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Abstract. We introduce a new type of variable exponent function spaces
Ḣp(·),q(·),α(·)(Rn) and Hp(·),q(·),α(·)(Rn) of Herz type, homogeneous and
non-homogeneous versions, where all the three parameters are variable,
and give comparison of continual and discrete approaches to their def-
inition. Under the only assumption that the exponents p, q and α are
subject to the log-decay condition at infinity, we prove that sublinear
operators, satisfying the size condition known for singular integrals and
bounded in Lp(·)(Rn), are also bounded in the nonhomogeneous ver-
sion of the introduced spaces, which includes the case maximal and
Calderón-Zygmund singular operators.
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1. Introduction

Let α ∈ R, 1 ≤ p < ∞, 1 ≤ q < ∞. The classical versions of Herz spaces
Kα

p,q(Rn) ([14]), known under the names of nonhomogeneous and homoge-
neous Herz spaces, are defined by the norms

∥f∥Kα
p,q

:= ∥f∥Lp(B(0,1)) +


∑
k∈N

2kαq

 ∫
2k<|x|<2k+1

|f(x)|pdx


q
p


1
q

(1.1)

∥f∥K̇α
p,q

:=


∑
k∈Z

2kαq

 ∫
2k−1<|x|<2k

|f(x)|pdx


q
p


1
q

, (1.2)

respectively. They were studied in many papers, see for instance [7], [9], [13],
[15], [16], [23].
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Last two decades, under the influence of some applications revealed in
[27], there was a vast boom of research of the so called variable exponent
spaces, and operators in them, where the parameters defining the space or
the operator, may depend on the point x of the underlying space. For the
time being, the theory of such variable exponent Lebesgue, Orlicz, Lorentz,
and Sobolev function spaces is widely developed, we refer to the recent book
[5] and surveying papers [4], [19], [22], [28]. For variable exponent Morrey-
Campanato spaces we refer to the papers [2], [10], [12], [20], [21] and [26].

Herz spaces with variable exponents have been recently introduced in [1],
[15], [16]. In the last two papers the exponent p was variable, the remaining
exponents α and q were kept constant. The most general results were obtained
in [1], where the variability of α was allowed. The main results obtained, for
instance in [1] concern the boundedness of sublinear operators (including the
maximal function and Calderón-Zygmund singular operators) and a Spanne
type result for the Riesz potential operator. The approach used in [1] allowed
to cover the case where p and α are variable and depend on the point x of
the underlying set, keeping the exponent q constant.

In this paper, we suggest another approach to introduce variable expo-
nent Herz spaces. The main feature of this approach is that we replace the
discrete ℓq-norm by the continual Lq-norm with respect to Haar measure (we
show that this replacement keeps the norms equivalent in some situations,
but this is not always the case). The advantage of this replacement is that
all the proofs become shorter and more transparent, and, what is more im-
portant, it allows us to admit the variability of the exponent q as well. There
is also another modification: we find more natural to introduce the variabil-
ity of the exponent α not with respect to the point x ∈ Rn, but the point
t ∈ R+, where the L

q-integrability is taken (or with respect to the index k in
the summation in (1.1)-(1.2)). The advance in covering the case where q is
also variable, is based on the fact that the proofs in our approach lead us to
Hardy type inequalities in variable exponent Lq(·)(R+)-spaces, which we can
derive from results of the paper [6].

Under the only assumption that the exponents p, q and α are sub-
ject to the log-decay condition at infinity, we prove that sublinear operators
which satisfy the size condition known for singular integrals and bounded in
Lp(·)(Rn), are also bounded in the nonhomogeneous version of the introduced
spaces. This is applied to the maximal operator and to Calderón- Zygmund
singular operators with standard kernel.

The paper is organized as follows. In the preliminary Section 2 we com-
ment the replacement of the discrete ℓq-norm by the continual Lq-norm in the
case of constant exponents. In Subsection 3.1 we recall some necessary pre-
liminaries on variable exponent Lebesgue spaces, after which in Subsection
3.2 we introduce our definition of variable exponent Herz spaces. In Sub-
section 3.3 we consider variable exponent Herz spaces with variable p and
α but constant q with the goal to show that in this case the discrete and
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continual norms are equivalent under some natural assumptions on p(x) and
α(t) and αk, and also the norms are equivalent under the change of some
other auxiliary parameters. In Subsection 4.1 we prove a statement on the
boundedness of Mellin convolution operators in variable exponent Lebesgue
spaces on R+ with Haar measure, important for our goals. Finally, the last
section 5 contains the main result on the boundedness of sublinear operators
with the size condition in the introduced spaces, and its proof. The section
ends with application to maximal and singular operators.

N o t a t i o n:
B(x, r) is the ball of radius r centered at the point x;
Rt,τ = B(0, τ)\B(0, t) = {x : t < |x| < τ} is a spherical layer;
Rk = R2k−1,2k = B(0, 2k)\B(0, 2k−1);
χE(x) is the characteristic function of a set E;
χt,τ (x) = χ

Rt,τ
(x);

d̄t = dt
t denotes the Haar measure on R+;

N is the set of all natural numbers; N0 = N ∪ {0};
Z is the set of all integers;
the equivalence A ≈ B for non-negative expressions A and B means that
C1A ≤ B ≤ C2A where C1 > 0 and C2 > 0 do not depend on A and B.

2. Preliminaries on Herz spaces with constant exponents

For our goals related to variable exponent spaces, the following lemma is im-
portant, which states that the discrete ℓq-norm may be equivalently replaced
by the integral Lq-norm.

Let 1 ≤ p <∞, 1 ≤ q <∞ and α ∈ R. For ν ≥ 0, let

kαp,q(f) := ∥f∥Lp(B(0,γν+ε)) +


∞∫
ν

tαq

 ∫
γt<|x|<δt

|f(x)|p dx


q
p

dt

t


1
q

(2.1)

where δ > γ > 0, ε > 0 and the first term is omitted in the case ν = 0.
This norm is well known in the case ν = 0 ([8], [14], [17], [18]). These norms
are equivalent for different choices of the parameters δ > γ > 0, ε > 0 (and
also for different ν > 0, see Lemmas 2.3, 3.5. Note that one cannot take
ε = 0 in the above definition when ν > 0, because the finiteness of only the
second term in (2.1) implies integrability properties of the function f only
for |x| > γν + ε for an arbitrarily small ε > 0, but does not provide any
information on integrability of f in the layer γν < |x| < γν + ε, see the
remark below.

Remark 2.1. To clarify the idea, take n = 1, p = 1, q = 1 for simplicity.
Choose γ = 1, δ = 2 and take f(x) = 1

x−2 for x ∈ (2, 4) and f(x) ≡ 0 for

x ∈ R\(2, 4). Then
∫ 2t

t
f(x) dx = ln 2(t−1)

t−2 , so that the second term in (2.1)
exists, but the function f is not integrable.
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The following lemma clarifies the local integrability of f in the layer
γν + ε < |x| < N. We take γ = 1, δ = 2, ν = 2 for simpicity.

Lemma 2.2. Let

N(f) :=


∞∫
2

tαq

 ∫
t<|x|<2t

|f(x)|p dx


q
p

dt

t


1
q

<∞.

Then

∥f∥Lp(B(0,R)\B(0,2+ε)) ≤ Cε,RN(f)

for arbitrarily large R(≥ 4).

Proof. Let ε ∈ (0, 2). We have

N(f) ≥


2+2ε∫
2+ε

tαq

 ∫
2+2ε<|x|<2(2+ε)

|f(x)|p dx


q
p

dt

t


1
q

whence ∥f∥Lp(B(0,4+ε)\B(0,2+2ε)) ≤ c(ε)N(f) < ∞. Then f ∈ Lp(B(0, 6 −
ε)\B(0, 2+ ε)). Iterating the arguments starting from the point 4+ ε instead
of 2+ ε, we can extend this to f ∈ Lp(B(0, R)\B(0, 2+ ε)) for an arbitrarily
large R > 0.

�

Lemma 2.3. I. When ν > 0, the norms ∥f∥Kα
p,q

and kαp,q(f) are equivalent

for all finite values of γ, δ; the norms kαp,q(f) are also equivalent to each other
for different ν = ν1 > 0 and ν = ν2 > 0.
II. When ν = 0, the norms ∥f∥K̇α

p,q
and kαp,q(f) are equivalent to each other

for all finite values of δ, γ.

The statement of Lemma 2.3 was established in [8], see also [17], [18],
for ν = 0. We give its direct proof in the variable exponent case in Lemma
3.5.

Remark 2.4. Formal particular cases with γ = 0 or δ = ∞ of Herz spaces in
integral norm as in (2.1), are known as the so called generalized local Morrey
spaces (γ = 0, δ < ∞) in the case of variable exponents studied in in [2],
[10], [12], [20], [19], [21], or complementary generalized local Morrey spaces
(γ = 1, δ = ∞), studied with variable exponents in the case q = ∞ in [11].
However, we immediately loose the equivalence of norms, when we pass to
γ = 0 or δ = ∞.
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3. Herz spaces with variable exponent p(x), q(t), α(t)

3.1. Preliminaries on variable exponent Lebesgue spaces

We refer to the book [5] and papers [24], [28], but recall some basics we need.
Let Ω ⊆ Rn be an open set and p(·) be a measurable function on Ω with
values in [1,∞). We suppose that

1 ≤ p− ≤ p(x) ≤ p+ <∞, (3.1)

where p− := infx∈Ω p(x), p+ := supx∈Ω p(x) < ∞. By Lp(·)(Ω) we denote
the space of measurable functions f on Ω such that

Ip(·)(f) =

∫
Ω

|f(x)|p(x)dx <∞.

Equipped with the norm

∥f∥p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the

conjugate exponent.
By P log = P log(Ω) we denote the class of functions defined on Ω satis-

fying the log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
, x, y ∈ Ω, (3.2)

where A = A(p) > 0 does not depend on x, y.

We will also work with the variable exponent Lq(·)-space with the Haar
measure d̄t = dt

t on Ra+ = (a,∞), where a ≥ 0, is introduced in the usual
way:

∥f∥Lq(·)(Ra+;d̄t) = inf

λ > 0

∞∫
a

∣∣∣∣f(t)λ
∣∣∣∣q(t) d̄t ≤ 1

 .

3.2. Definition of variable exponent Herz spaces

We define the variable exponent Herz spaces as follows.

Definition 3.1. We define the variable exponent Herz space H
p(·),q(·),α(·)
ν (Rn)

by the norm

∥f∥Hp,q,α
ν

:= ∥f∥Lp(·)(B(0,γν+ε)) +
∥∥∥tα(t) ∥∥∥fχRγt,δt

∥∥∥
Lp(·)

∥∥∥
Lq(·)((γν,∞),d̄t)

<∞,

(3.3)
where 0 < γ < δ < ∞ and ε > 0, and p : Rn → [1,∞), q : [γν,∞) → [1,∞)
and α : [γν,∞) → R are variable exponents. The cases ν = 0 and ν > 0
correspond to homogeneous and inhomogeneous Herz spaces, respectively.

In the notation of the space Hp,q,α
ν we omit the dependence on γ, δ

and ε, and distinguish only the cases ν = 0 and ν > 0. By Lemma 3.5,
this definition is irrelevant to the choice of γ, δ and ε in the case where the
exponent q is constant. However this is no more valid in general when q is
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variable: then the space may depend on the choice of the parameters γ, δ and
ν.

Similarly to Lemma 2.2, the following statement holds.

Lemma 3.2. Let 0 < ε < 2 and 4 ≤ R <∞. Then

∥f∥Lp(·)(B(0,R)\B(0,2+ε)) ≤ c(ε,R)
∥∥∥tα(t) ∥∥fχt,2t

∥∥
Lp(·)

∥∥∥
Lq(·)(2,∞);d̄t

.

The proof follows the same lines as in that of Lemma 2.2.
Denote R+,ν = {t ∈ R : ν < t < ∞}, where ν > 0. By Mlog

∞ (R+,ν)

and Mlog
0,∞(R+) we denote the classes of bounded functions on R+,ν , R+,

respectively, satisfying the decay conditions

|α(t)− α(+∞)| ≤ A

ln(e+ t)
, t ∈ R+,ν ; |α(t)− α±∞| ≤ A±

ln(e+ t)
, t ∈ R+,

(3.4)
respectively.

Lemma 3.3. Let (3.1) hold. Then the following equivalences of the norms are
valid

∥f∥Hp,q,α
ν

≈ ∥f∥Lp(·)(B(0,γν+ε)) +
∥∥∥tα∞

∥∥∥fχRγt,δt

∥∥∥
Lp(·)

∥∥∥
Lq(·)(R+,ν ,d̄t)

, ν > 0,

(3.5)
and

∥f∥Hp,q,α
0

≈
∥∥∥tα(0)(1 + t)α∞−α(0)

∥∥∥fχRγt,δt

∥∥∥
Lp(·)

∥∥∥
Lq(·)(R+,d̄t)

, (3.6)

if α ∈ Mlog
∞ (R+,ν) in the case of (3.5) and α ∈ Mlog

0,∞(R+) in the case of

(3.6).

The proof is direct.

In the sequel, for Ω = Rn or Ω = (ν,∞), by P∞(Ω) we denote the set
of exponents p : Ω → [1,∞) which satisfy the decay condition

|p(x)− p∞| ≤ C

ln(e+ |x|)
.

3.3. On Herz spaces with variable p(x) and α(t) and constant q

The variable exponent Herz spaces introduced and studied in [1] were defined
in the case of constant q by the norms

∥f∥Lp(·)(B(0,1)) +

{∑
k∈N

∥∥∥2kα(·)fχRk−1

∥∥∥q
p(·)

} 1
q

(3.7)

and {∑
k∈Z

∥∥∥2kα(·)fχRk

∥∥∥q
p(·)

} 1
q

(3.8)
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similar to (1.1)-(1.2), where the variability of α is admitted with respect to
the point x of the underlying space. We base ourselves on the idea of ex-
panding the integral type norms (2.1) to the variable exponent case provided
by Lemma 2.3 and define the homogeneous and inhomogeneous Herz spaces

H
p(·),q(·),α(·)
ν (Rn) in the united way as follows below. With respect to the

discretized forms, in the case of constant q they will be related not to the
norms (3.7) and (3.8), but norms of the form

∥f∥
K

α(·)
p(·),q

:= ∥f∥Lp(·)(B(0,1)) +

{∑
k∈N

2qkαk
∥∥fχRk−1

∥∥q
p(·)

} 1
q

(3.9)

∥f∥
K̇

α(·)
p(·),q

:=

{∑
k∈Z

2qkαk ∥fχRk
∥qp(·)

} 1
q

(3.10)

where the sequence αk is supposed to be logarithmically stabilizing at +∞
and −∞: there exists α± := limk→±∞ αk ∈ R such that

|αk − α+| ≤
A

ln(e+ k)
, k ∈ N; |αk − α−| ≤

A

ln(e+ |k|)
,−k ∈ N (3.11)

(the second assumption required only in the case of (3.10)). For brevity, by

Mlog
+ (N) and Mlog

± (Z) we denote the classes of bounded sequences satisfying
the first of the conditions in (3.11) and both of them, respectively.

Lemma 3.4. Let (3.1) hold. The norms ∥f∥
K

α(·)
p(·),q

and ∥f∥
K̇

α(·)
p(·),q

defined in

(3.9) and (3.10) are equivalent to the norms

∥f∥
K

α+
p(·),q

:= ∥f∥Lp(·)(B(0,1)) +

{∑
k∈N

2kqα+
∥∥fχRk−1

∥∥q
p(·)

} 1
q

(3.12)

∥f∥
K̇

α±
p(·),q

:=

{∑
k∈Z

(
1 + 2k

)qα+

(
2k

1 + 2k

)qα−

∥fχRk
∥qp(·)

} 1
q

, (3.13)

respectively, if α ∈ Mlog
+ (N) in the former case and α ∈ Mlog

± (Z) in the latter
case.

The proof is a matter of direct verification via the decay conditions (see
also Lemma 3.3).

Lemma 3.5. Let (3.1) hold, α ∈ Mloc
∞ , if ν > 0 and α ∈ Mloc

0,∞, if ν = 0. The
norms (3.3) are equivalent to each other for different finite values of γ and
δ (such that γ < δ). They are also equivalent to each other under different
choice of values of ν ̸= 0. Moreover, the norm (3.3) is equivalent to the norm
(3.9) when ν > 0 and norm (3.10) when ν = 0 under any choice of the
sequence αk such that

α+ = α(+∞) and α− = α(0). (3.14)
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Proof. I. Equivalence between the norms (3.3) for different positive λ, δ and
ν. By Lemma 3.3 it suffices to consider the norms in the form (3.5)-(3.6).
For brevity, keeping in mind that the dependence on λ, δ and ν is now of
importance, we denote

Af (γ, δ; ν) = ∥f∥Lp(·)(B(0,γν+ε)) +


∞∫
ν

tqα∞
∥∥∥fχRγt,δt

∥∥∥q
Lp(·)

d̄t


1
q

, ν > 0,

with the right-hand side replaced by the expression in (3.6) when ν = 0. By
the dilation change of the variables t, it is easy to see that

Af (γ, δ; ν) ≈ Af

(
1,
δ

γ
; γν

)
, 0 < γ < δ

(where the constants in the equivalence relation depend only on γ). Conse-
quently, it suffices to deal only with the case γ = 1 and δ > 1. For simplicity
of calculations, we further consider the case ν = 0. (The case ν > 0 is simi-
larly treated with Lemma 2.2 taken into account, but requires more technical
details). We simplify the notation to

Af (1, δ) :=


∞∫
0

tα(0)q(1 + t)q[α∞−α(0)].
∥∥∥fχRt,δt

∥∥∥q
Lp(·)

d̄t


1
q

,

where we assume that δ > 1. Let δ < λ. Then

Af (1, δ) ≤ Af (1, λ) ≤ Cq,α,δ

[
Af (1, δ) +Af

(
1,
λ

δ

)]
,

with Cq,α,δ depending only on δ, but not depending on f, where the left-hand
side inequality is obvious, and the right-hand side one is easily obtained by
splitting χ(t,λt) = χ(t,δt) + χ(δt,λt).

If λ ≤ δ2, then Af

(
1, λδ

)
≤ A(1, δ) and the proof of the equivalence

A(1, λ) ≈ A(1, δ) is over. If δ2 < λ ≤ δ3, we similarly proceed and have
Af

(
1, λδ

)
≤ Cq,α,δ

[
Af (1, δ) +Af

(
1, λ

δ2

)]
. Iterating thisN times,N =

[
ln λ
ln δ

]
,

we obtain that Af (1, λ) ≤ CAf (1, δ) with C depending on λ and δ, but not
depending on f .

II. Equivalence of the norms (3.3) to the norms (3.9)-(3.10). By Lemma
3.4, the norms (3.9)-(3.10) may be taken in the form (3.12)-(3.13). We con-
sider the case ν = 0 for simplicity; the case ν > 0 may be similarly treated,
with Lemma 2.2 taken into account.

In view of the first part of the lemma we can compare the norm ∥f∥
K̇

α±
p(·),q

with the right-hand side of (3.6) under the concrete choice of γ and δ. With
the choice γ = 1 and δ = 2, δ = 4, for the norm (3.13) we have

C1Af (1, 2) ≤ ∥f∥
K̇

α±
p(·),q

≤ C2Af (1, 2),
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where C1 and C2 do no depend on f. Indeed, with (3.14) taken into account,
and denoting for brevity

ak =
(
1 + 2k

)qα+

(
2k

1 + 2k

)qα−

(the coefficient appeared in (3.13)), we have

Af (1, 2) =


∑
k∈Z

2k+1∫
2k

tα(0)q(1 + t)q[α∞−α(0)]
∥∥∥fχRt,4t

∥∥∥q
Lp(·)

dt

t


1
q

≥ C


∑
k∈Z

ak

∥∥∥fχR
2k+1,2k+2

∥∥∥q
Lp(·)

2k+1∫
2k

dt

t


1
q

≥ C∥f∥
K̇

α±
p(·),q

.

Similarly,

Af (1, 2) ≤ C


∑
k∈Z

ak

∥∥∥fχR
2k,2k+2

∥∥∥q
Lp(·)

2k+1∫
2k

dt

t


1
q

≤ C

{∑
k∈Z

(ak + ak−1)
∥∥∥fχR

2k,2k+1

∥∥∥q
Lp(·)

} 1
q

≤ C

{∑
k∈Z

ak

∥∥∥fχR
2k,2k+1

∥∥∥q
Lp(·)

} 1
q

= C∥f∥
K̇

α±
p(·),q

,

which completes the proof. �

4. Auxiliary statements

4.1. On Mellin convolutions in variable exponents spaces Lq(·)(R+)

Let

Kφ(t) =

∫ ∞

0

K
(
t

τ

)
φ(τ)d̄τ

be an integral operator with the Haar measure d̄τ = dτ
τ and the kernel

homogeneous of order 0, known also as Mellin convolution operator.
In Theorem 4.4 we give conditions for the boundedness of such operators

in the variable exponent Lq(·)(R+; d̄τ)-spaces. Theorem 4.4 will be derived
from the following theorem below, which is a particular case of Theorem 4.6
from [6].

Theorem 4.1. Let q ∈ P log
∞ (Rn) and

k ∈ L1(Rn) ∩ Ls0(Rn), where
1

s0
= 1− 1

q−
+

1

q+
. (4.1)
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Then the convolution operator f → k ∗ f is bounded in the space Lq(·)(Rn).

Let

(Wqf)(u) = e−
u

q(∞) f(e−u) , −∞ < u <∞. (4.2)

Lemma 4.2. Let q∞ be a number in [1,∞). A Mellin convolution operator K
on R+ reduces to the convolution operator on R via the relation

(WqKW
−1
q ψ)(u) =

∫
R

h(u− v)ψ(v)dv, (4.3)

where h(u) = e−
u

q∞ K (e−u) and ∥h∥L1(R) =
∞∫
0

τ
− 1

q′∞ |K(τ)|dτ.

Proof. The proof is a matter of direct verification. �

To be definite with the constants, we adopt the notation

A∞
q := sup

t∈R1
+

∣∣∣∣ 1

q(t)
− 1

q∞

∣∣∣∣ ln (e+ t), A0
q := sup

0<t≤ 1
e

∣∣∣∣ 1

q(t)
− 1

q0

∣∣∣∣ ln 1

t
. (4.4)

It can be easily checked that (4.4) and the condition q(0) = q(∞) imply that
also

sup
t∈R1

+

∣∣∣∣( 1

q(t)
− 1

q∞

)
ln t

∣∣∣∣ ≤ max{A∞
q , A

0
q}. (4.5)

We denote

q∗(u) = q
(
e−u

)
, u ∈ R.

Note that q0 = q∞ ⇐⇒ q∗−∞ = q∗+∞ and (4.5) is equivalent to∣∣∣∣ 1

q∗(u)
− 1

q∞

∣∣∣∣ ≤ 1

|u|
max{A∞

q , A
0
q}, t ∈ R. (4.6)

Note also that from (4.6) it follows that∣∣∣∣ 1

q∗(u)
− 1

q∞

∣∣∣∣ ≤ max{A∞
q , A

0
q}

e ln(e+ |u|)
, t ∈ R. (4.7)

Lemma 4.3. Let u ∈ P log
0,∞ and q0 = q∞. Then the operator Wp maps isomor-

phically the space Lq(·)(R+) onto the space Lq∗(·)(R) and

e−Aq ≤ ∥Wq∥Lq∗(·)(R+)→Lq(·)(R) ≤ eAq , (4.8)

where Aq = max{A0
q, A

∞
q }.

Proof. The statement of the lemma was in fact proved in [6], Lemma 5.1. For
completeness of presentation we give here its direct proof. We have∫

R

∣∣∣∣Wqf(u)

λ

∣∣∣∣q∗(u) du =

∫
R

∣∣∣∣∣e−
u

q(0) f (e−u)

λ

∣∣∣∣∣
q∗(u)

du =

∫
R+

∣∣∣∣ f(t)

λt
1

q(t)
− 1

q0

∣∣∣∣q(t) dt.
(4.9)
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From (4.5) it follows that e−Aq ≤ t
1

q(t)
− 1

q0 ≤ eAq . Hence∫
R+

∣∣∣∣ f(t)

∥Wqf∥q∗eAq

∣∣∣∣q(t) dt ≤ 1 =

∫
R

∣∣∣∣ Wqf(u)

∥Wqf∥q∗

∣∣∣∣q∗(u) du ≤
∫
R+

∣∣∣∣ f(t)

∥Wqf∥q∗e−Aq

∣∣∣∣q(t) dt.
(4.10)

which yields (4.8). �

Theorem 4.4. Let q ∈ P log
0,∞(R+), p− > 1 and q0 = q∞. Then

∥Kf∥Lq(·)(R+) ≤ C ∥f∥Lq(·)(R+) , (4.11)

if ∫ ∞

0

t
s

q∞ |K(t)|sdt <∞ (4.12)

for s = 1 and s = s0, where
1
s0

= 1− 1
q−

+ 1
q+
.

Proof. By Lemmas 4.2 and 4.8, the boundedness of the operatorK in Lq(·)(R+)
is equivalent to the boundedness of the convolution operator h∗f =

∫
R h(u−

v)f(v)dv in Lq∗(·)(R) with the kernel h(u) = e−
u
p0 K (e−u) .

By Theorem 4.1, the latter convolution is bounded, if h ∈ L1(R)
∩
Ls0(R)

which is equivalent to (4.12).
�

Corollary 4.5. Let q ∈ P loc
0,∞(R+) and qo = q∞. The operator K is bounded

in the space Lq(R+; d̄t), where d̄t =
dt
t , if

∞∫
0

|K(t)|s dt
t
<∞ for s = 1 and s = s0. (4.13)

Proof. The Lq(R+; d̄t)-boundedness of the operator K in terms of the corre-
sponding modular means the following:

∞∫
0

∣∣∣∣Kf(t)t1/q(t)

∣∣∣∣q(t) dt ≤ C as soon as

∞∫
0

∣∣∣∣ f(t)t1/q(t)

∣∣∣∣q(t) dt ≤ 1.

By the decay condition and the assumption q0 = q∞, this is equivalent to a
similar condition with q(t) in the exponent in the denominator replaced by
q∞. The latter condition means the Lq(R+)-boundedness of the operator

K1φ(t) =

∫ ∞

0

K1

(
t

τ

)
φ(τ)d̄τ

with the kernel K1(t) = t−
1

q∞ K(t). Applying condition (4.12) to the latter,
we arrive at (4.13).

�
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4.2. Two auxiliary lemmas

It is known that ∥χB(0,r)∥p(·) ≈ r
n

p(0) as r → 0, if p(x) satisfies the local

log-condition, and ∥χB(0,r)∥p(·) ≈ r
n

p∞ as r → ∞, if p(x) satisfies the local
log-condition and the decay condition at infinity. In [1], Lemma 2.2, it was ob-
served that the validity of similar equivalences for the norm ∥χB(0,2r)\B(0,r)∥p(·)
do not require local log-condition: the decay conditions at the origin and in-
finity, respectively, are sufficient. In the following lemma we give a simpler
proof showing that it follows directly from the definition of the norm.

Recall that from the decay conditions at the origin and infinity it follows
that

|p(x)− p(0)| ≤ A0

| ln |x||
, |x| ≤ 1, (4.14)

|p(x)− p∞| ≤ A∞

| ln |x||
, |x| > 1. (4.15)

Lemma 4.6. Let D > 1 and (4.14) or (4.15) be fulfilled. Then

1

c0
r

n
p(0) ≤ ∥χB(0,Dr)\B(0,r)∥p(·) ≤ c0r

n
p(0) for 0 < r ≤ 1 (4.16)

and
1

c∞
r

n
p∞ ≤ ∥χB(0,Dr)\B(0,r)∥p(·) ≤ c∞r

n
p∞ for r ≥ 1, (4.17)

respectively, where c0 ≥ 1 and c∞ ≥ 1 depend on D, but do not depend on r.

Proof. We prove (4.17), the arguments for (4.16) are similar. Recall that∫
Rn

∣∣∣ f(x)λ

∣∣∣p(x) dx ≤ 1 ⇐⇒ ∥f∥p(·) ≤ λ and
∫
Rn

∣∣∣ f(x)λ

∣∣∣p(x) dx ≥ 1 ⇐⇒

∥f∥p(·) ≥ λ for λ > 0. Therefore, the right-hand side inequality in (4.17)
is equivalent to ∫

r<|x|<Dr

dx[
c0r

n
p∞

]p(x) ≤ 1. (4.18)

The left hand side in (4.18) is estimated as follows:∫
r<|x|<Dr

dx[
c0r

n
p∞

]p(x) ≤ 1

c
p−
0

∫
r<|x|<Dr

dx(
|x|
D

)np(x)
p∞

≤ D
np+
p∞

c
p−
0

∫
r<|x|<Dr

dx

|x|
np(x)
p∞

.

By the decay condition (4.15) we have e−
A∞
p∞ |x| ≤ |x|

p(x)
p∞ ≤ e

A∞
p∞ |x|, |x| ≥ 1.

Therefore,∫
r<|x|<Dr

dx[
c0r

n
p∞

]p(x) ≤ D
np+
p∞ e

nA∞
p∞

c
p−
0

∫
r<|x|<Dr

dx

|x|n
=
D

np+
p∞ e

nA∞
p∞

c
p−
0

|Sn−1| lnD,

(4.19)

which determines the choice of cp0 = D
np+
p∞ lnDe

nA∞
p∞ |Sn−1|, and proves the

right-hand side inequality in (4.17).
Similarly, the left-hand side inequality in (4.17) is checked. �
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Lemma 4.7. The following relations∫
2a<|y|<t

|Φ(y)| dy =
1

ln 2

t∫
a

dτ

τ

∫
max(2a,τ)<|y|<min(t,2τ)

Φ(y) dy, t > 2a > 0,

(4.20)∫
|y|>2t

|Φ(y)| dy =
1

ln 2

∫ ∞

t

dτ

τ

∫
max(τ,2t)<|y|<2τ

|Φ(y)| dy, t > 0. (4.21)

hold for every measurable function Φ for which the integrals on the left-hand
side exists.

Proof. The proof is a matter of direct verification via the change of order of
integration on the right-hand side. �

5. Main result

Our main result concerns the boundedness of a sublinear operator T satisfying
the well known size condition

|Tf(x)| ≤ C

∫
Rn

|f(y)| dy
|x− y|n

, x /∈ supp f, (5.1)

in the variable exponent non-homogeneous Herz spaces Hp,q,α
ν , i.e. in the case

ν ̸= 0.

Theorem 5.1. Let p ∈ P log
∞ (Rn) with 1 < p− < p+ <∞, q ∈ P log

∞ (ν,∞) with
1 ≤ q− ≤ q+ < ∞ and α ∈ P∞(ν,∞). Then every sublinear operator T with
the size condition (5.1), bounded in Lp(·)(Rn), is also bounded in the Herz

spaces H
p(·),q(·),α(·)
ν (Rn), ν > 0, if

− n

p∞
< α∞ <

n

p′∞
. (5.2)

Proof. The proof does not depend on the concrete choice of ν > 0 and δ, so
we choose ν = 2 and δ = 2 for simplicity, but recall that the norms in the

space H
p(·),q(·),α(·)
ν (Rn) are not necessarily equivalent for different values of

these parameters when q is variable. So in the sequel we will work with the
norm

∥f∥Hp,q,α
2

= ∥f∥Lp(·)(B(0,2+ε)) +N(f)p,q,α, (5.3)

where we denoted

N(f)p,q,α :=
∥∥tα∞

∥∥fχ(t,2t)

∥∥
Lp(·)

∥∥
Lq((2,∞),d̄t)

(5.4)

for brevity.
We start with estimation of the first term ∥Tf∥Lp(·)(B(0,2+ε)) in the

norm (5.3). It suffices to consider ε ∈ (0, 1). We have

|Tf(x)| ≤ |T (fχB(0,8)(x)|+ |T (fχRn\B(0,8))
)(x)|,

where the estimate∥∥T (fχB(0,8))

∥∥
Lp(·)(B(0,2+ε))

≤ C∥f∥Hp,q,α
2
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is immediate in view of the assumed boundedness of the operator T in Lp(·)

and Lemma 3.2. To estimate the second term, we use the relation (4.21):

|T (fχRn\B(0,8)
)(x)| ≤ C

∞∫
4

dτ

τ

∫
τ<|y|<2τ

|f(y)| dy
|x− y|n

and observe that for x ∈ B(0, 2 + ε) ⊂ B(0, 3) we have |x − y| ≥ |y| − |x| ≥
τ − 3 ≥ τ

4 ,, so that

|T (fχRn\B(0,8)
)(x)| ≤ C

∞∫
4

τ−1−ndτ

∫
τ<|y|<2τ

|f(y)|dy.

By the Hölder inequality and estimate (4.17) we then obtain

|T (fχRn\B(0,8)
)(x)| ≤ C

∞∫
4

τ−n−1∥fχRτ,2τ
∥Lp(·)∥χRτ,2τ

∥Lp′(·)dτ

≤ C

∞∫
4

τ−α∞−n
p

(
tα∞∥fχ

Rτ,2τ
∥Lp(·)

) dτ
τ
.

Applying the Holder inequality in the form∣∣∣∣∣∣
∞∫
0

φ(τ)ψ(τ)d̄τ

∣∣∣∣∣∣ ≤ 2∥φ∥Lq(·)(R+.d̄τ)∥ψ∥Lq′(·)(R+.d̄τ),

we obtain

|T (fχRn\B(0,8)
)(x)| ≤ C∥τ−α∞−n

p ∥Lq(·)((4,∞);d̄τ)∥f∥Hp,q,α
2

≤ C∥f∥Hp,q,α
2

(5.5)

since the norm ∥τ−α∞−n
p ∥Lq(·)((4,∞);d̄τ) is finite, or equivalently, the modular∫∞

4
d̄τ

τ
q(τ)(α∞+n

p
) ≈

∫∞
4

d̄τ

τ
q∞(α∞+n

p
) is finite. Consequently,

∥|T (fχRn\B(0,8)
)|∥Lp(·)(B(0,2+ε)) ≤ C∥f∥Hp,q,α

2
.

The main task, however, is to estimate the seminorm N(Tf)p,q,α. To
this end, we split the function f(x) as

f(x) = f0(x) + ft(x) + gt(x) + ht(x),

where

f0(x) = f(x)χB(0,1)(x), ft(x) = f(x)χB((0, t2 )\B(0,1)(x),

gt(x) = f(x)χB(0,8t)\B(0, t2 )
(x), ht(x) = f(x)χRn\B(0,8t)(x),

depending on the parameter t ∈ (2,∞). This ”continual” decomposition is
similar to the analogous ”discrete” decomposition of such a type used earlier
for Herz spaces in [25] in the case of constant exponents and in [1] in the case
of variable p and α. Then
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|Tf(x)| ≤ |Tf0(x)|+ |Tft(x)|+ |Tgt(x)|+ |Tht(x)|.

Estimation of Tf0(x). For x ∈ Rt,2t and y ∈ B(0, 1) we have |x − y| ≥
|x| − |y| > t− 1 ≥ t

2 , so that

|Tf0(x)| ≤
c

tn

∫
B(0,1)

|f(y)|dy ≤ c

tn
∥fχB(0,1)∥p(·)∥χB(0,1)∥p′(·) =

c

tn
∥fχB(0,1)∥p(·).

Consequently,

tα∞∥χRt,2t
Tf0∥p(·) ≤ tα∞−n∥fχB(0,1)∥p(·)∥χRt,2t∥p(·) ≤ Ct(α∞−n+ n

p∞ )∥fχB(0,2)∥p(·),

by (4.17). Therefore,

N(Tf0)p,q,α ≤ C∥tα∞− n
p′∞ ∥Lq(·)((2,∞);d̄t)∥fχB(0,2)∥p(·) ≤ C∥fχB(0,2)∥p(·)

where the norm ∥tα∞− n
p′∞ ∥Lq(·)((2,∞);d̄t) is finite, which is justified as in (5.5).

Estimation of T (ft). We have

|Tft(x)| ≤ C

∫
B(0, t2 )\B(0,1)

|f(y)|
|x− y|n

dy, x ∈ Rt,2t.

where |x− y| ≥ |x| − |y| ≥ t
2 , so that

|Tft(x)| ≤
C

tn

∫
1<|y|< t

2

|f(y)| dy,

We use the relation (4.20) and obtain

|Tft(x)| ≤
C

tn

t∫
1

∥fχ
Rτ

2
,τ
∥p(·)∥χRτ

2
,τ
∥p′(·)

dτ

τ

and then

|Tft(x)| ≤
C

tn

t∫
1

∥fχ
Rτ

2
,τ
∥p(·)τ

n
p′∞

−1
dτ

by (4.17).Therefore,

tα∞∥χRt,2t
Tft(x)∥p(·) ≤ Ctα∞−n∥χRt,2t

∥p(·)

t∫
1

∥fχRτ
2
,τ
∥p(·)τ

n
p′∞

−1
dτ.

Consequently,

tα∞∥χ
Rt,2t

Tft(x)∥p(·) ≤ Ct
α∞− n

p′∞

t∫
1

∥fχ
Rτ

2
,τ
∥p(·)τ

n
p′∞

−1
dτ
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by the same formula (4.17). This may be rewritten in the form

tα∞∥χRt,2t
Tft(x)∥p(·) ≤ C

t∫
1

(
t

τ

)α∞− n
p′∞

φ(τ) d̄τ

where φ(τ) = τα∞∥fχRτ
2
,τ
∥p(·). We arrived at a Hardy type operator. It is

bounded in the space Lq(·)((1,∞); d̄t) with the Haar measure by Corollary

4.5, since α − n
p′
∞
< 0: choose K(t) = t

α− n
p′∞ for t > 1 and K(t) = 0 for

0 < t < 1 in Corollary 4.5. Then

N(Tft)p,q,α ≤ C∥φ∥Lq(·)((1,∞);d̄t) ≤ C∥f∥Lp(·)(B(0,2)+CN(f)p,q,α ≤ C∥f∥q
Hp,q,α

2

Estimation of T (gt). By the boundedness of the operator T in the space
Lp(·)(Rn) we obtain∥∥(Tgt)χt,2t

∥∥
Lp(·) ≤ C ∥gt∥Lp(·) = C

∥∥∥fχ t
2
,8t

∥∥∥
Lp(·)

≤ C
∥∥∥fχ t

2
,t

∥∥∥
Lp(·)

+ C
2∑

j=0

∥∥∥fχ
2jt,2j+1t

∥∥∥
Lp(·)

.

Then

N(Tgt)p,q,α ≤ C
∥∥∥tα∞

∥∥∥fχ t
2
,t

∥∥∥
Lp(·)

∥∥∥
Lq(·)((2,∞);d̄t)

+C
∥∥tα∞

∥∥fχt,2t

∥∥
Lp(·)

∥∥
Lq(·)((2,∞);d̄t)

≤ C
∥∥tα∞

∥∥fχt,2t

∥∥
Lp(·)

∥∥
Lq(·)((1,2);d̄t)

+ C
∥∥tα∞

∥∥fχt,2t

∥∥
Lp(·)

∥∥
Lq(·)((2,∞);d̄t)

.

Since
∥∥fχt,2t

∥∥
Lp(·) ≤

∥∥fχ0,4

∥∥
Lp(·) , we obtain

N(Tgt)p,q,α ≤ C∥f∥Hp,q,α
ν

with Lemma 3.2 taken into account.

Estimation of T (ht). We take x ∈ Rt,2t and proceed as follows:

|Tht(x)| ≤ C

∫
|y|>8t

|f(y)| dy
|x− y|n

.

Now we use the relation (4.21) and get

|Tht(x)| ≤ C

∫ ∞

4t

 ∫
Rτ,2τ

∥fχτ,2τ ∥Lp(·)∥χτ,2τ ∥Lp′(·)

|x− y|n
dy

 d̄τ.

Since |x − y| ≥ |y| − |x| ≥ τ − 2t ≥ τ − 2 τ
4 = τ

2 , by the property (4.17) we
obtain

tα∞∥χRt,2t
Tht(x)∥Lp(·) ≤ Ctα∞∥χRt,2t

∥p(·)
∫ ∞

2t

τ−
n

p∞ ∥fχτ,2τ ∥Lp(·) d̄τ

≤ C

∫ ∞

t

(
t

τ

)α∞+ n
p∞

ψ(τ) d̄τ,
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where ψ(τ) = τα∞∥fχ
Rτ,2τ

∥p(·)χ(2,∞)
(τ). Thus we have arrived at a Hardy

type inequality. Since α∞ + n
p∞

> 0, the operator on the right-hand side is

bounded in the space Lq(·)((2,∞); d̄t) by Corollary 4.5. Consequently,∥∥∥tα∞∥χ
Rt,2t

Tht(x)∥Lp(·)

∥∥∥
Lq(·)((2,∞);d̄t)

≤ C∥ψ∥Lq(·)(R+;d̄t) ≤ C∥f∥Hp,q,α
2

,

which completes the proof. �

The obtained result may be naturally applied to the maximal operator

Mf(x) = sup
r>0

1

B(x, r)

∫
B(x,r)

|f(y)| dy

and singular integrals.

Corollary 5.2. Let the variable exponents satisfy the assumptions:
i) p ∈ P log(Rn) ∩ P log

∞ (Rn), 1 < p− ≤ p(x) ≤ p+ <∞,
ii) q ∈ P log

∞ (2,∞), 1 ≤ q− ≤ q(x) ≤ q+ <∞,
iii) α ∈ Mlog

∞ (2,∞). Then the maximal operator is bounded in the variable

exponent non-homogeneous space H
p(·),q(·),α(·)
2 (Rn) under the condition (5.2).

Proof. Since the maximal operator satisfies the size condition (5.1), when
applying Theorem 5.1, we only have to refer to conditions which guaranteer
the Lp(·)(Rn)-boundedness of the maximal operator. As is known, one of the
version of such conditions is that in i), see [3], [5]. �

Another application covers Calderón-Zygmund type singular operators

Tf(x) = lim
ε→0

∫
Rn\B(x,ε)

K(x, y)f(y) dy,

which are bounded in L2(Rn) and have a standard singular kernel K(x, y),
i.e. K(x, y) is continuous on {(x, y) ∈ Rn × Rn : x ̸= y} and

|K(x, y)| ≤ C|x− y|−n for all x ̸= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

Corollary 5.3. Let the exponents p(x), q(t) and α(t) satisfy the assumptions
i)-iii) of Corollary 5.2. Then the singular operator T with a standard kernel

is bounded in the space H
p(·),q(·),α(·)
2 (Rn) under the condition (5.2).

As in the proof of the previous corollary, we only need to know that T is
bounded in Lp(·)(Rn). To this end, it suffices to refer for instance to Corollary
7.2.7 (and Theorem 4.4.8) in [5].
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1. Introduction

We use all the definitions and notations from [1] and deal with sublinear
operators T satisfying the well known size condition

|Tf(x)| ≤ C

∫
Rn

|f(y)| dy
|x− y|n , x /∈ supp f. (1.1)

Theorem 5.1 of [1] was formulated in [1] as follows.

Theorem A. Let p ∈ P log
∞ (Rn) with 1 < p− < p+ < ∞, q ∈ P log

∞ (ν,∞) with
1 ≤ q− ≤ q+ < ∞ and α ∈ P∞(ν,∞). Then every sublinear operator T with
the size condition (1.1), bounded in Lp(·)(Rn), is also bounded in the Herz

spaces H
p(·),q(·),α(·)
ν (Rn), ν > 0, if

− n

p∞
< α∞ <

n

p′∞
. (1.2)

The author thanks Dr Humberto Rafeiro for calling attention to a gap in estimation of the
term Tgt in the proof of Theorem 5.1 in [1].

The online version of the original article can be found under doi: 10.1007/s00009-013-0285-x.
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In the corrected version of this theorem given below, the dependence, on
the auxiliary parameters ν, γ, δ is already of importance when q is variable.
For simplicity we choose ν = 2, γ = 1, δ = 2, but in the case of variable
q we will also have to deal with values of γ and δ different from 1 and 2,
respectively. Keeping this in mind, we slightly change the notation of the
norm by redenoting the norm as follows

‖f‖Hp,q,α
(γ,δ)

:= ‖f‖Lp(·)(B(0,2γ+ε)) +
∥∥∥tα(t) ∥∥∥fχRγt,δt

∥∥∥
Lp(·)

∥∥∥
Lq(·)((γ,∞),d̄t)

. (1.3)

The corrected version of Theorem A runs as follows.

Theorem 1.1. Let p ∈ P log
∞ (Rn) with 1 < p− < p+ < ∞, q ∈ P log

∞ (ν,∞) with
1 ≤ q− ≤ q+ < ∞ and α ∈ P∞(ν,∞). Let also

− n

p∞
< α∞ <

n

p′∞
. (1.4)

Then every sublinear operator T with the size condition (1.1), bounded in
Lp(·)(Rn), is also bounded within the frameworks of the Herz spaces in the
following sense:

‖Tf‖Hp,q,α
(γ,δ)

≤ C‖f‖Hp,q,α

(γ′,δ′)
(1.5)

for any 0 < γ′ < γ and δ < δ′ < ∞. In the case where q is constant, (1.5)
holds with γ′ = γ and δ′ = δ.

Proof. We dwell only on the arguments where the changes should be made
and skip the parts of the proof, where it remains unchanged.

The proof does not depend on the concrete choice of γ and δ, so we
choose γ = 1 and δ = 2 for simplicity, and work with the norms

‖f‖Hp,q,α
(1,2)

= ‖f‖Lp(·)(B(0,2+ε)) + N(1,2)(f)p,q,α, (1.6)

and

‖f‖Hp,q,α

(γ′,δ′)
= ‖f‖Lp(·)(B(0,2+ε)) + N(γ′,δ′)(f)p,q,α, γ′ < 1, δ′ > 2, (1.7)

where we denoted

N(γ′,δ′)(f)p,q,α :=
∥∥tα∞

∥∥fχ(γ′t,δ′t)
∥∥
Lp(·)

∥∥
Lq((γ′,∞),d̄t)

(1.8)

for brevity. It is obvious that ‖f‖Hp,q,α
(1,2)

≤ ‖f‖Hp,q,α

(γ′,δ′)
.

The estimation of ‖Tf‖Lp(·)(B(0,2+ε)) is the same as in [1].
In estimation of N(1,2)(Tf)p,q,α we use the splitting:

f(x) = f0(x) + ft(x) + gt(x) + ht(x),

where

f0(x) = f(x)χB(0,1/2)(x), ft(x) = f(x)χB((0,γ′t)\B(0,1/2)(x),

gt(x) = f(x)χB(0,δ′t)\B(0,γ′t)(x), ht(x) = f(x)χRn\B(0,δ′t)(x).
The term f0 is the easiest one and needs only variable exponent Hölder

inequality, the terms ft and ht are treated with application of the variable
exponent Hardy inequality, while for gt, which is in fact the term where
changes should be made, we will use the fact that T is bounded on Lp(·).
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Note that going out from the interval (t, 2t) to a larger interval (γ′t, δ′t) with
γ′ < 1 and δ′ > 2 is due to estimations of the term Tgt, but it does not
appear in estimations of the terms Tf0, T ft, Tht.

Estimation of Tf0(x) and Tft(x) is the same as in [1].
Estimation of T (gt). By the boundedness of the operator T in the space

Lp(·)(Rn) we obtain
∥∥(Tgt)χt,2t

∥∥
Lp(·) ≤ C ‖gt‖Lp(·) = C

∥∥∥fχ
γ′t,δ′t

∥∥∥
Lp(·)

. Then

N(1,2)(Tgt)p,q,α ≤ C‖f‖Hp,q,α

(γ′,δ′)
.

In the case where q is constant, we take γ′ sufficiently close to 1 and δ′ close
to 2, so that δ′

γ′ < 4 and then

∥∥(Tgt)χt,2t

∥∥
Lp(·) ≤ C

∥∥∥fχ
γ′t,δ′t

∥∥∥
Lp(·)

≤ C

1∑
j=−1

∥∥∥fχ
2jt,2j+1t

∥∥∥
Lp(·)

.

Consequently,

N(1,2)(Tgt)p,q,α

≤ C
∥∥∥tα∞

∥∥∥fχ t
2
,t

∥∥∥
Lp(·)

∥∥∥
Lq((2,∞);d̄t)

+ C
∥∥tα∞

∥∥fχ
t,2t

∥∥
Lp(·)

∥∥
Lq((2,∞);d̄t)

≤ C
∥∥tα∞

∥∥fχ
t,2t

∥∥
Lp(·)

∥∥
Lq((1,2);d̄t)

+ C
∥∥tα∞

∥∥fχ
t,2t

∥∥
Lp(·)

∥∥
Lq((2,∞);d̄t)

.

Since
∥∥fχ

t,2t

∥∥
Lp(·) ≤

∥∥fχ
0,4

∥∥
Lp(·) , we obtain

N(1,2)(Tgt)p,q,α ≤ C‖f‖Hp,q,α
(1,2)

with Lemma 3.2 of [1] taken into account.
Estimation of T (ht). We take x ∈ Rt,2t and have:

|Tht(x)| ≤ C

∫
|y|>δ′t

|f(y)| dy
|x− y|n .

To proceed, we need the inequality
∫

|y|>t

|Φ(y)|dy ≤ 1
| lnλ|

∞∫
λt

dτ

τ

∫
τ<|y|<2τ

|Φ(y)|dy, 1
2
≤ λ < 1, (1.9)

the proof of which is straightforward:

∞∫
λt

dτ

τ

∫
τ<|y|<2τ

|Φ(y)|dy =
∫

|y|>λt

|Φ(y)|dy
|y|∫

max(λt,
|y|
2 )

dτ

τ

=
∫

λt<|y|<2λt

|Φ(y)| ln |y|
λt

dy + ln 2
∫

|y|>2λt

|Φ(y)|dy

≥ ln
1
λ

∫
t<|y|<2λt

|Φ(y)| dy + ln 2
∫

|y|>2λt

|Φ(y)|dy
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≥ ln
1
λ

∫
|y|>t

|Φ(y)|dy.

By means of (1.9) we then get

|Tht(x)| ≤ C

∫ ∞

λδ′t

⎛
⎜⎝

∫
Rτ,2τ

|f(y)|
|x− y|n dy

⎞
⎟⎠ d̄τ.

Here |x − y| ≥ |y| − |x| ≥ τ − 2t ≥ τ − 2
λδ′ τ = λδ′−2

λδ′ τ. We may choose λ
sufficiently close to 1 so that λδ′ > 2 and then, with the property (4.17) of
[1] taken into account, we obtain

tα∞‖χ
Rt,2t

Tht(x)‖Lp(·) ≤ Ctα∞‖χ
Rt,2t

‖p(·)
∫ ∞

2t

τ−
n

p∞ ‖fχτ,2τ ‖Lp(·) d̄τ

≤ C

∫ ∞

t

(
t

τ

)α∞+ n
p∞

ψ(τ) d̄τ,

where ψ(τ) = τα∞‖fχ
Rτ,2τ

‖p(·)χ(2,∞)
(τ). Thus we have arrived at a Hardy

type inequality. Since α∞ + n
p∞

> 0, the operator on the right-hand side is
bounded in the space Lq(·)((2,∞); d̄t) by Corollary 4.5 of [1]. Consequently,∥∥∥tα∞‖χ

Rt,2t
Tht(x)‖Lp(·)

∥∥∥
Lq(·)((2,∞);d̄t)

≤ C‖ψ‖Lq(·)(R+;d̄t) ≤ C‖f‖Hp,q,α
2

.

�
A similar modification in the form (1.5) should be also made in the

boundedness statements in applications to maximal and singular operators
in Corollaries 5.2 and 5.3 of [1].

Finally, we use this opportunity to note a misprint in formula (3.4) of
[1]: the inequality |α(t) − α±∞| ≤ A±

ln(e+t) must be replaced by a couple of

inequalities |α(t) − α(+∞)| ≤ A+∞
ln(e+t) and |α(t) − α(0)| ≤ A0

ln(e+t) .
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