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a b s t r a c t

We consider potential operators of order α over sets Ω in quasi-metric measure spaces
and study their mapping properties from the subspace Hλ

0 (Ω) of functions in Hölder space
Hλ(Ω) vanishing on the boundary ofΩ , into the spaceHλ+α(Ω), ifλ+α < 1. This is proved
in a more general setting of generalized Hölder spaces Hω(Ω) with a given dominant ω of
modulus of continuity. Statements of such a kind are known in the Euclidean case or in
the case of quasimetric measure spaces with the cancellation property. In the general case,
when the cancellation property fails, our proofs are based on a special treatment of the
potential of a constant function, which in general has a regularity near the boundary ∂Ω

of the type of the α-th power of the distance to ∂Ω . An application to the case of spatial
potentials over domains in Rn and potentials over spherical caps is given.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Mapping properties of potential operators within the frameworks of Hölder spaces are well studied in the general setting
of quasimetric measure spaces (X, ϱ, µ) under the assumption that X satisfies the so called cancellation property; see [1–4].
Thewell known examples of underlying spaces X with the cancellation property are thewhole spaceRn and the sphere Sn−1.
We also refer to various more precise specifications and/or generalizations of mapping properties of potential operators in
these two model cases presented in the papers [5–13].

In caseswhere the potential of a constant function on X iswell defined, the cancellation propertymeans that the potential
of a constant is constant. This property was also used in the recent paper [14], where there were admitted potentials of
variable order α(x) with possible degeneration: α(x) = 0 on a set of measure zero.

The cancellation property is very restrictive in applications: it fails for domains Ω in Rn. In the case of balls in Rn, for
instance, the potential of a constant is constant on the boundary, but is not constant in the ball.

In the Euclidean case for instance, statements of the type

IαΩ : Hλ(Ω) → Hλ+α(Ω), Ω ⊂ Rn,

for the potential operator

IαΩ f (x) :=


Ω

f (y) dy
|x − y|n−α
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may not be valid for domains, since the potential of a constant has regularity only of order α near the boundary: it behaves
in general like c1 + c2[δ(x)]α near the boundary, where δ(x) = δ(x, ∂Ω) is the distance to the boundary. However, one may
expect that there should be a valid statement

IαΩ : Hλ
0 (Ω) → Hλ+α(Ω) (1.1)

for the subspace Hλ
0 (Ω) of the Hölder space Hλ(Ω) of functions which vanish at the boundary. Such a mapping is known

in the one-dimensional case and goes back to Hardy and Littlewood; see for instance [6, Corollary 1 on p. 56]. A multi-
dimensional result of such a kind was recently proved in [15], where in particular the case of uniform domains (Jones
domains) was covered. In this paper we develop a similar approach within the framework of general quasimetric measure
spaces (X, ϱ, µ) with the growth condition on the measure. We show that a mapping of type (1.1) (and more generally, for
spaces of the type Hω(Ω)) holds for measurable bounded sets Ω in (X, ϱ, µ) satisfying the so called α-property. Roughly
speaking, we can state a result on mapping properties of the potential operator, if we know how the potential operator of
the constant, i.e.

JΩ,α(x) =


Ω

dµ(y)
ϱ(x, y)N−α

, x ∈ Ω, (1.2)

where N comes from the growth condition, behaves near the boundary of Ω .
We give the proof of results of such a type in intrinsic terms of the given setΩ ⊆ X . The proof in intrinsic terms allows us

to obtain information also about the behaviour of potentials near the boundary ∂Ω in the cases where f (x) does not vanish
at the boundary.

Note that this way was also used in [15] in the case of domains in Rn and Lebesgue measure, although in this case it is
possible to derive just a result of type (1.1) from the estimates of the modulus of continuity of potentials over Rn, obtained
in [7], since a function f ∈ Hλ

0 (Ω) may be extended as identical zero outside Ω , which preserves the Hölder behaviour of
f . This way was preferred in [15] because it provides information near the boundary, and a derivation of statements even
of type (1.1) from [15] is rather artificial: the results in Rn in [15] were proved in its turn not directly, but by reducing the
problem to the case of the unit sphere via the stereographic projection and usage of Fourier–Laplace analysis on the sphere.

The paper is organized as follows. In Section 2we provide necessary preliminaries related to quasimetric measure spaces
(X, ϱ, µ). In Section 3 we study the function JΩ,α(x), where the main technical statement is Lemma 3.1, and give examples
illustrating the behaviour of JΩ,α(x) near the boundary. In Section 4 we extend the notion of the α-property, introduced
in [15] in the Euclidean case, to the general setting. Section 5 contains the main result on the mapping properties. Section 6
contains two applications. The first is related to the case of domains in Rn, where we improve a result from [15] by showing
that an arbitrary domain in Rn satisfies the α-property, introduced in [15]. The second concerns spherical potentials over a
spherical cap on the unit sphere Sn in Rn+1, which is inspired by applications studied in [16]. The final Appendix (Appendix)
contains some estimates for the case of spherical potentials on a semisphere.

2. Preliminaries on metric measure spaces

Given a set X , a function ϱ : X ×X → [0, ∞) is called quasimetric, if it satisfies the usual metric axioms with the triangle
inequality replaced by the quasi-triangle inequality

ϱ(x, y) ≤ K [ϱ(x, z) + ϱ(z, y)], K ≥ 1 (2.1)

where x, y, z ∈ X . We assume that ϱ(x, y) = ϱ(y, x). Let µ be a positive measure on the σ -algebra of subsets of X which
contains the d-balls B(x, r). Everywhere in the sequel we suppose that all the balls have finite measure for all x ∈ X and
r > 0 and that the space of compactly supported continuous functions is dense in L1(X, µ).

We assume that X is closed with respect to the metric ϱ, i.e. every fundamental sequence in X has a limit in X . The
boundary δ(Ω) of an open set Ω in X is interpreted in the usual sense, i.e. as the set of all the points in X , which are limiting
points for Ω , but are not inner points of Ω . We always assume that µ(∂Ω) = 0.

Let

δF (x) = inf
y∈F

ϱ(x, y)

denote the distance of a point x from the set F ⊆ X . By

δ(x) = δ(x, ∂Ω) := inf
y∈∂Ω

ϱ(x, y)

we denote the distance of x to the boundary.
We say that the measure µ satisfies the growth condition equivalently called the upper Ahlfors N-regular, if

µB(x, r) ≤ crN , (2.2)

where N > 0 and c > 0 does not depend on x and r .
In this paper we do not assume the measure µ to be doubling, but base ourselves on the growth condition (2.2).



132 S.G. Samko / Nonlinear Analysis 78 (2013) 130–140

Note that balls in a general space, even of homogeneous type, are not necessarily open, but there exists a continuous
quasimetric ϱ′ equivalent to ϱ, with respect to which all balls are open.

In the sequel we assume that µ satisfies the growth condition (2.2).
As shown in [17], every quasidistance ϱ on a quasimetric space (X, ϱ) admits an equivalent quasimetric ϱ1 for which

there exists an exponent θ ∈ (0, 1] such that the property

|ϱ1(x, z) − ϱ1(y, z)| ≤ Mϱθ
1(x, y) {ϱ1(x, z) + ϱ1(y, z)}1−θ (2.3)

and

ϱ1(x, y) = d(x, y)
1
θ (2.4)

where d(x, y) is a metric (i.e. (2.1) holds for d(x, y) with K = 1). By the elementary inequality

|aβ
− bβ

| ≤ |β||a − b|max(aβ−1, bβ−1), a, b ∈ R1
+
, β ∈ R1, (2.5)

the property (2.3) is an immediate consequence of (2.4) and it holds with

M =
1
θ
.

Definition 2.1. We say that the quasimetric ϱ is regular of order θ ∈ (0, 1], if it itself satisfies property (2.4), i.e. ϱ(x, y) =

d(x, y)
1
θ , where d(x, y) is a distance on X .

Everywhere in the sequel we suppose that the quasimetric is regular of order θ ∈ (0, 1].
In this paper we study mapping properties of potential operators

(Iα f )(x) =


Ω

f (y) dµ(y)
ϱ(x, y)N−α

, x ∈ Ω ⊆ X, (2.6)

for functions f defined on an open setΩ of a quasimetric measure space (X, ϱ, µ), whereN is the exponent from the growth
condition.

The following estimates are known:
B(x,r)

dµ(y)
ϱ(x, y)N−α

≤ crα (2.7)

and 
X\B(x,r)

dµ(y)
ϱ(x, y)N+β

≤ cr−β , β > 0, (2.8)

under the only condition on (X, ϱ, µ) that µ satisfies the growth condition (2.2); see for instance [2, Lemma 1].
The lemma below supplements (2.8) in the limiting case β = 0.

Lemma 2.2. Let µ satisfy the growth condition (2.2) and Ω be bounded. Then
Ω\B(x,r)

dµ(y)
ϱ(x, y)N

≤ c ln
D
r
, D > diamΩ. (2.9)

Proof. The proof is standard via the dyadic decomposition:
Ω\B(x,r)

dµ(y)
ϱ(x, y)N+ε

=

∞
k=0


Ω∩{z:2kr<ϱ(x,y)<2k+1r}

dµ(y)
ϱ(x, y)N+ε

≤
c
rε

∞
k=0

1
2kε

≤
C

εrε
≤ C

 D

r

dt
t1+ε

,

after which it remains to pass to the limit when ε → 0. �

3. Potentials of constant functions

For a bounded, measurable open set Ω ⊆ X and α > 0 we define the potential JΩ,α by

JΩ,α(x) =


X

χΩ(y)
ϱ(x, y)N−α

dµ(y) =


Ω

dµ(y)
ϱ(x, y)N−α

, x ∈ Ω, (3.1)
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which is well defined in view of (2.7). When Ω is not necessarily bounded, we define the difference of the potential by

JΩ,α(x, y) :=


Ω


1

ϱ(x, z)N−α
−

1
ϱ(y, z)N−α


dµ(z), x, y ∈ X . (3.2)

If Ω is bounded, then JΩ,α(x, y) = JΩ,α(x) − JΩ,α(y). However, if Ω is not bounded, then JΩ,α(x) may be not well defined.

Lemma 3.1. Let (X, ϱ, µ) be ametric measure space with the growth condition (2.2), regular of order θ ∈ (0, 1]. Then JΩ,α(x, y)
is well defined at the least for 0 < α < θ.

Proof. The following inequality 1
ϱ(x, z)N−α

−
1

ϱ(y, z)N−α

 ≤ C
ϱ(x, y)θ

ϱ(x, z)N−α+θ
, if ϱ(x, y) ≤

1
2K

ϱ(x, z) (3.3)

holds, where K is the constant from (2.1). To prove it, note that the condition ϱ(x, y) ≤
1
2K ϱ(x, z) involves the equivalence

1
2K

ϱ(x, z) ≤ ϱ(y, z) ≤


K +

1
2


ϱ(x, z).

Hence by (2.5), we obtainϱ(x, z)α−N
− ϱ(y, z)α−N

 ≤ C
|ϱ(x, z) − ϱ(y, z)|

ϱ(x, z)N−α+1
.

Then by the θ-regularity (2.3) we arrive at (3.3). The inequality (3.3) with N − α + θ > N ensures the convergence of the
integral in (3.2) by (2.8). �

Thus for α ∈ (0, θ), we have

JΩ,α(x, x) = 0, JΩ,α(x, y) = −JΩ,α(y, x) and JΩ,α(x, y) = JΩ,α(x, a) + JΩ,α(a, y)

for all a, x, y ∈ X . This holds for all α > 0, if Ω is bounded. If

JX,α(x, y) ≡ 0,

for all x, y ∈ X , the space X is said to have the cancellation property. If X has the cancellation property, then

JΩ,α(x, y) = −JX\Ω,α(x, y).

The spaces (Rn, d, dx) and (Sn−1, d, dσ), where d is the Euclidean distance and dσ surface area measure on (Sn−1, d, dσ),
have the cancellation property.

If Ω is bounded and α > 0, then JΩ,α(x) is continuous in x ∈ X and JΩ,α(x, y) is continuous in x, y ∈ X for every Ω and
0 < α < θ .

However, JΩ,α(x, y) has better properties than just continuity in the inner points of Ω; see Lemma 4.1 in Section 4. These
properties may worsen when x or y approaches the boundary of Ω .

Examples. (1) X = Rn, Ω = B(0, R), 0 < α < n:
JΩ,α(x) = c0 + c1(R − |x|)α + g(x), x ∈ B(0, R),

where c0 = 2α−1π−
1
2 Γ

 n
2


Γ −

1
2
 n+α

2


, c1 = 2α−1R−απ−

1
2 Γ

 n
2


Γ −1

 n−α
2


, g ∈ Lip(B(0, R)) and g


|x|=R = 0;

(2) X = Rn, Ω = Rn
+

= {x ∈ Rn
: xn > 0}, 0 < α < 1:

JΩ,α(x, y) = cn(α)(sgn(xn)|xn|α − sgn(yn)|yn|α),

where x, y ∈ Rn and cn(α) =
π

n
2 Γ ( n

2 )
αΓ ( n−α

2 )
;

(3) X = Rn, Ω = R2
++

= {(x1, x2) ∈ R2
+

: x1 > 0, x2 > 0}, 0 < α < 1:

JΩ(x, y) =
c
α


[δ(x)]α − [δ(y)]α + xα

1 − yα
1 + xα

2 − yα
2


+ U(x) − U(y),

where c =

√
π

2α Γ
 1−α

2


Γ −1

 2−α
2


and U(x) = |x|tA(t), t = min


x1
x2

,
x2
x1


and A(t) is analytic in t .

(4) X = Sn
= {σ = (σ1, . . . , σn+1) : |σ | = 1} with the Euclidean distance between points on Sn, and Ω = Sn

+
:= {σ ∈ Sn

:

σn+1 > 0}; δ(σ , ∂Ω) ∼ σn+1; in this case JSn
+

,α(σ ) = c0 + 2c1σn+1 + k(σ ) for σn+1 > 0, where c0 and c1 are the same as in

example (1), and k ∈ Lip(Sn
+), and k


∂Ω

= 0.

Proofs for examples (1)–(3) are given in [15]. Note that in [15] potentials JΩ,α(x) in those examples were explicitly
calculated in terms of special functions. The proof for example (4) is given in the Appendix.
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4. On the α-property of sets

In the Euclidean case it is known that the potential of order α of a bounded function on a bounded domain is α-Hölder
continuous in Ω , which is a particular case of a Sobolev theorem stating that IαΩ : Lp(Ω) → Hα−

n
p (Ω), 1 < p ≤ ∞ when

n
p < α < n

p + 1; see [18, p. 256]. In the following lemma we extend this for sets Ω in (X, ϱ, µ) in the case p = ∞, where
Ω may be unbounded and we include all x, y ∈ X into the Hölder condition, not only x, y ∈ Ω .

Lemma 4.1. Let Ω ⊂ X be measurable and α ∈ (0, θ). Then

|JΩ,α(x, y)| ≤ c ϱ(x, y)α, (4.1)

where c depends on x and y. If Ω is bounded, the case α = θ may be also admitted with the estimate

|JΩ,θ (x, y)| ≤ c ϱ(x, y)θ ln
D

ϱ(x, y)
, x, y ∈ Ω,D > diamΩ. (4.2)

Proof. We follow [15, Lemma 3.1], where (4.1) was proved for the case X = Rn. Let x, y ∈ X and r := 2Kϱ(x, y). Then

JΩ,α(x, y) =


Ω\B(x,r)

ϱ(x, z)α−N
− ϱ(y, z)α−N dµ(z)

+


Ω∩B(x,r)

ϱ(x, z)α−N dµ(z) −


Ω∩B(x,r)

ϱ(y, z)α−N dµ(z)

=: J1 + J2 − J3.

By (2.7) we have

|J2| ≤


B(x,r)

ϱ(x, z)α−N dµ(z) ≤ c rα
= Cϱ(x, y)α.

For J3 we similarly have

|J3| ≤


B(x,r)

ϱ(y, z)α−N dµ(z) ≤


B(y,2Kr)

ϱ(y, z)α−N dµ(z) ≤ cϱ(x, y)α.

Note that the estimates obtained for J2 and J3 hold for all α > 0.
Finally, for J1 we observe that z ∈ Ω \ B(x, r) implies that ϱ(z, x) > r = 2Kϱ(x, y) and then (3.3) is applicable which

yields

|J1| ≤ cϱ(x, y)θ


Ω\(B(x,r))

dµ(z)
ϱ(x, z)N−α+θ

≤ cϱ(x, y)α

by (2.8). This completes the proof in the case α < θ . When α = θ , use (2.9). �

So the difference of the potential JΩ,α(x, y) is always Hölder continuous of order α, 0 < α < θ , on X ×X . In the examples
given above, the function JΩ,α(x, y) is even Lipschitzwhen x and y are off the boundary ∂Ω (see details in [15]). In the general
setting of quasimetric spaces it is natural to suppose that in many cases the function JΩ,α(x, y) is Hölderian of order θ when
the variables are off the diagonal, the case α = θ being an analogue of the Lipschitz case.

Definition 4.2. A function f (x) on a quasimetric space (X, ϱ)with the quasimetric ϱ regular of order θ will be called (α, ϱ)-
Hölderian on Ω ⊆ X, 0 < α ≤ θ , if

|f (x) − f (y)| ≤ Cϱ(x, y)α for all x, y ∈ Ω.

We write f ∈ Hα(Ω) in this case. When α = θ , we also call the function f Lipschitzian or (θ, ϱ)-Lipschitzian and write
f ∈ Lipθ (Ω).

The next definition is aimed to provide an appropriate language to single out the class of sets Ω ⊆ X , with a prescribed
way of how the Lipschitz θ-behaviour worsens to Hölder α-behaviour, α < θ , when x and y approach the boundary.

Definition 4.3. Let Ω ⊂ X be a measurable set and α ∈ (0, θ]. We say that Ω has the α-property, if there exists c > 0 such
that

|JΩ,α(x, y)| ≤ c
ϱ(x, y)θ

max{δ(x), δ(y)}θ−α
if ϱ(x, y) ≤

1

2
1
θ

max{δ(x), δ(y)}, (4.3)

for all x, y ∈ Ω .
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Lemma 4.4. Let Ω be measurable and bounded, ϱ be regular of order θ ∈ (0, 1] and α ∈ (0, θ]. Then

ϱ(x, y) ≤
1

2
1
θ

max{δ(x), δ(y)} H⇒ |δ(x)α − δ(y)α| ≤ α2
2−α−θ

θ
ϱ(x, y)θ

max{δ(x), δ(y)}θ−α
. (4.4)

Proof. The case α = θ is direct: the function [δ(x)]α = infz∈∂Ω d(x, z) is (θ, ϱ)-Lipschitzian: δ(x)α − δ(y)α ≤ d(x, y) =

ϱ(x, y)θ . Then JΩ,α(x) ∈ Lipθ (Ω) and consequently |JΩ,α(x, y)| ≤ c ϱ(x, y)θ for all x, y ∈ Ω .
Let 0 < α < θ . We first note that

|δ(x) − δ(y)| ≤ 2
1
θ
−1ϱ(x, y)θ max{δ(x), δ(y)}1−θ . (4.5)

Indeed, since ϱ(x, y) = d(x, y)
1
θ by Definition 4.3, where d(x, y) is a distance, we have |δ(x) − δ(y)| =

d(x, ∂Ω)
1
θ −

d(y, ∂Ω)
1
θ

 ≤ 2
1
θ
−1d(x, y)max{d(x, ∂Ω)

1
θ
−1, d(y, ∂Ω)

1
θ
−1

}, from which (4.5) follows.
By (2.5) we haveδ(x)α − δ(y)α

 ≤ α
|δ(x) − δ(y)|

[min{δ(x), δ(y)}]1−α
.

By the condition ϱ(x, y) ≤
1

2
1
θ

max{δ(x), δ(y)}, we have

min{δ(x), δ(y)} ≥ 2−
1
θ max{δ(x), δ(y)}. (4.6)

Indeed, suppose that δ(y) ≤ δ(x); to estimate δ(x), note that δ(x) = infz∈∂Ω d(x, z)
1
θ where d is a distance, so that

δ(x)θ ≤ δ(y)θ + ϱ(x, y)θ

and then δ(x) ≤ 2
1
θ
−1 [δ(y) + ϱ(x, y)] ≤ 2

1
θ
−1δ(y) +

1
2δ(x), whence δ(x) ≤ 2

1
θ δ(y), which proves (4.6).

Therefore, by (4.6)δ(x)α − δ(y)α
 ≤ α2

1−α
θ

|δ(x) − δ(y)|
[max{δ(x), δ(y)}]1−α

,

where it remains to apply (4.5). �

The following corollary provides a sufficient condition for a domain Ω to possess the α-property, this condition being
inspired by Examples in Section 3.

Corollary 4.5. Under the assumptions of Lemma 4.4, if JΩ,α(x) has the structure

JΩ,α(x) = cδ(x)α + g(x), x ∈ Ω, (4.7)

where c is a constant and g ∈ Lipθ (Ω), then Ω possesses the α-property.

Remark 4.6. In [15] it was shown that any uniform domain (Jones domain) in Rn possesses the α-property. In particular,
the function JΩ,α(x, y) was explicitly calculated there for a ball B, the half space Rn

+
and the quarter plane R2

++
.

5. Mapping properties of the potential operator Iα in generalized Hölder type spaces

In this section the measurable open set Ω ⊆ X is supposed to be bounded. We now introduce the generalized Hölder
spaces on a set Ω , with the continuity modulus

ω(f , h) = sup
x,y∈Ω:

ϱ(x,y)<h

|f (x) − f (y)|

dominated by a given function ω.

Definition 5.1. Given a continuous semi-additive function ω on [0, diamΩ], positive for h > 0, with ω(0) = 0, by Hω(Ω)
we denote the space of functions f ∈ C(Ω) with the finite norm

∥f ∥Hω = ∥f ∥C(Ω̄) + sup
0<h<diamΩ

ω(f , h)
ω(h)

.

By Hω
0 (Ω) we denote the subspace in Hω(Ω) of functions f which vanish on the boundary ∂Ω of Ω .
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Definition 5.2. A non-negative function ω(t) is called almost increasing (almost decreasing) on [0, d], 0 < d ≤ ∞, if
ω(t) ≤ Cω(τ) for all t ≤ τ (t ≥ τ , respectively).

For further goals we need the following auxiliary estimate.

Lemma 5.3. Let 0 < α < θ and Ω ⊆ X have the α-property. Let f ∈ Hω
0 (Ω), where

ω(h) is almost increasing and
ω(h)
hθ−α

is almost decreasing. (5.1)

Then

sup
x,y∈Ω:ϱ(x,y)<h

f (x)[JΩ,α(x, y)]
 ≤ Cωα(h)∥f ∥Hω(Ω), (5.2)

where ωα(h) = hαω(h). In particular,

sup
x,y∈Ω:ϱ(x,y)<h

f (x)[JΩ,α(x, y)]
 ≤ Chα+λ

∥f ∥Hλ(Ω), (5.3)

when f ∈ Hλ
0 (Ω) and λ + α ≤ θ .

Proof. For x ∈ Ω , byxwe denote a point of the boundary, such that ϱ(x,x) = δ(x). Then

|f (x)| = |f (x) − f (x)| ≤ Cω(δ(x))∥f ∥Hω (5.4)

and f (x)[JΩ,α(x, y)]
 ≤ Cω(δ(x))∥f ∥Hω |JΩ,α(x, y)|. (5.5)

We distinguish the cases

1

2
1
θ

max{δ(x), δ(y)} ≤ ϱ(x, y) and ϱ(x, y) ≤
1

2
1
θ

max{δ(x), δ(y)}.

In the first case we have |JΩ,α(x, y)| ≤ Cϱ(x, y)α by Lemma 4.1 and thenf (x)[JΩ,α(x, y)]
 ≤ Cω(2

1
θ ϱ(x, y))ϱ(x, y)α∥f ∥Hω ≤ Cωα(h)∥f ∥Hω (5.6)

for all x, y such that ϱ(x, y) < h. In the second case, by the definition of the α-property we have |JΩ,α(x) − JΩ,α(y)| ≤

C ϱ(x,y)θ

(max{δ(x),δ(y)})θ−α . Then (5.6), (5.5) and (5.1) yieldf (x)[JΩ,α(x, y)]
 ≤ C∥f ∥Hω

ω(δ(x))
(max{δ(x), δ(y)})θ−α

ϱ(x, y)θ

≤ C∥f ∥Hω
ω(ϱ(x, y))
ϱ(x, y)θ−α

ϱ(x, y)θ ≤ C∥f ∥Hωωα(h),

which completes the proof. �

The result on mapping properties of potentials in the generalized Hölder spaces Hω(Ω), stated in Theorem 5.5 below,
was obtained in [14, Theorems 3.8 and 3.9] under the condition that

JΩ,α ∈ Hωα(·)(Ω), where ωα(h) = hαω(h). (5.7)

Note that this condition is obviously satisfied when the cancellation property holds (i.e. JΩ,α(x) ≡ const), but it is restrictive
in general, since JΩ,α(x) ∼ δ(x)α near the boundary (see for instance, examples (1)–(4) in Section 3) so that (5.7) fails for
domains, in general. Note also that in [14] there was proved a more general result than we formulate here in Theorem 5.5:
the order α = α(x) and the function ω = ω(x, h) were variable in [14]. We need first the following definition.

Definition 5.4. We say that a continuous non-negative function ω : [0, d) → [0, ∞), 0 < d ≤ ∞, belongs to a Zygmund
class Φβ , β > 0, if it is almost increasing and

 d
h

 h
t

β w(t)
t dt ≤ cw(h), for all h ∈ (0, d), where c > 0 does not depend on h.

Theorem 5.5. Let Ω be a measurable open set in X, 0 < α < θ . If ω ∈ Φθ−α and (5.7) holds. Then the operator Iα is bounded
from the space Hω(·)(Ω) into the space Hωα(·)(Ω).

Now, making use of the above arguments, wemay avoid condition (5.7) on the setΩ , replacing it by the assumption that
ω has the α-property, which holds inmany applications, for instance for any domain inRn with Lipschitz boundary. Namely,
we prove the following theorem.
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Theorem 5.6. Let 0 < α < θ and Ω be a bounded measurable open set in X with α-property. If ω ∈ Φθ−α , then the potential
operator Iα is bounded from Hω

0 (Ω) to Hωα (Ω). In particular, it is bounded from Hλ
0 (Ω) to Hλ+α(Ω) if λ + α < 1.

Proof. We only have to adjust the proof in [14] for our goals. That proof was based on the direct estimation of the continuity
modulus of the potential (see Theorem 3.4 in [14]) via the representation

(Iα f )(x) − (Iα f )(y) =


ϱ(x,z)<2h

[f (z) − f (x)]ϱ(x, z)α−Ndµ(z) −


ϱ(x,z)<2h

[f (z) − f (x)]ϱ(y, z)α−Ndµ(z)

+


ϱ(x,z)>2h

[f (z) − f (x)]

ϱ(x, z)α−N

− ϱ(y, z)α−N
dµ(z)

+ f (x)


Ω


ϱ(x, z)α−N

− ϱ(y, z)α−N
dµ(z)

=: ∆1 + ∆2 + ∆3 + ∆4

for x, y ∈ Ω with ϱ(x, y) < h. The condition (5.7) was used in the proof of Theorem 3.4 in [14], only in the estimation of the
term

∆4 = f (x)[JΩ,α(x) − JΩ,α(y)],

while the estimates

|∆k| ≤ Chαω(f , h), k = 1, 2, and |∆3| ≤ Chθ

 d

h

ω(f , t)
t1+θ−α

dt, d = diamΩ, (5.8)

of the terms ∆1, ∆2 and ∆3 were proved without the assumption (5.7).
The term ∆4 is now estimated by means of Lemma 5.3. Note that condition (5.1) assumed in that lemma follows from

the assumption ω ∈ Φθ−α . This completes the proof. �

Remark 5.7. For simplicity, we dealt with the casewhereω(h) does not depend on x. Since in [14] the general case ofω(x, h)
was treated, Theorem 5.6 is extended in the same way to this case. The only changes in the formulation of Theorem 5.6 are
that the condition ω ∈ Φθ−α now should be interpreted as belongness of ω(x, h) to Φθ−α in variable h uniformly in x, and
we have to write ωα(x, h) = hαω(x, h). More interesting is the case where α may depend on x ∈ Ω andmay vanish at some
points of Ω , the effects of which were studied in [14], but this requires more efforts. We do not dwell on this case in this
paper.

6. The case of spatial and spherical potentials in Rn

6.1. Any domain in Rn possesses the α-property

We improve Lemma 3.8 from [15], where it was shown that the α-property holds for the so called uniform domains
(Jones domains) by proving that the validity of the α-property does not depend on the structure of the boundary, as stated
in the following lemma.

Lemma 6.1. Every domain in Rn has the α-property, 0 < α < 1.

Proof. To check the condition (4.3), we proceed as follows:

JΩ,α(x) =


|z−x|<δ(x)

dz
|z − x|n−α

+


|z−x|>δ(x)

dz
|z − x|n−α

= cn,αδ(x)α + A(x),

where A(x) :=


Ω\B(x,δ(x))
dz

|z−x|n−α and cn,α =
1
α
|Sn−1

|. (The above lines are written supposing that |Ω| < ∞, for simplicity;
if |Ω| = ∞, one should deal from the very beginning with the differences, as given in the sequel.)

Let for definiteness, δ(x) ≥ δ(y). We then proceed as follows

|JΩ,α(x, y)| ≤ cn,α |δ(x)α − δ(y)α| + |A(x) − A(y)|

≤ cn,α |δ(x)α − δ(y)α| +


Ω\B(x,δ(x))

 1
|z − x|n−α

−
1

|z − y|n−α

 dz
+


B(y,δ(y))

dz
|z − y|n−α

−


B(x,δ(x))

dz
|z − y|n−α

 =: D1 + D2 + D3.

The term D1 is estimated by Lemma 4.4. For D2, by the inequality (2.5) we have

D2 ≤ c|x − y|


Ω\B(Ω,δ(x))

dz
min{|z − x|n+1−α, |z − y|n+1−α}

.
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Recall that we have to make estimations for x, y ∈ Ω such that |x − y| < 1
2 max{δ(x), δ(y)}. We then have |z − y| ≥

|z − x| − |x − y| ≥ |z − x| −
1
2δ(x) > 1

2 |x − z|. Hence,

D2 ≤ c|x − y|


|z−x|>δ(x)

dz
|z − x|n+1−α

= c
|x − y|
δ(x)1−α

.

The term D3 is equal to

D3 =

cn,αδ(x)α −


|z|<δ(x)

dz
|z − (x − y)|n−α

 =
cn,αδ(x)α − JB(0,δ(x)),α(x − y)

 .
For the potential of a constant function over a ball there is known an exact expression in terms of the Gauss hypergeometric
function:

JB(0,R),α(x) = cn,αRαF


−
α

2
,
n − α

2
;
n
2
;
|x|2

R2


for x ∈ B(0, R);

see [15, Lemma 2.1]. Therefore,

JB(0,δ(x)),α(x − y) = cn,αδ(x)αF


−
α

2
,
n − α

2
;
n
2
;
|x − y|2

δ(x)2


if |x − y| < δ(x).

The Gauss function F

−

α
2 , n−α

2 ;
n
2 ; z


is analytic in the circle |z| < 1, bounded in any closed subcircle |z| ≤ 1 − ε, ε > 0.

Then, under our condition |x − y| < 1
2δ(x) we have

JB(0,δ(x)),α(x − y) = cn,αδ(x)α

1 + C(x, y)

|x − y|2

δ(x)2


,

where C(x, y) is a bounded function. Therefore,

D3 ≤ Cδ(x)α
|x − y|2

δ(x)2
≤ C

|x − y|
δ(x)1−α

,

which completes the proof. �

Theorem 5.6 and Lemma 6.1 yield the following statement.

Theorem 6.2. Let Ω be an arbitrary bounded domain in Rn, let f ∈ Hω(Ω) and f

x∈∂Ω

≡ f0 = const. If ω(h) satisfies the
assumptions of Theorem 5.6, then the potential IαΩ f , 0 < α < 1, has the following structure

IαΩ f (x) = f0a(x) + Kf (x), x ∈ Ω,

where K is an operator bounded from Hω(Ω) to Hωα (Ω), while the function a(x)(= JΩ,α(x)) is Lipschitz beyond the boundary
∂Ω and its Hölder properties near the boundary are described by the condition

|a(x) − a(y)| ≤ c
|x − y|

max{δ(x), δ(y)}1−α
.

6.2. The case of spherical potentials over caps

Now let Ω be an arbitrary surface domain on the unit sphere X = Sn
= {σ = (σ1, . . . , σn+1) : |σ | = 1} in Rn+1, we

will call it spherical cap. An application of Theorem 5.6 in this subsection is inspired by some applications [16] of spherical
harmonic analysis to a problem of aerodynamics (the cap Ω in [16] was the semisphere Sn

+
:= {σ ∈ Sn

: σn+1 > 0}). The
corresponding potential has the form

IαΩ f (ξ) =


Sn
+

f (σ ) dσ
|ξ − σ |n−α

, ξ ∈ Ω, (6.1)

where dσ is the Lebesgue surface area.

Lemma 6.3. Every spherical cap has the α-property, with respect to the potential (6.1), 0 < α < 1.

Proof. The statement of the lemma may be derived from Lemma 6.1. To this end, we make use of the stereographic
projection of Rn onto Sn in the space Rn+1:

ξ = s(x) = {s1(x), s2(x), . . . , sn+1(x)}, ξ ∈ Sn, x ∈ Rn (6.2)



S.G. Samko / Nonlinear Analysis 78 (2013) 130–140 139

where

sk(x) =
2xk

1 + |x|2
, k = 1, 2, . . . , n and sn+1(x) =

|x|2 − 1
|x|2 + 1

,

so that δ(ξ, ∂Sn
+
) → 0 ⇐⇒ |x| → 1.

This transforms spherical potential into the space potential and vice versa. Namely, the formula is valid:
Ω

f (σ ) dσ
|ξ − σ |n−α

= 2α(1 + |x|2)
n−α
2


Ω∗

f [s(y)] dy

|x − y|n−α(1 + |y|2)
n+α
2

, x ∈ Ω∗, (6.3)

(see for instance, [19, Section 2.4]) whereΩ∗ is the image ofΩ under the stereographicalmapping. (We use this opportunity
to note that the above formula in [19] contains a typo: the factor (1 + |x|2)

n−α
2 was lost there.) We suppose that the cap

Ω does not coincide with the whole sphere, this case being trivial. Then without losing generality, we may assume that
the pole (0, 0, . . . , 0, 1) of the stereographical projection lies outside Ω . Then Ω∗ is a bounded domain in Rn and the power
weights appearing in (6.3) are differentiable functions bounded from below and above, so that the α-property of the cap Ω

with respect to the spherical potential is reduced to that of the domain Ω∗ with respect to the spatial potential and then it
remains to apply Lemma 6.1. �

In view of Lemma 6.3, similarly to the previous subsection, from Theorem 5.6 we obtain that Theorem 6.2 remains valid
if the spatial potential is replaced by the spherical one and a domain Ω in Rn by a spherical cap on Sn.

Appendix. The function JΩ,α(x) in the case of the semisphere Ω = Sn
+

Let X = Sn, ϱ be the Euclidean distance between points on Sn and µ the Lebesgue surface measure, and Ω = Sn
+

:=

{σ ∈ Sn
: σn+1 > 0}. In this case the distance δ(σ ) := δ(σ , Ω) of the point σ ∈ Sn to the boundary of the semisphere is

calculated by the formula

δ(σ ) = C(σn+1)|σn|,

where

C(σn+1) =

 2

1 +


1 − σ 2

n+1

, 1 ≤ C(σn+1) ≤
√
2. (A.1)

Note that from the calculations below it is seen that JSn
+

,α(ξ) depends only on the last coordinate ξn+1. Observe also that
δ(ξ, ∂Ω) → 0 ⇐⇒ ξn+1 → 0, by (A.1).

Lemma A.1. Let 0 < α ≤ 1. Then the potential JSn
+

,α(ξ) has the following behaviour near the boundary ∂Ω = {ξ ∈ Sn
: ξn+1

= 0}:

JSn
+

,α(ξ) = c0 + 2c1ξα
n+1 + K(ξ), (A.2)

where c0 and c1 are the same as in Example (1) in Section 3, K ∈ Lip(Sn
+), K(ξ) = k(ξn+1) and k(0) = 0.

Proof. We use the stereographic projection (6.2) of Rn onto Sn. By formula (6.3) we have

JSn
+

,α(ξ) = 2α(1 + |x|2)
n−α
2


|y|>1

dy
1 + |y|2

 n+α
2 |x − y|n−α

(A.3)

=
2α(1 + |x|2)

n−α
2

|x|n−α


|y|<1

dy
1 + |y|2

 n+α
2 |x∗ − y|n−α

, (A.4)

where x∗
=

x
|x|2

, the last passage being made via the change of variables y →
y

|y|2
. Hence

JSn
+

,α(ξ) =
2α

1 + |x∗|2
α


|y|<1

dy
|x∗ − y|n−α

+ h(ξ), (A.5)

where the function

h(ξ) =
2α

1 + |x∗|2
α


|y|<1

(1 + |x∗
|
2)

n−α
2 −


1 + |y|2

 n+α
2

1 + |y|2
 n+α

2 |x∗ − y|n−α

dy
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is Lipschitzian (even continuously differentiable) for |x∗
| ≤ 1 ⇐⇒ ξn+1 ≥ 0. For the first term in (A.5), it remains to make

use of a result of [15] on estimation of potentials of a constant function over balls (see example (1) in Section 3) which yields
(A.2) after direct easy evaluations. �

Remark A.2. The potential JSn
+

,α(ξ) may be reduced to repeated one-dimensional integration by means of the known
representation of potentials of radial functions over balls via the Riemann–Liouville fractional integrals:

1
γn(α)


|y|<a

f (|y|)dy
|x − y|n−α

= 2−αr2−n

I

α
2
0+


s
n−α
2 −1


I

α
2
a2−f

∗


(s)


(r2); (A.6)

see [6, formulae (2.17) and (2.18)] and f ∗(t) = f (
√
t) [20], see also [6, p. 590]. This implies

JSn
+

,α(ξ) =
2απ

n
2 (1 + r2)n−αr−2+n

Γ


α
2


Γ

 n−α
2

  r−2

0

s
n−α
2 −1

(r−2 − s)1−
α
2
ds

 1

s

dt

(1 + t)
n+α
2 (t − s)1−

α
2
,

=
2απ

n
2 (1 + r2)n−αr−2+n

Γ


α
2


Γ

 n−α
2

  r−2

0

s
n−α
2 −1B 1−s

2


α
2 , n

2


(1 + s)

n
2 (r−2 − s)1−

α
2
ds,

where r = |x| and Bx(p, q) is the incomplete beta-function.
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