Variable exponent Herz spaces

Stefan Samko.

Abstract. We introduce a new type of variable exponent function spaces
AP0 (Rm) and HPO:2():20)(R™) of Herz type, homogeneous and
non-homogeneous versions, where all the three parameters are variable,
and give comparison of continual and discrete approaches to their def-
inition. Under the only assumption that the exponents p,q and « are
subject to the log-decay condition at infinity, we prove that sublinear
operators, satisfying the size condition known for singular integrals and
bounded in Lp(‘)(]R"), are also bounded in the nonhomogeneous ver-
sion of the introduced spaces, which includes the case maximal and
Calderén-Zygmund singular operators.
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1. Introduction

Let « € R, 1 < p < 00,1 < ¢g < oo. The classical versions of Herz spaces
K7 (R™) ([14]), known under the names of nonhomogeneous and homaoge-
neous Herz spaces, are defined by the norms

||f||Kg<yq = | fllee(B(o,1)) + 22’“"1 / |f(2)|Pdx (1.1)

keN k<] <2kt
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respectively. They were studied in many papers, see for instance [7], [9], [13],
[15], [16], [23].
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Last two decades, under the influence of some applications revealed in
[27], there was a vast boom of research of the so called variable exponent
spaces, and operators in them, where the parameters defining the space or
the operator, may depend on the point x of the underlying space. For the
time being, the theory of such variable exponent Lebesgue, Orlicz, Lorentz,
and Sobolev function spaces is widely developed, we refer to the recent book
[5] and surveying papers [4], [19], [22], [28]. For variable exponent Morrey-
Campanato spaces we refer to the papers [2], [10], [12], [20], [21] and [26].

Herz spaces with variable exponents have been recently introduced in [1],
[15], [16]. In the last two papers the exponent p was variable, the remaining
exponents « and ¢ were kept constant. The most general results were obtained
in [1], where the variability of o was allowed. The main results obtained, for
instance in [1] concern the boundedness of sublinear operators (including the
maximal function and Calderén-Zygmund singular operators) and a Spanne
type result for the Riesz potential operator. The approach used in [1] allowed
to cover the case where p and « are variable and depend on the point x of
the underlying set, keeping the exponent g constant.

In this paper, we suggest another approach to introduce variable expo-
nent Herz spaces. The main feature of this approach is that we replace the
discrete £2-norm by the continual L%-norm with respect to Haar measure (we
show that this replacement keeps the norms equivalent in some situations,
but this is not always the case). The advantage of this replacement is that
all the proofs become shorter and more transparent, and, what is more im-
portant, it allows us to admit the variability of the exponent ¢ as well. There
is also another modification: we find more natural to introduce the variabil-
ity of the exponent a not with respect to the point z € R™, but the point
t € Ry, where the Li-integrability is taken (or with respect to the index k in
the summation in (1.1)-(1.2)). The advance in covering the case where ¢ is
also variable, is based on the fact that the proofs in our approach lead us to
Hardy type inequalities in variable exponent L4() (R )-spaces, which we can
derive from results of the paper [6].

Under the only assumption that the exponents p,q and a are sub-
ject to the log-decay condition at infinity, we prove that sublinear operators
which satisfy the size condition known for singular integrals and bounded in
LPO)(R™), are also bounded in the nonhomogeneous version of the introduced
spaces. This is applied to the maximal operator and to Calderén- Zygmund
singular operators with standard kernel.

The paper is organized as follows. In the preliminary Section 2 we com-
ment the replacement of the discrete £¢-norm by the continual L?-norm in the
case of constant exponents. In Subsection 3.1 we recall some necessary pre-
liminaries on variable exponent Lebesgue spaces, after which in Subsection
3.2 we introduce our definition of variable exponent Herz spaces. In Sub-
section 3.3 we consider variable exponent Herz spaces with variable p and
a but constant ¢ with the goal to show that in this case the discrete and
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continual norms are equivalent under some natural assumptions on p(x) and
a(t) and ap, and also the norms are equivalent under the change of some
other auxiliary parameters. In Subsection 4.1 we prove a statement on the
boundedness of Mellin convolution operators in variable exponent Lebesgue
spaces on R, with Haar measure, important for our goals. Finally, the last
section 5 contains the main result on the boundedness of sublinear operators
with the size condition in the introduced spaces, and its proof. The section
ends with application to maximal and singular operators.

Notation:
B(z,r) is the ball of radius r centered at the point z;
R = B(0,7)\B(0,t) = {z : t < |z| < 7} is a spherical layer;
Ry = Ror—1 91 = B(0,28)\B(0, 2% 1);
Xr(z) is the characteristic function of a set E;
th'(x) = Xry,, (37),
dt = 9 denotes the Haar measure on R
N is the set of all natural numbers; Ng = NU {0};
Z is the set of all integers;
the equivalence A =~ B for non-negative expressions A and B means that
C1A < B < CyA where C; > 0 and Cy > 0 do not depend on A and B.

2. Preliminaries on Herz spaces with constant exponents

For our goals related to variable exponent spaces, the following lemma is im-
portant, which states that the discrete £?2-norm may be equivalently replaced
by the integral LI-norm.

Let 1 <p<oo,1<g<ooandaéecR. Forv>0,let

1
q

00 P
o o dt
BulD) = flmonmen + 4[| [ li@ra| T e
v at<|z|<dt

where § > v > 0, ¢ > 0 and the first term is omitted in the case v = 0.
This norm is well known in the case v = 0 ([8], [14], [17], [18]). These norms
are equivalent for different choices of the parameters § > v > 0,e > 0 (and
also for different v > 0, see Lemmas 2.3, 3.5. Note that one cannot take
€ = 0 in the above definition when v > 0, because the finiteness of only the
second term in (2.1) implies integrability properties of the function f only
for |x| > v + ¢ for an arbitrarily small € > 0, but does not provide any
information on integrability of f in the layer yv < |z| < v + €, see the
remark below.

Remark 2.1. To clarify the idea, take n = 1,p = 1,q = 1 for simplicity.
Choose v = 1,6 = 2 and take f(z) = -5 for z € (2,4) and f(z) = 0 for

x € R\(2,4). Then ftzt f(z)dx =In 2(::21)7 so that the second term in (2.1)

exists, but the function f is not integrable.




4 S.Samko

The following lemma clarifies the local integrability of f in the layer
v +e < |z| < N. We take v = 1,5 = 2, v = 2 for simpicity.

Lemma 2.2. Let

sl

[ oa vap|
N(f):= /t / |f(z)|P dz ; < 0.
2 t<|z|<2t

Then
Ilfllr (B0, R)\B(0,2+2)) < Ce,rN(f)
for arbitrarily large R(> 4).

Proof. Let € € (0,2). We have

S
Q=

24-2¢ d
R o A N B
2+4e 2+2e<|z|<2(2+¢)

whence || f||zr(B(0,a42)\B(0,242e)) < ¢(e)N(f) < co. Then f € LP(B(0,6 —
e)\B(0,2+¢)). Iterating the arguments starting from the point 4 + ¢ instead
of 2+ ¢, we can extend this to f € LP(B(0, R)\B(0,2+¢)) for an arbitrarily
large R > 0.

]

Lemma 2.3. I. When v > 0, the norms ||f| ke —and kp ,(f) are equivalent
for all finite values of vy, &; the norms kyy ,(f) are also equivalent to each other
for different v =17 >0 and v = v5 > 0.

II. When v =0, the norms Hf”Kgq and kg (f) are equivalent to each other

for all finite values of 6,~.

The statement of Lemma 2.3 was established in [8], see also [17], [18],
for v = 0. We give its direct proof in the variable exponent case in Lemma
3.5.

Remark 2.4. Formal particular cases with v = 0 or § = oo of Herz spaces in
integral norm as in (2.1), are known as the so called generalized local Morrey
spaces (v = 0,0 < oo) in the case of variable exponents studied in in [2],
[10], [12], [20], [19], [21], or complementary generalized local Morrey spaces
(y = 1,0 = o0), studied with variable exponents in the case ¢ = oo in [11].
However, we immediately loose the equivalence of norms, when we pass to
v=0or § = oo.
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3. Herz spaces with variable exponent p(x), q(t), a(t)

3.1. Preliminaries on variable exponent Lebesgue spaces

We refer to the book [5] and papers [24], [28], but recall some basics we need.
Let 2 C R™ be an open set and p(-) be a measurable function on §2 with
values in [1, 00). We suppose that

1< po <pla) < ps < o0, (3.1)

where p_ := infyeqp(z), Pt = sup,eqp(r) < co. By LPO)(Q) we denote
the space of measurable functions f on 2 such that

Loy (f) = /Q (@) P@dz < oo,

Equipped with the norm

Hfzw>=inf{n>(“ Qm>(£) Sl}’

this is a Banach function space. By p'(-) = pfgjl, z € §, we denote the

conjugate exponent.
By Plos = Plog(Q)) we denote the class of functions defined on  satis-
fying the log-condition

A 1
Ip(z) — ply)| < Iw—MSi,wweﬁ, (3.2)

~ —Injz—y|’
where A = A(p) > 0 does not depend on z, y.

We will also work with the variable exponent L?()-space with the Haar
measure dt = % on R,+ = (a,00), where a > 0, is introduced in the usual
way:

q(t)
dt <1

. 7 t
1£ 100 (8, 4y = inf § A >0 / ‘fi)

3.2. Definition of variable exponent Herz spaces

We define the variable exponent Herz spaces as follows.

Definition 3.1. We define the variable exponent Herz space HE()40)-0)(rn)
by the norm

t““)foR

< 00,

(3.3)
where 0 < v < d <ooand e >0, and p: R” — [1,00), ¢ : [yr,00) = [1,00)
and « : [yv,00) — R are variable exponents. The cases v = 0 and v > 0
correspond to homogeneous and inhomogeneous Herz spaces, respectively.

1l = 11l v (Bomwren) + ol

o L) ((yv,00),dt)

In the notation of the space HP'?“ we omit the dependence on ~,d
and e, and distinguish only the cases ¥ = 0 and v > 0. By Lemma 3.5,
this definition is irrelevant to the choice of v, and ¢ in the case where the
exponent ¢ is constant. However this is no more valid in general when ¢ is
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variable: then the space may depend on the choice of the parameters «y, d and
v.

Similarly to Lemma 2.2, the following statement holds.

Lemma 3.2. Let0<e <2 and 4 < R < o0o. Then

ta(t) ||th,2t HLP(‘) ‘

. < .
£l e (B0, R\B(0,242)) < c(&; R) 14O 2,00t
The proof follows the same lines as in that of Lemma 2.2.
Denote R, , = {t € R : v < t < oo}, where v > 0. By M%(R, ,)
and Mgfio(l&_) we denote the classes of bounded functions on Ry ,, Ry,
respectively, satisfying the decay conditions

Ay
teERL L aft) —ateo| < 5 T ERy,

at) = alteo)l < = Tn(e+1)
(3.4)

(e+1)’
respectively.

Lemma 3.3. Let (3.1) hold. Then the following equivalences of the norms are
valid

e L PR (el TR TSN O R
(3.5)

and
paa 2 [|E2O (1 4 ¢)ae—al©) H ‘ 3.6
1111 (1+1) Py ey 39

if « € MR, ) in the case of (3.5) and a € /\/l(lfgo(RJr) in the case of
(3.6).

The proof is direct.

In the sequel, for = R™ or 2 = (v,00), by P (€2) we denote the set
of exponents p : Q — [1,00) which satisfy the decay condition

Ip(z) — pool| < m-

3.3. On Herz spaces with variable p(z) and «(t¢) and constant ¢

The variable exponent Herz spaces introduced and studied in [1] were defined
in the case of constant ¢ by the norms
' (3.7)
p() '

:
{Z 240 sxm | } (3.8)
ez r()

Q=

I £l o) (B(0,1)) + {Z HQk’l(')J%(R,k,1

keN

and
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similar to (1.1)-(1.2), where the variability of « is admitted with respect to
the point = of the underlying space. We base ourselves on the idea of ex-
panding the integral type norms (2.1) to the variable exponent case provided
by Lemma 2.3 and define the homogeneous and inhomogeneous Herz spaces

Hf(')’q(')’a(')(R”) in the united way as follows below. With respect to the
discretized forms, in the case of constant ¢ they will be related not to the
norms (3.7) and (3.8), but norms of the form

%
R kag q
1 licssy = s oy + {22q k foRmnp(.)} (3.9)

keN

1
HfHKS((_'))ﬁ = {ZQQkak ||fXRk||Z(-)} (3.10)

kEZ

where the sequence ay, is supposed to be logarithmically stabilizing at +oo
and —oo: there exists a4 := limy_, 4+, o € R such that

o — oy keN;, Jap—a_|< o —keN (3.11)

< A A
~ In(e+ k)’ (e+ kD)’

(the second assumption required only in the case of (3.10)). For brevity, by

le:g(N) and Mlig(Z) we denote the classes of bounded sequences satisfying
the first of the conditions in (3.11) and both of them, respectively.

Lemma 3.4. Let (3.1) hold. The norms | f| oy and ||f| o)  defined in
p(-).q p(-).q
(3.9) and (3.10) are equivalent to the norms

1
Il = I lero o) + {Z 2hans HfXRmHZc)} (3.12)

keN

1
o 2k " ’
IFlliss , = {Z 2" (1) ||fxmz<.>} . (313)

kEZ

respectively, if o € ./\/lffg(N) in the former case and o € M'9(Z) in the latter
case.

The proof is a matter of direct verification via the decay conditions (see
also Lemma 3.3).

Lemma 3.5. Let (3.1) hold, a € M, if v > 0 and o € M{S,, if v = 0. The
norms (3.3) are equivalent to each other for different finite values of v and
0 (such that v < §). They are also equivalent to each other under different
choice of values of v # 0. Moreover, the norm (3.3) is equivalent to the norm
(3.9) when v > 0 and norm (3.10) when v = 0 under any choice of the

sequence oy, such that

ay = a(+o00)  and  a_ = «a(0). (3.14)
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Proof. 1. Equivalence between the norms (3.3) for different positive X\,é and
v. By Lemma 3.3 it suffices to consider the norms in the form (3.5)-(3.6).
For brevity, keeping in mind that the dependence on A, and v is now of
importance, we denote

E

oo

Af(’Ya(S;V) = ||fHLP(')(B(O,'yu+s)) + /tqaOo HfXR'vt,ét

v

q —

Lo , v>0,

with the right-hand side replaced by the expression in (3.6) when v = 0. By
the dilation change of the variables ¢, it is easy to see that

)
Af(y,6;v) = Ay (1,7;7y), 0<y<d

(where the constants in the equivalence relation depend only on ). Conse-
quently, it suffices to deal only with the case v =1 and § > 1. For simplicity
of calculations, we further consider the case v = 0. (The case v > 0 is simi-
larly treated with Lemma 2.2 taken into account, but requires more technical
details). We simplify the notation to

[ee] q

q _
Afp(1,6) = / (o Oa(1 4 gyrlo—e©L ||y,
0

Lp()
where we assume that § > 1. Let 6 < A. Then
Af(1,5) < Af(l,/\) < C,La,(; {Af(l,d) —|—Af (1, ;\):| ,

with C; o s depending only on 4, but not depending on f, where the left-hand
side inequality is obvious, and the right-hand side one is easily obtained by
splitting X (¢,at) = X(¢,6t) T X(6¢,A0)

If A < 62, then Ay (1,3) < A(1,6) and the proof of the equivalence
A(1,0) ~ A(1,6) is over. If §2 < A\ < &3, we similarly proceed and have
Ag ( , 5) < Cyas [Af 1,0)+ Ay ( ,%)].IteratingthisNtimes, N = [%] ,
we obtain that Af(1,\) < CAf(1,0) with C depending on A and §, but not
depending on f.

I1. Equivalence of the norms (3.3) to the norms (3.9)-(3.10). By Lemma
3.4, the norms (3.9)-(3.10) may be taken in the form (3.12)-(3.13). We con-
sider the case v = 0 for simplicity; the case v > 0 may be similarly treated,
with Lemma 2.2 taken into account.

In view of the first part of the lemma we can compare the norm || f|| Kok

with the right-hand side of (3.6) under the concrete choice of v and 4. With
the choice vy =1 and § = 2, § = 4, for the norm (3.13) we have

Cidr (1.2) < fllgos < Cads(1.2)
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where C; and C5 do no depend on f. Indeed, with (3.14) taken into account,
and denoting for brevity

s 2k qo—
ak:(1—|—2) (1+2k>

(the coefficient appeared in (3.13)), we have

gk+1
. S q dt
Ap(1,2) =) / $0(0)a(1 4 ¢)alos—a(0)] HfXRt’“ L)t
kEZ ok
1
2k+1 q
q dt
>3 | [ T2 M
kEZ 2k
Similarly,
2k‘+1 %
q dt
A (1,2)<C Zakax%kzm Lot N
kEZ ’ 2k

IN

1
q q

C {Z (ar + ag—1) HfXRQk, okt 1 Lp(-)}
kEZ ,

1
q q
<C {Zak HfXR2’€,2k+1 LP(-)} - CHfHKZ(-i)vq’

keZ
which completes the proof. O

4. Auxiliary statements

4.1. On Mellin convolutions in variable exponents spaces L) (R )

Let -
Ko(t) :/0 K (i) o(7)dr

be an integral operator with the Haar measure dr = df and the kernel
homogeneous of order 0, known also as Mellin convolution operator.

In Theorem 4.4 we give conditions for the boundedness of such operators
in the variable exponent L4()(R;dr)-spaces. Theorem 4.4 will be derived
from the following theorem below, which is a particular case of Theorem 4.6
from [6].

Theorem 4.1. Let ¢ € P29(R™) and
1 1

1
ke LY(R™) N L*°R"), where — =1——+4 —. (4.1)
So - 4+
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Then the convolution operator f — k x f is bounded in the space Lq(')(R").

Let
(Wof)(u) = e 7 f(e™), —o0 < u < . (4.2)

Lemma 4.2. Let qo, be a number in [1,00). A Mellin convolution operator K
on Ry reduces to the convolution operator on R wia the relation

(W, KW, ) () = / h(u — v)p(o)dv, (4.3)

R
where h(u) = e~ = K (e*) and 1Al ®) = fTit‘Kj(T)'dT.
0

Proof. The proof is a matter of direct verification. O

To be definite with the constants, we adopt the notation

e 1 11
‘= sup |— — — — ==
e teRL q(t)  Goo q(t)  q

1
In (e +t), AS = sup n-.
o<t<i t

(4.4)

It can be easily checked that (4.4) and the condition ¢(0) = g(co) imply that
also
()
—_ Int
q(t) g

¢ (u)=q (e*“) , u€R.
Note that ¢y = g« <= ¢* o = ¢} and (4.5) is equivalent to

sup < max{A*, AD}. (4.5)

teRL
We denote

1 1 1
—— — —| < —max{A4°, A)}, teR. (4.6)
q*(u) qoo‘ [u]
Note also that from (4.6) it follows that
1 1 Aoo AO
*—‘gmax{} t eR. (4.7)
q*(u)  goo| = eln(e+ful)

Lemma 4.3. Letu € ’Pé()’go and go = g¢oo. Then the operator W, maps isomor-
phically the space L) (R, onto the space LY )(R) and

equ < ||WqHLQ*(»(]R_,_)HLq(-)(R) < eAq7 (4~8)
where Aqg = max{AY, A>}.

Proof. The statement of the lemma was in fact proved in [6], Lemma 5.1. For
completeness of presentation we give here its direct proof. We have

(w) s ¢ (u ) a(t)
du:/ c f(
R

e [
N3 "0

’qu (w)]*
X\ y

(4.9)
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From (4.5) it follows that e~ <t~ < e, Hence
t Q(t) q" (u) " q(t)
[ /‘ e [ 10
[Wofllq-eda | [We fllgre=Aa
Ry Ry
(4.10)
which yields (4.8). O
Theorem 4.4. Let q € Plog (Ry), p— > 1 and go = qoo- Then
K fl Lo @y < C Ml Lo @y (4.11)
if
/ tiss [KC(1)[*dt < oo (4.12)
0

for s =1 and s = sy, whereizl—qi—ki.

Proof. By Lemmas 4.2 and 4.8, the boundedness of the operator K in L) (R,)
is equivalent to the boundedness of the convolution operator hx f = fR h(u—
) f(v)dv in L9 O (R) with the kernel h(u) = e 70 K (e~).

By Theorem 4.1, the latter convolution is bounded, if h € L'(R) () L% (R)
which is equivalent to (4.12).

U
Corollary 4.5. Let q € Ploc (Ry) cmd Qo = (oo- The operator K s bounded
in the space LI(R;dt), where dt =4 if
oo
Ldt
|KC(%)] 5 <o for s=1 and s=sp. (4.13)

Proof. The L9(R;dt)-boundedness of the operator K in terms of the corre-
sponding modular means the following:

Kf(t)
/

+1/a(t)
By the decay condition and the assumption gy = g, this is equivalent to a
similar condition with ¢(¢) in the exponent in the denominator replaced by
Goo- The latter condition means the L4(R,)-boundedness of the operator

Kiop(t) = /OOO K (i) o(r)dr

with the kernel Iy (t) = t_ﬁlC(t). Applying condition (4.12) to the latter,
we arrive at (4.13).

q(t)

dt < (C as soon as / tl/q(t)
0

O



12 S.Samko

4.2. Two auxiliary lemmas
It is known that ||xpo,rllp) = r® as r — 0, if p(z) satisfies the local
log-condition, and ||x g0, |lp() = rie as r — oo, if p(z) satisfies the local
log-condition and the decay condition at infinity. In [1], Lemma 2.2, it was ob-
served that the validity of similar equivalences for the norm || x (0,2r)\ B(0,r) I p()
do not require local log-condition: the decay conditions at the origin and in-
finity, respectively, are sufficient. In the following lemma we give a simpler
proof showing that it follows directly from the definition of the norm.

Recall that from the decay conditions at the origin and infinity it follows

that 4
p(z) —p(0)] < ——, |a| <1, (4.14)
[T J2]]
Ip(2) — pool < 2 o] > 1 (4.15)
P\T) — Poo| S 77— 1> T . .
T[]

Lemma 4.6. Let D > 1 and (4.14) or (4.15) be fulfilled. Then

]. _n__ n
%“‘“) < |IxB.0r\BO lp) < cor?®@  for  0<r<1 (4.16)
and
1 n n_
7= < xBo.omBO ) S coor= for 21, (4.17)

respectively, where co > 1 and cso > 1 depend on D, but do not depend on r.

Proof. We prove (4.17), the arguments for (4.16) are similar. Recall that
F(a) |P®) F(a) |P®)

[ 52 dr <1 <= |fllpy < Aand [ |52 dr > 1 +—

]R’IL Rn

p)
Il fllpcy = A for A > 0. Therefore, the right-hand side inequality in (4.17)
is equivalent to

dzx

- <
n 1P(@) — 1
r<|z|<Dr |:COTP°°:|

The left hand side in (4.18) is estimated as follows:

(4.18)

np

dx < L dx < D oo dx
AT 5T e S ECE

r<|z|<Dr |:COTPOO lz|

r<|z|<Dr (f) r<|z|<Dr

= (@) o
By the decay condition (4.15) we have e_%c|x| < |m\%c < e%o|x|, |z| > 1.

Therefore,

NPy nAco NPy nAs
dz D 7P e po dx D 7P e P el
@ ST A b
corPes 0 0
r<|z|<Dr 0 r<|z|<Dr

(4.19)
which determines the choice of ¢f = D= In De%|8"’1|, and proves the
right-hand side inequality in (4.17).

Similarly, the left-hand side inequality in (4.17) is checked. O
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Lemma 4.7. The following relations

t

1 d

/ T / B(y)dy. t> 2> 0.
In 2 T

2a<|y|<t a max(2a,7)<|y|<min(t,27)

(4.20)
1

©dr
[2Wldy = — | — |®(y)|dy, t>0. (4.21)
ly|>2t n2J); T Jmax(r20<lyl<2r

hold for every measurable function ® for which the integrals on the left-hand
side exists.

Proof. The proof is a matter of direct verification via the change of order of
integration on the right-hand side. ([

5. Main result

Our main result concerns the boundedness of a sublinear operator 7" satisfying
the well known size condition

Tf@)| < c/ LI g sup . (5.1)

in the variable exponent non-homogeneous Herz spaces HP'9% | i.e. in the case
v#0.
Theorem 5.1. Let p € PI29(R"™) with 1 < p_ < p; < o0, q € P9(v,00) with
1<q- <gy <0 and a € Py (v,00). Then every sublinear operator T with
the size condition (5.1), bounded in LPC)(R™), is also bounded in the Herz
spaces Hf(')’Q(‘)’a(')(R”), v >0, if

n n

—— <o < —. 5.2
Poo Pho 52

Proof. The proof does not depend on the concrete choice of v > 0 and J, so
we choose v = 2 and § = 2 for simplicity, but recall that the norms in the
space Hf(')’q(')’a(')(R") are not necessarily equivalent for different values of
these parameters when ¢ is variable. So in the sequel we will work with the

norm

[ fllzzae = fllero (B0,24¢)) T N(paas (5.3)
where we denoted

N(f)}’#ba = ||taoo ||fX(t72t) HLP(-) HLq((Q)OO))Jt) (54)

for brevity.
We start with estimation of the first term | Tf]|1oc)(p(0,24¢)) In the
norm (5.3). It suffices to consider € € (0,1). We have

ITf(z)| < ‘T(fXB(O,8) (z)| + |T(quen\B(o‘s>))($)|7
where the estimate

HT(fXB(Oxg)) ||Lp(-)(B(o,2+5)) < C”fHH;"I“
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is immediate in view of the assumed boundedness of the operator T in LP(")
and Lemma 3.2. To estimate the second term, we use the relation (4.21):

dr |dy
|T(fXRn\B(O 8) S C/ / ‘-77 - y|"

T<ly|<2T
and observe that for x € B(0,2 + ¢) C B(0,3) we have |z —y| > |y| — |z| >

T—32> 7,, 50 that

T<|y|<2T

IT(F Xm0 ()] < C / i n gy / F@)\dy.
4

By the Holder inequality and estimate (4.17) we then obtain

|T(fXRn\B(o,s))(x)| < C/T_n_lnfxl?,.’%_ ”LP(‘) ”XRT’QT ”LP/(')dT
4
T d
—teo—2 (Lau T
<C [ (B 1, o) -
4
Applying the Holder inequality in the form
/%(T)?/J(T)JT <2fellpeor @y anl¥llLeo @, .ar
0
we obtain
IT(f X sc0.5) (@) < ClT™0= 7% (| Lacs ((a,00)im) | mpoe < CllFll g

(5.5)
since the norm |75 HLq< )((4,00):dr) 18 finite, or equivalently, the modular

o0
I e & i iy s finite. Consequently,

|||T(quw\B(o,g))‘HLT’(')(B(O,2+€)) < CHf”nga

The main task, however, is to estimate the seminorm N(T'f)p 4.o. ToO
this end, we split the function f(x) as

f(x) = fo(z) + fi(x) + ge(x) + he(z),

where
fO(x) = f(m)XB(O,l)(x)a ft(x) = f(x)XB((07%)\B(071)(x)7
ge(x) = f(m)XB(o,gt)\B(o )(x)v he(w) = f(z)XR"\B(O,&f) (z),

depending on the parameter ¢ € (2,00). This ”continual” decomposition is
similar to the analogous ”discrete” decomposition of such a type used earlier
for Herz spaces in [25] in the case of constant exponents and in [1] in the case
of variable p and «. Then

t
' 2
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Tf (@) < [T fo(x)| + |Tfe(x) + [Tge(z)| + [The(x)].

Estimation of Tfo( ). For € Ry 9; and y € B(0,1) we have |z —y| >
|z| — ly| > ¢ —1> %, so that

c
ITfolx)l < o / lf(y)ldy < *||fXB(o1 o) IXBOD ) = ”fXB(O,l)”p(-)'
B(0,1)
Consequently,

£ X g, o, Tfollpcy < t*=7"I1fxB0O) () XA 2 lp) < Ct(awfnﬂ’i*)HfXB(o,Q)Hp(.),
by (4.17). Therefore,

N(T fo)pga < CIIE" 775 || Lar 2,00y 1 F X BO2) () < ClFXBO.2) 10
where the norm ||ta°°7ﬁ | Lat) ((2,00):ar) 18 finite, which is justified as in (5.5).

Estimation of T'(f). We have

T(@) < C / |3Lf_<y;||n dy, € R
B(0,£)\B(0,1)
where |z —y| > |z] — |y| > £, so that
rh@I< s [ Wl
1<|yl<%

We use the relation (4.20) and obtain

dr
T < o / (T Y I e

and then
¢
c |
1@ < 5 [ 1xn, Dy ar
1
by (4.17).Therefore,

_ o
X, o, TSt (@)l < O™ "IIxRt,gthc)/||fog,T||p<->T‘°°° dr.
1

Consequently,

- gt e
£ Xy T < O [ oty
1
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by the same formula (4.17). This may be rewritten in the form

t n
o AN -
i ThO <€ [ (£) T wmar
1
where ¢(7) = 7| fx,, (). We arrived at a Hardy type operator. It is
5.

bounded in the space L) ((1,00);dt) with the Haar measure by Corollary
4.5, since a — = < 0: choose K(t) = t* 7% for t > 1 and K(t) = 0 for
0 <t <1 in Corollary 4.5. Then

N(Tft)p,ge < Cllll Laer (1,000 < ClfllLro (B0,2)TCN(Fpgra < C||f||‘}15,q,a

Estimation of T'(g;). By the boundedness of the operator T in the space
LPO)(R™) we obtain

H(Tgt)Xt,Zt HLP(') S C HgtHLP(') =C HfX%,St

Lp()
2
S C fo%,t Lp(') + CZ “fXZJt,2j+1t Lp(') :
§j=0
Then
N(Tgt)p,ga < C|[t* ”fx%’t Lp(.)‘ (2 OO)_d,t)+C’ 2 1 X | o HLQ(_)((Q’OO);&)

S C Hta‘” Hth,zt HLP(-) ||LQ(')((1,2);Jt) + C ||ta°° Hth,zt, HLp(-) ||L‘1(')((2,oo);gft) .
Since Hth,m HLp(-) < HfXMHL,,(.), we obtain
N(Tg)pga < Cllfllmzee

with Lemma 3.2 taken into account.

Estimation of T'(hy). We take x € Ry o and proceed as follows:

| The(x)] < 0/ |/ (y)| dy

yi>st [T —yl™’

Now we use the relation (4.21) and get

|Thi(x)| < C dy | dr.

o / X2 1o 1XG a0 | o

at |z —y|™

Rro2r

Since v —y| > |y| — |z| > 7 -2t > 7 — 2% = T, by the property (4.17) we
obtain

o0
£ i T 0 < i Iy [ 75 s d
: 2t

00 /4 Yoot iag -
<o [T(5) e
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where (1) = 79| fX, . [lp()X (2.0, (7). Thus we have arrived at a Hardy
type inequality. Since a + p% > 0, the operator on the right-hand side is

bounded in the space L9()((2,00); dt) by Corollary 4.5. Consequently,

potrmty < Ol iy < Cl e,

£ X, The(@) o |

which completes the proof. O

The obtained result may be naturally applied to the maximal operator

Mf(z) = f};}gﬁ / |f(y)| dy

B(z,r)

and singular integrals.

Corollary 5.2. Let the variable exponents satisfy the assumptions:

i) p € PPIRY)NPLIR"Y), 1<p_ <p(z)<ps <o,

i) q€PLI(2,00), 1<q <q(x)< gy <o,

iii) a € M!9(2,00). Then the mazimal operator is bounded in the variable
exponent non-homogeneous space Hg(')’q(')’a(') (R™) under the condition (5.2).

Proof. Since the maximal operator satisfies the size condition (5.1), when
applying Theorem 5.1, we only have to refer to conditions which guaranteer
the LP()(R™)-boundedness of the maximal operator. As is known, one of the
version of such conditions is that in ), see [3], [5]. O

Another application covers Calderén-Zygmund type singular operators

Tf(z) = lim K(z,y)f(y) dy,
€20 JRrn\B(z,¢)

which are bounded in L?(R") and have a standard singular kernel K (x,),
i.e. K(x,y) is continuous on {(z,y) € R™” x R : x # y} and

|K(x,y)| < Clz —y|™" for all x # y,

K(ey) -~ K@) <= 5 s0 it oy >2ly 2.

|z —y[nte’
x—&° .
KG) ~ Kl < 02 SE a0 it oyl > 20 ¢l

Corollary 5.3. Let the exponents p(x),q(t) and a(t) satisfy the assumptions
i)-iii) of Corollary 5.2. Then the singular operator T with a standard kernel

is bounded in the space Hg(')’q(')’a(')(R") under the condition (5.2).

As in the proof of the previous corollary, we only need to know that 7' is
bounded in LP()(R™). To this end, it suffices to refer for instance to Corollary
7.2.7 (and Theorem 4.4.8) in [5].
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Abstract. We fill in a gap in the proof of Theorem 5.1 of [1] on the
boundedness of sublinear operators of singular type in variable expo-
nent Herz type spaces Hp(')’q(')’“(')(R"). When ¢ is constant, the for-
mulation of Theorem 5.1 from [1] remains the same. In the case where ¢
is variable, Theorem 5.1 needs a more precise formulation with respect
to some auxiliary parameters of the space (not reflected in the notation
HPO402C)(R™) of the space).
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1. Introduction

We use all the definitions and notations from [1] and deal with sublinear
operators T satisfying the well known size condition

Tf@) < c/ Ll g s . (1)

Theorem 5.1 of [1] was formulated in [1] as follows.

Theorem A. Let p € P28(R"™) with 1 < p_ < py < 00, q € P&(v,00) with
1<q- <gp <0 and a € Po(v,00). Then every sublinear operator T with
the size condition (1.1), bounded in LPC)(R™), is also bounded in the Herz

spaces Hf(')’q(')’a(')(R"), v>0,if

D < - (1.2)

Poo o0

The author thanks Dr Humberto Rafeiro for calling attention to a gap in estimation of the
term T'g; in the proof of Theorem 5.1 in [1].

The online version of the original article can be found under doi: 10.1007/s00009-013-0285-x.

® Birkhauser



2028 S. Samko Mediterr. J. Math.

In the corrected version of this theorem given below, the dependence, on
the auxiliary parameters v,y,9 is already of importance when ¢ is variable.
For simplicity we choose v = 2,v = 1,0 = 2, but in the case of variable
q we will also have to deal with values of v and ¢ different from 1 and 2,
respectively. Keeping this in mind, we slightly change the notation of the
norm by redenoting the norm as follows

¢ foR

The corrected version of Theorem A runs as follows.

. (1.3
L) ((,00),dt) (13)

[ lzzz.ae = 11 f o (B0,29+0)) + Lp<->’

~t,8t

Theorem 1.1. Let p € P28(R™) with 1 < p_ < py < 00, q € P%(v, 00) with
1<g- <gy+ <0 and o € Py (v,00). Let also
n n

—— < U < —. 1.4

. - (1.4)

Then every sublinear operator T with the size condition (1.1), bounded in

Lp(')(]R”), s also bounded within the frameworks of the Herz spaces in the

following sense:
1Tl < Ol (15)

(~,6")
for any 0 < v <~ and § < § < oco. In the case where q is constant, (1.5)
holds with ' =~ and 6’ = .

Proof. We dwell only on the arguments where the changes should be made
and skip the parts of the proof, where it remains unchanged.

The proof does not depend on the concrete choice of v and 4, so we
choose v =1 and § = 2 for simplicity, and work with the norms

[ fllzzae =1 flloro (B0,24¢)) + Nw2)(Fpg.as (1.6)

(1,2)

and
I fll geoare = Hf”LP(‘)(B(O,Q-i-s)) + Ny 60 (Fpag.as 7 <1, 8 >2 (17

(~',8")

where we denoted

N(w’,é’)(f)pyma = Ht%o ||fX(v’t’5’t)HLp(l>|

La((y",00),dt) (1.8)

for brevity. It is obvious that ||f||H(pqu)a < ||fHHf?j,)
) Y
The estimation of || Tf| s (p(0,24¢)) 18 the same as in [1].
In estimation of Ny 2y(T'f)p,q,o We use the splitting:

f(@) = fo(z) + fi(x) + gi(x) + he(2),
where
fo(z) = f(@)XB01/2)(®), fe(x) = f(2)XB(0A~)\BO,1/2)(T),
9t(x) = [(@)xB0.5t)\BO~1)(T), he(z) = f(T)XR\B(0,5'1) (T)-
The term fy is the easiest one and needs only variable exponent Holder
inequality, the terms f; and h; are treated with application of the variable

exponent Hardy inequality, while for g¢;, which is in fact the term where
changes should be made, we will use the fact that 7" is bounded on LP().
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Note that going out from the interval (¢,2t) to a larger interval (y't, §'t) with
v < 1 and ¢ > 2 is due to estimations of the term Tg;, but it does not
appear in estimations of the terms T fo, T fi, Thy.

Estimation of T fo(x) and T f;(x) is the same as in [1].
Estimation of T(g:). By the boundedness of the operator T in the space
LPO(R") we obtain | (Tge), [ s < Cllgellzoes = C |1, - Then

N(172)(T9t)p,q, <Ol fllgrae, -

(v',8")

In the case where q is constant, we take v/ sufficiently close to 1 and §’ close
to 2, so that ; < 4 and then

1
H(Tgt)Xt,m HLP() — ¢ fo'y't 5t Lp() < c Z HfX2jtY2j+1t
j=—1

Le()
Consequently,
N2y (T9t)p.g.a
= o i fo%’ LP(')‘ La((2,00);dt) +C Htaoo fof,?t HLi"<') HL‘I((Q,OO);Jt)

< Ol | el oy HLq((1,2);d‘t) +C % X0zl o HLG((Q,OO);d_t) :

Since ||er,,2t ||Lp(-) < ||on,4||Lp(»>7 we obtain

N(l,g)(Tgt)p,q,a < C”fHH(plq;l

with Lemma 3.2 of [1] taken into account.
Estimation of T(h;). We take x € Ry o, and have:
|f(y)| dy

ly|>6't |5C -y

[The(z)] < C

To proceed, we need the inequality

dr 1
D(y - < 1 1.
| 1ewian < s A‘/ [ e j<a<i )

ly|>t T<ly|<2T
the proof of which is straightforward:

[yl

dr dr
/ [ eww= [ lewew [ =
T<|y|<2r ly|>At max(\t, M)
)
= [ ewmZaswe [ e
At<|y|<2Xt |y|>2At

1
>uy [ e@ldmz [ e
t<|y| <2t [y|>2Xt
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1
>y [ (2l
ly|>t

By means of (1.9) we then get

|Thy(z)| < C/ / Mdy dr.
At |z —y|”
7,27
Here [z —y| > |y| —|z| > 7 -2t > 7— &7 = /\‘;/5727. We may choose A
sufficiently close to 1 so that Aé’ > 2 and then, with the property (4.17) of
[1] taken into account, we obtain

o0
£ i e 0 < CE Iy [ 7 s dr
2t

o [y Qoo+ 5= B
<c [((4) 7 T

where (1) = 79[| fX,_, [lp()X (2.0, (7). Thus we have arrived at a Hardy
type inequality. Since a + pi > 0, the operator on the right-hand side is

bounded in the space L9()((2, 00);dt) by Corollary 4.5 of [1]. Consequently,

e ||XRt,2t Tht(z)Hme‘ L (2.00)0) < Ol e @ysary < Clflpae.

O

A similar modification in the form (1.5) should be also made in the
boundedness statements in applications to maximal and singular operators
in Corollaries 5.2 and 5.3 of [1].

Finally, we use this opportunity to note a misprint in formula (3.4) of
[1]: the inequality |a(t) — atoo| < ln?eiﬁ-t) must be replaced by a couple of

inequalities [a(t) — a(+00)| < 75 and |a(t) — a(0)] < FA%;.
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