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1. Introduction

Mapping properties of potential operators within the frameworks of Holder spaces are well studied in the general setting
of quasimetric measure spaces (X, o, i) under the assumption that X satisfies the so called cancellation property; see [1-4].
The well known examples of underlying spaces X with the cancellation property are the whole space R" and the sphere ",
We also refer to various more precise specifications and/or generalizations of mapping properties of potential operators in
these two model cases presented in the papers [5-13].

In cases where the potential of a constant function on X is well defined, the cancellation property means that the potential
of a constant is constant. This property was also used in the recent paper [14], where there were admitted potentials of
variable order o (x) with possible degeneration: «(x) = 0 on a set of measure zero.

The cancellation property is very restrictive in applications: it fails for domains §2 in R". In the case of balls in R", for
instance, the potential of a constant is constant on the boundary, but is not constant in the ball.

In the Euclidean case for instance, statements of the type

I H*(2) — H*™(2), £2 CR",
for the potential operator
oo = [ TV
e lx—yI"
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may not be valid for domains, since the potential of a constant has regularity only of order « near the boundary: it behaves
in general like c; + ¢c;[8(x)]* near the boundary, where §(x) = §(x, 02) is the distance to the boundary. However, one may
expect that there should be a valid statement

I% : Hj (2) — H*™(2) (1.1)

for the subspace Hé (£2) of the Hélder space H*(£2) of functions which vanish at the boundary. Such a mapping is known
in the one-dimensional case and goes back to Hardy and Littlewood; see for instance [6, Corollary 1 on p. 56]. A multi-
dimensional result of such a kind was recently proved in [15], where in particular the case of uniform domains (Jones
domains) was covered. In this paper we develop a similar approach within the framework of general quasimetric measure
spaces (X, o, n) with the growth condition on the measure. We show that a mapping of type (1.1) (and more generally, for
spaces of the type H(£2)) holds for measurable bounded sets £2 in (X, o, ) satisfying the so called «-property. Roughly
speaking, we can state a result on mapping properties of the potential operator, if we know how the potential operator of
the constant, i.e.

du(y)
X) = —, X€R 1.2

Joa /sz@(x,y)”‘“’ <5 (12)
where N comes from the growth condition, behaves near the boundary of £2.

We give the proof of results of such a type in intrinsic terms of the given set £2 C X. The proofin intrinsic terms allows us
to obtain information also about the behaviour of potentials near the boundary 942 in the cases where f (x) does not vanish
at the boundary.

Note that this way was also used in [15] in the case of domains in R" and Lebesgue measure, although in this case it is
possible to derive just a result of type (1.1) from the estimates of the modulus of continuity of potentials over R", obtained
in [7], since a function f € Hé(.Q) may be extended as identical zero outside £2, which preserves the Holder behaviour of
f. This way was preferred in [15] because it provides information near the boundary, and a derivation of statements even
of type (1.1) from [15] is rather artificial: the results in R" in [15] were proved in its turn not directly, but by reducing the
problem to the case of the unit sphere via the stereographic projection and usage of Fourier-Laplace analysis on the sphere.

The paper is organized as follows. In Section 2 we provide necessary preliminaries related to quasimetric measure spaces
(X, 0, n). In Section 3 we study the function J; o (x), where the main technical statement is Lemma 3.1, and give examples
illustrating the behaviour of ], o (x) near the boundary. In Section 4 we extend the notion of the «-property, introduced
in [15] in the Euclidean case, to the general setting. Section 5 contains the main result on the mapping properties. Section 6
contains two applications. The first is related to the case of domains in R", where we improve a result from [15] by showing
that an arbitrary domain in R" satisfies the «-property, introduced in [15]. The second concerns spherical potentials over a
spherical cap on the unit sphere S" in R"*!, which is inspired by applications studied in [ 16]. The final Appendix (Appendix)
contains some estimates for the case of spherical potentials on a semisphere.

2. Preliminaries on metric measure spaces

GivenasetX, afunction g : X x X — [0, 00) is called quasimetric, if it satisfies the usual metric axioms with the triangle
inequality replaced by the quasi-triangle inequality

o(x,y) <Kle(x,2) +0(z,y)], K=1 (2.1)

where x,y,z € X. We assume that o(x,y) = o(y, x). Let ; be a positive measure on the o -algebra of subsets of X which
contains the d-balls B(x, r). Everywhere in the sequel we suppose that all the balls have finite measure for all x € X and
r > 0 and that the space of compactly supported continuous functions is dense in L' (X, p).

We assume that X is closed with respect to the metric g, i.e. every fundamental sequence in X has a limit in X. The
boundary §(£2) of an open set §2 in X is interpreted in the usual sense, i.e. as the set of all the points in X, which are limiting
points for £2, but are not inner points of £2. We always assume that £ (0£2) = 0.

Let

8r(x) = info(x, y)
yeF
denote the distance of a point x from the set F C X. By

8(x) = 0(x,082) = yleralg o(x,y)

we denote the distance of x to the boundary.
We say that the measure u satisfies the growth condition equivalently called the upper Ahlfors N-regular, if

uB(x, 1) <cr’, (2.2)

where N > 0 and ¢ > 0 does not depend on x and r.
In this paper we do not assume the measure p to be doubling, but base ourselves on the growth condition (2.2).
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Note that balls in a general space, even of homogeneous type, are not necessarily open, but there exists a continuous
quasimetric ¢’ equivalent to o, with respect to which all balls are open.

In the sequel we assume that p satisfies the growth condition (2.2).

As shown in [17], every quasidistance ¢ on a quasimetric space (X, ¢) admits an equivalent quasimetric ¢; for which
there exists an exponent 6 € (0, 1] such that the property

01X, 2) — 01, 2)| < Mo (x,y) {o1(x, 2) + 1y, 2)}'° (2:3)
and
1
o1(x,y) =d(x,y)? (2.4)
where d(x, y) is a metric (i.e. (2.1) holds for d(x, y) with K = 1). By the elementary inequality
@ —b’| < |Blla — bl max(a”~',b*7"), a,beR}, B eR, (255)
the property (2.3) is an immediate consequence of (2.4) and it holds with
1
M= —.
0

Definition 2.1. We say that the quasimetric o is regular of order 6 € (0, 1], if it itself satisfies property (2.4),i.e. o(x,y) =
d(x, y)%, where d(x, y) is a distance on X.

Everywhere in the sequel we suppose that the quasimetric is regular of order 6 € (0, 1].
In this paper we study mapping properties of potential operators

F@) duy)
o o(xX, YN’

for functions f defined on an open set 2 of a quasimetric measure space (X, g, ), where N is the exponent from the growth
condition.
The following estimates are known:

du(y)
o 2.7
/B(x,r) o(x, y)N=« = (27)

I"fx) = xe R cX, (2.6)

and
d
/ /“(’(J:V) 5 Criﬂ, /3 > 0, (28)
X\B(x.r) (X, YNTP
under the only condition on (X, o, w) that u satisfies the growth condition (2.2); see for instance [2, Lemma 1].

The lemma below supplements (2.8) in the limiting case 8 = 0.

Lemma 2.2. Let u satisfy the growth condition (2.2) and $2 be bounded. Then

d D
f ,u(y)N <cln—, D > diam#$2. (2.9)
2\Br) (X, Y) r

Proof. The proof is standard via the dyadic decomposition:

/ du(y) _i/ du(y) <ci1<C<C/Ddt
2\B(x,r) Q(va)I\H—g k=0 20{z:2kr<p(x,y)<2k+1r} Q(X’ .V)N+€ oot k=0 2ke — ere = r tH—S’

after which it remains to pass to the limit whene — 0. O

3. Potentials of constant functions

For a bounded, measurable open set £2 € X and o > 0 we define the potential J; , by

X2 ®) / du(y)
o= 222 g = | 0= Q, 3.1
Iz ) /x o(x, y)N—« #0) 2 0(x, YN« *e 5:4)
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which is well defined in view of (2.7). When §2 is not necessarily bounded, we define the difference of the potential by

1 1
].Q,Ct(xay) = /;2 (Q(X, Z)N_a - Q(y, Z)N_a> d,u'(z)ﬂ X,y € X. (32)

If £2 is bounded, then o o (X, ¥) = Jo.« (X) — Jo.o (v). However, if £2 is not bounded, then J; (x) may be not well defined.

Lemma 3.1. Let (X, o, ;t) be a metric measure space with the growth condition (2.2), regular of order 0 € (0, 1]. ThenJg o (X, y)
is well defined at the least for 0 < o < 6.

Proof. The following inequality
1 1
ox, 2N o(y, )N

holds, where K is the constant from (2.1). To prove it, note that the condition o(x, y) < ﬁg(x, z) involves the equivalence

o(x,y)’ . 1
b f ) 5 i, ) 3.3
o (x, 2)N-a70 ifo(xy) = o0 2) (3.3)

1 1
ﬁg(xv Z) < Q(y7 Z) < (K + 2) Q(X7 Z)'

Hence by (2.5), we obtain
lo(x,z) —o(y, 2)|

Q(X, Z)N—()t+1

Then by the 0-regularity (2.3) we arrive at (3.3). The inequality (3.3) with N — « + 6 > N ensures the convergence of the
integralin (3.2) by (2.8). O

lo(x,2)* ™" =0y, 2)* V| < C

Thus for o € (0, 6), we have

Jea®,%) =0, Jou®*¥)=—Joo@,%) and Jo.(X,¥) =Jo«® a) +]2u(a,y)
forall a, x, y € X. This holds for all « > 0, if §2 is bounded. If

Jxa(x,y) =0,

forall x, y € X, the space X is said to have the cancellation property. If X has the cancellation property, then
Jou®,y) = =2« ¥).

The spaces (R, d, dx) and (S"~', d, do'), where d is the Euclidean distance and do surface area measure on (8" !, d, do),
have the cancellation property.

If £2 is bounded and o > 0, then J; ,(x) is continuous in x € X and Jg 4 (, y) is continuous inx, y € X for every §2 and
O<a<b.

However, ]  (x, y) has better properties than just continuity in the inner points of £2; see Lemma 4.1 in Section 4. These
properties may worsen when x or y approaches the boundary of £2.

Examples. (1) X = R", 2 = B(0,R),0 < @ < n:
Jo.a®) =co+ c1(R—[x)* +g(x), x € B(0, R),
where ¢g = 2¢ 1w "2 [ (3) I (32) ¢, = 207 'R“w 2 (3) I (%52) , g € Lip(B(O, R) and g |, _, = 0;
R)X=R"Q=R, =xeR": x,>0},0<a<1:

Ja.a(x,y) = ca(e)(sgn(xn) [xa|* — sgn(yn)lyn|®),

T2r(3) .

ar(%)’

B)X=R" Q2 =R%, ={(x1,%) €RL 1%, >0,%>0},0<a<1:

Jo,y) = S (B@]* — [BWI* + 5§ —y§ +x5 —y3) + Ux) — U(y),

where ¢ = “2/—31’ (5%) r="(%%) and U(x) = [x|tA(t), t = min {"1 ’LZ} and A(t) is analytic in t.

where x,y € R" and ¢, (o) =

X7 X1
(4)X =S"= {0 = (01, ..., 0u441) : |o| = 1} with the Euclidean distance between points on §",and £2 =S|} := {0 € S" :
Ont1 > 0}; 8(o, 082) ~ opyq; in this case]sgr,a(a) = Co + 2¢104+1 + k(o) for o1 > 0, where ¢y and c; are the same as in

example (1), and k € Lip(S}}), and k|ag =0.

Proofs for examples (1)-(3) are given in [15]. Note that in [15] potentials ] ,(x) in those examples were explicitly
calculated in terms of special functions. The proof for example (4) is given in the Appendix.
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4. On the a-property of sets

In the Euclidean case it is known that the potential of order « of a bounded function on a bounded domain is ¢-Holder

continuous in £2, which is a particular case of a Sobolev theorem stating that I, : [P(£2) — H » (£2),1 < p < oo when

% <a< % + 1; see [18, p. 256]. In the following lemma we extend this for sets £2 in (X, o, p) in the case p = 0o, where

£2 may be unbounded and we include all x, y € X into the Hélder condition, not only x, y € £2.
Lemma 4.1. Let 2 C X be measurable and o € (0, 6). Then

|F2.aX Y| < colxy)*, (4.1)
where ¢ depends on x and y. If §2 is bounded, the case « = 0 may be also admitted with the estimate

D
1900y <cox ) In——, x,ye2,D> diam . (4.2)
ox,y)

Proof. We follow [15, Lemma 3.1], where (4.1) was proved for the case X = R". Letx, y € X and r := 2Ko(x, y). Then

Jea®y) = f 0(x,2)* N —o(y,2)* N du(2)
2\B(x,r)

4 / 0, 2"V dyu(z) - / 0. 2N du(2)
£0MB(x,1) 2NB(x,r)

=h+hL—-J
By (2.7) we have

ol < / o(x, 2)* Ndu(z) < cr® =Cox, y)".
B(x,r)
For J3 we similarly have
Usl < f 0y, 2)* Ndu(@2) < / 0. 2)* N du(@) < colx. y)*.
B(x,r) B(y,2Kr)

Note that the estimates obtained for J, and J5; hold for all @ > 0.
Finally, for J; we observe that z € 2 \ B(x, r) implies that o(z, x) > r = 2Kp(x, y) and then (3.3) is applicable which
yields

du(z)
il =cotey [ B <oy
2\Br) 0K, Z)N-at?
by (2.8). This completes the proof in the case « < 8. When«o = 6, use (2.9). O

So the difference of the potential J; 4 (x, ¥) is always Holder continuous of order o, 0 < @ < 6,0nX x X. In the examples
given above, the function ] 4 (x, y) is even Lipschitz when x and y are off the boundary 92 (see details in [ 15]). In the general
setting of quasimetric spaces it is natural to suppose that in many cases the function Jo, 4 (x, y) is Hélderian of order 6 when
the variables are off the diagonal, the case @ = 6 being an analogue of the Lipschitz case.

Definition 4.2. A function f (x) on a quasimetric space (X, o) with the quasimetric o regular of order 6 will be called («, 0)-
Holderianon 2 C X,0 < o < 6, if

If () — f()] < Co(x,y)* forallx,y e 2.

We wriete f € H%(£2) in this case. When o = 6, we also call the function f Lipschitzian or (6, o)-Lipschitzian and write
f € Lip”(£2).

The next definition is aimed to provide an appropriate language to single out the class of sets £2 C X, with a prescribed
way of how the Lipschitz 6-behaviour worsens to Holder a-behaviour, & < 6, when x and y approach the boundary.

Definition 4.3. Let £2 C X be a measurable set and o € (0, 6]. We say that £2 has the «-property, if there exists c > 0 such
that

o(x, )
max{s(x), s(y)}0—«

1
Ueu@ )| <c ifox,y) < ") max{5(x), §(y)}, (4.3)
0

forallx,y € £2.
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Lemma 4.4. Let §2 be measurable and bounded, o be regular of order 6 € (0, 1] and @ € (0, 8]. Then

0
o(x.y) = ll max{8(x), 8()} = 18()* — §()?| < 2”5 o(x.y) .
20 max{8(x), §(y)}0—

(4.4)

Proof. The case « = @ is direct: the function [§(X)]* = inf,cy0 d(x, 2) is (8, o)-Lipschitzian: §(x)* — §(¥)* < d(x,y) =
o(x,y)?. ThenJq o (x) € Lip? (£2) and consequently Uo.oa®. y)| <cox,y)l forallx,y € £2.
Let 0 < o < 6. We first note that

18(x) — 8| < 20 "o(x. ) max{8(x). 5x)}'~". (45)
Indeed, since o(x,y) = d(x, y)é by Definition 4.3, where d(x, y) is a distance, we have |5(x) — 8(y)| = |d(x, 8.(2)%—

d(y, 32)% | < 27~ 1d(x, y) max{d(x, 32)7 ", d(y, 82)# "}, from which (4.5) follows.
By (2.5) we have

16(x) =3y
[min{8(x), s}~

By the condition o(x, y) < - max{8(x), §(y)}, we have
20

5% — 80)%| <

min{é(x), §(y)} > 277 max{5(x), 5(¥)}. (4.6)
Indeed, suppose that §(y) < §(x); to estimate §(x), note that §(x) = inf,cy d(x, z)% where d is a distance, so that
80" <8’ +ox.y)

and then 8(x) < 201 [8(y) + 0(x, y)] < 29 '8(y) + 18(x), whence 5(x) < 27 3(y), which proves (4.6).
Therefore, by (4.6)

« o 1-a |5(X) - 8(.y)|
B — 80| <02 7 S SO

where it remains to apply (4.5). O

The following corollary provides a sufficient condition for a domain £2 to possess the «-property, this condition being
inspired by Examples in Section 3.

Corollary 4.5. Under the assumptions of Lemma 4.4, if Jo o (X) has the structure
Joa®) =cd(0)* +g(x), xe€ £, (4.7)

where c is a constant and g € Lip? (£2), then §2 possesses the o-property.

Remark 4.6. In [15] it was shown that any uniform domain (Jones domain) in R" possesses the «-property. In particular,
the function J . (x, y) was explicitly calculated there for a ball B, the half space R, and the quarter plane Ri 4

5. Mapping properties of the potential operator I* in generalized Holder type spaces

In this section the measurable open set £2 C X is supposed to be bounded. We now introduce the generalized Holder
spaces on a set £2, with the continuity modulus

of )= sup If0) —f©)
o

dominated by a given function w.

Definition 5.1. Given a continuous semi-additive function w on [0, diam £2], positive for h > 0, with »(0) = 0, by H*(£2)
we denote the space of functions f € C(£2) with the finite norm

o(f, h)
0 = o T su '
Ifllge = Ifllc e A w(h)

By Hy (£2) we denote the subspace in H”(£2) of functions f which vanish on the boundary 92 of £2.
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Definition 5.2. A non-negative function w(t) is called almost increasing (almost decreasing) on [0,d],0 < d < oo, if
w(t) < Co(r)forallt < t (t > 7, respectively).

For further goals we need the following auxiliary estimate.

Lemma5.3. Let 0 < a < 6 and 2 C X have the a-property. Let f € Hy (£2), where

h
w(h) is almost increasing and % is almost decreasing. (5.1)
Then

sup  [f O P < Coa|fllnow), (5.2)
x,ye2:o(x,y)<h

where w, (h) = h® w(h). In particular,

sup  [fOUe.a® W1 < CH I ) (5.3)
x,ye2:o(x,y)<h

whenf € H}(2) and A + o < 6.
Proof. For x € £, by X we denote a point of the boundary, such that o(x, X) = §(x). Then

F| = 1) —fFE)] < CaoS@)IIf e (5.4)
and
[FOU.o® N1 < CaoGE)If e e« ¥)I- (5.5)

We distinguish the cases
2% max{8(x),8(y)} < o(x,y) and o(x,y) < 2% max{d(x), §(y)}.
In the first case we have |J; o(x,¥)| < Co(x,y)* by Lemma 4.1 and then
[F e« 0| < Co27 0%, ¥ Y IIf o < Cwq(WIIf 1o (5.6)

for all x, y such that o(x,y) < h. In the second case, by the definition of the «-property we have |J; o(X) — Jo.o (V)| <

___0y” ___ Then (5.6),(5.5)and (5.1) yield
(max{8(x),8(»))F— " .6), (5. .
w(8(x))

(max{8(x), §(y)}H?—«

M@(x,y)" < Clif lpewa (h),
ox, )’

[f)Ue.a® 01| < Clif 1o o(x, y)’

< Clif llpe

which completes the proof. O

The result on mapping properties of potentials in the generalized Holder spaces H(2), stated in Theorem 5.5 below,
was obtained in [ 14, Theorems 3.8 and 3.9] under the condition that

Jo.w € H*O(£2), where wy(h) = h®w(h). (5.7)

Note that this condition is obviously satisfied when the cancellation property holds (i.e. ] o (X) = const), but it is restrictive
in general, since Jo ,(x) ~ 8(x)* near the boundary (see for instance, examples (1)-(4) in Section 3) so that (5.7) fails for
domains, in general. Note also that in [14] there was proved a more general result than we formulate here in Theorem 5.5:
the order « = «(x) and the function w = w(x, h) were variable in [ 14]. We need first the following definition.

Definition 5.4. We say that a continuous non-negative function w : [0, d) — [0, 00),0 < d < oo, belongs to a Zygmund

class @4, B > 0, if it is almost increasing and fhd (%)ﬂ @dt < cw(h), forallh € (0, d), where c > 0 does not depend on h.
Theorem 5.5. Let 2 be a measurable open setinX,0 < o < 0.1If w € ®y_, and (5.7) holds. Then the operator I* is bounded
from the space H®) (£2) into the space H**)(£2).

Now, making use of the above arguments, we may avoid condition (5.7) on the set §2, replacing it by the assumption that
w has the a-property, which holds in many applications, for instance for any domain in R" with Lipschitz boundary. Namely,
we prove the following theorem.
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Theorem 5.6. Let 0 < @ < 0 and $2 be a bounded measurable open set in X with a-property. If w € ®y_,, then the potential
operator I* is bounded from H’ (§2) to H*« (§2). In particular, it is bounded from Hé(.Q) to H*(2)if A +a < 1.

Proof. We only have to adjust the proofin [ 14] for our goals. That proof was based on the direct estimation of the continuity
modulus of the potential (see Theorem 3.4 in [14]) via the representation

I*Hx) — A°H )

/ IO [l ) - / @) — F0lew, 2 Ndu(2)
o(x,2)<2

o(x,z)<2h

+ / [f@ —f@]{ox, 2™ — oy, 2)* N} dpu(2)
o(x,z)>2h

1 [ o2 - 002 du@)
Q
= A1+ Ay + A3+ Ay
forx,y € £2 with o(x,y) < h. The condition (5.7) was used in the proof of Theorem 3.4 in [14], only in the estimation of the

term

Ay =fOlUea® —Jo.aW],

while the estimates

« _ o [Pof. )
|Akl < Ch%w(f,h), k=1,2, and |As] <Ch iy b, d = diam 2, (5.8)
h

of the terms A4, A, and A3 were proved without the assumption (5.7).
The term A, is now estimated by means of Lemma 5.3. Note that condition (5.1) assumed in that lemma follows from
the assumption w € ®4_,. This completes the proof. O

Remark 5.7. For simplicity, we dealt with the case where w(h) does not depend on x. Since in [ 14] the general case of w(x, h)
was treated, Theorem 5.6 is extended in the same way to this case. The only changes in the formulation of Theorem 5.6 are
that the condition w € ®,_, now should be interpreted as belongness of w(x, h) to ®,_, in variable h uniformly in x, and
we have to write w, (x, h) = h*w(x, h). More interesting is the case where &« may depend on x € §2 and may vanish at some
points of £2, the effects of which were studied in [14], but this requires more efforts. We do not dwell on this case in this

paper.
6. The case of spatial and spherical potentials in R"

6.1. Any domain in R" possesses the «-property

We improve Lemma 3.8 from [15], where it was shown that the «-property holds for the so called uniform domains
(Jones domains) by proving that the validity of the a-property does not depend on the structure of the boundary, as stated
in the following lemma.

Lemma 6.1. Every domain in R" has the o-property, 0 < @ < 1.
Proof. To check the condition (4.3), we proceed as follows:
dz dz o
Jo.u(®) = —+ = (a0 + A®X),
\ \

z—x|<8(x) |Z - Xlnia z—x|>6(x) |Z - Xlnia

1

where A(x) := Q\BX.5(0) |z7if"*a and ¢y = &|SH_1 |. (The above lines are written supposing that |£2| < oo, for simplicity;

if |$2] = oo, one should deal from the very beginning with the differences, as given in the sequel.)
Let for definiteness, §(x) > &(y). We then proceed as follows

U Y] < Cna [5G — 83)°] + JAG) — AW
1 1
Cr 1800% — 5G] + f

2B |12 — X" |z —y[

/ dz / dz
B,y 12 —yI"¢ B.s(xy) 12 — Y

The term D, is estimated by Lemma 4.4. For D,, by the inequality (2.5) we have
dz
Q\B(@2,500) MiN{|z — x| 1= |z — y|r+i-e}”

IA

+ =ZD1+D2+D3-

Dy <clx—y|
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Recall that we have to make estimations for x,y € £2 such that [x — y| < %max{S(x), 8(y)}. We then have |z — y| >
|z—x| — [x—y| > |z — x| — 38(x) > 5|x — z|. Hence,

dz [x — yl
=c .
l—x>sx) |2 — x|" 1= S(x)1—«

Dy <clx—y|

The term D3 is equal to
Cnad(X)” / dz
e lzl<so 12 — (x =y

For the potential of a constant function over a ball there is known an exact expression in terms of the Gauss hypergeometric
function:

D3 = = [n.a8(®)* = Jp0.5000.0 (X — V)| -

a n—a n_ |x?

2Ty oy F) for x € B(0, R);

JB0.R).0 (X) = CnoR*F (

see [15, Lemma 2.1]. Therefore,
n—a n_|x—y?

2 2 82

3

o .
JB0.500).0 (X = ¥) = Cra8(X)*F <—*, ) if |x —y| < 8(x).

2

The Gauss function F (—% ”’T"‘; %; z) is analytic in the circle |z| < 1, bounded in any closed subcircle |z] < 1 —¢,& > 0.

Then, under our condition |x — y| < %8 (x) we have

J (= ) = enad 0 [14 oty XY
B(0,8(x)), n,a s 8()()2 )

where C(x, y) is a bounded function. Therefore,

_y? _
Ix —yl - |x ﬂy
s(x)2 T s«

which completes the proof. O

D; = Cs()*

Theorem 5.6 and Lemma 6.1 yield the following statement.

Theorem 6.2. Let $2 be an arbitrary bounded domain in R", let f € H®(£2) andf‘xem
assumptions of Theorem 5.6, then the potential If, 0 < a < 1, has the following structure

Iof (x) = foa(x) + Kf (x), x € £2,
where K is an operator bounded from H® (£2) to H** (£2), while the function a(x)(= ] 4 (x)) is Lipschitz beyond the boundary
052 and its Holder properties near the boundary are described by the condition

Ix =yl
max{8(x), s(y)}'«

= fo = const. If w(h) satisfies the

lax) —a(y)| <c

6.2. The case of spherical potentials over caps

Now let £2 be an arbitrary surface domain on the unit sphere X = S" = {6 = (01, ..., 0n41) : |o| = 1} in R™!, we
will call it spherical cap. An application of Theorem 5.6 in this subsection is inspired by some applications [16] of spherical
harmonic analysis to a problem of aerodynamics (the cap §2 in [16] was the semisphere S% := {0 € S" : o341 > 0}). The
corresponding potential has the form

d
o= [ FOT eee (61

where do is the Lebesgue surface area.

Lemma 6.3. Every spherical cap has the «-property, with respect to the potential (6.1), 0 < @ < 1.

Proof. The statement of the lemma may be derived from Lemma 6.1. To this end, we make use of the stereographic
projection of R" onto S" in the space R**!:

E=s5(x) = {s1(x),52(%), ..., snr1(¥)}, &£€S",xeR" (6.2)



S.G. Samko / Nonlinear Analysis 78 (2013) 130-140 139

where

0= - k—12 d ) X — 1
(X)) = ———, k=1,2,...,n and sp1(x) = ,
k 1+|X|2 n+1 |X|2+1

sothat§(§,0S}) — 0 < [x| — 1.
This transforms spherical potential into the space potential and vice versa. Namely, the formula is valid:

/ M =21+ x») " / sy dy x € 2%, (6.3)
2

& — o™ 2+ X =yl (1 + |y]2) "7

(see forinstance, [ 19, Section 2.4]) where £2* is the image of £2 under the stereographical mapping. (We use this opportunity

to note that the above formula in [19] contains a typo: the factor (1 + |x|2)nTa was lost there.) We suppose that the cap
£2 does not coincide with the whole sphere, this case being trivial. Then without losing generality, we may assume that
the pole (0,0, ..., 0, 1) of the stereographical projection lies outside £2. Then £2* is a bounded domain in R" and the power
weights appearing in (6.3) are differentiable functions bounded from below and above, so that the «-property of the cap §2
with respect to the spherical potential is reduced to that of the domain §£2* with respect to the spatial potential and then it
remains to apply Lemma 6.1. O

In view of Lemma 6.3, similarly to the previous subsection, from Theorem 5.6 we obtain that Theorem 6.2 remains valid
if the spatial potential is replaced by the spherical one and a domain £2 in R" by a spherical cap on S".

Appendix. The function J ,(x) in the case of the semisphere 2 = S!

Let X = S", ¢ be the Euclidean distance between points on S" and u the Lebesgue surface measure, and 2 = S} =
{o € S" : opp1 > 0}. In this case the distance (o) := 3(o, §2) of the point ¢ € S" to the boundary of the semisphere is
calculated by the formula

8(0) = Clong1)lonl,

where

Clons) = 2 1< Clom) =2 (A1)

T+ 1_Or%+1

Note that from the calculations below it is seen that JS’L!Y(E) depends only on the last coordinate &,,1. Observe also that
8(€,002) — 0 <= &1 — 0,by (A.1).

LemmaA.1. Let 0 < o < 1. Then the potentialjgll’a(“g‘) has the following behaviour near the boundary 92 = {& € S" : &,41
= 0}:

]§"+,a(€:) =C+ 2Cl$§+1 + K (), (A.2)

where ¢ and cq are the same as in Example (1) in Section 3, X € Lip(@), K (&) = k(&y41) and k(0) = 0.

Proof. We use the stereographic projection (6.2) of R" onto S". By formula (6.3) we have

o n—a dy
Jon o(8) = 2°(1+ [x1*) 2 f = (A3)
=1 (14 ly12) 2 Jx —yne
2°(1+ [x») 2" d
AL R +n|i(!x) / My ; (A4)
x| lyl<1 (1 + |y|2)T |x* — y|r—e
where x* = ﬁ the last passage being made via the change of variables y — # Hence
2¢ dy
Jst o (§) = a/ + h(§), (A5)
Sioa (1 + |X*|2) <1 |x* — y|n—e

where the function

h() =

n—o nta

2% T+ x5 7 — (1+y?) 2

/ (14 x*[%) (1+1yP) dy
lyl<1

(14 bep)’ (14 1) " e — yine
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is Lipschitzian (even continuously differentiable) for |x*| < 1 <= &,;1 > 0. For the first term in (A.5), it remains to make
use of a result of [ 15] on estimation of potentials of a constant function over balls (see example (1) in Section 3) which yields
(A.2) after direct easy evaluations. O

Remark A.2. The potential ]s'}r.a(f) may be reduced to repeated one-dimensional integration by means of the known
representation of potentials of radial functions over balls via the Riemann-Liouville fractional integrals:

1 FAYDAY o a 2n (15 (o521 (15 ¢+ 2y.
V(@) lyl<a |x —y|"— =27 (IO+ [S (Iasz ) (S):I) ; (A6)
see [6, formulae (2.17) and (2.18)] and f*(t) = f(+/t) [20], see also [6, p. 590]. This implies

2 n—a_q

Zaﬂ%(1+r2)nfar—2+n rT s 2 1 dt
oyt = T [ e L —
r(s)r4s*) o 2=9"2 L a4+ (t-s5"1%

2078 (14 r?yr—op24n 7 SniTa_lB? (5.3)
r(s)rs®) /0 (1+9)702—9)'"2

where r = |x| and By (p, q) is the incomplete beta-function.

S,
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