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Abstract. We consider generalized Orlicz-Morrey spaces Ma,,(R™) including
their weak versions. In these generalized spaces we prove the boundedness
of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular
operators with standard kernel. In all the cases the conditions for the bound-
edness are given either in terms of Zygmund-type integral inequalities on ()
without assuming any monotonicity property of ¢(r), or in terms of supremal
operators, related to ().
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1. Introduction

Inequalities involving classical operators of harmonic analysis, such as maximal
functions, fractional integrals and singular integrals of convolution type have been
extensively investigated in various function spaces. Results on weak and strong
type inequalities for operators of this kind in Lebesgue spaces are classical and
can be found for example in [3, 41, 42, 44]. Generalizations of these results to
Zygmund spaces are presented in [3]. An exhaustive treatment of the problem of
boundedness of such operators in Lorentz and Lorentz-Zygmund spaces is given
in [2]. See also [10, 11] for further extensions in the framework of generalized
Lorentz-Zygmund spaces. As far as Orlicz spaces are concerned, we refer to the
books [21, 23, 37] and note that a characterization of Young functions A for which
the Hardy-Littlewood maximal operator or the Hilbert and Riesz transforms are
of weak or strong type in Orlicz space L4 is known (see for example [5, 21]). In

The research of F. Deringoz was partially supported by the grant of Ahi Evran University Sci-
entific Research Projects (PYO.FEN.4003.13.003).

The research of V. Guliyev was partially supported by the grant of Ahi Evran University
Scientific Research Projects (PYO.FEN.4003.13.003).



2 F. Deringoz, V.S. Guliyev and S.G. Samko

[33, 44] conditions on Young functions A and B are given for the fractional integral
operator to be bounded from L4 into Lp under some restrictions involving the
growth and certain monotonicity properties of A and B (see also [5]).

Orlicz spaces, introduced in [34, 35], are generalizations of Lebesgue spaces
L,. They are useful tools in harmonic analysis and its applications. For example,
the Hardy-Littlewood maximal operator is bounded on L, for 1 < p < oo, but not
on L;. Using Orlicz spaces, we can investigate the boundedness of the maximal
operator near p = 1 more precisely (see [17, 18] and [5]).

In the study of local properties of solutions to of partial differential equa-
tions, together with weighted Lebesgue spaces, Morrey spaces M) »(R™) play an
important role, see [12]. Introduced by C. Morrey [29] in 1938, they are defined by
the norm

1£llas, = 50 721l 3000 (1.1)
where 0 < A < n, 1 < p < co. Here and everywhere in the sequel B(z,r) stands
for the ball in R™ of radius r centered at x. Let | B(z, )| be the Lebesgue measure
of the ball B(z,r) and |B(x,r)| = v,r", where v, = |B(0,1)|.

Note that M,o = L,(R") and M,,, = Loo(R™). If A < 0 or A > n, then
M, » = ©, where O is the set of all functions equivalent to 0 on R".

We also denote by WM, » = WM, (R™) the weak Morrey space of all
functions f € WLP<(R™) for which

1 lwag,, = s 2| flwi, B < oo
’ z€ER™, r>0

We refer in particular to [24] for the classical Morrey spaces. Observe that
Morrey spaces with r* replaced by a function ¢(r) first appeared in [9] and [46];
we also refer to the survey paper [36] for more various definitions of generalized
Morrey spaces and note that study of classical operators of harmonic analysis in
generalized Morrey spaces started in [13], [14], [30], up to authors’ knowledge.

Last two decades there is an increasing interest to the study of variable ex-
ponent spaces and operators with variable parameters, in such spaces, we refer to
the recent books [6], [8] and surveying papers [7], [20], [22], [38].

Orlicz-Morrey spaces and maximal and singular operators in such spaces
were studied in [31], [32]. The most general spaces of such a type, Musielak-Orlicz-
Morrey spaces, unifying the classical and variable exponent approaches, were stud-
ied in the recent paper [28], where potential operators were studied together with
the corresponding Sobolev embeddings.

In this paper we study the maximal and singular operators in Orlicz-Morrey
spaces, introduced in a less generality, but advance in the following two directions:
1) we make minimal assumptions on the functions defining the space avoiding any
kind of monotonicity or growth condition, required for instance in [30], [31], [32],
2) we prove weak-type inequalities.
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Our conditions for the boundedness are sufficient. We do not discuss their
necessity in this paper but hope to do that in another paper.

We define the generalized Orlicz-Morrey space Mg ,(R™) in question by the
norm

r>

1flIsta, = sup o(@,r) 7" [ fllLo (B

zeR™ r>0

where ¢(x,r) be a positive measurable function on R™ x (0,00) and ® a Young
function, but refer to Section 2 for all the precise definitions and comparison with
other norms.

The main purpose of this paper is to find sufficient conditions on general
Young function ® and functions 1, @2 ensuring that the operators under consider-
ation are of weak or strong type from generalized Orlicz-Morrey spaces Mg, (R™)
into Mg, (R™). Our results for the maximal operator are presented in Section 4,
while Section 5 deals with singular integrals.

1.1. Operators under consideration

We study the following operators:
the maximal operator

1
= - d
Mf(x) ?§HMmmLé@@”@”%

Calderon-Zygmund type singular operators; by this we mean operators bounded in
L?(R™) of the form

H@=Rfmwﬁww

where K (z,y) is a ”standard singular kernel”, that is, a continuous function defined
on {(z,y) € R™ x R": x # y} and satisfying the estimates

|K(z,y)| < Clz —y|[ " for all z # y,

y—z|° .
K(9) = K 2)) < O 050 o=y > 2 4,

|z — €|7

K$7 -K ) §077
|K (2, y) — K(& )| P

o>0, if |z —y|>2/z—¢|

Our main results are obtained in Theorems 4.6 and 5.5, where we use recent
results presented in Theorems 2.11 and 2.12 to obtain a generalization of known
conditions for the boundedness of maximal and singular operators in Orlicz-Morrey
spaces, it is given in terms of conditions (4.8) and (5.5), respectively, without any
assumption of monotonicity type on the functions ¢; and - as for instance used
in [28], [31] and other sources.
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2. Some preliminaries on Orlicz and Orlicz-Morrey spaces

Definition 2.1. A function ® : [0, +00] — [0, 00| is called a Young function if ® is
convex, left-continuous, lim ®(r) = ®(0) =0 and lim &(r) = P(o0) = 0.
r—40 r—+00

From the convexity and ®(0) = 0 it follows that any Young function is
increasing. If there exists s € (0, +00) such that ®(s) = +oo, then &(r) = +oo for
r>s.

We say that ® € A,, if for any a > 1, there exists a constant C, > 0 such
that ®(at) < C,®(¢) for all ¢ > 0. A Young function @ is said to satisfy the
Va-condition, denoted also by ® € Vs, if

1
< — >
d(r) < 2k@(kr), r >0,

for some k > 1. The function ®(r) = r satisfies the As-condition but does not sat-
isfy the Va-condition. If 1 < p < oo, then ®(r) = r? satisfies both the conditions.
The function ®(r) = e” — r — 1 satisfies the Vy-condition but does not satisfy the
As-condition. The following two indices

te(t) to()

o o)’ PP e
of @, where ¢(t) is the right-continuous derivative of ®, are well known in the
theory of Orlicz spaces. As is well known,

Pp < 00 < (I)GAQ,

and the function ® is strictly convex if and only if g > 1. If 0 < ¢ < po < o0,

ot d(t
then tq(q,) t1§<1>)

Lemma 2.2. ([21], Lemma 1.3.2) Let ® € Ag. Then there exist p > 1 and b > 1
such that

is increasing and is decreasing on (0, c0).

(t2)
th

bd(t)
ty

<

for 0 <t < ts.

Recall that a function ® is said to be quasiconvex if there exist a convex
function w and a constant ¢ > 0 such that

w(t) < P(t) < cw(ct), t €[0,00).
Let Y be the set of all Young functions ® such that
0< ®(r) <400 for 0<r<+oo (2.1)

If ® € ), then ® is absolutely continuous on every closed interval in [0, +00) and
bijective from [0, 4+00) to itself.

Definition 2.3. (Orlicz Space). For a Young function @, the set

Ly (R™) = {f € L°(R") : / (k| f(x)|)dx < +oo for some k > 0 }
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is called Orlicz space. The space L¢(R™) endowed with the natural topology is
defined as the set of all functions f such that fx, € Lg(R™)) for all balls B C R™.

Note that, Le(R™) is a Banach space with respect to the norm

£l Lo =inf{A >0: / <I>(|f()\x)‘>dx < 1},

see, for example, [37], Section 3, Theorem 10, so that

/ (D(If(x)\)dx <1
no A fllze
For a measurable set Q2 C R™, a measurable function f and ¢t > 0, let
m(Q, f, t) = {z € Q:[f(z)] > t}].
In the case Q = R™, we shortly denote it by m(f, t).

Definition 2.4. The weak Orlicz space
WL‘I)(RTL) = {f € L%oc(Rn) : ||f||WL4) < +OO}
is defined by the norm
[ inf{/\ >0 supq>(t)m(f, t) < 1}.
>0 A

For Young functions ® and ¥, we write ® ~ W if there exists a constant
C > 1 such that

O(C™r) < W(r) < ®(Cr) forallr >0

If ® ~ ¥, then Ly (R™) = Lg(R™) with equivalent norms. We note that, for Young
functions ® and ¥, if there exist C, R > 1 such that

O(C™1r) < T(r) < O(Cr) for 7 € (0,R™) U (R, o0),

then & ~ W.
For a Young function ® and 0 < s < +00, let

O (s) =inf{r >0:®(r) > s} (inf @ = +00).
If ® € ), then ®~! is the usual inverse function of ®. We note that
O Hr) <r <@ Y (®(r)) for0<r < +oo.
For a Young function ®, the complementary function ;I;(r) is defined by

B(r) = { Sup{rs—fb(j?x:)s € [0,00)} e [3;;).) (2.2)

The complementary function d is also a Young function and d=0. If o(r) =,
then ®(r) = 0 for 0 < r < 1 and ®(r) = 400 for r > 1. If 1 < p < o0,
1/p+1/p' =1 and ®(r) = r?/p, then ®(r) = r*' /p/. If ®(r) = " — r — 1, then
(r) = (1+r)log(l+7) —r.



6 F. Deringoz, V.S. Guliyev and S.G. Samko

Remark 2.5. Note that ® € V4 if and only if ® € A,y Also, if @ is a Young
function, then ® € V; if and only if 7 be quasiconvex for some v € (0,1) (see,
for example, [21], p. 15).

It is known that
r< N (r)d (r) < 2r for r > 0. (2.3)
The following analogue of the Holder inequality is known, see [45].
Theorem 2.6. [45] For a Young function ® and its complementary function EI;, the
following inequality is valid
1f9llz,@ny <20 fllzallgllzg-
Note that Young functions satisfy the property
O(at) < ad(t) (2.4)

for all 0 < o < 1 and 0 < ¢t < oo, which is a consequence of the convexity:
P(at) = P(at+ (1 — @)0) < a®(t) + (1 — a)P(0) = ad(t).
The following lemma is valid.

Lemma 2.7. [3, 25] Let ® be a Young function and B a set in R™ with finite
Lebesgue measure. Then
1
||XB||WL¢(R“) = ||XBHL<I>(R”) = m

In the next sections where we prove our main estimates, we use the following
lemma, which follows from Theorem 2.6 and Lemma 2.7.

Lemma 2.8. For a Young function ® and B = B(x,r), the following inequality is
valid

1 zas) < 21BI®7H (IBI7Y) 1f Lo a)-

Definition 2.9. (Orlicz-Morrey space). For a Young function ® and 0 < A < n, we
denote by Mg »(R™) the Orlicz-Morrey space, defined as the space of all functions
f € L¥°(R") with finite quasinorm

Hf“Mq)’)\ = me]}g}}%>0 (I)il(’ri)\) Hf||L<p(B(ac,T))~

Note that M<I>,)\|)\:0 = L@(Rn)
We also denote by W Mg 5 (R™) the weak Morrey space which consists of all
functions f € WLR(R") for which

||f||WMq>,x = IGHS}}%N@A(T*’\)||f\|WL<I)(B(z,r)) < 00,

where W Lg(B(x,r)) denotes the weak Lg-space of measurable functions f for
which

1w LeB@r) = 1 Xp0m WL @)
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Definition 2.10. (Generalized Orlicz-Morrey Space) Let ¢(z,7) be a positive mea-
surable function on R™ x (0, 00) and ® any Young function. We denote by Mg ,,(R™)
the generalized Morrey space, the space of all functions f € L¥¢(R") with finite
quasinorm

||fHM<‘I>,g: = ze]lsk}”blp 030(1'77')71 ||fHLq>(B(a:,r))~

>

It may be easily shown that || f||rs, , is @ norm and Mg, is a Banach space, for
any Young function ®.

By WMs,,(R™) we denote the weak generalized Morrey space of all functions
f € WLE(R™) for which

Ifllwata,, = sup (@, )" | fllw Lo (B < oo
z€R™ r>0

If @ satisfies the As-condition, then the norm || f|[az, , is equivalent (see [28],

p. 416) to the norm
/()]

I fll57, :inf{)\>0: sup  p(z,r)"! / @(7)dx§ 1}.
@ TER™,r>0 B(z,r) A

The latter was used in [28, 31, 32, 39], see also references there.

Definition 2.10 recovers the spaces Mg » and W Mg » under the choice ¢(x,r) =
1/®~!(r=*) and the spaces M, , and WM, , under the choice ®(r) = r?.

The following statement was proved in [1] (see also [4]).

Theorem 2.11. Let 1 < p < oo and (¢1, p2) satisfies the condition

n
ess inf o1 (x, s)s?
t<s<oo<p( ,5)

sup i < C(Pg(.’lf,’l“), (25)

t>r tr

where C does not depend on x and r. Then the mazximal operator M is bounded
from M, ,, to My o, forp>1 and from My ,, to WM ,,. Moreover, for p>1

IMflirtypy S NS l020, 5
and forp =1
M fllwarpy SN fln g, -

The following statement, containing results obtained in [13, 14, 15, 27, 30]
was proved in [1] (see also [16]).

Theorem 2.12. Let 1 < p < 0o and (1, 92) satisfies the condition

oo ess inf ©1(z,5)sv
/ t<s<oo dt < CQDQ(IL',T),
T

vt

where C' does not depend on x and r. Then the singular operator T is bounded
from M, ,, to My o, forp>1 and from My ,, to WM ,,. Moreover, for p>1

1T f sty S W01y,
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and forp=1
ITf Wty S NS llagy s, -

3. Some supremal and Hardy type inequalities
Let v be a weight. We denote by L ., (0, 00) the space of all functions g(t), ¢ > 0
with finite norm
1911 2 0.00) = sUP 0(t)[g(1)]
>0
and Lo(0,00) = Lyi1(0,00). Let 9M(0,00) be the set of all
Lebesgue-measurable functions on (0,00) and 9% (0,00) its subset of all non-

negative functions on (0, 00). We denote by (0, co;71) the cone of all functions in
9T (0, 00) which are non-decreasing on (0, 00) and

A= {cp € M (0,00; 1) : t1_1>r51+<p(t) = 0}.

Let u be a continuous and non-negative function on (0, 0c0). We define the supremal
operator S, on g € M(0, c0) by

(Sug)(t) = ||ugHLoc(t,OO)7 te (0700)
The following theorem was proved in [4].
Theorem 3.1. Let vy, vy be mon-negative measurable functions satisfying 0 <
lvillL o t00) < 00 for any t > 0 and let u be a continuous non-negative func-

tion on (0,00). Then the operator S, is bounded from Lo 1, (0,00) t0 Leo 4, (0, 00)
on the cone A if and only if

Joa5u (I o) oy < 2 (3.1)

We will use the following statement on the boundedness of the weighted
Hardy operator

Hg(t) = /too g(s)w(s)ds, 0<t< oo,

where w is a weight.
The following theorem in the case w = 1 was proved in [4].

Theorem 3.2. Let vy, v2 and w be weights on (0,00) and v1(t) be bounded outside
a neighborhood of the origin. The inequality

sup va(t) Hi (1) < C'supwn (t)g(1) (3.2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,00) if and
only if

oo

d

B:= supvg(t)/ __wlslds < 0. (3.3)
t>0 t SUPs<cr<oo V1 (T)
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Moreover, the value C' = B is the best constant for (3.2).
Remark 3.3. In (3.2) and (3.3) it is assumed that = =0 and 0 co = 0.

Proof. Sufficiency.
Suppose that (3.3) holds. Whenever F, G are non-negative functions on
(0,00) and F' is non-decreasing, then
sup F'(t)G(t) = sup F'(t) sup G(s), t > 0. (3.4)
>0 >0

s>t

By (3.4) we have

o sup v1(7)
sup ve(t)H, t:suvt/ s)w(s) —2ST=2 = 2 (s
Sup v2(8) Hy,g(t) = sup s (t) t g(s)w( )sups<7<oov1(7)

(oo}
d
Ssupvg(t)/ __wlsds supg(t) sup wvi(7)
t>0 ¢ SUDgcrcoo U1(T) >0 t<T<00

*° w(s)ds
= sup va(t ——— su t)vy(t
t>%) 2( )/t SUPs < r< o0 Ul(T) t>Igg( ) 1( )

< B sup g(t)vi(t),
t>0

so that (3.2) holds with C' = B.
Necessity. Suppose that the inequality (3.2) holds with some C' > 0. The
function

1
= — >0
9(t) SUPy o r o0 U1(T)

is nonnegative and non-decreasing on (0, c0). Thus

e d t
B:SUPUQ(t)/ %ngupvl—()gc,
t>0 t  SUPs<r<oo V1 (T) t>0 SUPtcr<oo V1 (T)
which competes the proof. O

4. Boundedness of the maximal operator in the spaces Mg ,(R")

In this section sufficient conditions on ¢ for the boundedness of M in generalized
Orlicz-Morrey spaces Mg ,(R™) have been obtained.

Definition 4.1. The operator T is said to be of strong type (®, V) if there exists a
positive constant k such that

ITfllee <KIflLs

for all f € Lg(R™).
The operator T is said to be of weak type (®, V) if there exists a positive
constant k such that

Hy e R" [ Tf(y)| >t} < 1/@ (k”ft”l,)
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for all t > 0 and all f € Lg(R™).

Necessary and sufficient conditions on ® for the boundedness of M in Orlicz
spaces Lg(R™) have been obtained in [19], Theorem 2.1 and [21], Theorem 1.2.1.
With Remark 2.5 taken into account, the known boundedness statement runs as
follows.

The strong estimate in the following theorem is well known, proved in fact
in [21], [5], although not stated directly in the form we need (they may be also
derived from the Lorentz-Shimogaki theorem (see [3], p. 154) on the boundedness of
the maximal operator on rearrangement invariant spaces and Boyd’s interpolation
theorem. So we present the proof only of the weak estimate.

Theorem 4.2. Let ® be a Young function. Then the mazximal operator M is bounded
from Ly (R™) to WLe(R™) and for ® € Vo bounded in Ly (R™).

Proof. To prove the weak estimate, we take f € Lg satisfying || f||L, = 1 so that
pa(f) = [gn ®(If(z)])dz < 1. By Jensen inequality,

o (o [ 1swlan) < - [ @ (11)

for all balls B. Using (4.1) and definition of the maximal operator, we have
(M f(z)) < M[(®o f)(z)]. (4.2)
Then by (4.2) and the weak (1, 1)-boundedness of the maximal operator we get
{z: Mf(z) >t} = [{z: DM [f(z)) > (1)} < [{z: M(®o f)(z) > (D)}
C / C 1
< e St
D(t) Jrn (1) ~ (e
since || fllL, =1 and £®(t) > ® (&), C > 1. By the homogeneity of the norm
|| - |lzs, we then have

1
x: Mf(x) >t} < 5
{ (z) > t}] g

for every f € Lg, which completes the proof. O

The following lemma is valid.

Lemma 4.3. Let f € LY(R™) and B = B(x,r). Then

1 —n
1M fllem) S 1flLeB@2n) + Py 5;121115 [ flLy (B(2.t))s (4.3)
for any Young function ® € V4 and
1 -n
HMf||WLq>(B) 5 ||fHLq>(B(w72r)) + m tS;IZPTt ||f||L1(B(w,t)) (44)

for any Young function ®.
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Proof. Let ® € Va. We put f = f1 + fa, where f1 = fxp(s,2r) and fo = fx Sz 2r)
and have

1M fll Lo 3y < 1M fill o) + 1M foll Lo(B)-
By the boundedness of the operator M on Lg(R™) provided by Theorem 4.2 we
have
1M filloB) S N fllLe(B2r)-

Let y be an arbitrary point from B. If B(y,t)N l3(B(gc, 2r)) # 0, then ¢ > r. Indeed,
it z€ B(y,t)N B(B(;zc,27“)), thent > |y —z| > |z —z2|— |z —y| >2r—r=r.

On the other hand, B(y,t) N I3(B(ac, 2r)) C B(x,2t). Indeed, if z € B(y,t) N
|3(B(:c,27”))7 then we get |z — 2| < |y —z| + |z —y| <t +7r < 2t.

Hence
1
Mp@) = [ IR
=2 R 1B 20 Jgea T
1
=2" ts;12pr m e |f(2)]d=.
Therefore, for all y € B we have
Mpy) <2 swp = [ |f(E)de, (45)

t>2r | B(z,1)] B(z,t)
Thus

1 1
Mf| L. < ] 4+ —— | su 7/ z)|dz | .
IMfllLes) S 1 llLes2m) B1 (1) <t>2PT B 1) B(m)lf( )| >

Let now ® be an arbitrary Young function. It is obvious that
IMfllweres) < IMAlwres) + 1M f2llwres)

for every ball B = B(x,r).
By the boundedness of the operator M from Lg(R™) to W Lg(R™), provided
by Theorem 4.2, we have
1M fillwee ) S IfllLeB@2r)-
Then by (4.5) we get the inequality (4.4).

Lemma 4.4. Let f € LiY(R™) and B = B(x,r). Then

1M flloem) S ) tS;lzP (1)71(571) £l o (B0 (4.6)

_
<I>*1(r*"
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for any Young function ® € V4 and
1 1y
1M fllwres) S o1 f;gprq’ E) Nl s (4.7)

for any Young function ®.

Proof. Let ® € V5. Denote

1 1
M= — S dz |,
= (“p B, 0] Jogen )

Mz = || fllLe(B(z2r)-
Applying Holder’s inequality provided by Lemma 2.8, we get

1 1
xr ]‘ % x
51 () SUP B D) 1 flLe B 1 Ls (B0

1 — -n
-1(r) f;gpr‘p YEM N L (Bt -

On the other hand,

1
_ oLt ,
&1 () sup EN o B

1 o N
i) e ® HEM) Il Lo (B@en) = Mo.

Since || M f|1,(B) < M1+ Ma by Lemma 4.3, we arrive at (4.6). Finally, when ®
is an arbitrary Young function. the inequality (4.7) directly follows from (4.4). O

Corollary 4.5. [1] Let 1 < p < 0o and f € L°(R"), B = B(zo,7), To € R",7 > 0.
Then, for 1 < p < oo

IMfllL,(Bor)) STP Sup t 2 || fllL, (Bzo.t))
and forp=1
M fllw Ly (B(zor) S T" Sup N ey (Bo 1))

Theorem 4.6. Let ® be a Young function, the functions @1, p2 and ® satisfy the
condition
inf () < o t(r 4.
Sup essinfoy(x,5) 7 (17") < Cpa(a,1) 7H(r7"), (4.8)
where C' does not depend on x and r. Then the maximal operator M is bounded

from Mg o, (R™) to WM o, (R™) and for ® € Vs, the operator M is bounded from
Mg, (R™) to Mg,p, (R™).
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Proof. By Lemma 4.4 and Theorem 3.1 with u(r) = ®~1(r="), v1(r) = ¢1(z, 7)1,
() = W and g(r) = || fl| Lo (B(x,r) We get

1
M 1| a4 S osup
| ” P2 ern >0 (T, T)®1 (Tﬁn

sup @~ (t7") /2o Bty
) t>r
/S sup 901(:6’71>71 ||fHL<I>(B(x,r))
zER™ r>0
= || fll Mo,
if ® € V5 and
1

M < su sup®~ (™" @
1M fllwnme,, S mGR“,IZ*>O (@) () Sup NS M Lo (Bt

S suwp o1(@ ) T I flres@e) = 1o,
z€R™ r>0

if @ is an arbitrary Young function. t
Remark 4.7. Note that, in the case ®(t) = ¢? from Theorem 4.6 we get the Theorem
2.11.

In the case ¢1(x,r) = Wi—*l)’ oz, 1) = m of Orlicz-Morrey

spaces from Theorem 4.6 we get
Corollary 4.8. Let ® any Young function, 0 < A1, Ao < n and
(I)_l tn (b—l —n
VY o)
r<t<oo @fl(t*Al) <I>*1(r*)‘2)

Then the mazimal operator M is bounded from Mg x, (R™) to W Mg x,(R™) and
for & € V the operator M is bounded from Mg x,(R™) to Mg »,(R™).

(4.9)

5. Calderén-Zygmund operators in the spaces Mg

In this section, sufficient conditions on ¢ for the boundedness of the operator T
in generalized Orlicz-Morrey spaces Mg ,(R™) are obtained.

Sufficient conditions on ® for the boundedness of the operator T in Orlicz
spaces Lg(R™), as stated in the following theorem are known, see [21], Theorem
1.4.3 and [43], Theorem 3.3, and also [40]; in the next Theorem 5.2 we present the
proof of the corresponding weak estimate.

Theorem 5.1. Let ® be a Young function and T a singular integral operator. If
® € Ay Va, then the operator T is bounded on Le(R™).

Theorem 5.2. Let ® be a Young function and T a singular integral operator. If
® € Ay, then the operator T is bounded from Lg(R™) to W Lg(R™).
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Proof. Let || f||L, = 1. Fix A > 0 and put f = f1 + fa, where fi = xqj¢>x} - f and
fg = X{|fI€A} - f We have
KITfFI > M < KITf1 > A2} + KIT 2| > A/2}]
and
SNRITS > A < |RASIT f1] > A/2} + R(MKIT f2| > A/2}.
By the weak (p, p)-boundedness of T, p > 1 we get

1
ITOcson - I > M S 5
{I71>A}

1
. A< P,
T Ocisieny - NI >AS /{|f9}|f|

Since f; € WL;(R") and @ is increasing, we have

(e e B ITh@I> 5} 5 T [ 1Al
o)

A /{xeR":|f<x>|>A}

s [ ® e = [ air@hs

|f () |de

By Lemma 2.2 we have

D(N) |{x eR": |Tfa(x)| > %H < (I))f;\) /Rn | fo(z)|[Pdx

L Pl
{zeRm:|f(x)|<A}

L@, s
s [ @it = [ e

Thus we get

c
He e R" :[Tf(z)] > M\ < —= [ @(f(@)))dr < ——.
2 /R o (C\If)\l\m)

O

Lemma 5.3. Let ® be any Young function and f € L¥°(R"™), B = B(zq,7), %o €
R™ r >0 and T a singular integral operator. Then

1 0 Lt
ITfllLe) < q>—1(r—n)/2T 1 Lo (B oty @ (¢ )77

when ® € Ay (Vs and
1 00 Lt
1T fllwras) < Py =) /zr 11l Lo (Bao.)y @ (t )7’

when ® € As.

(5.1)
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Proof. Let ® € Ay V2 first. With the notation 2B = B(zg, 2r), we represent f
as

f=h+ly h@)=fxsW), L) =X, (5.2)

and then
ITfl o8y < T fillLey + 1T f2llLo(B)

Since f1 € Le(R™), by the boundedness of T in Lg (R™) provided by Theorem 5.2,
it follows that

1T fillLes) < T fillLe®ny < CllfillLe®n) = CllfllLe@n)-

Next, observe that the inclusions z € B,y € G(2B) imply 1|zo—y| < |z—y| <
3|zg — y|. Then we get

S2B) |$o - y|"

|T fo(x |<C/

By Fubini’s theorem we have

/W)l / = dt
Ty & ()l dy

/'3(23) lzo — y|™ (2B) oyl I
dt

Y1
/27" /2r<|3:0 y|<t )‘ gt

<

2r J B(zg,t) ytn+1

Applying the Holder’s inequality (see, Lemma 2.8), we get
/() > dt
/ e m S I e g (@ 0) st

S [To —y|" 2r
> 1 dt
_ o 5.3
/QT £l e (B o) F (B lag | ) 1 (5.3)

o0 g dt
z/2 1l (Bl @ (") -

Moreover,

1 o L dt
ITfallLem) S =] /QT Lo (Bo.t)y @ (t )7. (5.4)
Thus
< 1 o PPN
||Tf||L¢(B) ~ ||f||L<p(2B) + m . Hf”L@(B(wo,t))(I’ (t )?'
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On the other hand, by (2.3) we get

()~ @l () /2 -

o dt
s [ eeny
and then
1 i dt
< — 2@ () —. 5.5
oo  govrmmy M latoteann® 67 (55
Thus

1 00 L dt
1T o) S <I>1(1"”)/2r 1| Lo (B0t @ (t )7.

Let & € A,. By the weak boundedness of T" on Orlicz space and (5.5) it
follows that:

ITfillwees) < ITfillwee@e) S I fillze@n

1 o L dt (5.6)
=flreen S <I>—1(r—”)/2r 11| Lo (Bzot)® " (¢ )7
Then by (5.4) and (5.6) we get the inequality (5.1). O

Corollary 5.4. [13, 14, 15] Let 1 < p < oo and f € LY°(R"), B = B(zo,7), g €
R™ r >0 and T a singular integral operator. Then, for 1 < p < oo

ITfIlL, By STP /2 tr Ml (B o, dt
and forp=1
Il oy S [ it

The following theorem contains Theorem 2.12 under the choice in the case
D(t) = tP.

Theorem 5.5. Let @ any Young function, @1, p2 and ® satisfy the condition

1 > dt
sup ess inf x,s @_1 tT")— < 0 5.7
weRn, >0 P2 (2, )@~ (r=") /T t<s<oo #1(@,5) (t™) m (5.7)

where C does not depend on = and r. Then the operator T is bounded from
M, (R") to Mg, (R") for ® € Ay N Vo and from My, (R™") to
W Mg, ,,(R™) for ® € As.
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Proof. By Lemma 5.3 and Theorem 3.2 with w(r) = w, v1(r) = 1 (2, 7)1,
va(r) = W and g(r) = || fll Lo (B(x,r)), We have
ITflIrey = sup  @2(2,7) T fll Lo (Blair))
z€R™ r>0
1 > dt
S o [ Wl oy
zER™, r>0 802(9077")‘1’_1(7“_") r 17020 e ( ) t
S osup o o1(@ ) Ml La By
z€R™ r>0
S 1, -
if® e AbNVy and
ITfllwate,, = sup @2z, 7) " ITfllwLe(Br)
zeR™ r>0
| T dt
< s e @) =
= meRBﬁ)»o @2(:577”)@71(76%) /||fHL<p(B( 1) ( ) n
< osup o1(@ ) T f Lo (Bar)
zeR™, r>0
S 1, -
if ® € Vs. O

Remark 5.6. The condition (4.8) is weaker than (5.7). Indeed, (5.7) implies (4.8):
o dt

—1(.—n) > : -1 )=

pa(w,r) @7 (r ") N/T oss inf o1 (2, 7) 7 (¢7") 5

2 h ess inf o1 (z,7) 1 (f”)@

~ )y t<r<oo 135 t
dt

s<T<00 t

> ess inf wl(m,r)/ et
_ . 1/ —
~ emifaEneT),

where we took s € (r,00), so that

. f q)_l -n\) < q)—l —n .
sup ess inf 1 (2, 7)27 (s7") < @a(e, 1) 27 (1)

On the other hand the functions ¢;(z,t) = pa(x,t) = ﬁ satisfy the condi-

1

tion (4.8), but do not satisfy the condition (5.7).
Corollary 5.7. Let ® be any Young function, 0 < A1, s < n and
o) (I)fl t—n (I)fl -n
/ ( )@gci(r )| (5.8)
GRSy
Then for ® € Ay N Vy, the singular operator T is bounded from Mg x, (R™) to
Mg »,(R™) and for ® € Ay is bounded from Mg », (R™) to W Mg »,(R™).



18 F. Deringoz, V.S. Guliyev and S.G. Samko

Proof. Choose ¢1(z,r) = m, oz, 1) = m in Theorem 5.5. O
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