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We find conditions on the variable parameters p(x), ¢(¢) and «(¢), defining the Herz space H?()-4()-«()(R"),
for the validity of Sobolev type theorem for the Riesz potential operator to be bounded within the frameworks
of such variable exponents Herz spaces. We deal with a “continual” version of Herz spaces (which coincides
with the “discrete” one when ¢ is constant).

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The classical versions of Herz spaces K ,(R") and K ».q(R"), introduced in [13], known under the names of
nonhomogeneous and homogeneous Herz spaces are deﬁned by the norms

1Y%
1, = I flleaon, + | 3 24 f £ (I dx (L.1)
P R(2-1,2k)

keN

« = 2k / ’d ) 1.2
I fllkg, {Z (R(zklmlf(x)l x } (1.2)

keZ

respectively, where R(z, t) stands for the annulus R(¢, 7) := B(0, 7)\B(0, t). These spaces were studied in many
papers, see for instance [7], [8], [12], [14], [15], [17], [18], [23] and references therein.

In the last two decades, under the influence of some applications revealed in [28], there was a vast boom of
research of the so-called variable exponent spaces, and operators in them, where the parameters defining the space
or the operator, may depend on the point x of the underlying space. For the time being, the theory of such variable
exponent Lebesgue, Orlicz, Lorentz, and Sobolev function spaces is widely developed, we refer to the recent
books [4], [6] and the surveying papers [5], [19], [22], [30]. For variable exponent Morrey-Campanato spaces we
refer to the papers [2], [9]-[11], [20], [21], [26], [27].

Herz spaces with variables exponents have been recently introduced in [1], [14], [15]. In the last two papers
the exponent p was variable, the remaining exponents « and g were kept constant. The most general results were
obtained in [1], where the variability of « was allowed. The main results obtained, for instance in [1] concern the
boundedness of sublinear operators (including the maximal function and Calderén-Zygmund singular operators)
and a Spanne type result for the Riesz potential operator. The approach used in [1] allowed to cover the case where
p and « are variable and depend on the point x of the underlying set, keeping the exponent ¢ constant.
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2 H. Rafeiro and S. Samko: Riesz potential operator in continual variable exponents Herz spaces

Recently, in [31], [32] there was used another approach, based on the “continual” interpretation of Herz spaces
via the norm

Ky (f) = fllLesoyvre) + {/ 1% (/t o |f(x)|pdx> T} (1.3)
v yi<lx|<

where 1 < p<oo,1<g<oo,aeR,e>0,v>0and 0 <y <4 < oo, the cases v =0 and v > 0 corre-
sponding to homogeneous and non-homogeneous Herz spaces (the first term in (1.3) should be omitted in the case
v = 0). This norm is equivalent to the classical Herz norm given by discrete £¢-norm, see [31] for more details.
Based on this approach, in [31], [32] there were introduced the corresponding variable exponent Herz spaces
where all the three main parameters p, g and « are variable, and sublinear operators of singular type were studied
in such spaces (which include maximal functions and Calderén-Zygmund type singular operators). Within this
approach p(x) is defined on R”, while ¢(¢) and «(#) are functions on R. A different generalization to include
the case of variable ¢ (-) was also given in [16].

In this paper we extend the approach of [31], [32] to the case of potential operators and prove the corresponding
Sobolev type theorem for variable exponent Herz spaces. We write down the proof for the Riesz potential operator,
but note that the proof is valid for a more general case of sublinear operators with potential type size condition,
which are bounded on variable exponent Lebesgue space L”() (R™). When all the exponents are constants, we
recover the result proved in [25], which states, shortly speaking, that if a sublinear operator satisfies a certain size
condition and is bounded in the Lebesgue space is also bounded in the appropriate Herz space.

Notation:

B(x, r) is the ball of radius r centered at the point x;

R(z,7) := B(0,t)\B(0,) = {x e R" : t < |x| < 7} is a spherical layer;
Ri == R(2*1, 25);

xE(x) is the characteristic function of a set E;

Ry := (v, 00), where v > 0;

Xr.e (X) = Xr(1,0) (%);

dt/t denotes the Haar measure on R ;

N is the set of all natural numbers;

No = NU {0};

Z is the set of all integers;

f < g for nonnegative f and g means that f < Cg, where C does not depend on variables involved in f
and g.

2 Preliminaries

2.1 Spaces of variable integrability

We refer to the books [4], [6] and papers [24], [30], but recall some basics we need on variable exponent Lebesgue
spaces. Let Q C R” be an open set and p(-) be a real-valued measurable function on  with values in [1, co). We
suppose that

1 <p- < plx) < py < oo, 2.1

where p_ 1= essinf,cq p(x), pi 1= esssup, .o p(x). By L?) () we denote the space of measurable functions
f on € such that

1, (f) = /Q |f(x)|p(x) dx < o0.

Equipped with the norm
1A Wp) = inf{n >0: 1y (%) < 1},

this is a Banach function space. By p’(x) = p(x)/(p(x) — 1), we denote the conjugate exponent.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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In the sequel we use the well-known log-condition

p(x) = p(y) < —2

1
———, |x—y| <=, x,yeQ, 2.2)
—In|x — y| 2

where A = A(p) > 0does not depend on x, y, and the decay condition: there exists a number p., € (1, 00), such
that

Ip(x) | < A 2.3)
X)— < ——m, .
PRITPS (et )
and also the decay condition
A 1
- < PR < ) 2'4
Ip(x) = pol x| Xl <3 2.4

in case of homogeneous Herz spaces.
With respect to classes of variable exponents used in this paper, we adopt the following notation:

(a) Pt = P'°¢(Q) is the class of functions p € L>°() satisfying the conditions (2.1) and (2.2);

(b) in the case 2 is unbounded, &, (R2) and F) ~(2) are the subsets of exponents in L*°(2) with values in
[1, co) which satisfy the condition (2.3) and both the conditions (2.3) and (2.4), respectively; ,@}f)g(ﬂ) is
the set of exponents p € £, (), satisfying also the condition (2.2);

(c) inthecase Q2 = R,;, v > 0, wealso use the class .# (R, ) of functions g such that g(¢) = const + go(?),
where go € P (R,4).

(d) in the case Q = R, (the case v = 0), .40, (R ) is the class of functions g € .# (R, ) which satisfy the
decay condition also at the origin: that there exist a real numbers g, such that |g(x) — go| < un"%\,‘, 0<
x < 5. We also write gy = g(0), goo = g(00) in this case;

(€) Po.00(Ry) is the subclass of functions in .4 o (R4) with values in [, 00).

We will also work with the variable exponent Lebesgue space with the Haar measure dz/t on R, ., v > 0,
which is introduced in the usual way:
q<t) dt
- <l1yg.

[o¢]
. f(t
11100 () = i {n -0 \%

2.2 Technical lemmata

In this subsection we collect some technical lemmata that we will need.
Let

dt

T

Ko(t) = A s (£) (1) (2.5)

be an integral operator with the Haar measure dt /7 and the kernel homogeneous of order 0, known also as Mellin
convolution operator. We refer to [33] for Mellin convolution operators in variable exponent Lebesgue spaces.
Lemma 2.1 ([31, Corollary 4.5] and [33]) Let g € & (R) and q(0) = q(00). The operator K is bounded
in the space L") (R ;dt/t), if
o dt
() - < oo for s=1 and s = sy, (2.6)
0

1 1L 1
where u= 1 T + e
Lemma 2.2 ([1], [31]) Let D > 1 and p € Py (R"). Then
1

S Ixs0.0 80 [,y < cor for 0<r<1 2.7)
0

www.mn-journal.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 H. Rafeiro and S. Samko: Riesz potential operator in continual variable exponents Herz spaces

and
1
—r= < | xB(0.0r)\B(0.r) || Sewr? for r>1, (2.8)
Coo
respectively, where cy > 1 and c», > 1 depend on D, but do not depend on r.
Lemma 2.3 ([31, Lemma 4.7]) The following relations
1 ['drt
|®(y)ldy=— | — |®(y)|dy, t >2a >0, (2.9)
2a<|y|<t In2 a U Jmax(2a,7)<|y|<min(t,27)

and

1 *®dt
[ eonay= [ ®(y)Idy. 1 >0, 2.10)
|y|>2t In2 T max(7,2t) <|y|<2t

hold for every measurable function ® for which the integrals on the left-hand side exists.

2.3 Riesz potential operator

Recall that the Riesz potential operator is given by

2 1 ()
P16 = 5 f e

with the normalizing constant y, (A) = 2*7* %

Whenever Ap(x)<n, by p* we denote the Sobolev conjugate of p defined via the usual relation

! ! )L R" 2.11)
= ——, xelR", .
pr(x)  px) n
so that p* € ZE(R"), if p € Z2E(R") and Ap™ < n.
The well-known Sobolev theorem was extended to variable exponents in [29] for bounded sets in R” under the
assumption that the maximal operator is bounded in L” Q) (2); for unbounded sets, proved in [3], Sobolev theorem
runs as follows.

Theorem 2.4 Let p € ZXE(R") and Ap*™ < n. Then

() < C”f”p()

3 Continual variable exponent Herz spaces

LetR, , ={t € R:v <1 < oo}, where v > 0.By .Z.2%(R, ) and .2,

0.00 (R) we denote the classes of functions

g on R, , and R, such that g(r) = ¢ + g (¢), where c is a constant and g € ZE(R,.,) or g € 90 (R4),
respectively.

Definition 3.1 We define the continual variable exponent Herz space, denoted by H, fg')’ 70).e() (R"), by the
norm

”f”Hl’ 4( (]Rn = ”f“LF ) (B(0,yv+e)) + ”t ”fXRym;”LF(') ”L‘l(')((yv.oo);dl/t) < o0, (31)

where 0 <y <8 <00,e>0,q:[yv,00) = [l, 00), p:R" — [I, 00) and « : [yv, 0c0) — R are variable
exponents. The cases v = 0 and v > 0 correspond to homogeneous and inhomogeneous Herz spaces, respectively.
It is known (see Lemma 3.5 in [31]) that this definition is irrelevant to the choice of y, § and ¢ when the exponent
q is constant.

The following lemmas were proved in [31], see Lemmas 3.2 and 3.3 there.

Lemma 3.2 Let0 <& <2and4 < R < o0. Then

L Lo (B0 B024e)) < C (& RYIENF 026 0 Lo (2200t -

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Lemma 3.3 Let (2.1) hold. Then the following equivalences of the norms are valid
LA grcraets 2 Fleo (B0.yvte)) + NI KRy et Neoqms arsys v > 0, (3.2)
and

1 W pgaes 2 0O @ 0O N f o o o (3.3)

ifa e M (Ry.) in the case of (3.2) and «a € ///&f’ogo (Ry) in the case of (3.3).

4 Main results

In Theorems 4.1 and 4.3 we obtain the conditions of the boundedness of the Riesz potential operator in continual
variable Herz space, where all the main parameters p(-), ¢(-) and «(-) are variable, with different formulation for
variable and constant g.

Recall that norms in Herz spaces with constant ¢ are all equivalent to each other for different values of the
auxiliary parameters y and 6, 0 < y < § < oo, which is not the case when ¢ is variable. So the dependence on
those auxiliary parameters come into play when ¢ is variable. The main difference between two cases is in the
necessity to move the parameters y and § in the starting space when ¢ is variable. By this reason in our main
result we slightly change the notation for Herz spaces, taking it in the form

HP04O @),

4.1 Inhomogeneous Herz spaces (the case v = 0)

Theorem41Letv>OO<y<8<ooO<A<n,p€<@m(R”)withl<p <pt <n/kq€,@1%( +)
withl < q_ < qy <ooanda € Mo(Ryy). If

n
A——— <a(o0) <

p()
and the Sobolev theorem for the operator 1" is valid in variable exponent Lebesgue setting, i.e. I" is bounded

from LPC)(R") to LP"C)(R™), then it it is also bounded from Hpgy) 5()) o) (R") to Hﬁ:i‘,)(g)q(')’a(') (R™) for any

—_, “.n

O<y <yand$ <§ < oo
When q is constant, then the same is true also with y' =y and §' = §.

Proof of Theorem 4.1. —The case of constant g. We choose v =2 and y = 1,6 =2 in (3.1) for
simplicity, so that we will work with the norm

||f||Hv raat) = | oo (Bo,24e)) +N(f)pgua 4.2)
where
N(f)p q.o — ”1‘0[Dc ”fXR,‘z, ”LPU ||L‘f((2,oo);dr/z)- 4.3)

We first estimate [ 7 £+ . 21e))
fxrn\Bo,s) = fi + f» and for I’\fl we have

where it suffices to consider ¢ € (0, 1). We split f as f = f xp(0,8) +

HI fi ”Ln*< B(0,2+¢)) ~ ”f”Hﬂ( g ()

where we have used the (L") — L”"())-boundedness of /* and Lemma 3.2. For I* f> we obtain

dt
I’ <f / ——
| f2 |N 4 Roae |.X_ |n )\. y

< Awr*—"—ldr/R ()l dy

7,21

www.mn-journal.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6 H. Rafeiro and S. Samko: Riesz potential operator in continual variable exponents Herz spaces

o0
—QogFA—n+— dt
< / T () ) S 4.4)
4

n
—Ooo— 5
< rEo

().l
L9 ((4,00):d1/1) 170

5 ||f||H217,(2')<lI»u(-)

where the first inequality is due to relation (2.10), the second one comes from the fact that [x — y| > |y| — |x| >
7/4 since x € B(0, 3), the third inequality is obtained via Holder’s inequality and estimate (2.8), to obtain the
forth inequality we use Holder’s inequality again with the Haar measure and the definition of Sobolev exponent
and the last one comes from the fact that the L9 -norm of the power function in the forth inequality is finite, which
is easily seen by checking the modular.

To estimate now the N'(1* f )p , term, we split the function f(x) as

*.q

fx) = folx) + fi(x) + & (x) + hi(x),

where
fo(x) = f(x)xBo.1)(x), fi(x) = f(x)xB0./2\80,1) (%),

gi(x) = f(xX)xBosso.2) (x),  hi(x) = f(x)xrn\B0.80)

so that we have the pointwise inequality

11 £ ()] < [P (f) )| + [ (f) )] + |1 (g0) ()| + 17 (he) (x)]
ESTIMATION OF I* f;,. Since y € B(0, 1) and x € R, 5, we have that [x — y| > |x| — |y| > t/2, which implies
[1* fo(x)| < tk"f( : LFO)dy S 7 follpoy s ey S 7" foll o
B(0.1

and we obtain

N(ka())p*_qﬂ = 11N xR0, I foll p= () 10 ((2,00) 1)

S xR () 2o (20005t /) L foll o)
ST N L2000 1 foll oy S I foll o

where we have used the estimate (2.8), the definition of Sobolev exponent and for the finiteness of the g-norm of
the power function in the last line, by relation (4.1).
ESTIMATION OF I* f;. For x € R, »,, we have

Paels [ O,

B(0,1/2\B(0,1) |X — y["* .

Since |x — y| = |x| — |y| = t/2, using relation (2.9), Holder’s inequality and (2.8) we obtain

1 £ < r”/ £ ()l dy

1<|y|<t/2

_('dt
ser [ i
1 T T/2<|y|<Tt

t
s [,

t
S0 [,
1

i 4.5)

P T

»() ”XR;T

o
Tre  dt.
p()

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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‘We have

<totoo—n+)\||XRt2r"p /“fXRr } ‘L'l’ dT

< T f £ xx,.

/ | xs.
< / ’ (5) T o) &

where ¢(7) = 1| f xr. . ||p(_) and the last inequality in the right-hand side of (4.6) is a Hardy type operator.
.
Taking K(¢) as

taoc ||XRL2r1Aﬁ p (

>‘L'" d‘L’

(4.6)

2
b T dt

taxii, t>1,
K(t) = “@.7
0, O<t<l,
we define, as in (2.5), the operator K ¢(¢ fo (t/7)e(7) : . With all the above taken into account we have

N(I*f1) S 1K @llLa(2.00an
S Nella((2.00)5a10)
SN F KR ) o (1,205 7) + DN F AR ) (2200 ca0)
S e (Bo.a08(0,1)) + 1N XR,o o) 2 ((2.00):a1/0)
S lgoraets
where we have used Lemma 2.1, the fact that e, — n/p., < 0 and for the last inequality we used the embedding
B(0,4)\B(0,1) C B(0,2+¢)UB(0,4)\B(0,2+¢)

and Lemma 3.2. '
ESTIMATION OF I*g,. By the (L") — L”"())-boundedness of I* we obtain

2
Shglper S D0 1 xRy,

j==1

|7 g)xwal o e

Then

N(I'\gz),, i S NN xRy M) s (2.00)ane) + NN F xR 2 () Wz (2.00)5a1/1)
SN xR M p ) Nza (1,20 76) F N XR,2 | p () L0 ((2,00)5a1 1)

Sl
where the first inequality comes from the fact that

e f xRy, 0, | p() Na(2.00)ae7e) S MM XRoo M p() ML ((2.00)a0)s F = 1,2,

which follows from a dilation change of variables in ¢ (thanks to the fact that g is constant) and in the last inequality
we used Lemma 3.2 and the obvious inequality || f xR, | .00 < I1f xRyl £r0)
ESTIMATION OF I*h,. We have

Phy ()] € f g

=8 X — ¥

www.mn-journal.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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which is estimated as follows

/ x|f y /4 /
y
\V|>8[ | | 1 |

dt
S/ TN xRea () I XR o () —
4t

0o o dt
5/ T % xR o) —
4

t

where the first inequality comes from relation (2.10), the second by Holder’s inequality and the fact that |x — y| >
%(since x € Ry there) and the last one by relation (2.8). We now have

0w [ dt
oot —5— -
() S t Poo / T P> ”fXR,,zr ”p()
4

o0 /g \ @t L dt
< (—) o) &
: T T

where ¢(7) = 7| f XRr... Il p(-) X(2.00) (T). We note that we arrived at a Hardy type inequality and since o, +
n/p% > 0, using Lemma 2.1, we obtain

1 | xR, 1B

(ol P G770 (Y PINSIRSY [ [ZT(CRSPIABE FA PESREeR O

Proof of Theorem 4.1. —The case of variable g. The principal reason why we cannot act as in the
case of constant g, is the fact that, when ¢ is variable, we cannot make a dilation change of variables in ¢ as it was
done in the estimation of the term /% g,. However, the proof follows in the whole the same arguments, so we omit
details, but dwell on changes.

We again choose v = 2 and y = 1, § = 2 for simplicity but stress once again that the norms in the Herz space
with variable ¢(-) are not necessarily equivalent for different values of these parameters. We want to show that

17 £ (a020ey + N2 (P F) S WF st a0y + NP5 (F)

withy’ < 1,8 > 2 and

NS (8) o= [ | 8xR,0 | Lot ”Lq(')((loo),dr/z)'

The estimation for || I f || L0 is obtained, mutatis mutandis, as in the case of constant g.

(B(0.2+¢))
To estimate now the /(1" )7, term, we split the function £ (x) as

J ) = folx) + fi(x) + & (x) + i (x)

where

) )(x), fi(x) = f(x)XB(O,y’t)\B(O
g (x) = f(x)xB0.50)\B(0,y1)(X), hi(x) = f(x)xrn\B(0.57)-

&)
Then
[ £ ()] < (o) )| + [T () (0] + |17 (&) ()] + |17 (he) (%) .

ESTIMATION OF I* f,. It follows, mutatis mutandis, the one given in the constant gq.
ESTIMATION OF I* f,. By the same estimations of (4.5) and taking into account that |x — y| > (1 —y’)t we
obtain

r!’ dr,

Pl e [,

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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from which we get

dt
p() ¢

sf(5) Tems (48)
% T T

where ¥ (1) = 7| f xr.,. I p(.)- Observing, as in (4.6), that the right-hand side of (4.8) is a Hardy type operator
and using Lemma 2.1 together with (4.7) we get

NEEI £ S UK 00 (ooysary) S IV a0 (2uo0pie) S ||f||HI’((‘)/«‘§()‘)«”<')(Rn)v
%(y" 8

1o ‘|XR/,2:IAﬁ p()

where we followed the same reasoning as in the case of constant g.
ESTIMATION OF I*g,. By the (L") — L?"())-boundedness of I* we get

H (Ikgt)XR,.z,

which implies

NP () SIS

Lr() S gl = ||fXRV,,_5,,||Lp<‘)

Hp 1/) (’)(Rn)'

ESTIMATION OF [*h,. Similarly adapting the estimate of I*/, from the proof of the constant ¢ case to the case
of variable g, we get

oo A o
H’ ”Xanrl he ”p(-) Hu((z,oo);dt/r) N ||f||H2’jE'V’,'V’§E)'"“‘(') (R
Taking all the estimates into account, we obtain the result. O

Corollary 4.2 The statement of Theorem 4.1 is valid if the assumption that Sobolev theorems holds for variable
Lebesgue spaces is replaced by the conditions that p(x) satisfies the log-condition (2.2) and p_ > 1.

Proof. Itsuffices to refer to Theorem 2.4. O

4.2 Homogeneous Herz spaces (the case v = 0)

The main difference in the proof is that now we have to arrange the corresponding splitting of f with respect to
not only large values of #, but also near the origin. Correspondingly, the assumptions on all the variable exponents
now should include the decay condition not only at infinity, but also at the origin. But in the whole the proofs for
this case follow the same lines as in the non-homogeneous case, so we give only the formulation of the result.

Theorem 4.3 LetO <y <3 <00, 0<i<n pe Pyo(R")withl <p~ <p" <n/r qe W(I)f)fc(R,,Jr)
withl < q- < g <ooand o € My.oo(Ry). If

A—L<a(0)<L and A—L<a(oo)<L, (4.9)

p(0) p'(0) p(o0) p'(00)
and the Sobolev theorem for the operator I* is valid in variable exponent Lebesgue setting, i e 1 * is bounded
from LPY)(R") to LP"C)(R™), then it it is also bounded from H”E) ») () (R") to Hp <)> (R”) Sfor any

0<y <yand$ < § < oo. When q is constant, then the same is true with y' = y and 5’ =34.

Corollary 4.4 The statement of Theorem 4.3 is valid if the assumption that Sobolev theorems holds for variable
Lebesgue spaces is replaced by the conditions that p(x) satisfies the log-condition (2.2) and p_ > 1.

Remark 4.5 Checking the proofs of Theorem 4.1, we can obtain the same result for sublinear operators T*
which are L?() (R") — L?"()(R") bounded and satisfy the size condition

s [ L

re X — [t

where 0 < A < n, for integrable and compactly supported functions f.

dy, x ¢supp f,

www.mn-journal.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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