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Abstract. In this paper we overview known and recently obtained results on
Morrey-Campanato spaces with respect to the properties of the spaces them-
selves, that is, we do not touch the study of operators in these spaces. In par-
ticular, we overview equivalent definitions of various versions of the spaces,
the so-called 𝜑- and 𝜃-generalizations, structure of the spaces, embeddings,
dual spaces, etc.
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1. Introduction

We started our studies of various operators in Morrey and Campanato-type spaces
several years ago, mainly in the case of maximal, singular and potential operators
in such spaces with variable exponents and Hardy operators in Morrey spaces
with constant exponents. We discovered that there existed a vast bibliography on
the subject counting many hundreds of publications, especially on applications to
differential equations. They include in particular the books A. Kufner, O. John
and S. Fuč́ık [63] (1977) and M. Giaquinta [40] (1983). We refer also to Section
27 of the book O.V. Besov, V.P. Il′in and S.M. Nikol′skĭı [13] (1996) (see also the
English translation [14, 15] of the first Russian edition of [13]) where an important
overview on anisotropic Morrey type spaces may be found.

The earliest overview on Morrey-Campanato spaces seems to be first given
in the paper J. Peetre [86] (1969). Probably the next one was M.H. Taibleson and
G. Weiss [104] (1979).

During the last several decades there was a kind of a boom in studies in
Morrey-Campanato-type spaces and their usage in applications, both enriching
each other. Many of them, as well as various old results, were not covered in the
existing surveys or books, but were of interest.

In the study of this topic and search of references, also in the historical ret-
rospective, we made many notes in our notebooks. Our personal overview of those
notes led us to the idea to collect and edit them, and publish it as a survey which
may be useful for others involved into research around the Morrey-Campanato-
type spaces.

This however led us to a manuscript exceeding one hundred pages, which is
not well suited for a paper. About 4/5 of that overview was naturally related to
the study of various operators, mainly classical operators of harmonic analysis,
in Morrey-Campanato-type spaces, and about 1/5 of it was connected with the
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spaces themselves, i.e., proper definitions of various versions of the spaces, study of
the structure of the spaces, preduals, etc. We made a decision to restrict ourselves
to this first portion. It is presented in this paper. We hope to submit the remaining
part for publication elsewhere. Note that in this paper we do not touch Sobolev-
Morrey and Besov-Morrey type spaces as well as other generalizations of such a
kind and refer a potential reader to Section 27 of the above cited books [13–15] and
the recent book [114] (2010) titled “Morrey and Campanato Meet Besov, Lizorkin
and Triebel”.

The subjects we touch in this overview may be seen from Contents. Inside
every Subsection we mainly follow the chronological order which more or less
corresponds to a natural way of generalization from the simple to more advanced.

We could have lost some references. Anyway, we tried to do our best through a
vast search in MathSciNet, MathNetRu and other sources. In the case the overview
occasionally proves to be not complete in this or other item, we will be grateful to
the readers for the indication of possible omissions. To be clear, we emphasize once
again that in this survey we do not touch mapping properties of operators, so that
many important papers on the behaviour of the classical operators of harmonic
analysis in Morrey and Campanato spaces remained beyond this overview. We are
aware of the fact that sometimes such a separation is rather relative because any
property of an operator in a space may be considered as a property of the space.
Nevertheless we had to follow the choice we made. Otherwise we would exceed any
reasonable limit for this paper.

2. Morrey spaces

2.1. Classical Morrey spaces

The spaces which bear the name of Morrey spaces were introduced in 1938 by C.
Morrey [71] in relation to regularity problems of solutions to partial differential
equations.

We start from the definition of these spaces. Let Ω ⊆ ℝ
𝑛 be an open set. We

denote 𝐵(𝑥, 𝑟) = 𝐵(𝑥, 𝑟) ∩ Ω, 𝑥 ∈ Ω, 𝑟 > 0, and ∣𝐴∣ will stand for the Lebesgue
measure of a measurable subset in ℝ

𝑛.

Definition 2.1 (Morrey spaces). Let 1 ≤ 𝑝 < ∞ and 𝜆 ≥ 0. The Morrey space
𝐿𝑝,𝜆(Ω) is defined as

𝐿𝑝,𝜆(Ω) =

{
𝑓 ∈ 𝐿𝑝(Ω) : sup

𝑥∈Ω;𝑟>0

1

𝑟𝜆

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 < ∞
}

. (1)

This is a Banach space with respect to the norm

∥𝑓∥𝐿𝑝,𝜆(Ω) := sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)1/𝑝

. (2)
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The space 𝐿𝑝,𝜆(Ω) is trivial when 𝜆 > 𝑛 (𝐿𝑝,𝜆(Ω) = {0}) and 𝐿𝑝,0(Ω) ∼=
𝐿𝑝(Ω) and 𝐿𝑝,𝑛(Ω) ∼= 𝐿∞(Ω). In the case 𝜆 ∈ (0, 𝑛], the space 𝐿𝑝,𝜆(Ω) is non-
separable.

Note that for these spaces sometimes another notation, 𝑀𝑝,𝑞, is used. Apart
from the choice of a different letter 𝑀 , the second parameter is also introduced
into the norm in a way different from (2), namely

∥𝑓∥𝑀𝑝,𝑞(Ω) := sup
𝑥∈Ω;𝑟>0

𝑟
𝑛
𝑞 −𝑛

𝑝 ∥𝑓∥𝐿𝑝( ˜𝐵(𝑥,𝑟)).

In this survey we mainly follow the notation in (1)–(2).

The local version of such spaces, with only one point 𝑥 = 0 taken into ac-
count, has a connection with studies of N. Wiener [111] (1930), [112] (1932), who
considered functions 𝑓 for which

1

𝑇 1−𝛼

∫ 𝑇
0

∣𝑓(𝑥)∣𝑝 d𝑥, 𝛼 ∈ (0, 1), 𝑝 = 1 or 𝑝 = 2

is limited in 𝑇 > 0 or tends to zero as 𝑇 → ∞. In the multidimensional case such
local spaces defined by the norm

∥𝑓∥𝐵𝑝 = sup
𝑟>0

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥)∣𝑝 d𝑥

)1/𝑝

(3)

appeared in A. Beurling [16] (1964) as the dual of the so-called Beurling algebra.
He also considered similar spaces with sup𝑟>1 instead of sup𝑟>0. Similar local Mor-
rey type spaces with the norm of type (3) where 1

∣𝐵(0,𝑟)∣ is replaced by 1
∣𝐵(0,𝑟)∣𝜆

appeared in V.S. Guliev [47] (1994), see also [50] (1996), and in J. Garćıa-Cuerva
and M.J.L. Herrero [38] (1994). In [38] and J. Alvarez, M. Guzmán-Partida and
J. Lakey [8] (2000) there were introduced the function space 𝐵𝑞,𝜆(ℝ𝑛) character-
ized by the norm

∥𝑓∥𝐵𝑝,𝜆 = sup
𝑟>1

(
1

∣𝐵(0, 𝑟)∣1+ 𝜆
𝑝

∫
𝐵(0,𝑟)

∣𝑓(𝑥)∣𝑝 d𝑥

)1/𝑝

(4)

(called inhomogeneous) and also its homogeneous version 𝐵̇𝑞,𝜆(ℝ𝑛) of type (4)
with the supremum taken over 𝑟 > 0.

Morrey spaces are a particular case of Campanato spaces considered in Sec-
tion 4 and we present many results for Morrey spaces in that section in the context
of Campanato spaces. Nevertheless, in this section we dwell on some results just
for Morrey spaces.

2.1.1. Embeddings in Morrey spaces. By application of the Hölder inequality to

integrals over 𝐵(𝑥, 𝑟) the embedding for Morrey spaces follows:

Theorem 2.2. Let 1 ≤ 𝑝 ≤ 𝑞 < ∞ and let 𝜆, 𝜈 be non-negative numbers. Then

𝐿𝑞,𝜈(Ω) ↪→ 𝐿𝑝,𝜆(Ω) (5)
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under the condition
𝜆 − 𝑛

𝑝
≤ 𝜈 − 𝑛

𝑞
(6)

if ∣Ω∣ is finite and the condition

𝜆 − 𝑛

𝑝
=

𝜈 − 𝑛

𝑞
(7)

if ∣Ω∣ is infinite.
Condition (6) is necessary and sufficient for embedding (5) in case of “nice”

sets Ω, see L.C. Piccinini [89] (1969), where Ω = 𝑄0 was a cube in ℝ
𝑛, see also a

similar result for a modification 𝐿𝑝,𝜆𝑟 , 𝑝, 𝑟 ∈ [1,∞) of Morrey spaces in Y. Furusho
[36] (1980). This modification is introduced as follows: let 𝑆 be the family of all
systems 𝑆 = {𝑄𝑗 :

∪
𝑄𝑗 ⊂ 𝑄0} consisting of a finite number of non-intersecting

parallel subcubes 𝑄𝑗 , and let ∥𝑢∥𝐿(𝑝,𝜆)(𝑄𝑗) = sup𝑄⊂𝑄𝑗 ∣𝑄∣𝜆−𝑛𝑛𝑝 ∥𝑢∥𝐿𝑝(𝑄), and

∥𝑢∥𝐿𝑝,𝜆𝑟 (𝑄0)
= sup
𝑆∈𝑆

⎧⎨⎩ ∑
𝑄𝑗∈𝑆

∥𝑢∥𝑟𝐿(𝑝,𝜆)𝑄𝑗

⎫⎬⎭
1/𝑟

;

there is proved a necessary and sufficient condition for the validity of the embed-
ding 𝐿𝑝,𝜆𝑟 ↪→ 𝐿𝑞,𝜇𝑠 in the case of 𝑛/𝑟 − 𝜆/𝑝 ≤ 1 and 𝑛/𝑠 − 𝜇/𝑞 ≤ 1.

See also embedding theorems for Campanato spaces in Subsection 4.1.

2.1.2. Hölder’s inequality. For Morrey spaces the following Hölder type inequality
holds (obtained by application of the usual Hölder inequality to integrals over

𝐵(𝑥, 𝑟), see for instance Lemma 11 in P. Olsen [78] (1995)).

Theorem 2.3 (Hölder’s inequality in Morrey spaces). Let 𝑓 ∈ 𝐿𝑝,𝜆(Ω) and 𝑔 ∈
𝐿𝑞,𝜇(Ω). Then

∥𝑓𝑔∥𝐿𝑟,𝜈(Ω) ≤ ∥𝑓∥𝐿𝑝,𝜆(Ω)∥𝑔∥𝐿𝑞,𝜇(Ω), (8)

where 1 ≤ 𝑝 < ∞, 1 ≤ 𝑞 < ∞, 1
𝑝 + 1

𝑞 ≥ 1 and

1

𝑟
=

1

𝑝
+

1

𝑞
,

𝜈

𝑟
=

𝜆

𝑝
+

𝜇

𝑞
.

2.1.3. Weak Morrey spaces. Weak Morrey-Campanato spaces appeared already
in the paper by S. Spanne [100] (1966), see also Subsection 4.3. Such weak-type
Morrey spaces defined by the condition

sup
𝑡>0
𝑥∈Ω

𝑡𝑝∣{𝑦 ∈ Ω : ∣𝑓(𝑦)∣ > 𝑡} ∩ 𝐵(𝑥, 𝑟)∣ ≤ 𝐶𝑟𝜆

where Ω ⊂ ℝ
𝑛, were used by M. Ragusa [91] (1995). In the paper C. Miao and B.

Yuan [70] (2007) weak Morrey spaces 𝑀∗
𝑝,𝜆 were defined in a more general setting
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in terms of Lorentz spaces of functions initially defined on non-atomic measurable
spaces. For the spaces 𝑀∗

𝑝,𝜆 = {𝑓 : ∥𝑓∥∗𝑝,𝜆 < ∞} introduced via the norm

∥𝑓∥∗𝑝,𝜆 = sup
𝑥,𝑟

𝑟−
𝜆
𝑝 sup
𝑡>0

𝑡𝜇 {𝑦 : ∣𝑓(𝑦)∣ > 𝑡, 𝑦 ∈ 𝐵(𝑥, 𝑟)}

there were proved an embedding theorem and a convexity property.

2.1.4. Interpolation. G. Stampacchia [101] (1964), [102] (1965) and S. Campanato
& M. Murthy [21] (1965) proved interpolation properties of Morrey spaces (in fact
they obtained the result for the more general space, now called Campanato space,
see its definition in Section 4). Loosely speaking, they proved (in the spirit of
Riesz-Thorin interpolation theorem) that if 𝑇 is a bounded linear operator from
𝐿𝑞𝑖 to 𝐿𝑝𝑖,𝜆𝑖 , 𝑖 = 1, 2, then 𝑇 is bounded from 𝐿𝑞 to 𝐿𝑝,𝜆 for the corresponding
intermediate values of 𝑝, 𝑞 and 𝜆, see the precise formulation in Theorem 4.5 in
the setting of Campanato spaces. The conclusion in the other direction is false,
see the comments after Theorem 4.5.

2.1.5. Preduals. Recall that for a given normed space 𝑋 , a normed space 𝑌 is
called predual of 𝑋 , if 𝑋 is dual of 𝑌 .

Preduals of Morrey spaces were studied by some authors, namely by C. Zorko
[115] (1986), D.A. Adams [3] (1988), E.A. Kalita [57] (1998) and D.R. Adams and
J. Xiao [4] (2004). Following D.R. Adams and J. Xiao, we denote the preduals
obtained in [115], [57] and [4] by 𝑍𝑞,𝜆, 𝐾𝑞,𝜆 and 𝐻𝑞,𝜆, respectively, 𝑞 = 𝑝

𝑝−1 . The

first two spaces are defined by the following norms

∥𝑓∥𝑍𝑞,𝜆 = inf

{
∥{𝑐𝑘}∥ℓ1 : 𝑓 =

∑
𝑘

𝑐𝑘𝑎𝑘

}
where 𝑎𝑘 is a (𝑞, 𝜆)-atom and the infimum is taken with respect to all possible
atomic decompositions of 𝑓 (a function 𝑎 on ℝ

𝑛 is called a (𝑞, 𝜆)-atom, if it is

supported on a ball 𝐵 ⊂ ℝ
𝑛 and ∥𝑎∥𝑞 ≤ ∣𝐵∣− 𝜆

𝑛𝑝 ); note that in C. Zorko [115] the
predual was introduced in a more general setting of generalized Morrey spaces;

∥𝑓∥𝐾𝑞,𝜆 = inf
𝜎

(∫
ℝ𝑛

∣𝑓(𝑥)∣𝑞𝜔1−𝑞
𝜎 (𝑥) d𝑥

)1/𝑞

,

with

𝜔𝜎(𝑥) =

∫
ℝ
𝑛+1
+

𝑟−𝜆1ℝ1
+

(𝑟 − ∣𝑥 − 𝑦∣) d𝜎(𝑦, 𝑟),

where the infimum is taken over all non-negative Radon measures 𝜎(𝑦, 𝑟) on ℝ
𝑛+1
+

with the normalization 𝜎(ℝ𝑛+1
+ ) = 1;

∥𝑓∥𝐻𝑞,𝜆 = inf
𝜔

(∫
ℝ𝑛

∣𝑓(𝑥)∣𝑞𝜔1−𝑞(𝑥) d𝑥

)1/𝑞

,
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where the infimum is taken over all nonnegative functions on ℝ
𝑛 satisfying the

condition

∥𝜔∥
𝐿1(Λ

(∞)
𝜆 )

≤ 1, (9)

with the 𝜆-dimensional Hausdorff capacity Λ
(∞)
𝜆 , the introduction of the latter

norm in [4] being based on the previous studies in [3].

As shown in [4], for 1 < 𝑝 < ∞, 0 < 𝜆 < 𝑛,

𝑍𝑞,𝜆 = 𝐾𝑞,𝜆 = 𝐻𝑞,𝜆 with ∥𝑓∥𝑍𝑞,𝜆 ∼ ∥𝑓∥𝐾𝑞,𝜆 ∼ ∥𝑓∥𝐻𝑞,𝜆
and the Morrey space may be characterized in terms of its predual by the following
theorem.

Theorem 2.4. Let 1 < 𝑝 < ∞, 0 < 𝜆 < 𝑛. Then

∥𝑓∥𝐿𝑝,𝜆 = sup
𝜔

( ∫
ℝ𝑛

∣𝑓(𝑥)∣𝑝𝜔(𝑥) d𝑥

)1/𝑝

where the supremum is taken with respect to all nonnegative functions on ℝ
𝑛 sat-

isfying the condition (9).

An interested reader may be also referred to Sections 5–7 of [4] with respect
to Morrey type capacities.

In the case of Campanato spaces, M.H. Taibleson and G. Weiss [105] (1980)
proved that they are dual to some Hardy spaces.

2.1.6. Vanishing Morrey spaces 𝑽 𝑳𝒑,𝝀. Morrey space 𝐿𝑝,𝜆, as noted, is not sep-
arable in the case 𝜆 > 0. A version of Morrey space where it is possible to ap-
proximate by “nice functions” is the so-called vanishing Morrey space 𝑉 𝐿𝑝,𝜆(Ω)
introduced by C. Vitanza [110] (1990). This is a subspace of functions in 𝐿𝑝,𝜆(Ω),
which satisfy the condition

lim
𝑟→0

sup
𝑥∈ℝ

𝑛

0<𝜚<𝑟

1

𝜚𝜆

∫
˜𝐵(𝑥,𝜚)

∣𝑓(𝑦)∣𝑝 d𝑦 = 0. (10)

2.1.7. Different underlying spaces. The spaces 𝐿𝑝,𝜆 may be introduced on sets of
different nature, for instance, an 𝑛-dimensional compact manifold via local charts
(see M. Geisler [39] (1988)) where the spaces introduced in this way were char-
acterized in terms of geodesic distances and other quantities on the manifold. In
Subsection 2.2 we touch a more general setting when the underlying space is a
quasimetric measure space. Morrey spaces and their generalizations in the case
where the underlying spaces is the Heisenberg group were studied in V. Gulyiev
[50] (1996).



300 H. Rafeiro, N. Samko and S. Samko

2.1.8. Anisotropic Morrey spaces. Morrey spaces corresponding to anisotropic dis-
tances appeared first in G. Barozzi [12] (1965) defined in the following way. Let
Ω ⊂ ℝ

𝑛 be a bounded open set, 𝑝 ≥ 1 and 0 ≤ 𝜆 ≤ 𝑛. Let 𝑚 = (𝑚1, . . . ,𝑚𝑛)
be an 𝑛-tuple of non-negative numbers, 𝑚𝑗 ≥ 1 and 𝑚 = max(𝑚1, . . . ,𝑚𝑛). Let
𝐵𝑚(𝑥, 𝑟) = {𝑦 ∈ Ω : 𝑑𝑚(𝑥, 𝑦) < 𝑟} be an anisotropic ball defined by the distance

𝑑𝑚(𝑥, 𝑦) =

⎛⎝ 𝑛∑
𝑗=1

∣𝑥𝑗 − 𝑦𝑗∣𝑚𝑗
⎞⎠1/𝑚

.

Then the corresponding Morrey space is introduced by the condition

sup
𝑥,𝑟

1

𝑟𝜆

∫
𝐵𝑚(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 < ∞.

The corresponding anisotropic Sobolev spaces were also introduced in [12].

In a more general setting such anisotropic Morrey spaces were later studied
by V.P. Il′in in [52] (1959), [53](1971), see the presentation of the latter results
also in Section 27 of the book [13].

Morrey spaces with integral means over one-parametrical ellipsoids were in-
troduced in L. Softova in [98] (2007) with the aim to study anisotropic singular
integrals. Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) be a given vector with 𝛼𝑖 ≥ 1, 𝑖 = 1, . . . , 𝑛, and

E𝛼(𝑥, 𝑟) =

{
𝑦 ∈ ℝ

𝑛 :

𝑛∑
𝑘=1

(𝑥𝑘 − 𝑦𝑘)
2

𝑟2𝛼𝑘
< 1

}
(11)

be an ellipsoid centered at the point 𝑥 ∈ ℝ
𝑛. Then the anisotropic space 𝐿𝑝,𝜆(ℝ𝑛)

localized at the origin and corresponding to the given vector 𝛼, is defined by the
norm

∥𝑓∥𝑝,𝜆 = sup
𝑟>0

(
1

𝑟𝜆

∫
E𝛼(0,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)1/𝑝

< ∞. (12)

See also Subsection 3.1 for the generalized anisotropic Morrey spaces of such a
kind introduced in L. Softova [97] (2006).

Anisotropic Morrey spaces 𝐿𝑝,𝜆(Ω), 𝜆 = (𝜆1, . . . , 𝜆𝑛) may be also introduced,
with means taken over rectangles centered at the point 𝑥 with independent lengths
of sides. Such spaces ℒ𝑝,𝜆1,𝜆2(ℝ2

+) were introduced in L.-E. Persson and N. Samko
[88] (2010) for the case Ω = ℝ

2
+ by the norm

∥𝑓∥ℒ𝑝,𝜆1,𝜆2 = sup
𝑥1>0,𝑥2>0
𝑟1>0,𝑟2>0

(
1

𝑟𝜆11 𝑟𝜆22

∫ 𝑥1+𝑟1
(𝑥1−𝑟1)+

∫ 𝑥2+𝑟2
(𝑥2−𝑟2)+

∣𝑓(𝑦1, 𝑦2)∣𝑝 d𝑦1 d𝑦2

)1/𝑝

(13)
with the aim to study two-dimensional Hardy operators in such spaces.
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2.1.9. Miscellaneous. As is well known, Morrey spaces have been generalized or
modified in various ways in order to obtain existence and uniqueness of solutions
to partial differential equations. One of such modifications, 𝐿𝑝,𝜆(Ω, 𝑡) introduced
in M. Transirico et al. [108] (1995) (with 𝑡 = 1) and A. Canale et al. [22] (1998),
is aimed to better reflect the local nature of solutions, first of all for unbounded
domains, being defined by the norm

∥𝑓∥𝐿𝑝,𝜆(Ω,𝑡) = sup
𝑥∈Ω

0<𝑟<𝑡

(
1

𝑟𝜆

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)1/𝑝

;

in [22] the corresponding Sobolev spaces were also dealt with.

In P. Cavaliere, G. Manzo and A. Vitolo [23](1996) Morrey spaces were inten-
tionally studied on unbounded domains with the main emphasis on the connection
between Morrey type and BMO spaces and embedding and density results involv-
ing the continuity of the translation operator.

Another modification of Morrey spaces is known under the name of Stummel
class introduced in M.A. Ragusa and P. Zamboni [92] (2001) (with the goal to
obtain a better version of the Sobolev type embedding). The Stummel class is
defined, for 0 < 𝑝 < 𝑛, as

𝑆𝑝 =

{
𝑓 ∈ 𝐿1

loc(ℝ
𝑛) : lim

𝑟→0
𝜂(𝑟) = 0, 𝜂(𝑟) = sup

𝑥∈ℝ𝑛

∫
∣𝑥−𝑦∣<𝑟

∣𝑓(𝑦)∣
∣𝑥 − 𝑦∣𝑛−𝑝 d𝑦

}
,

which is the Stummel-Kato class in the case 𝑝 = 2. Note that
𝜂(𝑟) ≥ sup

𝑥∈ℝ𝑛

1
𝑟𝑛−𝑝

∫
∣𝑥−𝑦∣<𝑟

∣𝑓(𝑦)∣ d𝑦.

In general 𝐿1,𝜆 is contained in 𝑆𝑝, if 𝜆 > 𝑛− 𝑝, and in the case 𝜂(𝑟) ∼ 𝑟𝛼 the
following equivalence holds:

𝑓 ∈ 𝑆𝑝 ⇐⇒ 𝑓 ∈ 𝐿1,𝑛−𝑝+𝛼,

see Lemma 1.1 in [92]. Some versions of Stummel classes with 𝜂 different from
powers are also studied there, which corresponds to the generalized Morrey spaces
studied in Subsection 3.

S. Leonardi [64] (2002) introduced a similar version of such a space, defined
by the norm

∥𝑓∥𝑁𝑝,𝜆(Ω) := sup
𝑥∈Ω

{∫
Ω

∣𝑓(𝑦)∣𝑝
∣𝑥 − 𝑦∣𝜆 d𝑦

}1/𝑝

and proved a certain version of the Miranda-Talenti inequality in terms of Sobolev
type spaces related to the norms ∥𝑓∥𝑁𝑝,𝜆(Ω).

A more general hybrid of Morrey and Stummel type spaces, the space denoted

by 𝑀𝑝,𝜆
𝛽 (𝑋,𝜇), was introduced in Eridani, V. Kokilashvili and A. Meskhi [34] on
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a quasi-metric measure space (𝑋, 𝜌, 𝜇), with the norm defined by

∥𝑓∥𝑀𝑝,𝜆
𝛽

:= sup
𝑥∈𝑋
𝑟>0

(
1

𝑟𝜆

∫
𝜌(𝑥,𝑦)<𝑟

∣𝑓(𝑦)∣𝑝𝜌𝛽(𝑥, 𝑦) d𝜇(𝑦)

)1/𝑝

.

2.2. Morrey spaces over ℝ𝒏 in case of a general measure

Y. Sawano and H. Tanaka [95] (2005) introduced Morrey spaces in ℝ
𝑛, but with

a Radon measure 𝜇 as follows

M 𝑝
𝑞 (𝑘, 𝜇) =

{
𝑓 : sup

𝑄
∣𝜇(𝑘𝑄)∣ 1𝑝− 1

𝑞

(∫
𝑄

∣𝑓 ∣𝑞 d𝜇

)1/𝑞

< ∞
}

, (14)

where 𝑄 is a closed cube whose edges are parallel to the coordinate axes and it
is supposed that the measure 𝜇 is not necessarily a doubling measure but satisfies
the growth condition

𝜇(𝐵(𝑥, 𝑟)) ≤ 𝑐0 𝑟ℓ

for some fixed constants 𝑐0 > 0 and ℓ ∈ (0, 𝑛], and 𝜇(𝑄) > 0. It is shown that
the definition of the space does not depend on the choice of the parameter 𝑘 > 1,
that is,

M 𝑝
𝑞 (𝑘1, 𝜇) = M 𝑝

𝑞 (𝑘2, 𝜇) (15)

for all 𝑘1 > 1, 𝑘2 > 1, up to equivalence of norms. More precisely

∥𝑓∥M𝑝
𝑞 (𝑘1,𝜇)

≤ ∥𝑓∥M𝑝
𝑞 (𝑘2,𝜇)

≤ 𝐶𝑛

(
𝑘1 − 1

𝑘2 − 1

)𝑛
∥𝑓∥M𝑝

𝑞 (𝑘1,𝜇)
(16)

for 1 < 𝑘1 < 𝑘2 < ∞, see formula (3) in [96]. In [96] there was also made a
comparison of the space M 𝑝

𝑞 (2, 𝜇) with the space M 𝑝
𝑞 (1, 𝜇), the latter being defined

with the usage of cubes 𝑄 which only satisfy the condition 𝜇(𝑘𝑄) ≤ 𝛽𝜇(𝑄) with

𝛽 > 𝑘
𝑛𝑝𝑞
𝑝−𝑞 where 𝑘 > 1 is fixed and the measure 𝜇 does not necessarily satisfies

the growth condition or the doubling condition. This comparison includes also the
case of vector-valued Morrey spaces M 𝑝

𝑞 (ℓ𝑟, 𝜇) defined by

∥𝑓𝑗∥M𝑝
𝑞 (ℓ𝑟 ,𝜇)

:= sup
𝑄∈𝒬(𝜇;𝑘;𝛽)

𝜇(𝑄)
1
𝑝− 1

𝑞

(∫
𝑄

∥𝑓𝑗∥𝑞ℓ𝑟 d𝜇

)1/𝑞

< ∞.

For similar results on Campanato spaces, we refer to Section 4.

For Morrey spaces in a more general setting of abstract quasimetric measure
spaces see Subsection 3.1.

3. Generalized Morrey spaces

Recall that the classical Morrey space is defined by the norm.

∥𝑓∥𝐿𝑝,𝜆(Ω) := sup
𝑥∈Ω

∥∥∥∥ 1

𝑟
𝜆
𝑝

∥𝑓∥𝐿𝑝( ˜𝐵(𝑥,𝑟))

∥∥∥∥
𝐿∞(0,𝑑)

, 𝑑 = diam Ω. (17)
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There are known two types of generalizations of Morrey spaces. The first is to
replace the power function 𝑟𝜆 by a function 𝜑(𝑟) (or more generally 𝜑(𝑥, 𝑟)),
usually with some quasi monotonicity type conditions with respect to 𝑟. Another
way is to replace the 𝐿∞(0, 𝑑)-norm by 𝐿𝜃(0, 𝑑)-norm, 0 < 𝜃 < ∞. For brevity,
we will call these by 𝜑-generalizations and 𝜃-generalizations. Both ways may be
naturally mixed.

3.1. 𝝋-generalizations

Let 𝑋 be a quasimetric space with a Borel measure 𝜇. The generalized Morrey
space is defined by the (quasi)norm

∥𝑓∥𝑝,𝜑 = sup
𝑥,𝑟

(
1

𝜑(𝑥, 𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)

)1/𝑝

, 0 < 𝑝 < ∞, (18)

where 𝐵(𝑥, 𝑟) is a ball in X and the non-negative function 𝜑 is subject to some
restrictions, usually related to monotonicity-type conditions in 𝑟. Generalized Mor-
rey spaces, 𝐿𝑝,𝜑,𝑆, of such a type seem to first appear in the paper G.T. Dzhu-
makaeva and K. Zh. Nauryzbaev [31] (1982), where the norm is introduced by

∥𝑓∥𝑝,𝜑,𝑆 = sup
𝐸∈𝑆

1

𝜑(∣𝐸∣)
(∫
𝐸∩Ω

∣𝑓(𝑦)∣𝑝 d𝑦

)1/𝑝

< ∞,

1 ≤ 𝑝 < ∞, Ω is a domain of finite measure in ℝ
𝑛, 𝑆 is the family of all measurable

subsets of Ω and 𝜑(𝑟) is a positive nondecreasing function on ℝ
1
+. Under the

assumption that 𝜑(𝑟) = 1 for 𝑟 ≥ 1 and that 𝜑𝑝(𝑟) is concave in (0, 1), in [31] there

was proved that 𝐿𝑝,𝜑,𝑆(Ω) ⊂ 𝐿𝑞(Ω), 𝑝 < 𝑞 ≤ ∞, if and only if
∫ 1

0 𝑟−𝑞/𝑝𝜑𝑞(𝑟) d𝑟 <
∞, with the corresponding interpretation for 𝑞 = ∞.

The generalized Morrey spaces 𝐿𝑝,𝜑(Ω) defined by the norm

∥𝑓∥𝑝,𝜑 = sup
𝑥,𝑟

(
1

𝜑(𝑟)

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)

)1/𝑝

, 1 ≤ 𝑝 < ∞, (19)

were studied in the paper C. Zorko [115] (1986) in a more general setting of Cam-
panato spaces, see Section 4. We mention the result from [115, Prop. 2] stating
that the zero continuation of a function 𝑓 ∈ 𝐿𝑝,𝜑(Ω) belongs to 𝐿𝑝,𝜑(ℝ𝑛) under the
assumption that the function 𝜑 is nondecreasing. In [115, Prop. 3] there was also
shown a possibility to approximate by nice functions in the subspace of 𝐿𝑝,𝜑(ℝ𝑛)
defined by the condition lim𝑦→0 ∥𝑓(⋅−𝑦)−𝑓(⋅)∥𝐿𝑝,𝜑 = 0 (recall that Morrey spaces
are not separable).

Often the (quasi)norm in such a generalized Morrey space is taken in the
form

∥𝑓∥𝐿𝑝𝜓 = sup
𝐵(𝑥,𝑟)

1

𝜓(𝑥, 𝑟)

(
1

𝜇(𝐵(𝑥, 𝑟))

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝜇(𝑦)

)1/𝑝

, 0 < 𝑝 < ∞,

(20)
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in particular in the form

∥𝑓∥𝐿𝑝𝜓(𝑤) = sup
𝐵

1

𝜓(∣𝐵∣)
(

1

∣𝐵∣
∫
𝐵

∣𝑓(𝑦)∣𝑝 𝑤(𝑦) d𝑦

)1/𝑝

, 0 < 𝑝 < ∞, (21)

in the case 𝑋 = ℝ
𝑛.

With the norm of form (18), such spaces appeared in E. Nakai [72] (1994)
for 𝑋 = ℝ

𝑛, and the spaces 𝐿𝑝𝜓(𝑋) with the (quasi)norm (21) in J. Alvarez and

C. Pérez [9] (1994) and with the norm (20) in E. Nakai [73] (1997).

In [73] there were studied the pointwise multipliers from such a space 𝐿𝑝𝜓(𝑋)

to another one of similar type. Let PWM(𝐸,𝐹 ) denote the set of pointwise mul-
tipliers from 𝐸 to 𝐹 . Under some assumptions on 𝜓1 and 𝜓2, it was proved that

PWM(𝐿𝑝1𝜓1
, 𝐿𝑝2𝜓2

) = 𝐿𝑝3𝜓3
, (22)

where 1/𝑝1 + 1/𝑝3 = 1/𝑝2, 0 < 𝑝2 < 𝑝1 < ∞ and 𝜓3 = 𝜓2/𝜓1. In E. Nakai [74]
(2000) there were obtained necessary conditions on 𝑝𝑖 and 𝜓𝑖 for (22) to be valid,
and sufficient conditions for PWM(𝐿𝑝1𝜓1

, 𝐿𝑝2𝜓2
) = {0}.

In the paper H. Arai and T. Mizuhara [10] (1997) the generalized Morrey
spaces with the norm of the type (18) were considered within the framework of
homogeneous underlying space, normal in the sense of Maćıas and Segovia [67],
under the assumption that 𝜑(𝑥, 𝑟) is increasing in 𝑟 and satisfies the doubling
condition uniformly in 𝑥. There was proved a general theorem which allows to
obtain estimates of the form

∥𝐹∥𝐿𝑝,𝜑 ≤ 𝐶∥𝐺∥𝐿𝑞,𝜑
from estimates of the form

∫
𝐹 𝑝𝑤𝑑𝜇 ≤ 𝐶

∫
𝐺𝑞𝑤𝑑𝜇, where 𝑤 ranges some sub-

classes of the Muckenhoupt class 𝐴1(𝜇). This important result was used to obtain
Morrey space estimates for various classical operators.

Relations between the generalized Morrey spaces with the norm (21) and
the corresponding Stummel classes (see section 2.1.9) were studied in Eridani and
H. Gunawan [33] (2005), the results adjoin to those for the case where 𝜓 is a power
function.

In E. Nakai [75] (2006) the generalized Morrey spaces, with the norm defined
as in (20), appeared in the case where the underlying space 𝑋 was a homogeneous
metric measure space.

In L. Softova [97] (2006) and [98] (2007) there were introduced the generalized
anisotropic Morrey spaces with the aim to study anisotropic singular integrals.
Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) be a given vector with 𝛼𝑖 ≥ 1, 𝑖 = 1, . . . , 𝑛, and E𝛼(𝑥, 𝑟) the
ellipsoid defined in (11). Then the anisotropic space 𝐿𝑝,𝜑,𝛼(ℝ𝑛) is defined by the
norm

∥𝑓∥𝑝,𝜑,𝛼 = sup
𝑥,𝑟

(
1

𝜑(𝑥, 𝑟)

∫
E𝛼(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)1/𝑝

< ∞.
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As a generalization of results from Y. Sawano and H. Tanaka [95] (see Sub-
section 2.2), Y. Sawano in [94] (2008) dealt with the generalized Morrey spaces
defined by the condition

sup
𝑄

(
1

𝜑(𝜇(𝑘𝑄))

∫
𝑄

∣𝑓 ∣𝑝 d𝜇

)1/𝑝

< ∞,

where 1 ≤ 𝑝 < ∞, 𝑘 > 1, 𝜑 is an increasing function, 𝑄 is a cube with edges
parallel to the coordinate axes, and 𝜇 is a positive Radon measure, non necessarily
satisfying the doubling condition. The independence of such spaces on the choice
of 𝑘 > 1, as in (15)–(16), is extended to this setting.

Y. Komori and S. Shirai [60] (2009) considered the generalized Morrey spaces
𝐿𝑝,𝜅(𝑤), defined by the norm

∥𝑓∥𝐿𝑝,𝜅(𝑤) = sup
𝑄

(
1

𝑤(𝑄)𝜅

∫
𝑄

∣𝑓(𝑥)∣𝑝𝑤(𝑥) d𝑥

)1/𝑝

, 𝑤(𝑄) =

∫
𝑄

𝑤(𝑥) d𝑥, (23)

where 0 < 𝜅 < 1 and the supremum is taken over all cubes in ℝ
𝑛, which is nothing

else, but the usual Morrey space with respect to the measure 𝜇(𝐸) =
∫
𝐸

𝑤(𝑥) d𝑥;
the authors called this space weighted. Note that if we interpret the space 𝐿𝑝,𝜅(𝑤)
as a weighted generalized Morrey space, then given the function 𝑤, the function
𝜑 = 𝑤𝜅 already defines the generalized Morrey space, this meaning that the space
𝐿𝑝,𝜅(𝑤), introduced in this way, is not a space with an arbitrary weight, but with
a special weight equal to a power of the function 𝜑.

3.2. 𝜽-generalizations

A Morrey-type space with sup𝑟>0 replaced by the ∥⋅∥𝐿𝜃(0,∞)-norm first appeared
in D.R. Adams [5], p. 44 (1981) with the norm defined by

∥𝑓∥𝐿𝑝,𝜃,𝜆(ℝ𝑛) := sup
𝑥∈ℝ𝑛

⎛⎝∫ ∞

0

(
1

𝑟𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)𝜃/𝑝
d𝑟

𝑟

⎞⎠1/𝜃

(24)

where the corresponding Sobolev type theorem for the Riesz potential operator
was stated. Spaces with both 𝜃- and 𝜑-generalization, but “localized” to the point
𝑥 = 0, with the norm

∥𝑓∥𝐿𝑝,𝜃,𝜑
loc,0

(ℝ𝑛) :=

⎛⎝∫ ∞

0

(
1

𝜑(𝑟)

∫
𝐵(0,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)𝜃/𝑝
d𝑟

𝑟

⎞⎠1/𝜃

(25)

were introduced and intensively studied by V.S. Guliyev [47] (1994) together with
the study of the classical operators in these spaces, see also the books V.S. Guliyev
[50] (1996) and [51] (1999) where these results were presented for the case when the
underlying space is the Heisenberg group or a homogeneous group, respectively.
Note that these investigations appeared in fact independently of the development
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of the main trends in the theory of Morrey spaces and their applications. They
had as a background the usage of the local characteristics

Ω(𝑓, 𝑟) =

∫
ℝ𝑛∖𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦 and Ω∗(𝑓, 𝑟) =

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

widely used in Baku mathematical school (A.A. Babaev and his students) for a
characterization of weighted Hölder and other spaces, we refer for instance to the
papers [11] and [1], [2].

In the case 𝜃 = 𝑝 the spaces 𝐿𝑝,𝜃,𝜑loc,0 (ℝ𝑛) coincide with a certain weighted
Lebesgue spaces:

𝐿𝑝,𝑝,𝜑loc,0 (ℝ𝑛) = 𝐿𝑝(ℝ𝑛, 𝑤), 𝑤(𝑥) =

∫ ∞

∣𝑥∣

d𝑟

𝑟𝜑(𝑟)
.

In a series of papers by V. Burenkov, H. Guliyev and V. Guliyev related to
such spaces, this “localized” version with the norm (25), where 𝑝, 𝜃 ∈ (0,∞), was
called “local Morrey-type space” and the version with the norm

∥𝑓∥𝐿𝑝,𝜃,𝜑(ℝ𝑛) := sup
𝑥∈ℝ𝑛

⎛⎝∫ ∞

0

(
1

𝜑(𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝 d𝑦

)𝜃/𝑝
d𝑟

𝑟

⎞⎠1/𝜃

, (26)

the “global Morrey-type space”, with 𝑝, 𝜃 ∈ (0,∞). As shown in V.I. Burenkov
and H. Guliyev [18] (2004), such space 𝐿𝑝,𝜃,𝜑(ℝ𝑛) is “reasonable” under the as-
sumptions ∥∥∥∥ 1

𝜑1/𝑝

∥∥∥∥
𝐿𝜃(𝑡1,∞)

< ∞ and

∥∥∥∥∥ 𝑟
𝑛
𝑝

𝜑1/𝑝

∥∥∥∥∥
𝐿𝜃(0,𝑡2)

< ∞

for some 𝑡1, 𝑡2 ∈ (0,∞), being trivial (𝐿𝑝,𝜃,𝜑(ℝ𝑛) = ∅) if one of these conditions is

violated; the space 𝐿𝑝,𝜃,𝜑loc,0 is also trivial if the second condition is violated, and the

function in 𝐿𝑝,𝜃,𝜑loc,0 must vanish in a sense at the origin, if the first condition does
not hold.

4. Campanato spaces

Campanato spaces, also referred to sometimes as Morrey-Campanato spaces, were
introduced by S. Campanato [19] (1963) (in the case of bounded domains in ℝ

𝑛);
in 1964 they also appeared in the paper of G. Stampacchia [101]. They are a gener-
alization of the 𝐵𝑀𝑂 spaces of functions of bounded mean oscillation introduced
by F. John and L. Nirenberg [56] (1961) and defined, for open sets Ω ⊆ ℝ

𝑛, by
the seminorm

[𝑓 ]BMO := sup
𝑥,𝑟

1

∣𝐵(𝑥, 𝑟)∣

∫
˜𝐵(𝑥,𝑟)

∣∣∣𝑓(𝑦) − 𝑓
˜𝐵(𝑥,𝑟)

∣∣∣d𝑦.



Morrey-Campanato Spaces: an Overview 307

4.1. Definitions and basic facts

Definition 4.1 (Campanato spaces). Let Ω ⊆ ℝ
𝑛 be an open set, 1 ≤ 𝑝 < ∞ and

𝜆 ≥ 0. The Campanato space L 𝑝,𝜆(Ω) is defined as

L 𝑝,𝜆(Ω) :=
{
𝑓 ∈ 𝐿𝑝(Ω) : [𝑓 ]L 𝑝,𝜆(Ω) < ∞}

(27)

the Campanato seminorm being given by

[𝑓 ]L 𝑝,𝜆(Ω) := sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑓
˜𝐵(𝑥,𝑟)∣𝑝 d𝑦

)1/𝑝

or equivalently

sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆
inf
𝑐∈ℝ1

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑐∣𝑝 d𝑦

)1/𝑝

. (28)

The embedding theorem for Campanato spaces reads as follows (see [63,
p. 217])

Theorem 4.2. Let 1 ≤ 𝑝 ≤ 𝑞 < ∞ and let 𝜆, 𝜈 be non-negative numbers. If ∣Ω∣ is
finite then

L 𝑞,𝜈(Ω) ↪→ L 𝑝,𝜆(Ω) (29)

under the condition
𝜆 − 𝑛

𝑝
≤ 𝜈 − 𝑛

𝑞
. (30)

In G. Stampacchia [102] (1965) there was introduced Campanato-type space

L
(𝑝,𝜆)
𝑟 (𝑄0) where 𝑄0 is a cube in ℝ

𝑛 defined by the set of seminorms

𝐾(𝑄𝑗) := sup
𝑄⊂𝑄𝑗

(
1

∣𝑄∣1−𝜆/𝑛
∫
𝑄

∣𝑢(𝑥) − 𝑢𝑄∣𝑝 d𝑥

)1/𝑝

(31)

where {𝑄𝑗 : ∪𝑄𝑗 ⊂ 𝑄0} is a given family of cubes parallel to the cube 𝑄0, no two
of which have common interior points, and the condition

sup
{𝑄𝑗}

⎛⎝∑
𝑗

∣𝐾(𝑄𝑗)∣𝑟
⎞⎠

1
𝑟

< ∞ (32)

holds, where the supremum is taken with respect to all admissible families of cubes.
In some papers such spaces were called strong Campanato spaces, see, e.g., [79, 84].

The importance of Campanato spaces stems from the fact that, for 𝜆 greater
than 𝑛 (and less than 𝑛 + 𝑝), they coincide with the spaces of Hölder continuous
functions, providing an integral characterization of such functions, while in the case
𝜆 < 𝑛 they coincide with Morrey spaces, as the theorem below states, proved in
S. Campanato [19] (1963) (in [19] the domain was supposed to satisfy the condition
(A) and have Lipschitz boundary; for the proof under the only condition (A) we
refer to Section 4.3 of the book by A. Kufner et al. [63]), where the proof of the
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coincidence of the Campanato spaces with the BMO space in the case 𝜆 = 𝑛 may
be also found.

We say that an open set Ω ⊂ ℝ
𝑛 is of type (A), if there exists a constant

𝐴 > 0 such that
∣𝐵(𝑥, 𝑟)∣ ≥ 𝐴𝑟𝑛, (33)

and by 𝐻𝛼(Ω) we denote the space of functions satisfying the Hölder condition
in Ω.

Theorem 4.3. Let 1 ≤ 𝑝 < ∞ and Ω be a bounded domain of type (A). Then

1. L 𝑝,𝜆(Ω) ∼= 𝐿𝑝,𝜆(Ω), when 𝜆 ∈ [0, 𝑛),
2. L 𝑝,𝜆(Ω) ∼= 𝐵𝑀𝑂(Ω) when 𝜆 = 𝑛,
3. L 𝑝,𝜆(Ω) ∼= 𝐻𝛼(Ω) with 𝛼 = 𝜆−𝑛

𝑝 , when 𝜆 ∈ (𝑛, 𝑛 + 𝑝].

Note that the statement (3) of Theorem 4.3 for the case 𝑝 = 1 was also proved
in N. Meyers [69] (1964).

For strong Campanato spaces defined by (31) and (32), in A. Ono [79] (1970)
there were obtained relations with Lipschitz spaces Lip(𝛼, 𝑝) of functions Hölder
continuous in 𝐿𝑝-norm, and in A. Ono [83] (1978) in the final form as the statement

L (𝑝,𝜆)
𝑟 (𝑄0) ∼= Lip

(
𝑛

𝑟
− 𝑛 − 𝜆

𝑝
, 𝑟

)
,

with 1 ≤ 𝑟 < ∞ and 0 < 𝑛/𝑟 − (𝑛 − 𝜆)/𝑝 < 1.
We refer also to A. Ono [80] (1972), A. Ono and Y. Furusho [84], A. Ono [82]

(1977/1978), and A. Ono [81] (1977/1978) with regards to other results around
the strong Campanato spaces.

In [20] (1964) S. Campanato introduced spaces L 𝑝,𝜆
𝑘 (Ω) of “higher order”

defined by the seminorm

[𝑓 ]L 𝑝,𝜆
𝑘

:= sup
𝑥∈Ω;𝑟>0

(
1

𝑟𝜆
inf
𝑃∈𝒫𝑘

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑃 (𝑦)∣𝑝 d𝑦

)1/𝑝

(34)

where 𝒫𝑘 is the class of polynomials of degree at most 𝑘 and proved the following
generalization of Theorem 4.3, where 𝐶𝑚,𝛼(Ω),𝑚 ≥ 0, 0 < 𝛼 ≤ 1, stands for the
class of functions continuous in Ω with all the derivatives up to the order 𝑚 and
with the derivatives of order 𝑚 in 𝐻𝛼(Ω).

Theorem 4.4. Let 1 ≤ 𝑝 < ∞, 𝑘 ≥ 0 and Ω be a bounded domain of type (A). Then

1. L 𝑝,𝜆
𝑘 (Ω) ∼= 𝐿𝑝,𝜆(Ω), when 𝜆 ∈ [0, 𝑛),

2. L 𝑝,𝜆
𝑘 (Ω) ∼= 𝐶𝑚,𝛼(Ω) with 𝑚 =

[
𝑛−𝜆
𝑝

]
, 𝛼 = 𝜆−𝑛

𝑝 − 𝑚, when 𝑛 + 𝑚𝑝 < 𝜆 <

𝑛 + (𝑚 + 1)𝑝, 𝑚 = 0, 1, 2, . . . , 𝑘.

We refer to S. Janson et al. [55] (1983) for the alternative proof of Theorem
4.4 in the case Ω = ℝ

𝑛, which includes also the case 𝑝 = ∞.

Note that the condition (A) is not necessary for the validity of the embedding

L 𝑝,𝜆
𝑘 (Ω) ↪→ 𝐶𝑚,𝛼(Ω) but the inverse embedding in equivalence (2) in Theorem 4.4
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essentially uses this condition. We refer to D. Opěla [85] (2003) for the study of
the influence of the geometry of Ω on the inverse embedding.

4.2. DeVore-Sharpley-Christ versions of Campanato-type spaces

In R.A. DeVore and R.C. Sharpley [28] and M. Christ [25] there was introduced
a version of Campanato-type spaces in which the 𝐿∞-norm in 𝑥 is replaced by
𝐿𝑝-norm, namely they introduced the space 𝐶𝛼𝑝 defined for 1 ≤ 𝑞 ≤ 𝑝, by the
norm

∥𝑓∥𝐶𝛼𝑝 :=

[∫
Ω

sup
𝑄∋𝑥

inf
𝑃∈𝒫[𝛼]

1

∣𝑄∣𝛼𝑝𝑛 + 𝑝
𝑞

(∫
𝑄

∣𝑓(𝑦) − 𝑃 (𝑦)∣𝑞 d𝑦

) 𝑝
𝑞

d𝑥

]1/𝑝

, (35)

where 𝒫𝑘 stands for the class of polynomials of degree at most 𝑘, 𝑘 ≥ 0. This norm
does not depend on 𝑞 ∈ [1, 𝑝], see [28, p. 36]. We refer to [28] for the study of various
properties of these spaces such as comparison with Besov spaces, interpolation,
embeddings, extension theorem, etc. These spaces may be also found in H. Triebel
[109, Subsection 1.7.2.]. They are also known as local approximation Campanato
spaces. In the case 𝑝 = 2 we refer also to a paper [32] (2006) on a characterization
of such spaces when 𝛼 may be negative (𝛼 > −𝑛2 ).

Spaces of the type 𝐶𝛼𝑝 (𝑋) were studied in D. Yang [113] (2005) in the case
where the underlying space was a homogeneous metric measure spaces. A com-
parison of such spaces and some other Campanato related spaces with Besov and
Triebel-Lizorkin spaces may be also found in that paper. We also mention a char-
acterization of the Hajl̷asz-Sobolev spaces in terms of the Calderón-Scott maximal
function 𝑓 ♯𝛼, obtained in [113].

4.3. 𝝋-generalization

Following the long-standing traditions in the study of Campanato spaces, we use
two forms to define them. Namely

L 𝑝,𝜑
𝑘 :=

{
𝑓 ∈ 𝐿𝑝 : sup

𝑥,𝑟

1

𝜑(𝑟)
inf
𝑃∈𝒫𝑘

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑃 (𝑦)∣𝑝 d𝑦 < ∞
}

(36)

and

L𝑝,𝜓𝑘 =

{
𝑓 ∈ 𝐿𝑝 : sup

𝑥,𝑟

1

𝑟𝑛𝜓(𝑟)
inf
𝑃∈𝒫𝑘

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑃 (𝑦)∣𝑝 d𝑦 < ∞
}

. (37)

Such a generalized Campanato space L1,𝜓(𝑄) := L1,𝜓0 (𝑄), over cubes 𝑄 ⊂ ℝ
𝑛,

defined by the seminorm

[𝑓 ]L1,𝜓(Ω) := sup
𝑥,𝑟

1

𝑟𝑛𝜓(𝑟)

∫
𝐼(𝑥,𝑟)⊂𝑄

∣𝑓(𝑦) − 𝑓𝐼(𝑥,𝑟)∣ d𝑦,

with 𝐼(𝑥, 𝑟) = {𝑢 : ∣𝑦 − 𝑥∣ < 𝑟/2}, appeared in S. Spanne [99] (1965), where
L1,𝜓(𝑄) was characterized in terms of rearrangements of the function ∣𝑓 − 𝑓𝐼(𝑥,𝑟)∣,
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restricted to 𝐼(𝑥, 𝑟). Under the assumption that the function 𝜓 is increasing on

(0,∞) and the integral
∫ 𝜀
0
𝜓(𝑡)
𝑡 d𝑡 converges, he proved the embedding

L1,𝜓(𝑄) ↪→ 𝐻𝜓1(𝑄), (38)

where 𝐻𝜓1 is the generalized Hölder space

𝐻𝜓1 = {𝑓 : ∣𝑓(𝑥 + ℎ) − 𝑓(𝑥)∣ ≤ 𝐶𝜓1(ℎ)}, 𝜓1(ℎ) =

∫ ℎ
0

𝜓(𝑡)

𝑡
d𝑡. (39)

The generalized Campanato space L 𝑝,𝜑
𝑘 (Ω) of higher order defined by the

seminorm

[𝑓 ]L 𝑝,𝜑
𝑘

:= sup
𝑥,𝑟

(
1

𝜑(𝑟)
inf
𝑃∈𝒫𝑘

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑃 (𝑦)∣𝑝 d𝑦

)1/𝑝

(40)

where 𝒫𝑘 is the class of polynomials of degree at most 𝑘, 𝑘 ≥ 0 and Ω is an
open set in ℝ

𝑛, was studied by S. Spanne [100] (1966) who gave its equivalent
characterization in terms of the seminorm

sup
𝑥,𝑟

(
1

𝜑(𝑟)
∥𝑓 − P𝑘(𝑓)∥𝑝

𝐿𝑝( ˜𝐵(𝑥,𝑟))

)1/𝑝

(41)

where P𝑘 is the orthogonal projection of 𝐿2(𝐵(𝑥, 𝑟)) onto the space of restrictions

of polynomials of order 𝑘 on 𝐵(𝑥, 𝑟), under the assumption that Ω is of type (A).
He also considered weak generalized Morrey-type spaces with the 𝐿𝑝-norm in (41)
replaced by the weak 𝐿𝑝-norm.

As shown in J. Alvarez [7] (1981) the generalized Campanato spaces L 𝑝,𝜑
0

are not better than the 𝐿𝑝 space if one admits the function 𝜑 such that 𝜑(𝑡) →
∞ as 𝑡 → 0. More precisely, let 𝜑 be a nonnegative function such that 𝜑(𝑡) is
nonincreasing and 𝑡𝜑𝑝(𝑡) is nondecreasing near zero and 𝜑(0) = ∞; suppose also
that 𝑔 : (0, 1) → ℝ is a nonnegative, nonincreasing 𝑝-integrable function such that
𝑔(𝑡) → ∞ as 𝑡 → 0. Then there exist a cube 𝑄0, a function 𝑓 ∈ L 𝑝,𝜑

0 (𝑄0) and two
constants 𝐶, 𝑡0 > 0 such that

𝜆𝑓 (𝑡) ≥ 𝐶𝜆𝑔(𝑡0)

where 𝜆𝑓 (𝑡) = ∣{𝑥 : ∣𝑓(𝑥)∣ > 𝑡}∣ is the distribution function, so that L 𝑝,𝜑
0 (𝑄0)

contains functions whose distribution functions exceed that of any given function
in 𝐿𝑝(𝑄0).

In the case where Ω ⊂ ℝ
𝑛 is a bounded open set, generalized Campanato

spaces L 𝑝,𝜑
𝑘 (Ω) defined by condition (40), appeared in C. Zorko [115] (1986). As

a generalization of the statement 1. of Theorem 4.4, there was proved that

L 𝑝,𝜑
𝑘 (Ω) ∼= 𝐿𝑝,𝜑(Ω)

under the condition (A), see (33), and the following assumptions: 𝜑(𝑟) is nonde-

creasing, 𝜑(𝑟)𝑟−𝑛 is nonincreasing and 𝜑(2𝑟) ≤ 𝑐𝜑(𝑟) with 0 < 𝑐 < 2
𝑛
𝑝 , with the

generalized Morrey space 𝐿𝑝,𝜑(Ω) defined by the norm (19).
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We refer also to Proposition 5 of [115] where the reader can find a statement
on preduals of type of Theorem 2.4 for Campanato spaces.

As a generalization of Spanne’s result (38), J. Kovats [61] (1999) proved the
embedding

L𝑝,𝜓𝑘 (Ω) ↪→ 𝐶𝑘,𝜓1 (Ω), 𝜓1(𝑡) =

∫ 𝑡
0

𝜓(𝑟)1/𝑝

𝑟1+𝑘
d𝑟 (42)

where Ω is a domain of type (A) and 𝐶𝑘,𝜓1 is the space of functions differentiable
up to order 𝑘 with the last derivative satisfying the Hölder condition as in (39),
under the assumption that the integral defining the function 𝜓1 converges.

The generalized Campanato spaces, in the case where the underlying space
𝑋 was a normal homogeneous metric measure space, defined for 1 ≤ 𝑝 < ∞ by

∥𝑓∥ℒ𝑝,𝜙 := sup
𝑥,𝑟

1

𝜙(𝑥, 𝑟)

(
1

𝜇𝐵(𝑥, 𝑟)

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑓𝐵(𝑥,𝑟)∣𝑝 d𝜇(𝑦)

)1/𝑝

were introduced in E. Nakai [75] (2006). Recall that a homogeneous metric measure
space is called normal if

𝐾1𝑟 ≤ 𝜇𝐵(𝑥, 𝑟) ≤ 𝐾2𝑟. (43)

There were given relations between such generalized Campanato spaces and Mor-
rey and Hölder spaces, the latter defined by the norm

∥𝑓∥Λ𝜙 := sup
𝑥,𝑦∈𝑋
𝑥 ∕=𝑦

2∣𝑓(𝑥) − 𝑓(𝑦)∣
𝜙(𝑥, 𝑑(𝑥, 𝑦)) + 𝜙(𝑦, 𝑑(𝑦, 𝑥))

,

including necessary and sufficient conditions on the function 𝜙 for the relations

ℒ𝑝,𝜙(𝑋)/𝒞 ∼= 𝐿𝑝,𝜙(𝑋), ℒ𝑝,𝜙(𝑋) ∼= 𝐿𝑝,𝜙(𝑋), ℒ𝑝,𝜙(𝑋) ∼= Λ𝜙(𝑋).

A modified version of (vector-valued) Campanato spaces, with non-doubling
measures, in the language of the 𝑅𝐵𝑀𝑂 spaces of X. Tolsa [107] (2001) was
introduced and studied in Y. Sawano and H. Tanaka [96] (2006).

P. Górka [41, Theor. 3.1] (2009) gave a simple proof of a statement of type
(3) of Theorem 4.3 in the general setting of homogeneous metric measure spaces
(𝑋, 𝜌, 𝜇), for the Campanato spaces defined by the condition

1

𝜇𝐵(𝑥, 𝑟)

∫
˜𝐵(𝑥,𝑟)

∣∣𝑓(𝑦) − 𝑓𝐵(𝑥,𝑟)

∣∣𝑝 d𝜇(𝑦) ≤ 𝐶𝑝𝑟𝛼𝑝,

not requiring the space (𝑋, 𝜌, 𝜇) to be normal. A local version of this theorem
was used in [41, Theor. 3.3] to prove some embeddings of Hajl̷asz-Sobolev space
𝑀1,𝑝(𝑋), 1 < 𝑝 < ∞, into Hölder spaces.
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4.4. Interpolation results

G. Stampacchia [101] (1964), [102] (1965) and S. Campanato and M. Murthy [21]
(1965) proved a Riesz-Thorin-type interpolation theorem for operators acting from
𝐿𝑝 into Campanato spaces L 𝑞,𝜆 (at that time, Morrey and Campanato spaces were
simply called Morrey spaces). The result in a more complete form obtained in S.

Campanato and M. Murthy [21] (1965) is the following, where L 𝑝,𝜆
𝑘 (Ω) is the

space defined by (34) and Ω is a bounded open set in ℝ
𝑛.

Theorem 4.5. Let 1 ≤ 𝑝𝑖 ≤ ∞, 1 ≤ 𝑞𝑖 ≤ ∞, 0 ≤ 𝜆𝑖 < 𝑛 + 𝑝, 𝑖 = 1, 2, and for
0 < 𝜃 < 1 define 𝑝, 𝑞 and 𝜆 by

1

𝑝
=

1 − 𝜃

𝑝1
+

𝜃

𝑝2
,

1

𝑞
=

1 − 𝜃

𝑞1
+

𝜃

𝑞2
,

1

𝜆
=

1 − 𝜃

𝜆1
+

𝜃

𝜆2
. (44)

If 𝑇 is a bounded linear operator from 𝐿𝑞𝑖(Ω) to L 𝑝𝑖,𝜆𝑖
𝑘 (Ω), 𝑖 = 1, 2 with the

operator norm 𝐾𝑖, then 𝑇 is bounded from 𝐿𝑞(Ω) to L 𝑝,𝜆
𝑘 (Ω) with the norm at

most 𝐶𝐾1−𝜃
1 𝐾𝜃2 , with 𝐶 depending only on 𝜃, 𝜆𝑖, 𝑝𝑖 and 𝑞𝑖.

Interpolation in the other direction fails, as first shown by E. Stein and A.
Zygmund [103] (1967) who constructed a bounded linear operator on 𝐻𝛼 and 𝐿2

but not on 𝐿𝑞, 𝑞 > 2 and 𝐵𝑀𝑂. Further results on such a failure may be found
in the papers by A. Ruiz and L. Vega [93] (1995) and O. Blasco et al. [17] (1999),
where there were given examples of operators bounded from 𝐿𝑝𝑖,𝜆 to 𝐿𝑞𝑖 , which
are not bounded in the intermediate spaces.

Note that a version of Marcinkiewicz type theorem was obtained in G. Stam-
pacchia [101] (1964) for spaces L 𝑝,𝜆(𝑄0), where 𝑄0 is a cube in ℝ

𝑛. The linear
operator 𝑇 was defined to be of strong type (𝑝, 𝑞, 𝜆), if ∥𝑇𝑓∥L 𝑞,𝜆 ≤ 𝐾∥𝑓∥𝐿𝑝 and
of weak type (𝑝, 𝑞, 𝜆), if

sup
𝑄

𝑟−𝜆∣ {𝑥 ∈ 𝑄 : ∣𝑇𝑓 − (𝑇𝑓)𝑄∣ > 𝜎} ∣ ≤
(

𝐾

𝜎
∥𝑓∥𝐿𝑝

)𝑞
,

where 𝑄 is a cube with sides parallel to 𝑄0, and the following interpolation theorem
was proved

Theorem 4.6. If 𝑇 is of weak types (𝑝1, 𝑞1, 𝜆1) and (𝑝2, 𝑞2, 𝜆2), where 𝑝𝑖 ≥ 1,
𝑝𝑖 ≤ 𝑞𝑖, 𝑖 = 1, 2, 𝑞1 ∕= 𝑞2, 𝑝1 ∕= 𝑝2, then 𝑇 is of strong type (𝑝, 𝑞, 𝜆) with 𝑝, 𝑞, 𝜆
defined in (44).

For some related interpolation statements we also refer to the thesis of P. Gris-
vard [44] (1965), published in [45, 46] (1966) and the paper J. Peetre [87] (1966).
S. Spanne [100] (1966) generalized and simplified the proofs of the interpolation
theorem in the setting of generalized Campanato space. In fact, he reduced the
validity of the interpolation to the 𝐿𝑝 case. Namely, let

1

𝑝
=

1 − 𝜃

𝑝0
+

𝜃

𝑝1
, 𝜑(𝑟) = 𝜑0(𝑟)1−𝜃𝜑1(𝑟)𝜃 , 0 < 𝜃 < 1
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and let 𝐴0, 𝐴𝜃, 𝐴1 be normed spaces such that the interpolation theorem is valid
for the two triplets (𝐴0, 𝐴𝜃, 𝐴1) and (𝐿𝑝0 , 𝐿𝑝, 𝐿𝑝1). Then the interpolation theorem
is valid also for (𝐴0, 𝐴𝜃, 𝐴1) and (L 𝑝0,𝜑0

𝑘 , L 𝑝,𝜑
𝑘 , L 𝑝1,𝜑1

𝑘 ), with the same convexity
constant. A similar result holds for the corresponding weak Campanato spaces.

4.5. Other characterizations of Campanato spaces

B. Grevholm [43] (1970) used the interpolation theorem for Campanato spaces to
characterize the Campanato spaces as the Besov spaces, namely

L 𝑝,𝜆
𝑘 (Ω) = 𝐵𝛼(Ω), 0 < 𝛼 =

𝜆 − 𝑛

𝑝
< 𝑘,

where Ω is an open set in ℝ
𝑛 satisfying some conditions and 𝐵𝛼(Ω), in the case

Ω = ℝ
𝑛, is defined by the seminorm

sup
𝑡>0,∣𝑦∣<1

∥Δ𝑘𝑡𝑦𝑓∥𝐿∞

𝑡𝛼

while in the case Ω ∕= ℝ
𝑛 the space 𝐵𝛼(Ω) is defined as the interpolation space

𝐵𝛼(Ω) =
(
𝐶0(Ω), 𝐶𝑘(Ω)

)
𝛼
𝑘 ,∞

under a certain interpolation method.

A result similar in a sense was obtained by different means in H.C. Greenwald

[42] (1983) who proved the coincidence of the Campanato space L 𝑝,𝜆
𝑘 (ℝ𝑛) with

the Lipschitz-type space Λ(𝛼, 𝑘) defined in terms of Gauss-Weierstrass integral:

∥𝑓∥𝛼,𝑘+1 =
∑
∣𝜈∣=𝑘

sup
𝑡∈ℝ+

sup
𝑥∈ℝ𝑛

𝑡(𝑘−𝛼)/2∣𝐷𝜈𝑓(𝑥, 𝑡)∣ < ∞,

where 𝑓(𝑥, 𝑡) is the Gauss-Weierstrass integral of 𝑓 and 𝐷 stands for the differen-
tiation with respect to 𝑥.

Consider also the space 𝐿(𝛼, 𝑝, 𝑘 − 1) of equivalence classes modulo 𝑃𝑘−1 of
locally integrable functions 𝑓 for which

∥𝑓∥𝐿(𝛼,𝑝,𝑘−1) = sup
𝑄⊂ℝ𝑛

∣𝑄∣−𝛼/𝑛
[

1

∣𝑄∣
∫
𝑄

∣𝑓(𝑥) − 𝑃𝑄𝑓(𝑥)∣𝑝 d𝑥

]1/𝑝
< ∞, (45)

where 𝑄 is a ball and 𝑃𝑄𝑓 is the unique element of 𝑃𝑘−1 such that∫
𝑄

[𝑓(𝑥) − 𝑃𝑄𝑓(𝑥)]𝑥𝜈 d𝑥 = 0, 0 ≤ ∣𝜈∣ ≤ 𝑘 − 1. (46)

Such spaces occur in the duality theory of Hardy spaces as discussed by M.
Taibleson and G. Weiss [105] (1980); we refer also to a related paper M.H. Taibleson
and G. Weiss [104] (1979). The main result of [42] asserts that the spaces Λ𝛼,𝑘
and 𝐿(𝛼, 𝑝, 𝑘 − 1) coincide and that their norms are equivalent. An earlier result
of similar nature was obtained by B. Grevholm [43] (1970) for 𝑝 in the range
1 ≤ 𝑝 < ∞ using interpolation theory. The result in [42] is valid for 1≤ 𝑝 ≤ ∞
and is proved by elementary methods.
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X.T. Duong and L.X. Yan [30] (2005) studied identity approximations adapt-
ed to Morrey-Campanato spaces on quasimetric measure spaces.

In D. Deng, X.T. Duong and L. Yan [27], the authors gave an equivalent
characterization of the spaces 𝐿(𝛼, 𝑝, 𝑘 − 1) by using the identity approximations
instead of the minimizing polynomial in the definition of the norm (45) in the case
𝛼 > 0, 𝑘 > [𝑛𝛼] + 1 when these spaces do not depend on 𝑝 ∈ [1,∞].

X.T. Duong, J. Xiao and L. Yan [29] (2006) studied the Morrey-Campanato
spaces defined with the constant 𝑐 = 𝑓𝐵 in the definition in (28) replaced by a
semigroup of operators. They studied relations with the usually defined Morrey-
Campanato spaces and showed that under appropriate choice of a semigroup, the
new definition coincides with the old one.

L. Tang [106] (2007) used the ideas of [30] to define the Campanato spaces
by the norm

sup
𝐵

1

𝜇(𝐵)𝛼+1

∫
𝐵

∣𝑓(𝑥) − 𝐴𝐵(𝑓)∣ d𝑥,

where 𝐴𝐵(𝑓) is an identity approximation from [30]. There is shown that in some
cases such different norms are equivalent but there were also given examples where
they are not.

4.6. Miscellaneous

The central mean oscillation space CMO𝑞, introduced in Y.Z. Chen and K.S. Lau
[24] (1989) and J. Garćıa-Cuerva [37] (1989), defined by

∥𝑓∥CMO𝑞 = sup
𝑟≥1

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥) − 𝑓𝐵(0,𝑟)∣𝑞 d𝑥

)1/𝑞

was shown to be the dual space of an atomic space 𝐻𝐴𝑞 associated with the
Beurling algebra. The central bounded mean oscillation space CBMO𝑞 introduced
in S. Lu and D. Yang [65] (1992) and S. Lu and D. Yang [66] (1995) is defined by

∥𝑓∥CBMO𝑞 = sup
𝑟>0

(
1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥) − 𝑓𝐵(0,𝑟)∣𝑞 d𝑥

)1/𝑞

.

A generalization of CMO𝑞 and CBMO𝑞, introduced in J. Garćıa-Cuerva and
M.J.L. Herrero [38] (1994) and J. Alvarez, M. Guzmán-Partida and J. Lakey [8]
(2000), are the so-called 𝜆-central mean oscillation spaces CMO𝑞,𝜆 and 𝜆-central
bounded mean oscillation spaces CBMO𝑞,𝜆, defined by

∥𝑓∥CMO𝑞,𝜆 = sup
𝑟≥1

1

∣𝐵(0, 𝑟)∣𝜆
(

1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥) − 𝑓𝐵(0,𝑟)∣𝑞 d𝑥

)1/𝑞

and

∥𝑓∥CBMO𝑞,𝜆 = sup
𝑟>0

1

∣𝐵(0, 𝑟)∣𝜆
(

1

∣𝐵(0, 𝑟)∣
∫
𝐵(0,𝑟)

∣𝑓(𝑥) − 𝑓𝐵(0,𝑟)∣𝑞 d𝑥

)1/𝑞

.
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M. Kronz [62] (2001) introduced Morrey and Campanato spaces for elements
which are mappings between metric measure spaces.

A classical Morrey inequality states that in the case 𝑝 > 𝑛, the following
embedding of a Sobolev space into Hölder space holds

𝑊 1,𝑝(Ω) ↪→ 𝐶0,𝛼(Ω).

In the paper A. Cianchi and L. Pick [26] (2003), in the case 𝑝 = 1, there was
given a detailed study of more general embeddings of Sobolev spaces into Morrey
and Campanato spaces for the case Ω is a cube in ℝ

𝑛. For a weakly differentiable
function 𝑓 on 𝑄 they gave optimal integrability conditions on the gradient of 𝑓 , to
belong to Morrey or Campanato space. More generally they gave a characterization
of the rearrangement-invariant Banach function spaces such that the corresponding
Sobolev space 𝑊 1𝑋(𝑄) is continuously embedded into Morrey or Campanato
space. This enabled the authors to find the largest space 𝑋(𝑄) for which such an
embedding holds (the so-called optimal range partner). Such an optimal space is
of Marcinkiewicz type in the case of Campanato spaces and have a different nature
in the case of Morrey spaces. In particular, the following theorem was proved in
[26], where 𝑀𝜓(𝑄) is the Marcinkiewicz space defined by the norm

∥𝑓∥𝑀𝜓(𝑄) = sup
0<𝑡<1

𝜓(𝑡)𝑓∗∗(𝑡), 𝜓(𝑡) =
𝑡

1
𝑛+1

𝜑(𝑡
1
𝑛 )

.

Theorem 4.7. Let 𝜑 be a strictly positive continuous function on (0,∞). Then the
space 𝑋(𝑄) = 𝑀𝜓(𝑄) is the largest rearrangement invariant space for which the
embedding

∥𝑓∥L 1,𝜑(𝑄) ≤ 𝐶∥∇𝑓∥𝑋(𝑄)

holds.

A version of grand Morrey spaces 𝐿𝑝),𝜆(𝑋) over homogeneous-type space 𝑋 ,
which turns into the grand Lebesgue space 𝐿𝑝)(𝑋) introduced in T. Iwaniec and
C. Sbordone [54] (1992) when 𝜆 = 0, was suggested in A. Meskhi [68] (2009). It is
defined by the norm

∥𝑓∥𝐿𝑝),𝜆(𝑋) := sup
0<𝜀<𝑝−1

(
sup

𝑥∈𝑋,𝑟>0

𝜀

(𝜇(𝐵(𝑥, 𝑟)))𝜆

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝−𝜀 d𝜇(𝑦)

)1/(𝑝−𝜀)
.

5. Variable exponent Morrey and Campanato spaces

The Morrey spaces 𝐿𝑝(⋅),𝜆(⋅)(Ω) with variable exponents 𝜆(⋅) and 𝑝(⋅) over an open
set Ω ⊂ ℝ

𝑛, were recently introduced almost simultaneously by different authors
in A. Almeida, J. Hasanov and S. Samko [6] (2008), V. Kokilashvili and A. Meskhi
[58] (2008), [59] (2010), T. Ohno [77] (2008), X. Fan [35] (2010).
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In A. Almeida, J. Hasanov and S. Samko [6] (2008) the space 𝐿𝑝(⋅),𝜆(⋅)(Ω)
was introduced as the space of functions with the finite norm

∥𝑓∥𝐿𝑝(⋅),𝜆(⋅)(Ω) = inf

{
𝜈 : 𝐼𝑝(⋅),𝜆(⋅)

(
𝑓

𝜈

)
≤ 1

}
and the modular 𝐼𝑝(⋅),𝜆(⋅)(𝑓) defined by

𝐼𝑝(⋅),𝜆(⋅)(𝑓) := sup
𝑥∈Ω,𝑟>0

1

𝑟𝜆(𝑥)

∫
˜𝐵(𝑥,𝑟)

∣𝑓(𝑦)∣𝑝(𝑦) d𝑦.

In the case of a bounded Ω they gave several equivalent norms and proved em-
bedding theorems for such Morrey spaces under the assumption that 𝑝(𝑥) satisfies
the log-condition well known in the variable exponent analysis. Similar embedding
theorem for variable Campanato spaces may be found in [90] (2011) within the
frameworks of the general setting of metric measure spaces.

V. Kokilashvili and A. Meskhi [58] (2008), see also [59] (2010), introduced

Morrey-type spaces 𝑀
𝑞(⋅)
𝑝(⋅) in the general setting when the underlying space is a

homogeneous-type space (𝑋, 𝜌, 𝜇), with the norm defined by

∥𝑓∥
𝑀
𝑞(⋅)
𝑝(⋅)

= sup
𝑥∈𝑋,𝑟>0

(𝜇(𝐵(𝑥, 𝑟)))1/𝑝(𝑥)−1/𝑞(𝑥)∥𝑓∥𝐿𝑞(⋅)(𝐵(𝑥,𝑟))

where 1 < inf𝑋 𝑞 ≤ 𝑞(⋅) ≤ 𝑝(⋅) ≤ sup𝑋 𝑝 < ∞. In the case where 𝑋 is bounded,
some equivalence of norms and embedding theorems were obtained.

A 𝜑-generalization 𝐿𝑝(⋅),𝜈,𝜑(ℝ𝑛) of Morrey spaces with variable exponent 𝑝(𝑥)
and constant 0 ≤ 𝜈 ≤ 𝑛, was given in T. Ohno [77] (2008) by the condition

𝜑(𝑟)

𝑟𝜈

∫
𝐵(𝑥,𝑟)

∣∣∣∣𝑓(𝑦)

𝜆

∣∣∣∣𝑝(𝑦) d𝑦 ≤ 1

for some 𝜆 > 0.

A more general version ℳ𝑝(⋅),𝜔(Ω), Ω ⊆ ℝ
𝑛 of such generalized variable

exponent Morrey spaces was introduced in V. Guliev, J. Hasanov and S. Samko
[49] (2010), defined by the norm

∥𝑓∥ℳ𝑝(⋅),𝜔 = sup
𝑥∈Ω,𝑟>0

𝑟−
𝑛
𝑝(𝑥)

𝜔(𝑥, 𝑟)
∥𝑓∥𝐿𝑝(⋅)( ˜𝐵(𝑥,𝑟)).

They recover the space 𝐿𝑝(⋅),𝜆(⋅)(Ω) under the choice 𝜔(𝑥, 𝑟) = 𝑟
𝜆(𝑥)−𝑛
𝑝(𝑥) .

Both 𝜑- and 𝜃-generalizations of Morrey spaces of variable order were intro-
duced in V. Guliev, J. Hasanov and S. Samko [48] (2010), as the space of functions
with the finite norm

sup
𝑥∈Ω

∥∥∥∥𝜔(𝑥, 𝑟)

𝑟
𝑛
𝑝(𝑥)

∥𝑓∥𝐿𝑝(⋅)( ˜𝐵(𝑥,𝑟))

∥∥∥∥
𝐿𝜃(⋅)(0,ℓ)

,

where ℓ = diam Ω.

The corresponding variable exponent Campanato spaces are interesting be-
cause they in general contain functions which are locally in 𝐿𝑝(⋅),𝜆(⋅) on one subset,
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BMO-functions locally on another subset and variable order Hölder continuous on
the third one.

Such spaces appeared in X. Fan [35] (2010), where besides variable exponent
Morrey spaces there were also introduced Campanato spaces L 𝑝(⋅),𝜆(⋅) of variable
order, in the Euclidean case, via the norm

∥𝑓∥L 𝑝(⋅),𝜆(⋅)(Ω) := ∥𝑓∥𝐿𝑝(⋅)(Ω) + sup
𝑥0∈Ω,𝑟>0

∥∥∥𝑟−𝜆(⋅)
𝑝(⋅) (𝑓 − 𝑓𝐵(𝑥0,𝑟))

∥∥∥
𝐿𝑝(⋅)(𝐵(𝑥0,𝑟))

,

where 𝑓𝐵 = ∣𝐵∣−1
∫
𝐵

𝑓(𝑥) d𝑥. The equivalence of such Campanato spaces to vari-
able exponent Hölder spaces is shown when inf𝑥∈Ω 𝜆(𝑥) > 𝑛 and to variable expo-
nent Morrey spaces, when sup𝑥∈Ω 𝜆(𝑥) < 𝑛. In the latter result, the proof of the
embedding of Morrey spaces into Campanato spaces was based on the notion of
𝑝(⋅)-average of a function introduced in this paper.

Similar results for variable exponent Campanato spaces L 𝑝(⋅),𝜆(⋅)(𝑋) in a
more general setting of metric measure spaces were obtained in H. Rafeiro and
S. Samko [90] (2011). In [90], in the setting of an arbitrary quasimetric measure
spaces, the log-Hölder condition for 𝑝(𝑥) is introduced with the distance 𝑑(𝑥, 𝑦)
replaced by 𝜇𝐵(𝑥, 𝑑(𝑥, 𝑦)), which provides a weaker restriction on 𝑝(𝑥) in the
general setting. Some initial basic facts for variable exponent Lebesgue spaces
hold without the assumption that 𝑋 is homogeneous or even Ahlfors lower or
upper regular, but the main results for Campanato spaces are proved in the case
of homogeneous spaces 𝑋 .

In E. Nakai [76] (2010) there were introduced 𝜑-generalizations of such spaces
on a space of homogeneous-type, normal in the sense of Maćıas and Segovia. In
[76] 𝜑 was admited to be variable, but 𝑝 constant and the norm defined by

∥𝑓∥L𝑝,𝜑 = sup
𝑥,𝑟>0

1

𝜑(𝐵(𝑥, 𝑟))

(
1

𝜇(𝐵(𝑥, 𝑟))

∫
𝐵(𝑥,𝑟)

∣𝑓(𝑦) − 𝑓𝐵(𝑥,𝑟)∣𝑝 d𝜇(𝑦)

)1/𝑝

.

We note also the embedding 𝐿𝑝(⋅)(𝑋) ↪→ 𝐿1,𝜑 ↪→ L 1,𝜑 proved in [76], where

𝐿1,𝜑 stands for the corresponding Morrey space and 𝜑(𝐵(𝑥, 𝑟)) = 𝑟−
1

𝑝∗(𝑥) , where
𝑝∗(𝑥) = 𝑝(𝑥) when 0 < 𝑟 < 1/2 and 𝑝∗(𝑥) = 𝑝+ when 1/2 ≤ 𝑟 < ∞.
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Hölder type. J. Math. Anal. Appl. 282 (2003), no. 1, 128–150.

[27] D. Deng, X.T. Duong and L. Yan, A characterization of the Morrey-Campanato
spaces. Math. Z. 250 (2005), no. 3, 641–655.

[28] R.A. DeVore and R.C. Sharpley, Maximal functions measuring smoothness. Mem.
Amer. Math. Soc. 47 293 :viii+115, 1984.

[29] X.T. Duong, J. Xiao and L. Yan, Old and new Morrey spaces with heat kernel
bounds. J. Fourier Anal. Appl. 13 (2007), no. 1, 87–111.

[30] X.T. Duong and L. Yan, New function spaces of BMO type, the John-Nirenberg
inequality, interpolation and applications. Comm. Pure Appl. Math. 58 (2005), no.
10, 1375–1420.

[31] G.T. Dzhumakaeva and K. Zh. Nauryzbaev, Lebesgue-Morrey spaces. Izv. Akad.
Nauk Kazakh. SSR Ser. Fiz.-Mat. 79 (1982), no. 5, 7–12.

[32] A. El Baraka, Littlewood-Paley characterization for Campanato spaces. J. Funct.
Spaces Appl. 4 (2006), no. 2, 193–220.

[33] A. Eridani and H. Gunawan, Stummel class and Morrey spaces. Southeast Asian
Bull. Math. 29 (2005), no. 6, 1053–1056.

[34] A. Eridani, V. Kokilashvili and A. Meskhi, Morrey spaces and fractional integral
operators. Expo. Math. 27 (2009), no. 3, 227–239.

[35] X. Fan, Variable exponent Morrey and Campanato spaces. Nonlinear. Anal. 72
(2010), no. 11, 4148–4161.

[36] Y. Furusho, On inclusion property for certain ℒ(𝑝, 𝜆) spaces of strong type. Funk-
cial. Ekvac. 23 (1980), no. 2, 197–205.
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[45] P. Grisvard, Commutativité de deux foncteurs d’interpolation et applications. J.
Math. Pures Appl. (9) 45 (1966), 143–206.
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Hölder spaces and 𝐿𝑝-spaces. Ann. of Math. (2) 85 (1967), 337–349.



Morrey-Campanato Spaces: an Overview 323

[104] M.H. Taibleson and G. Weiss, The molecular characterization of Hardy spaces. In:
Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll.,
Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, pp.
281–287. Amer. Math. Soc., Providence, R.I., 1979.

[105] M.H. Taibleson and G. Weiss, The molecular characterization of certain Hardy
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