f(x) = (K“p)(x) with density ¢ €
L,(R™).

It is obvious that I%(L,) C L, by a theorem of Sobolev [22]. The fundamental i
result of §§2 and 3 will consist in the assertion that L, , = I%(L,) N L, in the case 1 <p
<nfe, p<r<p, Hence, in particular, it will follow that for the indicated values of p and
r the definition of the space LZ', is independent of the choice of I > 2[a/2].

LEMMA 6. Let f(x) = (K*9)(x), 0 <a <n, and p(x) € L,(R"), 1 <p <nfe. Then

@i (= 11° | ha@ (x—1t]rot) d3 @2)
R? ;
where [ =1,2,...and
Fra (€ = z‘, (—1*CH| &~k @3)
. ” i k=o ’
In fact,
4
@i ) = 5 (—1fct | LE=0Y
2 (@) =, e ly — k"0
t)° (— )*ck
_ Y' ('a)j'Z. I e oty
" RM k=0 |E— ln_

which coincides with (2.2).
The following information relative to the kemnel k; ,(£) is essential for what follows.

LEMMA 7. Suppose that 1 > 2[af2]. Then
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§ #a (§) d5 =0; 2.4)
R .

moreover, k,’u(z) € L,(R") in the case | > «, and in the case 2[af2] <I< «a the integral in
(2.4) is understood as conditionally convergent:

jkm (&) d& =lim 5 kia (8) dE.
R?

N—-oo !
le— L7 <w
2
ProOOF. 1) We show that
. .
| ke (8) | < I as E—» oo, (2.5)

ln+l-a

which also ensures that k, ,(£) belongs to the class L(R"™) for I > a. We use the notation

w() =vi' @)E+s [ 0<Ls<,
so that k, ,(§) = (A’l w)(0). By the well-known (138]; [24], §3.3, formula (4)) identity
R

h
(A,’.w)(s);S...jwm(s+sl+...+s,)dsl...ds,, heRY,
]

[}

we obtain that k; 4(£) = w(s + 0)|,_, 0 <0 <1, so that

[kra B) | < [E+6f |52,

as required.
2) For an odd positive integer I we have

ki (§) dE =0,

[&-7] <~ (2.6)

3

for arbitrary N > 0. In fact,
1

w@ [ ke@di= (3 ety (58]
— k=0
ol g
1l
] ! \ et
+ (3 (——l)k()fly-—(z 2

IWl< N k=0

n>o
Replacing the index of summation k by / — k in the second term in the right side, we obtain
that it differs from the first by the factor (—1)" = — 1, which proves (2.6).

3) It remains to verify (2.4). For an odd /it is obvious in view of (2.6). let / be
even. Then I> o and k, ,(£) € L (R"). In (2.2) we take p(x) € ®. Then also [ = K% €
® (see [7]). Welet + — 0in (2.2). Since I(ALX)] < cltff for f € & (compare with (1.21)),
and I > a, it is necessary to obtain that
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lim \ fro (5w (x—|ifrot2) ds == 0.
=0
Here, by a theorem of Lebesgue ([13], Chapter VI, §3 Theorem 1) we may pass to the
limit under the integral sign, which yields (2.4). Lemma 7 is proved.

In the following theorem we obtain an integral representation for the truncated Riesz
derivative D;fff. In what follows we shall not stipulate every time that / = « in the case of

an odd positive integer o.

THEOREM 1. Let f(x) =K%, 0<a<n and p €L p(R™), 1<p <nfa. Then

L 4
OEDE = [ Mrelyhe et 1> Bl e
where
, 1 - 7
Fro(ly]) = . ki )die L (RY);
D@yl 2y
moreover,
j Hra(lyl)dy=1.
jn (2.8)
ProoOF. We have
! s
e 1 dt (‘_ 1) Ck
©ref) () = —— Y - w(x—y)E - i
Dut @V @) o 10, o — k™
, ___,'___' k" I(Z—ﬂ
T | 2oty | 5 opatd_—la
a)y, (@ . ) s a+a
2.1 (2) ¥y ( o 0F Ry It}
ju)
Hence after the substitution t = rot,n and y = €t (and then n = 'r/l‘r|2) we obtain
!
ok )T a-n
L { 90— eb) 2 =Gk
D) ()= 3 @ v, @ 5 e 9 j = p dn
' R m> = In ™
191 29
» 1 5¢(x—5§) : kb e T ¢
=t _{#=Ep {9 (-1 r|]—k—' dr.
d, @)y, (@ n 181 o k;’o Il
Since
!|1Jj——k’—:|- = Otk FR= | t—kj)» (2.10)

(2.9) coincides with (2.7), and it remains to show that K,’a(lyl) € L,(R"). Since
ke, O < clt]*™”
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as [t| — 0, we have alsc |K, ,(I¥D) < ¢/ IpI*™" as |yl — 0. We estimate Kl’a(lyl) as
|y] — e. If 1> «, then by (2.4) and (2.5)

S S
ldp (@] 1y 1"

4

kl,a([)dt‘<w' 2.11)

10> ]9l

I‘%.l.a(lyDl =

Let 2[a/2] <1< @, so that / is odd. In this case the summability of K La(l¥l) on R™ can
be obtained at the expense, represented by equation (2.6), of integrating not over the
sphere |t] < |yl, but over the layer |y| — /2 < It] < |y| + If2. Namely, by (2.6) we
have, for |y| > 12,

Hre(lyl)= _—1_,, — S ki (£) dE,
Idn,l (a)] 1yl <1l |l- _1_7,<,yl
3 J

so that, taking account of (2.5),

Hially] < —— kia(h)|dt
Hralabl< — [T

i
- — <i<lyl+ —
2 2 (2.12)

c c

il +g) (o= <

as | y| — o, which guarantees the condition K,’a(lyl) € L,(R"). Equation (2.8), which

is a consequence of the choice of the normalizing constants v, («) and d,, ,(a), can be N
established by indirect means: we choose p(x) € ® so that f(x) € ® and in (2.7) it is '
possible to pass to the limit as € — 0, which yields the equality

<

D% = (x) j Fa(y ) dy-
R?

Since D% = ¢ (for f, ¢ € ® this is obviously at the expense of passing to the Fourier
transforms), hence (2.8) follows. Theorem 1 is proved.
The following result follows immediately from Theorem 1.

THEOREM 2. For any choice of 1> 2[af2] the operator DY is a left inverse of
the Riesz operator K® in L,(R™):

DIk =0, 9eLy(R"), 1<p<E.

In fact, from (2.7), taking (2.8) into account, we have, applying the generalized
Minkowski inequality,

1D~ §,< 171y op (0, e9)dy —0
R?

by Lebesgue’s theorem on passing to the limit under an integral sign.
The following theorem, which extends the representation (2.2) to the case where
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the information on representability of f(x) by a Riesz potential is replaced by the condi-
tion f(x) € L;
space 1%(L,).

,» also allows us below, in Theorem.4, to obtain a description of the

THEOREM 3. Let f(x) € L(R") and D}f € Lp(R"), where 1 <p < nfa,p <r<
P, and 1 > 2[aj2]. Then for the difference (A} f)X(x) we have the representation (2.2)
for m > «, or, what is the same,

B = | amate—1 O O 1, 2.13)
Rf‘l
where
1 - k 1 a-n
A (X) = kzz,o(— y*Cn | x—ka """, (2.14)
so that
I]am,hﬂlz‘(?[h Ia and Sm.h (x) = lxl-u ll __ei(x-h)]m’ (2.15)

where ¢ = c(n, a, m) is independent of h.

ProoF. Letting p, = DZf and Ay = a,, » * v, we have

__ 1 _ _d N\gs
Av = {Rjuamﬁ(x t)f(l)( { ,,_y,m)

lt-yl>e
o 2.16)
vCive _ _fwdy
3 (=1 (amnte—nar | |t_y]m}.
= R® jt-y|>ve

Since m > @, we have a,, ,(x) € L,(R") (see the proof of the fact that k, 4(1) € L,(R")
for I > a). Therefore we may change the order of integration in (2.16), so that

{ ! v G p (X—y— V1)
Aq73= 2 ('—'1) Cl 5‘f(y)dy 5 lfl'”“ dr
4 Iri>e

dny (@) v= e
— o Y I ly = ve[*
= | S (= e —ka—p) B (—17Crdy | M
Yo (D) d, (@) Rn'kgo v§o ibe Jv|*e
hence after the substitution y — ey, 7 — €| y|r we find that
1l a-n
m 2 (— )¢y ’z| — vy
A —
Ap, = 1 S (AED (x—ey) dy j‘ v—0 - dr.
Yn ((l) dn,[ (a) ly In 1 l “,
Rn [1‘> —

iyl
Setting 7 = rot, (¢#/1}?), we obtain
(AFD (x— ey) !
Ap,=—1 j d —1ycy
@) dy (@) @ § 3 v

R" i<yt v=0

> P i
ti—v— dt,
417 v|t|| |
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which, taking account of (2.10), reduces to

[t (x—ty 0. () dt = [ (AFp c—e9) Hra |y D dy. 2.17)
R R

Hence the equality (2.13) to be proved is obtained as € — 0, taking account of (2.8). We
justify the passage to the limit in (2.17), having carried it out in the metric of L (R"). In
the left side this is possible since the operator A is bounded from Lp(R”) into L, (R") for
p<r<p, (for p<r<p, boundedness of A follows from a theorem of Young on con-
volutions, since a,, ,(x) € L, (R") for 1 < ¢ < nf(n — a); and for r = p it follows from a
theorem of Sobolev). For the right side we have, applying a generalized Minkowski inequality
and taking account of (2.8),

H { #1a(y) OFP (c—ey) dy— (AT 0],
R?

< a1y |t AT, e9)dy 0
R™®
by a theorem of Lebesgue on passing to the limit, since Ay'f € L (R") and K,,a(lyl) €
L, (R™).
The second of the equations (2.15) is a consequence of the formula rhf(x) =
€M) f(x), and the first we obtain from the equality

S (—1)ch Al

k=0

lmab=In 1" |

resorting to the rotation x = rot, 7. And finally, the agreement of (2.13) with (2.2) follows ' .
from !
2

Yn (a)

Am.p (x) =

rotpt X - t" A (
[Af k|

'—han ITlCl t-l o .
Ih] (m :hn)

Theorem 3 is proved.
§3. The spaces /(L ) and L:’ , (continued)
The following result is the fundamental assertion of this section.

THEOREM 4 (a description of the space I"‘(Lp)). In order that f(x) €]°(Lp) it is
necessary and sufficient that

foy el R, Difel, RS, (>2]7; G.1)

in addition,

R R S

I(L)N Ly==Lp, (3.2)

forallp <r<p, ' |
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ProOF. Necessity of the condition f(x) € LPa follows from a theorem of Sobolev
[22]; the condition DJf € L,, from Theorem 2. Consequently, /*(L,) N L, CLy . 1t
remains to prove the reverse inclusion. Let f(x) € L;’r According to Theorem 3 we have
the representation (2.13). Noting that the right side in (2.13) is (A7 K*D%f)x), we obtain

AR f=ATKDf. , (3.3)
It is not difficult to see that functions which have identically coinciding finite differences

may differ only by a polynomial (for this it is sufficient to pass to the Fourier transform
inS":
T hyCp e ,/\ bt
[1-—e =M [f () —K*D*f (x) ]==0, x&R*, he=R",
and to use a theorem on the general form of a functional which is concentrated at a point—

see [3], Chapter II, §4.5). Since the functions f € L (R") and K*D*f € Lpa(R") do not

“contain” polynomials, we have
[=K'DfeI"(L,), (3.4)

which proves Theorem 4. We note that in the case of a space of Bessel potentials (r = p)
the equality I"(LP) NnL,= L‘;,p follows from results of Lizorkin [8]—[10].

COROLLARY 1. Cj CI"(LP).

In fact, if @ # 1,3, 5, ..., then it is sufficient to verify that Dif € L, for f€ Cy at
least for I > a. We have
I < e, {1 dte {17 e, pdi< o

Hipg! Ift<a
by (1.22). fa=1,3,5, ..., then! = @, and a similar bound can be obtained with the
help of (1.4).

COROLLARY 2. If f€ L (R") and D*f € LP(R"), 1 <p<nfa,p <r<p,, then
D*¢f € Lpe(R"), 0<e<a and

1D, < < IDF . (3.5)
We introduce a norm in L ,(R™) by the equation
1Pl em, =171 +1D% . (.6)
THEOREM 5 (On imbedding of the spaces Lg’, with respect to the parameter r).
.g',’ e L;h, G.7

f1<p<nfaandp<r,  <r,<p,.
The theorem is a consequence of (3.2) and the interpolational inequality

r(py — ra)
ra(pg —rl

L, <UFE - 1FI" =

;‘
i
}
b
F,

t

1

1
L
)
L
f
L
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In fact, for f€ LS
and then

S according to (3.4) we have ”f“Pa < cHDapr by a theorem of Sobolev,

e <D™ AT 107 1)

pf,

< 27D AL, HIDF) < el o

p ry
THEOREM 6 (on imbedding of the spaces L , with respect to the parameter «).
Lpr—Ly 5 (3.9)
if1<p<nfo, p<r<p,and 0 <e<ain particular,
I (L) > 1P (Lpy_), OB < (.9)

ProOF. Let f(x) € Lg,r- By (3.4), f = K* ¢K*D®f. Hence, according to Theorem 2
we have D" ¢f = KDY, so that by the Sobolev theorem

1D, < c| DI,

But then
IFL a-e <clfl,
Lpg,r Lpr

COROLLARY. Lg Lg G+s M1 <p<nfo,p< r<p,, 0<e<aamd0<5<
Py =T

We also note certain properties of Riesz potentials which are related to the modulus of
continuity. Letf(x)ELp p1<p<nfa,p<r<p,andI>a(x#1,3,...). Then

D e hy<clhP{DYY, (3.10)

2) wplfs h)y=0(h|") as h—O0. 3.11)

Hence (3.10) follows from (2.2) in view of the fact that k; ,(£) € L,(R") for I > a.
The estimate (3.11), which is due to Hardy and Littlewood [33] in the one-dimensional
periodic case, also follows from (2.2), in view of property (2.4) of the kernel k, ,(2). (Con-
cerning the one-dimensional nonperiodic case, see also [17] and [20].)

In concluding this section we note that (as follows from Theorem 4) in the description
I“(Lp) = {f: f€ Lpa’ D%fe L,, w;,(f, ) = o(Jh|®)} of the space I°‘(Lp), which was ob-
tained in [18] and [20] in the one-dimensional case, the last condition is a consequence

of the first two.

§4. On weak derivatives of integral order in /%(L )

In this section we shall show: 1) the existence of weak derivatives DAf of integral order
18] < a for functions f(x) € L, which have a Riesz derivative D*f € L, (Theorem 7); 2) the
validity of (1.19) for such functions (Theorem 8). A weak derivative will be understood in
the sense of generalized functions over ®. Namely, we shall say that a locally summable
function f(x) € S’ has a weak (generalized) derivative DPf if there exists a locally summable
function g(x) € S’ such that

i-
i
L
E
i
4
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(7, 0)=(- I)IB' (f, D?‘m), ® &=, 4.1

def . . el . L
and then Dﬁfég. A certain inconvenience of definition (4.1), which consists in the fact
that it determines the function g(x) “to within an additive polynomial” (Lizorkin, [8]), is

not crucial here.
For & > |B] we introduce the (‘‘quasi-Riesz’”) potential

Wo——2  {ow—nDPai1")ar
e =T )P empide 4.2)
]N i
which is in a sense similar to the Riesz potential K% lp since DS(|11") = c(r)lt|* 8",
where ¢o(t) is a bounded function. The operator (4.2) can be represented as the composite

of a Riesz potential with a Riesz transform:

Kg-"lﬂlcp — RﬁKa‘lmq), (4.3)
where p €L, 1 <p <nf(a - 16l), and
RP =Rl ... RY; @4)

the R; are the operators (1.24). In fact, since
K3 Plo = (—1)PDPK 0 = (— )P K DPw @.5)

(at least for w € ®), (4.3) is obvious for ¢ € & (pass to the Fourier transform). The validity
of (43)forp € L, follows from the boundedness of the operators in (4.3) and the fact that
$ is dense in the L, -spaces, which was established by Lizorkin in [8] (see also [10}, Appen-
dix 1).

THEOREM 7. Functions f(x) € 1 C‘(Lp) have all weak derivatives DPf of integral order
18l < a; moreover,

Iy, < lDPFL, o <l DT, @.6)

a-pl

In addition, the derivatives DPf can be expressed in terms of the Riesz derivatives by the
formula

Dﬂf _ Rﬁ Dlﬂlf ;Kg'|ﬂ| D“f’(l) (4_7)

ProOF. The existence of D'Flf € LPa—lﬁl and the second of the bounds (4.6) are
established in Corollary 2 of Theorem 4. The second inequality in (4.7) follows from (4.3)
and the equation K*~'¥Ipef = p¥ly re I%(L,,). For a proof of the remaining equality in

(4.7) it remains to show in accordance with (4.1) that (K§~"¥IDf, ) = (f, (- DY'w). For

I8l < a this follows from the following chain of equalities:

(Kg-lm Daf, 0) = (Duf’ Kg—lﬂlm) = (— l)lﬂl (Dﬂf, KuDﬂ(D)
=(— )P K*D*f, Do) =(—1)™ (, Dfo),

(}) In accordance with (4.3), we assume that k2 =RrF in the case IBl = a (=1, 2,3,...).

i
i"
k
b
i
¥
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in which the first and the third are justified by Fubini’s theorem, the second follows from

(4.5), and the fourth from (3.4).
For |fl = a it is necessary to justify the equality

(R%, 0) =(— )P* (K%, Do), 0=, (4.8)
where ¢ = D°f € L,. First we verify that
(R, 0) =(—)P (g, RP0), @=L, 1<p<loc, o=d.  (49)
In fact, since
| Ry, 0) | < IR, ., - Lol - Lol
and
[(@, RP) | < iR, 10, - lol,,

the left and right sides in (4.9) are bounded functionals in LP(R"), and therefore it is suffi-
cient to verify that they agree on the dense set ®. Since Rfl}p Edforp €D, by (44)it

is sufficient to verify that

(R, 0) = —{¢, Rjw), ¢, O, 4.10)
We put
1 j —
— — 7 I
Ri‘etp = c, j (P([) '—'—_’ x—ll"“ dt.
lx=t]>¢ ,

In view of Fubini’s theorem and the formula
Vi | feogdg=\dy [ fleg)de
R x-gj>e RN )x~gl>e U
we obtain

(R;®, ©) = — (P, Rjz0).

But then

(Rip, ©) =1im(R;,:¢, w) = —lim (¢, R;.») = —{¢, Rj»),
E—0 E—0
(L) (Ly)

which proves (4.10), and together with this also (4.9). Equality (4.8) follows from (4.9) if
we write it in the form (RPp, w) = (- 1)"¥!(y, K*DPw) by Fubini’s theorem and consider
that K®DPes = RPw for w € ® (pass to the Fourier transform). And, finally, (4.6) follows
immediately from (4.7). Theorem 7 is proved.

Turning to the question of replacement of even order Riesz derivatives D> f by a
power of the Laplacian (-~ A)™f applied to functions f(x) € 1%(L,), we formulate the follow-
ing lemma, which is essentially a consequence of the equalities

(— A" Ko =K"1—N)"0 =Ko, 2m<La,

which are well known for sufficiently “good” functions w, for example, w € ®. Everywhere

below (= AY" is understood in the weak sense.

e gt e e e
P 0 !
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Lemma 8. Let2m<a<nfp, m=0,1,.... Then
(—)" /\“q: - K7y @4.11)
fore€ L, and
K (—87F =K* ™7, (4.12)
f(~8)"f€Lyand fEL,, 1 <r<nf(a-2m).
From this we obtain the following result.
TueorREM 8. If f(x) €1°(L,), 1 <p <nfa, a>2m, then
DY =D%*" (—A)"f = (—A)"D**"f, (4.13)

ProOF. Let f(x) = K% EI"(LP). Then it follows from (4.11) and Theorem 2 that
D*"2M(— AY"K®p = p. Comparing this with the fact that D°f = p also by Theorem 2, we
obtain the first of equations (4.13). The second can also be proved using (4.11):

(___A)mDa-sz — (__A)mDa-amKa-mezm(p — (__A)ngm(p —

The theorem is proved.

v ¢ o

COROLLARY. The odd order Riesz derivatives D*" 1 f m=0,1,...,2m+1<aq,
of a function f € I°(L p) can be expressed in terms of weak derivatives by the formula

n
-+ 2
DT =(—1)"™"3 R,-a—xiA"'f. (4.14)
=1
In fact, since 3ffox; = RI.D’f according to (4.7), we have
n
0
DY — — 2
f= éx Riax

by (1.25). But then (4.14) follows from (4.13).

In concluding this section we note that it is not difficult to show that the description »
(3.1) of the space ]"(L ) remains equivalent if we replace D*f by D* 2™ (- A)"f or
(-A)Y"D*" 2" f in (3. 1)

§5. Denseness of Cy’ in L:,,(R")
THEOREM 9. The space Cy is dense in L;'r(R")for 1<p<nfaandp<r<p,.

For a proof of this theorem we shall employ the usual means—-approximation of a
function by its average and a “reduction”. And while the approximation of f(x) € L;’,(R")
by the average can be accomplished easily by the fact that both the mean and the norm (3.6)
are translation invariant, the approximation by the “reduction”, which is not translation in-
variant, encounters significant difficulties, which are related to the use of conditional con-
vergence, reinforcing the necessity to work in spaces L,and L, with distinct values p and r
(in particular, in the limit case r = p,). This difficulty can be overcome by proving dense-
ness via induction (Lemma 9), which we base on the imbedding (3.9), having considered the

case of odd integral a beforehand. i :
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First of all we show that for a function f(x) € L] (R") its average

fo)= (a()fx—8tydt=C™ N L7, (R,
R?
where the function a(t) € C is normalized by the condition fRna(t) dt = 1, converges to
f(x) in the norm of L7 (R™). We have

lf~f6ﬂu§.r =l —fs], +1D* ¢ —fo)1,

and we need consider only the second term. Since D¢ f; = (DZf), by Fubini’s theorem, we

have
D%y =lim (D)5 = (D),
(Lp
in view of boundedness of the averaging operator in L,(R"). Consequently, the average

commutes with the Riesz differential on functions from L;’, R™): Dfy = (D*f),, and
therefore

" D= (f - f") IIP: “ Daf—(Daf)o"p\“"O-»

It remains to approximate f(x) by a function with compact support.

Let p(xX) be an arbitrary function from C8° with carrier in the ball Ix| < 2, which is
identically one for [x] < 1 and such that |u(x)] < 1. It is necessary to show that the '
“reduction”

b ()10 Ep (57 () (5.1)
approximates f(x) in Lg’,(R") as N — o, We put
vix)=1—up(x), wy(x) :v(&{) , 5.2)

so that it is necessary to show that IlvallLa —>0as N —o if fE Lg AR™). For this it
. . p.r ’
is sufficient to show that

D i, =2 00 f e (L), 5.3)

which constitutes the basis of the difficulty.
1. Justification of (5.3) for 0 < a < 1. Taking D* = D for 0 < a < 1, we have

L Buf, (5.4)

D* (vaf) =vyD 4~ o
X

where

v (1) — vy (x — 1)
Bﬂfzj R D fe—oat. 5.5)
Fa 1] ,

It is obvious that VND“fL—> 0. We show that
P




1108 S. G. SAMKO

Buj 0 (5.6)
for all f € Ll’a © 1"(Lp)). By (1.21) we have
) — d
ol IBIVfl< N—:IXI If(x t)"xitl ’ (5‘7)
Rlllt |n+u—1 (1_,_7)
and then
, N A S \F (x — DPdx
"BAf“p<N S [yrret S | x| lx—fl
R" e (e
.L ¥
g 5.8
N IE B Y’N’ - 68

N A4a-1
PO

RNy

which after the substitution + — N¢t, x — Nx and an application of Lemma 4 yields the
uniform bound 2ewpmpd t 42D
S
dt ( ATED
1Bafl, < clfl, j =allb 1 59) "
] n+a-1 - . :
,[‘ (1+ltl)7m %0“091 Leret _}‘. ) '. B i

where ¢, is independent of V. Therefore by the Banach-Steinhaus theorem it is sufficient  Lwws” .
ISNN i

'R

to verify (5.6) on a dense set in L . Assuming therefore that f € C, -’ and its support lies + 1
in the ball |x] < a, we obtain . i

<~

dt dx
B <ij
I Nfﬂp\ N ll‘n+u—1 MS«' . |_,\:_|"1 Jx—t©\
R ( + N) ( T )

(5.10)

El-

<_&_ dt + c dt dx
\,NS jepret T ogn j £ et 5 A+ x1P (4 x— 1P

{t{|<2a p LY ]
» N 1> N lxl< v

Since Ix — ¢] > |t} — a/N for x| <a/N and |t| > 2a/N, we have from (5.10)

; c 3 dt
|Bufl<2 + 22 | =S4 o
N N Itln+a-,(1+|,|_i) N o pNe
R N,

where N > N, > a, as required.
2. Extension of a theorem on denseness to the case « > 1 (a # 1,3, 5,...). The
validity of the theorem on denseness of Cy in I“(L ) can be obtained for 6-<o—<+by

extension of the method of induction to the general case. A1
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LEMMA 9. Letm = 1,2, ...,n— 1. If the theorem on denseness of Cg in 1°‘(1,p)
holds for 0 < a < m, then it holds also form<a<m.+ 1 (@#1,3,5,..)03)

PrOOF. It is necessary to show that
HDG("NDLFISOv mLa<m+l, 5.11)

for f€ 1°‘(L ) under the assumption that Cg is dense in 17(L ) for ¥y < m. By the formula

(A,af) (x) = 2 Ci (Ata) (x) AV ) (x— k)

we have
D° (V\,I*) —‘VNDG + _(__)2 C[B‘y kf (5.12)
n.l
where
(Bvay) ()AL (2 — A1)
(Bw.af) () = S e dt, k=12,....1,
Rn i t l.nw )
so that in the proof we need
VBusil, 5220, fel®(Ly), k=1,...,L (5.13)

The idea of the proof of (5.13) consists in the following. We shall prove the following
assertion, which is stronger than (5.13):

1Biv.+f 1, 5220, fe]?k(qu)) GE=Pa-y (5.14)

where 0 <7, <m, k=1,2,...,1 From the feasibility of (5.14) for v, <m < c will
follow, by the imbedding (3.9), the feasibility of (5.13). For a proof of (5.14) we first
“obtain the uniform bound

LByl <cif, R L N (5.15)

for a certain choice of v, € (0, m), k =1, 2, ... , I; the constant ¢ is independent of N.
After this, by the Banach-Steinhaus theorem, (5.14) remains to be verified on a dense set in
17"(qu). Since v, <m, we have (by assumption!) that C serves as such a set. Verifica-
tion of (5.14) for f € Cy concludes the proof of Lemma 9.

We are using the possibility (provided by Theorem 4) of assuming that I > a in sub-
sequent estimates. (The choice I > « is essential; the case a = 1, 3, 5, ..., which forces
the choice I = a, is considered separately.)

1) We obtain the uniform bound (5.15). Using Lemma 3, we have

| (ASRD (x — ) [ dt

T o )

| Byv.af | < NL" S
R?
and then

(2) The case « = m for m = 1, 3, 5, ... is excluded from consideration.
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o=

| (AFRF) (x — &t) JPdx

IBN"‘.f“<Nk j Il,ma-k j‘( ) “.(1+ |x—kt|)n ) (5.16)

N

If kK = [, then

3iq

dx
|¢y'+“-‘ 5 z o
R

()5

and after the substitution x — Nx, t — N¢ and application of Lemma 4 we obtain

: dt B i
lBNJf Hp< 41 "”puRi “lnm_z -+ \i\)l-u+1-8 —_Cz‘”u”a’ (5.](7)

cAfl,,
1Brafl, < v 5

if k =1,2,...,1-1, then, applying the Holder inequality with exponents p, = q,/p and
p, = nfp(a —,) to the inner integral in (5.15), we obtain

a-yp
14, & g
IBN Py S L df 5‘ = .
b< wE | e n n (5.18)
R® R a-yg a-vg
(1 | x} " | x— &t [)
TN ) ( N
We apply (3.10), according to which
-k TR Y,
[AT L, <clUFID™FL,, eI (L),
if I —k > v,. Therefore, taking v, > I — X, we obtain
a-Vg
Vg dt dx n
[BN.kfip<cHD fl”"j‘]t\m_k—w‘{g n n ] .
RN a-yg a-vg
(t+1xD s (U [ x— Rt
Applying Lemma 4 to the inner integral (which reduces to the condition v, > a -k
— 1), we have
“\Izﬂvk-n a
1Bwasfl, < cID™f] j =¢,ID™|, (5.19)
*J g p"“““’”'e *

under the condition a — k <v,. The uniform bound (5.15) follows from (5.17) and (5.19)
under the choice v, € (@ —k, I - k) N (0, m) for k =1,2,...,1-1 (it is obvious that

this intersection is nonempty) and v, € (0, m).
2. We verify (5.14) for f € C; . Extending (5.18) (which is valid also for k = ), we
have, by Lemmas 3 and 4,
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a-yYg
1Bul, < -5 § M G = "
Np P\ S -k, n n
(11D " . = [ k”u_“
X X —
(%) )
< ¢ 5‘ d?
= ~ ~ .
Nk—l+v;z P | t|"+u'l (|t ,)k Q+Pe +1-€ ANt ')1_;;
If kK = 1, then from the above follows
d!t C1
1Bw.afl, << =4 0.
N” RS:; l ‘l,.Ha_ (1 ‘ ¢ l)l-uwlﬂ—e N'Vl
Ifk=1,2,...,1—1, then
c dt
EBN kf ﬂp\ Nk‘“‘?kﬂ" 5‘ k-at+yp+1~e ’

where 0 < p
zero, if we take p € (I —k — 7, min{/ -

I i|n+u—l+p (1 4 l { D

< 1—k The integral on the right converges and the right side approaches
k, I —a}). Lemma 9 is proved.

REMARK . It follows from (5.12) and (5.15), according to (3.1), that the space I"(Lp)

is invariant under the “‘reduction™ (5.1):

vf 17 (L),

3. Justification of (53) fora=1,3,5, ....

if felI®(Ly). (5.20)

leta=2m+1,m=1,2,.... Since

vynf € I%(L,) according to (5.20), the Riesz derivative D*™* ! (v, f) can be replaced by

weak derivatives in accordance with (4.14). By boundedness of the Riesz transform in

LP(R”), 1 <p <o, it remains to show that

{}”‘% A™ (vaf) g

-0,

N—

It is obvious that aA’"(va)/ax,. can be represented in the form

L (M) () (O (9,

ZA")= 3

i - (kj+sl=2m41

where the Ck,s,j ar€ constants; k and s are multi-indices. Here all the weak derivatives D*f

exist, and D°f € L by Theorem 7.

Pk}

Uks (‘\) ":W" (D v

For |k] = O we have

4,5 (N) < {

|

>N

since D‘fELp(R") for |si =2m + 1 = a. Let k| > 0. Applying the Holder inequality with
exponents p, = n/lklp and p, = n/(n — |klp) in (5.21), we obtain

It remains to show that

PR
(aAf/-) DN | 770, k] 4]s|==2m 1. (521)

| (D) (%) |"dx}”; =0,

j=]’2’ LRI |

T ey g e

——EEEEE
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1
MW

s (V) <

{N<le<2N ) (Dk‘;) (%)

X 1

| ) e < (] oD ™o

N—woq—'

x {
N<xj<2N N<|xj<2N

since D°f € LPIkI(Rn)' Theorem 9 is completely proved.
REMARK. The proof of Theorem 9 on denseness in the excluded case @ = 1, 3, 5,
., which was carried out by passing to the weak derivative, could have been accomplished
entirely within the framework of Riesz derivatives. However, the calculations for this are
significantly more complicated. We shall indicate briefly such a proof in the case a = ].
The limit passage (5.6) is necessary in the proof. By (1.20) we have

_ LG av(xN .
Bul =53, 5o () Awil + ¥

j=1

where

Yy, ) x—1) m

I tln+1

t, N
Aw, =§ i
Wil =) pmin N
R?

Fe—t)dt, Wuf= j

R®
We omit the bounds for W, f, which are similar to the bounds for By f in (5.7)—(5.10) and
are based on an application of the Banach-Steinhaus theorem. For a bound on the operator
Ap ; we use its similarity to the Riesz transform (1.24). We represent it in the form

Avjf =cn (Ri—Pn.j) f+ Kn.jif |

where FN,i is the Poisson operator (1.26), and Ky j is the convolution operator KN’if =
Kyi* f with summable kernel
_nn
Knj)=4(tP+N?) * —4| H (| +N)el,.
Applying (1.27), we obtain

An.if = caRif —caPNR;f + Ky if
and then

1

;"L(i) Avv,,-fn <ol ( |R,-f|p“dx}pu

TN Bx] Wil W
: p N<ixl<2eN 7

1

+ { f | Kn,if —caPuRjf e dx}p“ .

R

Here the first term approaches zero by the fact that R,.fE l,pa(R"), and the second by
Theorem 5.




ON SPACES OF RIESZ POTENTIALS 1113

§6. A description of /%(L,) in terms of weights

THEOREM 10. [In order that f(x) € I"‘(Lp), 1 < p < nfa, it is necessary and sufficient
that

A+[x) )y =Ly (RY), (6.1)
Dff e L, (R"), (6.2)
where 1 > 2[af2] (I = a for a = 1, 3,5, ...) in the necessity part and 1 > 2a (¢ # 1, 3,5,
...} in the sufficiency part.

Proo¥r. MNecessity. The well-known inequality

[ ikcn wrd<e paleg. 1<p<2-, 63)
R?

is the multi-dimensional analog of an inequality of Hardy and Littlewood [25] which is
established in [43] (compare [31]), and which is a special case of the multi-dimensional
generalization of a theorem of Schur, Hardy and Littlewood on integral operators with a
homogeneous kernel (see [40], [41], [11] and [21]). It is obvious that (6.1) follows from
(6.3), and (6.2) follows from Theorem 2.

Sufficiency. As was shown in the proof of Theorem 4, the representability of f(x) by
a Riesz potential turns out to be a consequence of the integral representation (2.13). We
shall prove that it holds also under the assumptions (6.1) and (6.2). It is not difficult to see
that the proof of Theorem 3 is valid also under the assumptions (6.1) and (6.2) up to formula
(2.17). We show that in (2.17) it is possible to pass to the limit in the norm of L,(a; R™),
if 1> 2a. In the left side of (2.17) this is obvious in view of the fact that it generates an
operator which is bounded from L ,(R") into L,(a; R™), according to (6.3). The right side
represents the operator

1 ~ x—

B == § @@z (e
e” e

Rﬂ

Here A’ f € Lpy(e; R™), since _

'I'l'hf HLp(a,R")\< (1 ‘!‘\h |)aﬁ E‘lep(u;R")'

The operator B, is uniformly bounded with respect to € in L, (ex; R™). In fact, since I > 2a,

we have (1 + 15])°K, ,(I#]) € L, (R™) by (2.11), and therefore

E

IB"ﬂLp(u:R”)—'Lp(a;R”)< 5_1" S (T418)° | F1a (I—é‘l)ldg
RP

< JA+IED* | Fra(ED |5
R*

By the Banach-Steinhaus theorem it is sufficient to verify passage to the limit in the right
side of (2.17) for f&€ Cy . We have, by (2.8),
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H { (AFD (x—88) X1a (E) dE—(AFP) (1)
PA )

Lp(e:R™)
1

< [171aED 148 { [ A1) LBFH (c—88) — (87 (x) l"dx}p 64)
R R '

< [ 0 (ATF, 88)| #1a(|ED 1 dE—>0
R

by Lebesgue’s theorem on passing to a limit, since K,'a(|g|) €L, (R"),and AJ'fEC, C L,.
Theorem 10 is proved. (We note that the limit in (6.4) can also be obtained if we use not
uniform boundedness of B, but the property of continuity “in the whole” of functions
from weight spaces, which were established by T. S. Pigolkina {15].)

REMARK. Theorem 10 obviously remains valid if we replace (1 + IxI) ™ by b[™* in
its formulation. It is clear that in the necessity part the weight [x|™® is preferable, and in
-the sufficiency, the weight (1 + [x|)™®.

Appendix
We calculate the constant ,, (a) in (1.6). We have

!

~ |
T =3 (—0*ch [ T [ etwoy g—rnde

l n+a
k=0 : \t')& Rn
“ 4 ik(t,%)
= — ] k Ck € dt;
f (x) 122-'0 ( ) ¢ S It 'n+a
= it>e
that is,
N . [ — eftoy
T =Ffe § = ot

11>

It is not difficult to show that here (at least for f € §) a limit passage in the norm of
L,(R™) for 1> 2[af2] is possible, so that

/u\ o [N — ey
Ti W =Fe § = d

RII
Here for I < a <!+ 1 (/ is odd) the integral on the right converges conditionally, as can be
shown with the help of (1.4). Making the substitution ¢ = rot_(lyl/x), we obtain

VAN -
TS () = dai (@) 2 |°f (x),

where

fynd et
dus@) = [ = ay= (0 —ewfay, | —2—=

n+a n+Q@
1y} —

R gtp 4+’

-0
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a-1
oo1 il n’ L_;_a)oo o g
~ Y dt y(—ey) dy — \ 2, Xﬂ—ey)-.(—e 'y
nia +a -+ o 1+0
- — 2 (ﬁ'_.a y
Rnl 2 -00 r [}
(tF+0 2 )

L ¢
Zn’I‘( + )002 (—1f C‘cosky
= j‘k=° dy.
R
Let 0 <a < 1. Using the equality Zf‘:o(- l)kC," = 0 and taking account of formula 3.761.4

from [4], we reduce the remaining integral to the form

I hod ’
in&

2 (—1) C"SCOSk-" dy = ——; s (—l)ka.kSﬁs'nay dy
k=0 0 y

h==0

=—3‘_ '/4[ (G),

24T (a) sin Ezi

which yields the value of d,, I(a) indicated in (3). For the remaining values a > | the
required result can be obtamed by analytic continuation with respect to a.
We note that it is easy to show that d@(a)/da # 0 in (3) for positive integral values of a.
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