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We consider generalized Morrey spaces M p(·),ω(·)(Ω) with a variable exponent p(x) and

a general function ω(x, r) defining a Morrey type norm. We extend the results obtained

earlier for bounded sets Ω ⊂ R
n by proving the boundedness of the Hardy–Littlewood

maximal operator and Calderón–Zygmund singular operators with standard kernels in

M p(·),ω(·)(Ω). We prove a Sobolev type M p(·),ω1(·)(Ω) → M q(·),ω2(·)(Ω)-theorem, both the

Spanne and Adams versions, for potential operators Iα(·), where α(x) can be variable

even if Ω is unbounded. The boundedness conditions are formulated either in terms

of Zygmund type integral inequalities on ω(x, r) or in terms of supremal operators.

Bibliography: 36 titles.

1 Introduction

1.1. Background. The Morrey spaces L p,λ introduced in [1] in relation to the study of partial

differential equations are widely presented in the literature (cf., for example, [2]–[4]). We refer

also to the recent survey paper [5], where various versions of Morrey type spaces and their gen-

eralizations can be found. Many classical operators of harmonic analysis (for example, maximal,

singular, and potential operators) were studied in Morrey type spaces during the last decades.

The Morrey spaces also attracted attention of researchers in the area of variable exponent anal-

ysis. We refer the reader to the recent monographs [6] and [7] for the existing results in variable

exponent Lebesgue spaces (cf. also [8]).
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The Morrey spaces L p(·),λ(·)(Ω) with variable exponents λ(·) and p(·) were introduced and

studied in [9]–[13]. In [9], the space L p(·),λ(·)(Ω) was introduced by means of the norm

‖f‖L p(·),λ(·)(Ω) = inf{ν : Ip(·),λ(·)(f/ν) � 1} (1.1)

via the modular

Ip(·),λ(·)(f) := sup
x∈Ω,r>0

1

rλ(x)

∫

˜B(x,r)

|f(y)|p(y)dy.

In the case of bounded Ω, several equivalent norms can be introduced and embedding theorems

for such Morrey spaces were proved under the assumption that p(x) satisfies the log-condition.

In [11] and [10], Morrey type spaces M
q(·)
p(·) were introduced in the general setting when the

underlying space is a homogeneous type space (X, ρ, μ), with the norm

‖f‖
M

q(·)
p(·)

= sup
x∈X,r>0

(μ(B(x, r)))1/p(x)−1/q(x)‖f‖Lq(·)(B(x,r)),

where

1 < inf
X

q � q(·) � p(·) � sup
X

p < ∞.

For bounded X the equivalence of norms and embedding theorems were established there.

The spaces considered in [12] were defined by the condition

ϕ(r)

rν

∫

B(x,r)

∣∣∣∣f(y)λ

∣∣∣∣
p(y)

dy � 1 for some λ > 0.

A more general version M p(·),ω(·)(Ω), Ω ⊆ R
n, of generalized variable exponent Morrey

spaces was defined in [14] by means of the norm

‖f‖M p(·),ω(·) = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖

Lp(·)( ˜B(x,r))
.

The space L p(·),λ(·)(Ω) is a particular case of such spaces with ω(x, r) = r
λ(x)−n
p(x) .

A further generalization was presented in [15], where the L∞-norm in r was replaced with

the Lθ-norm in the definition of Morrey spaces, introduced by means of the norm

sup
x∈Ω

∥∥∥∥ω(x, r)
r

n
p(x)

‖f‖
Lp(·)( ˜B(x,r))

∥∥∥∥
Lθ(·)(0,�)

,

where � = diam Ω. The so-called complementary Morrey spaces of variable order were recently

studied (cf. [16]) in the spirit of ideas of [14].

In this paper, we extend the results of [14] on the boundedness of maximal, singular and

potential operators to unbounded sets in R
n. Note that the study in [14] was essentially based

on estimates for bounded sets. In [17], there was suggested an approach for extending variable

order results from bounded sets to unbounded ones by interpreting such spaces over Rn as the

space with mixed norm generated by discrete �p(·) with respect to norms over a partition of Rn

in cubes. We do not use this approach, but instead give direct proofs in intrinsic terms of Rn

itself.
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1.2. Operators under consideration. We study the following operators:

the maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|
∫

˜B(x,r)

|f(y)|dy, where B̃(x.r) = B(x, r) ∩ Ω,

potential type operators

Iα(x)f(x) =

∫

Ω

|x− y|α(x)−nf(y)dy, 0 < α(x) < n,

the fractional maximal operator of variable order α(x)

Mα(x)f(x) = sup
r>0

|B(x, r)|α(x)
n

−1

∫

˜B(x,r)

|f(y)|dy, 0 � α(x) < n,

and Calderón–Zygmund type singular operators

Tf(x) =

∫

Ω

K(x, y)f(y)dy,

where K(x, y) is a “standard singular kernel,” i.e., a continuous function defined on {(x, y) ∈
Ω× Ω : x 	= y} and satisfying the estimates

|K(x, y)| � C|x− y|−n for all x 	= y,

|K(x, y)−K(x, z)| � C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| � C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

We emphasize that we prove both Spanne and Adams type theorems for potential operators.

Although Adams type theorems provide a stronger estimate, theorems of Spanne type with

weaker estimates have wider range of applicability: recall that, in the case of the classical

Morrey spaces L p,λ, one can take 1 < p < n/α for the Spanne estimate and 1 < p < (n− λ)/α

for the Adams estimate, which becomes more essential in the variable exponent setting.

The condition on ω(x, r) we find for the validity of a Sobolev–Adams type L p(·),ω(·)(Ω) →
L q(·),ω(·)(Ω)-theorem recovers the result in the case of the classical Morrey spaces with variable

exponents obtained in [9] with the extension of the results of [9] to unbounded sets.

The paper is organized as follows. In Section 2, we recall necessary basic facts about variable

exponent Lebesgue spaces and prove some auxiliary assertions. In particular, our estimates

for unbounded sets Ω are based on Lemma 2.2 proved in Subsection 2.3. In Section 3, we

introduce variable exponent Morrey spaces on unbounded sets. The general case is treated in

Subsection 3.2, where we introduce several versions of generalized variable exponent Morrey

spaces, discuss the equivalence of norms, and formulate the main results of the paper. The

proofs of these results are given in Section 4. Section 5 is devoted to consequences of the main

results in the case of classical variable exponent Morrey spaces, i.e., when ω(x, r) = r
λ(x)
p(x) . One
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of the consequences (cf. Corollary 5.4) concerns Riesz potentials Iα(·) of variable order over Rn

in variable exponent Lebesgue space Lp(·)(Rn).

We use the following notation: Rn is the n-dimensional Euclidean space, Ω ⊆ R
n is an open

set, � = diam Ω, χE(x) is the characteristic function of a set E ⊆ R
n, B(x, r) = {y ∈ R

n :

|x− y| < r}, B̃(x, r) = B(x, r) ∩Ω, and c, C, c1, c2 etc. are various absolute positive constants

which may have different values even in the same line.

2 Preliminaries. Variable Exponent Lebesgue Spaces

2.1. Definitions. Let p(·) be a measurable function on an open set Ω ⊆ R
n with values

in [1,∞). We assume that 1 � p− � p(x) � p+ < ∞, but in most cases we suppose that

1 < p− � p(x) � p+ < ∞. We denote by Lp(·)(Ω) the space of all measurable functions f(x) on

Ω such that

Ip(·)(f) =
∫

Ω

|f(x)|p(x)dx < ∞.

Equipped with the norm

‖f‖p(·) = inf{η > 0 : Ip(·)(f/η) � 1},

this space is a Banach function space. We denote by p′(·) = p(x)/(p(x)− 1), x ∈ Ω, the

conjugate exponent.

We use the following notation:

p− = p−(Ω) = inf
x∈Ω

p(x), p+ = p+(Ω) = sup
x∈Ω

p(x),

P(Ω) is the set of bounded measurable functions p : Ω → [1,∞], P log(Ω) is the set of exponents

p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| � Ap

− ln |x− y| , |x− y| � 1

2
, x, y ∈ Ω, (2.1)

where A = A(p) > 0 is independent of x and y, A log(Ω) is the set of bounded exponents α : Ω →
R satisfying the condition (2.1), and P

log(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− �
p+ < ∞. For Ω which can be unbounded we denote by P∞(Ω),P log∞ (Ω),Plog∞ (Ω),A log∞ (Ω) the

subsets of the above sets of exponents satisfying the decay condition (when Ω is unbounded);

|p(x)− p(∞)| � A∞ ln(2 + |x|), x ∈ R
n. (2.2)

2.2. Basic theorems for operators in variable exponent Lebesgue spaces. We use

the following boundedness result for the maximal operator (cf. [18]).

Theorem 2.1. Suppose that Ω ⊆ R
n is an open set and p ∈ P

log∞ (Ω). Then

‖Mf‖Lp(·)(Ω) � C‖f‖Lp(·)(Ω).

For singular operators the following result is known (cf., for example, [19, 20, 6]).
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Theorem 2.2. Suppose that Ω is an open set in R
n and p ∈ P

log∞ (Ω). Then every Calderón–

Zygmund singular operator with standard kernel and of weak (1, 1) type is bounded in Lp(·)(Ω).

The following theorem for fractional integrals was proved in [21].

Theorem 2.3. Suppose that Ω ⊂ R
n is bounded, α ∈ A log(Ω), p ∈ P(Ω), and

α− := inf
x∈Ω

α(x) > 0, (αp)+ := sup
x∈Ω

α(x)p(x) < n. (2.3)

Then

‖Iα(·)f‖Lq(·)(Ω) � C‖f‖Lp(·)(Ω),

where 1/q(x) = 1/p(x) − α(x)/n and C = C(Ω, p) depends only on p−(Ω), p+(Ω), Ap, α−,
(αp)+, and diam Ω.

For unbounded sets, say Ω = R
n, and constant orders α the corresponding Sobolev theorem

proved in [18] runs as follows.

Theorem 2.4. Suppose that 0 < α < n, Ω ⊂ R
n is an open unbounded set, and p ∈ P

log∞ (Ω).

Let p+ < n/α. Then the operator Iα(·) is bounded from Lp(·)(Ω) to Lq(·)(Ω) with 1/q(x) =

1/p(x)− α/n.

Such a Sobolev type theorem on R
n also holds for variable α(x) with an additional weight

at infinity, as asserted by the next theorem proved in [22].

Theorem 2.5. Suppose that p ∈ P
log∞ (Rn) and (2.3) holds. Then

‖(1 + |x|)−γ(x)Iα(·)f‖Lq(·)(Rn) � c‖f‖Lp(·)(Rn), (2.4)

where
1

q(x)
=

1

p(x)
− α(x)

n
, γ(x) = A∞α(x)

[
1− α(x)

n

]
� n

4
A∞

with A∞ coming from (2.2).

2.3. Estimates of norms of truncated potentials. The following assertion with the

estimation of the norms of potential kernels truncated to a ball is known (cf. Corollary to Lemma

3.22 in [23]; we also refer to [24] for a simpler proof). The boundedness of Ω is essentially used

here. In Lemma 2.2, we extend this estimate to the case of unbounded sets Ω.

Lemma 2.1. Suppose that Ω is a bounded domain and p ∈ P log(Ω). We also assume that

ν+ := sup ν(x) < ∞ and (n+ νp)− := inf[n+ ν(x)p(x)] > 0. Then

‖|x− y|ν(x)χB(x,r)(y)‖p(y) � Cr
ν(x)+ n

p(x) , (2.5)

where x ∈ Ω, 0 < r < � = diam Ω, and C depends only on p−(Ω), p+(Ω), Ap, ν+, (n + νp)−,
and diam Ω.

Remark 2.1. It can be shown that the constant C in (2.5) can be estimated as C =

C0 �
n(1/p−−1/p+), where C0 is independent of Ω.
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Let p satisfy the log-condition (2.1). The inequality

‖χB(x,r)‖Lp(·)(Ω) � Cr
n

p(x) , (2.6)

for bounded open sets Ω is a particular case of (2.5). If Ω is unbounded and, in addition to

(2.1), the exponent p satisfies the decay condition (2.2), then

‖χB(x,r)‖p(·) � crθp(x,r), x ∈ Ω ⊆ R
n, p ∈ P log

∞ , (2.7)

where (cf. [6, Corollary 4.5.9])

θp(x, r) =

{
n/p(x), r � 1,

n/p(∞), r � 1.

Lemma 2.2. Suppose that Ω is an unbounded open set, p ∈ P log∞ (Ω), and the function ν(x)

satisfies the assumptions of Lemma 2.1 and additionally

inf
x∈Ω

[n+ ν(x)p(∞)] > 0.

Then

‖ |x− y|ν(x)χB(x,r)‖p(·) � crν(x)+θp(x,r), r > 0, (2.8)

where c > 0 is independent of r and x.

Proof. Let Bk(x, r) := B(x, 2−k)\B(x, 2−k−1). We have

‖ |x− y|ν(x)χB(x,r)‖p(·) �
∞∑
k=0

‖ |x− y|ν(x)χBk(x,r)‖p(·) � C
∞∑
k=0

(2−kr)ν(x)‖χB(x,2
−kr)‖p(·),

where C = max{1, supx∈Ω 2−ν(x)} < ∞. By (2.7),

‖χB(x,2
−kr)‖p(·) � c(2−kr)θp(x,2

−kr).

Therefore,

‖ |x− y|ν(x)χB(x,r)‖p(·) � C
∞∑
k=0

(2−kr)ν(x)+θp(x,2−kr) � C

ln 2

r∫

0

tν(x)+θp(x,t)dt

t
, (2.9)

where the last passage to the integral is verified in the standard way with the monotonicity of

the function tν(x)+θp(x,t) in t taken into account:

r∫

0

tν(x)+θp(x,t)dt

t
=

∞∑
k=0

2−kr∫

2−k−1r

tν(x)+θp(x,t)dt

t

�
∞∑
k=0

(2−kr)ν(x)+θp(x,2−kr)

2−kr∫

2−k−1r

dt

t
= ln 2

∞∑
k=0

(2−kr)ν(x)+θp(x,2−kr).
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It remains to note that
r∫

0

tν(x)+θp(x,t)dt

t
=

r
ν(x)+ n

p(x)

ν(x) + n
p(x)

if 0 < r � 1 and
r∫

0

tν(x)+θp(x,t)dt

t
=

1

ν(x) + n
p(x)

+
r
ν(x)+ n

p(∞) − 1

ν(x) + n
p(∞)

if r � 1, so that (2.9) implies (2.8).

3 Generalized Variable Exponent Morrey Spaces.
Definitions and the Main Results

3.1. Classical variable exponent Morrey spaces. Let λ(x) be a measurable function

on Ω with values in [0, n]. The variable Morrey space L p(·),λ(·)(Ω) can be introduced via the

norm

‖f‖L p(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)

p(x) ‖fχ
˜B(x,t)

‖Lp(·)(Ω).

Remark 3.1. Such spaces were defined in [9] by means of the norm

sup
x∈Ω, r>0

∥∥r−λ(x)
p(·) f χ

˜B(x,r)

∥∥
p(·)

which is equivalent to the above norm when Ω is bounded and p satisfies the log-condition.

The following theorems were proved in [9] for bounded sets Ω.

Theorem 3.1. Suppose that Ω is bounded, p ∈ P
log(Ω), and λ(x) � 0, supx∈Ω λ(x) < n.

Then the maximal operator M is bounded in L p(·),λ(·)(Ω).

Theorem 3.2 (Spanne type result). Suppose that Ω is bounded, p ∈ P
log(Ω), and α, λ ∈

A log(Ω). We also assume that λ(x) � 0 and the condition (2.3) holds. Then the operator Iα(·)

is bounded from L p(·),λ(·)(Ω) to L q(·),μ(·)(Ω), where 1/q(x) = 1/p(x)− α(x)/n and

μ(x)

q(x)
=

λ(x)

p(x)
. (3.1)

Theorem 3.3 (Adams type result). Suppose that Ω is bounded, p ∈ P
log(Ω), and α, λ ∈

A log(Ω). We aslo assume that λ(x) � 0 and

inf
x∈Ω

α(x) > 0, sup
x∈Ω

[λ(x) + α(x)p(x)] < n. (3.2)

Then the operator Iα(·) is bounded from L p(·),λ(·)(Ω) to L q(·),λ(·)(Ω), where

1

q(x)
=

1

p(x)
− α(x)

n− λ(x)
. (3.3)
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3.2. Generalized variable exponent Morrey spaces. In order to avoid confusions, we

use the letter M for generalized Morrey spaces defined via a general function ω(x, r) (cf. (3.4))

and the letter L for classical Morrey spaces when ω(x, r) = rλ(x)/p(x).

Hereinafter, ω(x, r), ω1(x, r), and ω2(x, r) are nonnegative measurable functions on Ω× [0, �],

where Ω ⊆ R
n is an open set and � = diam Ω.

Definition 3.1. Let p ∈ P(Ω). The generalized Morrey space M p(·),ω(·)(Ω) is defined by

means of the norm

‖f‖M p(·),ω(·) = sup
x∈Ω,r>0

‖f‖
Lp(·)( ˜B(x,r))

ω(x, r)
. (3.4)

Hereinafter, we assume that

inf
x∈Ω

ω(x, r) > 0 (3.5)

for every r > 0, which makes the space M p(·),ω(·)(Ω) nontrivial.
By the definition of the Lp(·)-norm,

‖f‖M p(·),ω(·) = sup
x∈Ω,r>0

inf

{
η = η(x, r) :

∫

Ω

∣∣∣∣∣
f(y)χ

˜B(x,r)
(y)

ηω(x, r)

∣∣∣∣∣
p(y)

dy � 1

}
. (3.6)

The spaces M p(·),ω(·)(Ω) include, in particular, classical type Morrey spaces with different

measuring of the Morrey property for small and large values of r, i.e., the spaces L p(·),λ(·),λ∞(·)(Ω)
defined by means of the norm

‖f‖L p(·),λ(·),λ∞(·) = sup
x∈Ω

(
sup

0<r<1
r
−λ(x)

p(x) ‖fχ
˜B(x,r)

‖Lp(·)(Ω) + sup
r>1

r
−λ∞(x)

p(x) ‖fχ
˜B(x,r)

‖Lp(·)(Ω)

)

corresponding to the choice

ω(x, r) =

{
rλ(x), r � 1,

rλ∞(x), r � 1.

The norm (3.6) prompts us to introduce the norm

‖f‖∗M p(·),ω(·) = sup
x∈Ω,r>0

inf

{
η = η(x, r) :

1

ω(x, r)p(x)

∫

Ω

∣∣∣∣f(y)η

∣∣∣∣
p(y)

dy � 1

}
. (3.7)

The norms ‖f‖M p(·),ω(·) and ‖f‖∗
M p(·),ω(·) are not equivalent in general, and we denote by

M
p(·),ω(·)
∗ (Ω) the space of functions f equipped with finite norm ‖f‖∗

M p(·),ω(·) . Lemma 3.2 contains

conditions under which the spaces M
p(·),ω(·)
∗ (Ω) and M p(·),ω(·)(Ω) coincide.

In the spirit of (3.7), we can introduce the corresponding versions L
p(·),λ(·)
∗ (Ω) of classical

type Morrey spaces, defined similarly to (3.7) by means of the norm

‖f‖∗L p(·),λ(·) = sup
x∈Ω,r>0

inf

{
η = η(x, r) :

1

rλ(x)

∫

˜B(x,r)

∣∣∣∣f(y)η

∣∣∣∣
p(y)

dy � 1

}
. (3.8)

We single out the case where

ω(x, r) ≡ const for r � 1, (3.9)
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i.e., the case where the “Morrey regularity” is measured only for small r. The Morrey space

with a function ω(x, r) satisfying (3.9) can be called a locally introduced Morrey space.

In Lemma 3.2, we use the log-condition in the form

|p(x)− p(y)| · | lnω(x, r)| � C, x, y ∈ Ω, |x− y| � r � 1, (3.10)

where c is independent of x, y, and r. The following lemma provides us with a sufficient condition

for the validity of (3.10).

Lemma 3.1. The condition (3.10) is satisfied if p ∈ P(Ω), the function w is bounded,

fulfills the condition (3.5), and satisfies the inequality ω(x, r) � C0r
a, a � 0, in a neighborhood

0 � r � ε of the origin.

Proof. It suffices to consider the case ω(x, r) � 1/2 (otherwise, there is nothing to prove in

(3.10)). We can assume that C0 = 1 and a > 0. Then

ln
1

ω(x, r)
� a ln

1

r
� a ln

1

|x− y| ,

so that the usual log-condition for p implies (3.10).

Lemma 3.2. Suppose that p(x) ∈ P and ω(x, r) satisfies (3.9) and (3.10). Then the norms

‖f‖M p(·),ω(·) and ‖f‖∗
M p(·),ω(·) are equivalent.

Proof. It suffices to prove that c1ω(x, r)
p(x) � ω(x, r)p(y) � c2ω(x, r)

p(x), which follows from

(3.10) under the condition (3.9).

3.2.1. Theorems for the maximal operator.

Theorem 3.4. Suppose that p ∈ P
log∞ (Ω). Then

‖Mf‖
Lp(·)( ˜B(x,t))

� Ctθp(x,t) sup
r>2t

r−θp(x,r)‖f‖
Lp(·)( ˜B(x,r))

, t > 0, (3.11)

for every f ∈ Lp(·)(Ω), where C is independent of f , x ∈ Ω, and t.

Theorem 3.5. Suppose that p ∈ P
log∞ (Ω) and

sup
t>r

ess inf
t<s<∞ ω1(x, s)

tθp(x,t)
� C

ω2(x, r)

rθp(x,r)
, (3.12)

where C is independent of x and r. Then the maximal operator M is bounded from the space

M p(·),ω1(·)(Ω) to the space M p(·),ω2(·)(Ω).

Note that supremal estimates for the maximal operators in generalized Morrey spaces were

obtained in [25] in the case of constant exponents.

3.2.2. Theorems for singular operators.

Theorem 3.6. Suppose that p ∈ P
log∞ (Ω). Then

‖Tf‖
Lp(·)( ˜B(x,t))

� Ctθp(x,t)
∞∫

t

r−θp(x,r)−1‖f‖
Lp(·)( ˜B(x,r))

dr, (3.13)

where C is independent of f and t > 0.
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Theorem 3.7. Suppose that p ∈ P
log∞ (Ω) and

∞∫

r

ess inf
t<s<∞ ω1(x, s)

t1+θp(x,t)
dt � C

ω2(x, r)

rθp(x,r)
, (3.14)

where C is independent of x and r. Then the singular integral operator T is bounded from the

space M p(·),ω1(·)(Ω) to the space M p(·),ω2(·)(Ω).

Remark 3.2. The condition (3.12) is weaker than the condition (3.14). Indeed, if the

condition (3.14) holds, then for all s ∈ (r,∞)

ω2(x, r)

rθp(x,r)
�

∞∫

r

ess inf
t<τ<∞ ω1(x, τ)

tθp(x,t)
dt

t
�

∞∫

s

ess inf
t<τ<∞ ω1(x, τ)

tθp(x,t)
dt

t

� ess inf
s<τ<∞ ω1(x, τ)

∞∫

s

ds

sθp(x,s)+1
≈

ess inf
s<τ<∞ ω1(x, τ)

sθp(x,s)
.

Then

sup
s>r

ess inf
s<τ<∞ ω1(x, τ)

sθp(x,s)
� ω2(x, r)

rθp(x,r)
.

On the other hand, the functions ω1(x, t) = ω2(x, t) = tθp(x,t) satisfy (3.12), but not (3.14).

3.2.3. Theorems for the fractional operator.

Theorem 3.8. Assume that p ∈ P
log∞ (Ω) and a constant α satisfies (2.3). Then

‖Iαf‖
Lq(·)( ˜B(x,t))

� Ctθq(x,t)
∞∫

t

r−θq(x,r)−1‖f‖
Lp(·)( ˜B(x,r))

dr, t > 0, (3.15)

where 1/q(x) = 1/p(x)− α/n and C is independent of f , x, and t.

Theorem 3.9 (Spanne type result). Suppose that α and p satisfy the assumptions of The-

orem 3.8 and ∞∫

r

ess inf
t<s<∞ ω1(x, s)

t1+θp(x,t)
dt � C

ω2(x, r)

rθq(x,r)
, (3.16)

where 1/q(x) = 1/p(x)− α/n and C is independent of x and r. Then the operators Mα and Iα

are bounded from the space M p(·),ω1(·)(Ω) to the space M q(·),ω2(·)(Ω).

Theorem 3.10 (Spanne type result with variable α(x)). Suppose that p ∈ P
log∞ (Rn), α

satisfies (2.3), and
∞∫

r

ess inf
t<s<∞ ω1(x, s)

t1+θp(x,t)
dt � C

ω2(x, r)

rθq(x,r)
, (3.17)

where 1/q(x) = 1/p(x)− α(·)/n and C is independent of x and r. Then the operators

1

(1 + |x|)γ(x)M
α and

1

(1 + |x|)γ(x) I
α(·)

are bounded from M p(·),ω1(·)(Rn) to M q(·),ω2(·)(Rn), where γ(x) comes from (2.4).
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Theorem 3.11. Suppose that p ∈ P log∞ (Ω) and α(x) is a measurable function satisfying

(2.3). Then

|Iα(·)f(x)| � Ctα(x)Mf(x) + C

∞∫

t

rα(x)−θp(x,r)−1‖f‖
Lp(·)( ˜B(x,r))

dr, (3.18)

where t is an arbitrary positive number and C is independent of f , x, and t.

In the following theorem with variable α(x), we establish the mapping property of the alge-

braic sum of two Morrey spaces with variable and constant exponents q(x) and q(∞). Recall

that the sum X + Y of two Banach spaces is defined via the norm

‖f‖X+Y := inf
f=g+h

g∈X,h∈Y
(‖g‖X + ‖h‖Y )

We use the notation

pr =

{
p(x), r � 1,

p(∞), r > 1,
q(x, r) =

{
q(x), r � 1,

q∞(x), r > 1,

where q(x) > p(x) and q∞(x) > p(∞).

Theorem 3.12 (Adams type result). Suppose that p ∈ P
log∞ (Ω), α(x) satisfies (2.3), and

ω(x, t) satisfies the following conditions:

1∫

r

ω(x, t)

t
1+ n

p(x)

dt � C
ω(x, r)

r
n

p(x)

, r ∈ (0, 1), (3.19)

∞∫

r

ω(x, t)

t
1+ n

p(∞)

dt � C
ω(x, r)

r
n

p(∞)

, r ∈ R+, (3.20)

∞∫

r

ω(x, t)

t1+θp(x,t)−α(x)
dt � Cr

− α(x)pr(x)
q(x,r)−pr(x) , (3.21)

where C is independent of x ∈ Ω and r ∈ R+. Then the operators Mα(·) and Iα(·) are bounded

from M
p(·),ω(·)
∗ (Ω) to M

q(·),ω∗(·)
∗ (Ω) + M q∞(x),ω1(·)(Ω), where ω1(x, r) := [ω(x, r)]

p(x)
q(x) .

If Ω is bounded and q(r, x) = q(x) is independent of r, then from (3.21) it follows that

1

q(x)
� 1

p(x)
− α(x)

m(x)
, m(x) = p(x)

[
α(x)− lim

r→0

ln
�∫
r
tα(x)−1w(r, t) dt

ln r

]
.

The corresponding exponent q#(x) given by the equality

1

q#(x)
=

1

p(x)
− α(x)

m(x)
(3.22)
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can be called the Sobolev-Adams type exponent corresponding to the space M p(·),ω(·)(Ω). In

particular, for the classical variable exponent Morrey space L p(·),λ(·)(Ω) (the case ω(x, r) =

r
λ(x)
p(x) ) from (3.22) we recover the Adams exponent defined by 1/q(x) = 1/p(x)−α(x)/(n− λ(x))

under the assumption (3.2).

Remark 3.3. For p(x) = const the boundedness results in classical Morrey spaces go back

to [26]–[28] for singular operators, [29] for the maximal operator, and [27, 30] for fractional

integrals. For Morrey spaces with constant p, but a general function ω(x, r) such results under

certain assumptions were obtained in [31]–[34].

4 Proofs

We begin with auxiliary assertions for supremal and Hardy operators. Denote by L∞(R+, v)

the space of all functions g(t), t > 0, equipped with finite norm

‖g‖L∞(R+,v) = ess sup
t>0

v(t)g(t).

As usual, L∞(R+) = L∞(R+, 1). Let M(R+) be the set of all Lebesgue measurable functions on

R+, and letM+(R+) be its subset of all nonnegative functions. We denote byM+(R+; ↑) the cone
of all nondecreasing functions in M+(R+) and set A =

{
ϕ ∈ M+(R+; ↑) : limt→0+ ϕ(t) = 0

}
.

Let u be a continuous nonnegative function on R+. We define the supremal operator Su for

g ∈ M(R+) as follows: (Sug)(t) := ‖u g‖L∞(t,∞), t ∈ R+.

The following theorem was proved in [35].

Theorem 4.1. Suppose that v1 and v2 are nonnegative measurable functions such that 0 <

‖v1‖L∞(t,∞) < ∞ for every t > 0. Let u be a continuous nonnegative function on R. Then the

operator Su is bounded from L∞(R+, v1) to L∞(R+, v2) on the cone A if and only if

∥∥v2Su

(‖v1‖−1
L∞(·,∞)

)∥∥
L∞(R+)

< ∞. (4.1)

Let w be a weight on R+. The following assertion concerning the boundedness of the weighted

Hardy operator

H∗
wg(t) :=

∞∫

t

g(s)w(s)ds, 0 < t < ∞,

was proved in [36] in the case w ≡ 1.

Theorem 4.2. Suppose that v1, v2, and w are weights on R+. Then the inequality

ess sup
t>0

v2(t)H
∗
wg(t) � C ess sup

t>0
v1(t)g(t) (4.2)

holds with some C > 0 for all nonnegative and nondecreasing g on R+ if and only if

B := ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
< ∞ (4.3)

and C = B is the best constant in (4.2).
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Proof. Sufficiency. Assume that (4.3) holds. If F , G are nonnegative functions on R+ and

F is nondecreasing, then

ess sup
t>0

F (t)G(t) = ess sup
t>0

F (t) ess sup
t>0

G(s), t > 0. (4.4)

By (4.4), we have

ess sup
t>0

v2(t)H
∗
wg(t) = ess sup

t>0
v2(t)

∞∫

t

g(s)w(s)

ess sup
s<τ<∞

v1(τ)

ess sup
s<τ<∞

v1(τ)
ds

� ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
ess sup

t>0
g(t) ess sup

t<τ<∞
v1(τ)

= ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
ess sup

t>0
g(t)v1(t) � B ess sup

t>0
g(t)v1(t).

Necessity. Assume that (4.2) holds. The function

g(t) =
1

ess sup
t<τ<∞

v1(τ)
, t > 0,

is nonnegative and nondecreasing on (0,∞). Thus,

B = ess sup
t>0

v2(t)

∞∫

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
� C ess sup

t>0

v1(t)

ess sup
t<τ<∞

v1(τ)
� C.

Hence B < ∞ and B is the best constant.

In the proofs below, we take Ω = R
n without losing generality.

Lemma 4.1. Assume that p ∈ P∞ and f ∈ L
p(·)
loc (R

n). Then

‖f‖Lp(·)(B(x,t)) � Ctθp(x,t) sup
r>t

r−θp(x,r)‖f‖Lp(·)(B(x,r)), (4.5)

‖f‖Lp(·)(B(x,t)) � Ctθp(x,t)
∞∫

t

r−θp(x,r)−1‖f‖Lp(·)(B(x,r))dr. (4.6)

Proof. It suffices to observe that ‖f‖Lp(·)(B(x,t)) is nondecreasing in t and

1 � Ctθp(x,r) sup
r>t

r−θp(x,r)

in the case of (4.5) and

1 � Ctθp(x,r)
∞∫

t

r−θp(x,r)−1dr

in the case of (4.6).
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Proof of Theorem 3.4. We split f as

f = f1 + f2, f1(y) = f(y)χB(x,2t)(y), f2(y) = f(y)χRn\B(x,2t)(y), t > 0. (4.7)

By Theorem 2.1,

‖Mf1‖Lp(·)(B(x,t)) � ‖Mf1‖Lp(·)(Rn) � C‖f1‖Lp(·)(Rn) = C‖f‖Lp(·)(B(x,2t)), (4.8)

where C is independent of f . By (4.5),

‖Mf1‖Lp(·)(B(x,t)) � Ctθp(x,r) sup
r>t

r−θp(x,r)‖f‖Lp(·)(B(x,r)). (4.9)

Let y be an arbitrary point in B(x, r). If B(y, t) ∩ �
(B(x, 2r)) 	= ∅, then t > r. Indeed,

if z ∈ B(y, t) ∩ �
(B(x, 2r)), then t > |y − z| � |x − z| − |x − y| > 2r − r = r. On the

other hand, B(y, t) ∩ �
(B(x, 2r)) ⊂ B(x, 2t). Indeed, for z ∈ B(y, t) ∩ �

(B(x, 2r)) we get

|x− z| � |y − z|+ |x− y| < t+ r < 2t. Hence

Mf2(y) = sup
t>0

1

|B(y, t)|
∫

B(y,t)∩ �
(B(x,2r))

|f(z)|dz

� 2n sup
t>r

1

|B(x, 2t)|
∫

B(x,2t)

|f(z)|dz = 2n sup
t>2r

1

|B(x, t)|
∫

B(x,t)

|f(z)|dz.

Therefore, for all y ∈ B(x, r)

Mf2(y) � 2n sup
t>2r

1

|B(x, t)|
∫

B(x,t)

|f(z)|dz � 2n sup
t>2r

1

|B(x, t)|‖f‖Lp(·)(B(x,t)) ‖1‖Lp′(·)(B(x,t))

� C sup
t>2r

‖f‖Lp(·)(B(x,t)) t
−n+θp′ (x,t) = C sup

t>2r
‖f‖Lp(·)(B(x,t)) t

−θp(x,t).

Thus, the function Mf2(y), with fixed x and t, is dominated by the expression independent of

y. Then

‖Mf2‖Lp(·)(B(x,t)) � C sup
t>2r

‖f‖Lp(·)(B(x,t)) t
−θp(x,t) ‖1‖Lp(·)(B(x,t)). (4.10)

Since ‖1‖Lp(·)(B(x,t)) � Ctθp(x,t), we obtain (3.11) from (4.9) and (4.10).

Proof of Theorem 3.5. By Theorem 3.4, for the norm

‖Mf‖M p(·),ω2 (Ω) = sup
x∈Ω, t>0

ω−1
2 (x, t)‖Mf‖Lp(·)(B(x,t))

we have

‖Mf‖M p(·),ω2(·)(Ω) � C sup
x∈Ω, t>0

ω−1
2 (x, t)tθp(x,t) sup

r>t
r−θp(x,r)‖f‖Lp(·)(B(x,r))

� C sup
x∈Ω, t>0

ω−1
1 (x, t)‖f‖Lp(·)(B(x,t)) = ‖f‖M p(·),ω1(·)(Ω)

in view of (3.12), which completes the proof.
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Proof of Theorem 3.6. Representing f as in (4.7), we have

‖Tf‖Lp(·)(B(x,t)) � ‖Tf1‖Lp(·)(B(x,t)) + ‖Tf2‖Lp(·)(B(x,t)).

By Theorem 2.2,

‖Tf1‖Lp(·)(B(x,t)) � ‖Tf1‖Lp(·)(Rn) � C‖f1‖Lp(·)(Rn),

so that

‖Tf1‖Lp(·)(B(x,t)) � C‖f‖Lp(·)(B(x,2t))

and from (4.6) it follows that

‖Tf1‖Lp(·)(B(x,t)) � Ctθp(x,r)
∞∫

t

r−θp(x,r)−1‖f‖Lp(·)(B(x,r))dr. (4.11)

To estimate ‖Tf2‖Lp(·)(B(x,t)), we observe that

|Tf2(z)| � C

∫

Rn\B(x,2t)

|f(y)| dy
|y − z|n ,

where z ∈ B(x, t), and the inequalities |x − z| � t and |z − y| � 2t imply the inequality
1
2 |z − y| � |x− y| � 3

2 |z − y|. Therefore,

‖Tf2‖Lp(·)(B(x,t)) � C

∫

Rn\B(x,2t)

|x− y|−n|f(y)|dy‖χB(x,t)‖Lp(·)Rn).

By the Hölder inequality and the estimate (2.7), we get

‖Tf2‖Lp(·)(B(x,t)) � Ctθp(x,r)
∞∫

t

r−θp(x,r)−1‖f‖Lp(·)(B(x,r))dr. (4.12)

From (4.11) and (4.12) we arrive at (3.13).

Proof of Theorem 3.7. For the norm

‖Tf‖M p(·),ω2(·)(Rn) = sup
x∈Rn, t>0

1

ω2(x, t)
‖TfχB(x,t)‖Lp(·)(Rn) (4.13)

we estimate ‖TfχB(x,t)‖Lp(·)(Rn) by means of Theorem 3.6 and obtain

‖Tf‖M p(·),ω2(·)(Rn) � C sup
x∈Rn, t>0

tθp(x,t)

ω2(x, t)

∞∫

t

r−θp(x,t)−1‖f‖Lp(·)(B(x,r))dr

� C sup
x∈Rn, t>0

ω1(x, t)
−1‖f‖Lp(·)(B(x,t)) = ‖f‖M p(·),ω1(·)(Rn).

It remains to use the condition (3.12).
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Proof of Theorem 3.8. Representing f in the form (4.7), we have

Iαf(x) = Iαf1(x) + Iαf2(x).

By Theorem 2.4,

‖Iαf1‖Lq(·)(B(x,t)) � ‖Iαf1‖Lq(·)(Rn) � C‖f1‖Lp(·)(Rn) = C‖f‖Lp(·)(B(x,2t)).

By Lemma 4.1,

‖Iαf1‖Lq(·)(B(x,t)) � Ctθq(x,t)
∞∫

2t

r−θq(x,t)−1‖f‖Lp(·)(B(x,r))dr. (4.14)

If |x− z| � t and |z − y| � 2t,, we have 1
2 |z − y| � |x− y| � 3

2 |z − y|. Therefore,

‖Iαf2‖Lq(·)(B(x,t)) �
∥∥∥∥∥

∫

Rn\B(x,2t)

|z − y|α−nf(y)dy

∥∥∥∥∥
Lq(·)(B(x,t))

� C

∫

Rn\B(x,2t)

|x− y|α−n|f(y)|dy ‖χB(x,t)‖Lq(·)(Rn).

Choosing β > n/q−, we obtain

∫

Rn\B(x,2t)

|x− y|α−n|f(y)|dy = β

∫

Rn\B(x,2t)

|x− y|α−n+β|f(y)|
( ∞∫

|x−y|
s−β−1ds

)
dy

= β

∞∫

2t

s−β−1

( ∫

{y∈Rn:2t�|x−y|�s}
|x− y|α(x)−n+β|f(y)|dy

)
ds

� C

∞∫

2t

s−β−1‖f‖Lp(·)(B(x,s))‖|x− y|α−n+β‖Lp′(·)(B(x,s))ds

� C

∞∫

2t

sα−θp(x,s)−1‖f‖Lp(·)(B(x,s))ds,

where the estimate (2.8) was taken into account in the last passage. Therefore,

‖Iαf2‖Lq(·)(B(x,t)) � Ctθp(x,t)
∞∫

2t

s−θq(x,s)−1‖f‖Lp(·)(B(x,s))ds

which, together with (4.14), yields (3.15).

Proof of Theorem 3.9. By Theorem 3.8,

‖Iαf‖M q(·),ω2(·)(Rn) � C sup
x∈Rn, t>0

tθq(x,t)

ω2(x, t)

∞∫

t

r−θq(x,r)−1‖f‖Lp(·)(B(x,r))dr

� C sup
x∈Rn, t>0

ω1(x, t)
−1‖f‖Lp(·)(B(x,t)) = ‖f‖M p(·),ω1(·)(Rn).
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It remains to use the condition (3.17).

Proof of Theorem 3.10. The proof is the same as that of Theorem 3.9, i.e., it is obtained

in the same way from the estimate of Theorem 3.8 because the estimate (3.15) remains valid for

variable α(x) if we replace Iα by 1
(1+|x|)γ(x) I

α(·). For this purpose, it suffices to use Theorem 2.5

instead of Theorem 2.4 at the beginning of the proof of Theorem 3.9.

Proof of Theorem 3.11. As usual, we represent the function f in the form (4.7) and have

Iα(·)f(x) = Iα(·)f1(x) + Iα(·)f2(x).

For Iα(·)f1(x), following Hedberg’s trick (cf., for example, [21, p. 278] in the case of variable

exponents), we obtain ∣∣∣Iα(·)f1(x)
∣∣∣ � C1t

α(x)Mf(x).

For Iα(·)f2(x) we have

∣∣∣Iα(·)f2(x)
∣∣∣ �

∫

Rn\B(x,2t)

|x− y|α(x)−n|f(y)|dy =
1

n− α(x)

∫

Rn\B(x,2t)

|f(y)|dy
∞∫

|x−y|
rα(x)−n−1dr.

Hence

|Iα(·)f2(x)| � C

∞∫

2t

( ∫

2t<|x−y|<r

|f(y)|dy
)
rα(x)−n−1dr � C

∞∫

t

‖f‖Lp(·)(B(x,r))r
α(x)−θp(x,r)−1dr,

where (2.7) was taken into account. This proves (3.18).

Proof of Theorem 3.12. Since Mα(·)f(x) � C(Iα(·)|f |)(x), it suffices to consider only the

operator Iα(·). In view of Theorem 3.11 and the assumption (3.21), we get

|Iα(·)f(x)| � Crα(x)Mf(x) + Cr
− α(x)pr(x)

qr(x)−pr(x) ‖f‖M p(·),ω(·)(Rn) (4.15)

for every f ∈ M p(·),ω(·)(Rn) and r > 0. We split the function f(x) = f�(x) + fs(x) into “large”

and “small” parts f�(x) and fs(x) as follows. Let

E = Ef :=
{
x ∈ R

n : Mf(x) � ‖f‖M p(·),ω(·)(Rn)

}
,

�
E :=

{
x ∈ R

n : Mf(x) < ‖f‖M p(·)ω(·)(Rn)

}
.

We put f�(x) = f(x)χE(x) and fs(x) = f(x)χ �E
(x). The inequality (4.15) holds for both f� and

fs and arbitrary r > 0. With the goal of minimization, we choose r such that

rα(x)Mf(x) = r
− α(x)pr(x)

qr(x)−pr(x) ‖f‖M p(·),ω(·)(Rn)

with different choice of r for f� and fs:

r =

( ‖f‖
Mf(x)

) 1
α(x)

(

1− p(x)
q(x)

)

� 1

244



for f� and

r =

( ‖f‖
Mf(x)

) 1
α(x)

(

1− p(∞)
q∞(x)

)

> 1

for fs, where ‖f‖ stands for ‖f‖M p(·),ω(·)(Rn), under the assumption that f is not identically

equal to zero. Then

|Iα(·)f�(x)| � C(Mf�(x))
p(x)
q(x) ‖f‖1−

p(x)
q(x)

M p(·),ω(·)(Rn)
,

|Iα(·)fs(x)| � C(Mfs(x))
p(∞)
q(∞) ‖f‖1−

p(∞)
q(∞)

M p(·),ω(·)(Rn)
.

Since the operator Iα(·) is linear, it suffices to show the boundedness of the corresponding

modulars under the assumption that ‖f‖M p(·),ω(·)(Rn) � 1. We have
∫

B(x,r)

∣∣∣Iα(·)f�(y)
∣∣∣q(y) dy � C

∫

B(x,r)

|Mf�(y)|p(y) dy,

∫

B(x,r)

∣∣∣Iα(·)fs(y)
∣∣∣q∞(y)

dy � C

∫

B(x,r)

|Mfs(y)|p(∞) dy.

Hence

‖Iα(·)f�‖M q(·),ω1(·)(Rn) � C‖f�‖M p(·),ω(·)(Rn)

because of the boundedness of the maximal operator M in the space M p(·),ω(·)(Rn) provided by

Theorem 3.5. To apply this theorem, we need the condition (3.12). It is satisfied in view of the

assumptions (3.19) and (3.20). Finally, the estimate

‖Iα(·)fs‖M p(·),ω1(·)(Rn) � C‖fs‖M p(·),ω(·)(Rn)

follows from Theorem 3.5 in view of the condition (3.20).

5 Corollaries

Corollary 5.1. Let p ∈ P
log∞ (Ω). If

λ(x) � 0, sup
x∈Ω

λ(x) < n, sup
x∈Ω

λ(x)

p(x)
<

n

p(∞)
, (5.1)

then the maximal operator M and the Calderón-Zygmund operator T are bounded in L p(·),λ(·)(Ω).

It suffices to apply Theorems 3.5 and 3.7 with ω1(x, r) = ω2(x, r) = r
λ(x)
p(x) .

Corollary 5.1 was proved in [9] for bounded sets Ω where the last condition in (5.1) does not

appear.

Corollary 5.2. Let α and p satisfy the assumptions of Theorem 3.8. If

λ(x) � 0, sup
x∈Ω

[λ(x) + αp(x)] < n, sup
x∈Ω

λ(x)

p(x)
<

n

p(∞)
− α, (5.2)

then the fractional maximal operator Mα and the fractional integration operator Iα are bounded

from L p(·),λ(·)(Ω) to L q(·),λ(·)(Ω), where 1/q(x) = 1/p(x)− α/n.
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It suffices to apply Theorem 3.9 with ω1(x, r) = ω2(x, r) = r
λ(x)
p(x) .

Corollaries 5.1 and 5.2 were proved in [9] for bounded sets Ω, where the last condition in

(5.1) and (5.2) does not appear.

Corollary 5.3. Suppose that p ∈ P
log∞ (Ω) and α(x) satisfies (2.3). If

λ(x) � 0, sup
x∈Ω

λ(x)

p(x)
<

n

p(∞)
, (5.3)

sup
x∈Ω

[λ(x) + α(x)p(x)] < n, sup
x∈Ω

[λ(x)
p(∞)

p(x)
+ α(x)p(∞)] < n, (5.4)

then the fractional maximal operator Mα and the fractional integration operator Iα are bounded

from L p(·),λ(·)(Ω) to L q(·),λ(·)(Ω) + L q∞(·),λ∞(·)(Ω), where

1

q(x)
=

1

p(x)
− α(x)

n− λ(x)
,

1

q∞(x)
=

1

p(∞)
− α(x)

n− λ∞(x)
, λ∞(x) =

p(∞)

p(x)
λ(x).

It suffices to apply Theorem 3.12 with ω(x, r) = r
λ(x)
p(x) . The relation λ∞(x) = p(∞)

p(x) λ(x) is

obtained from (3.21) with r > 1.

In particular, from Corollary 5.3 for variable exponent spaces Lp(·)(Rn) (the case λ(x) =

λ∞(x) ≡ 0) we obtain the following assertion.

Corollary 5.4. Suppose that p ∈ P
log∞ (Ω) and 1/q(x) = 1/p(x)− α(x)/n. If

inf
x∈Ω

α(x) > 0, sup
x∈Ω

p(x)α(x) < n, p(∞) sup
x∈Ω

α(x) < n,

then the fractional maximal operator Mα and the fractional integration operator Iα are bounded

from Lp(·)(Rn) to the algebraic sum L q(·)(Rn) + L q(∞)(Rn).

Corollary 5.4 seems to be never mentioned earlier in variable exponent analysis.
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3. A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff Internat. Publ., Prague
(1977).

4. M. E. Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and
Layer Potentials, Am. Math. Soc., Providence, RI (2000).

5. H. Rafeiro, N. Samko, and S. Samko, “Morrey–Campanato spaces: an overview,” In: Op-
erator Theory, Pseudo-Differential Equations, and Mathematical Physics. The Vladimir
Rabinovich Anniversary Volume, pp. 293–323, Birkhäuser, Basel (2013).
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20. L. Diening and M. Rüźićka, “Calderón–Zygmund operators on generalized Lebesgue spaces
Lp(·) and problems related to fluid dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).

21. S. G. Samko, “Convolution and potential type operators in the space Lp(x),” Integral Trans-
forms Spec. Funct. 7, No. 3-4, 261–284 (1998).

22. V. Kokilashvili and S. Samko, “On Sobolev theorem for the Riesz type potentials in
Lebesgue spaces with variable exponent,” Z. Anal. Anwend., 22, No. 4, 899–910, (2003).

23. S. G. Samko, “Convolution type operators in Lp(x),” Integral Transforms Spec. Funct. 7,
No. 1-2, 123–144 (1998).

24. S. G. Samko, “Weighted estimates of truncated potential kernels in the variable exponent
setting,” Complex Var. Elliptic Equ. 56, No. 7–9, 813–828, (2011).

25. A. Akbulut, V. S. Guliyev, and R. Mustafayev, “On the boundedness of the maximal
operator and singular integral operators in generalized Morrey spaces,” Math. Bohem.
137, No. 1, 27–43, (2012).

26. J. Peetre, “On convolution operators leaving Lp,λ spaces invariant,” Ann. Mat. Pura Appl.,
IV. Ser. 72, No. 1, 295–304, (1966).

27. J. Peetre, “On the theory of Lp,λ spaces,” J. Funct. Anal. 4, 71–87, (1969).

28. S. Spanne, “Some function spaces defined by using the mean oscillation over cubes,” Ann.
Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19, 593–608, (1965).

29. F. Chiarenza and M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function,”
Rend. Math. 7, 273–279 (1987).

30. D. R. Adams, “A note on Riesz potentials,” Duke Math. 42, 765–778 (1975).

31. V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on
Domains in R

n [in Russian], Diss. Steklov Mat. Inst. Moscow (1994).

32. V. S. Guliyev, Function Spaces, Integral Operators and Two Weighted Inequalities on Ho-
mogeneous Groups. Some Applications [in Russian], Baku (1999).

33. T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces,”
In: Harmonic Analysis, Proc. Conf., Sendai/Jap. 1990, ICM-90 Satell. Conf. Proc., pp.
183–189 (1991).

34. E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz po-
tentials on generalized Morrey spaces,” Math. Nachr. 166, 95–103 (1994).

35. V. Burenkov, A. Gogatishvili, V. S. Guliyev, and R. Mustafayev, “Boundedness of the
fractional maximal operator in local Morrey-type spaces,” Compl. Variabl. Ellipt. Equat.
55, No. 8–10, 739–758 (2010).

36. M. Carro, L. Pick, J. Soria, and V. D. Stepanov, “On embeddings between classical Lorentz
spaces,” Math. Inequal. Appl. 4, No. 3, 397–428 (2001).

Submitted on April 29, 2013

248


	Abstract
	1 Introduction
	2 Preliminaries. Variable Exponent Lebesgue Spaces
	3 Generalized Variable Exponent Morrey Spaces.Definitions and the Main Results
	4 Proofs
	5 Corollaries
	Acknowledgements
	References

