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We study variable exponent Campanato spaces L p(·),λ(·) (X) on spaces of homogeneous

type. We prove an embedding result between variable exponent Campanato spaces. We

also prove that these spaces are equivalent, up to norms, to variable exponent Morrey

spaces Lp(·),λ(·) (X) with λ+ < 1 and variable exponent Hölder spaces Hα(·)(X) with

λ− > 1. In the setting of an arbitrary quasimetric measure spaces, we introduce the

log-Hölder condition for p(x) with the distance d(x, y) replaced by μB(x, d(x, y)), which

provides a weaker restriction on p(x) in the general setting and show that some ba-

sic facts for variable exponent Lebesgue spaces hold without the assumption that X is

homogeneous or even Ahlfors lower or upper regular. However, the main results for

Campanato spaces are proved in the setting of homogeneous spaces X. Bibliography:

34 titles.

1 Introduction

We study variable exponent Campanato spaces L p(·),λ(·) (X), where the underlying space X

is a quasimetric measure space. In most of the results, we suppose that X is of homogeneous

type. Campanato spaces are well known in the case where p and λ are constant and in the

Euclidean setting (cf., for example, [1]–[3]). The investigation of variable exponent Lebesgue

spaces Lp(·)(X) and the corresponding Sobolev spaces Wm,p(·)(X) was intensively studied during

the last decade. For the progress in this field and related topics of harmonic analysis and operator

theory we refer to the surveys [4]–[7]. The investigation of variable exponent Morrey spaces was

recently started in [8]–[10], where the boundedness of maximal, singular, and potential type

operators in such spaces was studied.

In this paper, we consider variable exponent Campanato spaces over spaces of homogeneous

type. We start with an embedding statement for such spaces. Making use of a modified Diening
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inequality, we prove the coincidence of variable exponent Campanato space, up to equivalence of

norms, with variable exponent Morrey spaces (when supx λ(x) < 1) and with variable exponent

Hölder spaces (when infx λ(x) > 1).

The assumptions on the exponents are standard within the framework of variable exponent

spaces, namely, p and λ are assumed to be log-Hölder continuous. Note that we introduce the

log-condition in a form weaker than usual (cf. (2.18)), which allows us to formulate some facts

for inhomogeneous spaces.

Note that a similar coincidence of variable exponent Campanato spaces with Morrey or

Hölder spaces within the framework of Euclidean spaces with the Lebesgue measure was recently

shown in [11], where there was introduced the concept of p(·)-average of a function f in a set

E, which is an extension of the average function. This p(·)-average was fundamental in proving

one of the coincidences. Our approach is different and covers the setting of quasimetric measure

spaces.

In the case of constant p, there are also well known generalized Morrey–Campanato spaces

(cf., for example, [12]–[15]), where r−λ is replaced by a function ϕ(r), or more generally, by

ϕ(x, r) subject to some assumptions. In the case of variable p(x), such generalized Morrey

spaces were studied in [9, 16]. We do not touch such a kind of generalization for variable

exponent Campanato spaces in this paper.

We introduce the notation:

dX denotes the diameter of a set X,

A ∼ B for positive A and B means that there exists c > 0 such that c−1A � B � cA;

B(x, r) = {y ∈ X : d(x, y) < r}, 

E

f(y) dμ(y) = fE denotes the integral average of f , viz.,
1

μ(E)

ˆ

E

f(y) dμ(y),

c, C denote various absolute positive constants which may be different even in the same line.

2 Preliminaries on Variable Exponent Spaces

2.1 Spaces of homogeneous type

Given a set X, a quasimetric is a function d : X × X → [0,∞) which satisfies the usual

metric axioms with the triangle inequality replaced by the quasitriangle inequality

d(x, y) � Q[d(x, z) + d(z, y)], Q � 1 (2.1)

where x, y, z ∈ X and Q is often called the quasitriangular constant of d. We assume that

d(x, y) = d(y, x).

Two quasimetrics d and d′ on X are equivalent if d(x, y) ∼ d′(x, y) for all x, y ∈ X.

Let μ be a positive measure on the σ-algebra of subsets of X which contains the d-balls

B(x, r). Everywhere in the sequel, we suppose that all the balls have finite measure, i.e.,
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μB(x, r) < ∞ for all x ∈ X and r > 0, and the space of compactly supported continuous

functions is dense in L1(X,μ).

We say that a measure μ is lower Ahlfors α-regular if

μB(x, r) � crα (2.2)

and upper Ahlfors β-regular if

μB(x, r) � crβ, (2.3)

where α, β, c > 0 are independent of x and r. If α = β, the measure μ is called Ahlfors α-regular.

The condition

μB(x, 2r) � DμB(x, r), D > 1, (2.4)

on the measure μ with D independent of x ∈ X and 0 < r < dX , is known as the doubling

condition.

The triplet (X, d, μ), with μ satisfying the doubling condition, is called a space of homoge-

neous type. This notion sometimes is introduced in a slightly more general way (cf., for example,

[17]). Balls in a general space of homogeneous type are not necessarily open, although there

exists a continuous quasimetric d′ equivalent to d for which every ball is open.

Iterating the inequality (2.4), we obtain

μB(x,R)

μB(y, r)
� D

(
R

r

)N

, 0 < r � R, (2.5)

for all d-balls B(x,R) and B(y, r) with B(y, r) ⊂ B(x,R), where N = log2 D is called the

doubling order of μ. We will also mention (2.5) as the doubling condition.

From (2.5) it follows that every homogeneous type space (X, d, μ) with a finite measure is

lower Ahlfors N -regular.

In some results, we need the following condition.

μ (B(x,R)\B(x, r)) > 0 (2.6)

for all x ∈ X and r,R with 0 < r < R < dX .

The validity of the reverse doubling condition, following from the doubling condition under

certain restrictions, is well known (cf., for example, [18, p. 269]). Since there are various for-

mulations of this result, we give the one more suited for our purposes (cf., for example, [19,

p. 13]).

Lemma 2.1. Let (X, d, μ) be a space of homogeneous type. If (2.6) is valid, then the measure

μ satisfies the reverse doubling condition

μB(x, r)

μB(x,R)
� C

( r

R

)γ
(2.7)

for all x ∈ X and 0 < r � R < dX , where C, γ > 0.

Remark 2.2. Note that the condition B(x,R)\B(x, r) �= ∅, valid under the assumption

(2.6), is also fulfilled under the assumption that X is connected and B(x,R)c �= ∅, as shown in

[19, Proposition 3.3].

Note that the reverse doubling condition (2.7), together with μX < ∞, implies that dX < ∞
and the measure μ, is upper Ahlfors γ-regular.
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2.2 Variable exponent Lebesgue spaces

2.2.1 Definitions

Let p be a μ-measurable function on X. In main, we assume that

1 � p− � p(x) � p+ < ∞, (2.8)

where p− := ess inf
x∈X

p(x) and p+ := ess sup
x∈X

p(x), but sometimes admit the range

1 � p(x) � ∞. (2.9)

In the case 1 � p(x) < ∞, we denote by Lp(·)(X) the space of all μ-measurable functions f

on X such that

Ip(·)
(
f

λ

)
:=

ˆ

X

∣∣∣∣f(y)

λ

∣∣∣∣
p(y)

dμ(y) < ∞ (2.10)

for some λ = λ(f) > 0. Endowed with the norm

‖f‖p(·) = inf

{
λ > 0 : Ip(·)

(
f

λ

)
� 1

}
, (2.11)

this space is a Banach function space (cf. [20, 21]). We have the following relation between the

modular (2.10) and the norm (2.11):

‖f‖θp(·) � Ip(·)(f) � ‖f‖σp(·), (2.12)

where

θ =

⎧⎨
⎩
p+ if ‖f‖p(·) � 1,

p− if ‖f‖p(·) � 1,
and

⎧⎨
⎩
p− if ‖f‖p(·) � 1,

p+ if ‖f‖p(·) � 1.
(2.13)

We denote by p′(·) the conjugate exponent

p′(x) =
p(x)

p(x) − 1
,

with the usual convention that p′ = ∞ when p = 1. The Hölder inequality is valid in the form

ˆ

X

|f(x)ϕ(x)|dμ(x) �
(

1

p−
+

1

p+

)
‖f‖p(·)‖ϕ‖p′(·). (2.14)

If μX < ∞ and 1 � p(x) � q(x) � q+ < ∞, we have the embedding

Lq(·)(X) ↪→ Lp(·)(X). (2.15)

In the case of an unbounded exponent p(·), the norm in the variable exponent Lebesgue

space is introduced as follows:

‖f‖Lp(·)(X) := ‖f‖Lp(·)(X\X∞) + ‖f‖L∞(X∞), (2.16)
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where X∞ := {x ∈ X : p(x) = ∞}.

For the basics of the theory of variable exponent Lebesgue spaces see [21, 22].

2.2.2 On log-condition on quasimetric measure spaces

The standard local logarithmic condition on quasimetric measure spaces (X, d, μ) is usually

introduced in the form

|p(x) − p(y)| � Cp

− ln d(x, y)
, d(x, y) � 1

2
, x, y ∈ X, (2.17)

where Cp > 0 is independent of x and y (cf., for example, [23, 20]). The condition (2.17) is

also known as Dini-Lipschitz condition, weak-Lipschitz condition or even log-Hölder continuity

condition.

We denote by P log(X) the set of all μ-measurable functions satisfying the log-Hölder con-

tinuity condition (2.17).

In the context of general quasimetric measure spaces, we find it more natural to introduce

also such a log-type condition in terms of measures of balls than in terms of distances. Namely,

we introduce the class P log
μ (X) of functions p : X → [1,∞) satisfying the condition

|p(x) − p(y)| � A

− lnμB(x, d(x, y))
(2.18)

for all x, y ∈ X such that μB(x, d(x, y)) < 1/2. This is a weaker assumption on p(x) than (2.17),

as can be seen from Lemma 2.3. Note that from the assumption d(x, y) = d(y, x) it follows that

(2.18) is equivalent to its symmetrical form

|p(x) − p(y)| � A

− lnμB(x, d(x, y))
+

A

− lnμB(y, d(x, y))
. (2.19)

The log-condition in form (2.18), coinciding with (2.17) in the Euclidean space, is more

suitable in the context of general quasimetric measure spaces, not only because it is weaker than

(2.3), but also because in some statements it simultaneously allows us to put less restrictions on

the (X, d, μ), not requiring its homogeneity or even the lower Ahlfors condition (cf., for example,

Lemmas 2.4–2.6).

Lemma 2.3. If (X, d, μ) has the lower Ahlfors property, then

P log(X) ⊆ P log
μ (X). (2.20)

Proof. Let r = d(x, y) and μB(x, r) � 1/2. Then from the lower Ahlfors condition we obtain

1

ln 1

c
1
α r

� α

− lnμB(x, r)
,

where c > 0 and α > 0 are constants from (2.2), from which the statement in (2.20) follows.
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Lemma 2.4. Let (X, d, μ) be a quasimetric measure space with finite measure, and let p ∈
P log

μ (X). Then

C−1μB(x, r) � (μB(x, r))
p(x)
p(y) � CμB(x, r) (2.21)

for all x, y ∈ X such that y ∈ B(x, r), with the constant C � 1 independent of x, y, r.

Proof. By the fact that X has finite measure and p is bounded from below, it suffices to

check (2.21) only for small r, for example, for r such that μB(x, r) < 1/2. The relation (2.21)

is equivalent to the inequality

∣∣∣∣p(x) − p(y)

p(y)
ln [μB(x, r)]

∣∣∣∣ � lnC, (2.22)

which immediately follows from the condition p ∈ P log
μ (X) for all r > d(x, y).

We will also need the following estimate.

Lemma 2.5. Let (X, d, μ) be a quasimetric measure space with finite measure, and let p ∈
P log

μ (X). Then

‖χB(x,r)‖Lp(·)(X) ∼ (μB(x, r))
1

p(x) . (2.23)

Proof. The inequality

‖χB(x,r)‖p(·) � C(μB(x, r))
1

p(x)

was proved in [23] and [8] under the conditions that (X, d, μ) has the lower Ahlfors property

and p ∈ P log(X). The analysis of the proof in [8] shows that it is also valid under the only

assumption that p ∈ P log
μ (X). Note that this inequality holds even if p(x) may be unbounded.

To prove the inverse inequality, by the definition of the norm, we just need to show that

there exists A > 0 such that

Ip(·)
(

χB(x,r)(·)
A(μB(x, r))

1
p(x)

)
� 1, (2.24)

which easily follows from (2.21) by integrating over X\X∞ with obvious estimation over X∞.

2.3 Variable exponent Morrey spaces

Let λ be a μ-measurable function on X with the range in [0, 1]. Following [8, 10, 24], we

define the variable exponent Morrey space Lp(·),λ(·)(X) as the set of all integrable functions f on

X such that

Ip(·),λ(·) (f) := sup
x∈X,r>0

1

(μB(x, r))λ(x)

ˆ

B(x,r)

|f(y)|p(y) dμ(y) < ∞. (2.25)

We recollect here some basic facts from [8]. Note that the presentation in [8] was given in the

Euclidean setting, however the basics we present here are valid within the framework of general

quasimetric measure spaces.
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The norm in the space Lp(·),λ(·) (X) can be introduced in two forms

‖f‖1 = inf

{
λ > 0 : Ip(·),λ(·)

(
f

λ

)
� 1

}
(2.26)

and

‖f‖2 = sup
x∈X,r>0

∥∥∥∥(μB(x, r))
−λ(x)

p(·) fχB(x,r)

∥∥∥∥
p(·)

(2.27)

which coincide for every f ∈ Lp(·),λ(·) (X) (cf. details in [8] in the case of Euclidean space

together with the Lebesgue measure; the proof remains the same for an arbitrary quasimetric

measure space). Therefore, we can define the norm in the variable exponent Morrey space as

‖f‖Lp(·),λ(·)(X) := ‖f‖1 = ‖f‖2.
As in the case of variable exponent Lebesgue spaces, we have some relation between the

norms (2.26), (2.27), and the modular (2.25); namely,

‖f‖θj � Ip(·),λ(·) (f) � ‖f‖σj , j = 1, 2, (2.28)

where θ and σ are defined in (2.13).

Let p ∈ P log
μ (X). Then the above norms are also equivalent to the norm

‖f‖∗
Lp(·),λ(·)(X)

= sup
x∈X,r>0

(μB(x, r))
−λ(x)

p(x) ‖f‖Lp(·)(B(x,r)). (2.29)

The following embedding was proved in [8, Lemma 7] in the case of Euclidean space endowed

with Lebesgue measure and in [24, Proposition 1.3] within the framework of spaces of homoge-

neous type, but the analysis of the proof in [8] and [24] shows that this embedding holds under

the assumptions of Lemma 2.6.

Lemma 2.6. Suppose that (X, d, μ) is a quasimetric measure space with finite measure,

p, q ∈ P log
μ (X), 0 � λ(x) � 1, and 0 � ν(x) � 1. Let also 1 � p(x) � q(x) and

1 − λ(x)

p(x)
� 1 − ν(x)

q(x)
. (2.30)

Then

Lq(·),ν(·) (X) ↪→ Lp(·),λ(·) (X) . (2.31)

In the theory of variable exponent Lebesgue spaces, the Diening inequality
(  

B(x,r)

|f(y)|dy
)p(x)

� C

(
1 +

 

B(x,r)

|f(y)|p(y) dy

)
(2.32)

plays a role of the Jensen integral inequality. It is valid whenever the exponent p satisfies the

log-Hölder continuity condition (2.17) andˆ

B(x,r)

|f(y)|p(y) dy � 1.

In the following lemma, we observe that this inequality holds in a more general form and within

the framework of quasimetric measure spaces.
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Lemma 2.7. Suppose that (X, d, μ) is a quasimetric measure space with finite measure

satisfying the condition (2.6), 0 � λ(x) � 1, and p ∈ P log
μ (X) satisfies (2.8). Then

(  

B(x,r)

|f(y)|dμ(y)

)p(z)

� C

(
1 +

 

B(x,r)

|f(y)|p(y) dμ(y)

)
(2.33)

for all z ∈ B(x, r) provided that

‖f‖Lp(·),λ(·)(X) � 1.

Proof. The estimate (2.33) is obvious when μB(x, r) � δ > 0. Therefore, we consider only

those x and r for which μB(x, r) � δ < 1, where δ will be chosen sufficiently small later. Let

pr = pr(x) = inf
t∈B(x,r)

p(t).

We apply the Hölder inequality with the exponent pr and get

(  

B(x,r)

|f(y)|dμ(y)

)p(z)

�
(  

B(x,r)

|f(y)|pr dμ(y)

) p(z)
pr

.

Hence

(  

B(x,r)

|f(y)|dμ(y)

)p(z)

� 1

(μB(x, r))
p(z)
pr

(
μB(x, r) +

ˆ

y∈B(x,r)

|f(y)|�1

|f(y)|pr dμ(y)

) p(z)
pr

.

Since pr � p(y) for all y ∈ B(x, r) and p is a bounded function, we obtain

(  

B(x,r)

|f(y)|dμ(y)

)p(z)

� C(μB(x, r))
p(z)
pr

(λ(x)−1)

(
(μB(x, r))1−λ(x)

2

+
1

2(μB(x, r))λ(x)

ˆ

B(x,r)

|f(y)|p(y) dμ(y)

) p(z)
pr

.

The expression in the parenthesis on the right-hand side is less than 1 for sufficiently small δ,

which implies

(  

B(x,r)

|f(y)|dμ(y)

)p(z)

� C

(
1 +

 

B(x,r)

|f(y)|p(y) dμ(y)

)
(μB(x, r))

(λ(x)−1)
(

p(z)
pr

−1
)
.

It remains to show that

(μB(x, r))pr−p(z) � C < ∞,
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which is easily obtained in a similar way as in the proof of Lemma 2.4, because there always

exists a ξr ∈ B(x, r) such that

|p(ξr) − pr| < 1

| lnμB(x, r)| .

We then have

|pr − p(z)|| ln μB(x, r)| � (|pr − p(ξr)| + |p(ξr) − p(x)| + |p(x) − p(z)|) | ln μB(x, r)| � C.

The proof is complete.

2.4 Variable exponent Hölder spaces

We also deal with variable exponent Hölder spaces Hα(·)(X) (for more details on Hα(·)(X) in

the Euclidean setting cf., for example, [25]–[29], and for Hölder spaces Hα within the framework

of metric measure spaces (X, d, μ) with constant exponent α cf., for example, [30]–[33] and also

[34] for the case where X is a compact manifold).

Let α(x) be a μ-measurable real-valued nonnegative function on X. We say that a bounded

function f belongs to Hα(·)(X) if there exists C > 0 such that

|f(x) − f(y)| � C · d(x, y)max{α(x),α(y)}

for every x, y ∈ X. This space is a Banach space with respect to the norm

‖f‖Hα(·)(X) = ‖f‖L∞ + �f�α(·),
where

�f�α(·) := sup
x,y∈X

|f(x) − f(y)|
d(x, y)max{α(x),α(y)} .

3 Variable Exponent Campanato Spaces

3.1 On equivalent (semi)norms

Let λ be a μ-measurable function on X with the range in [0,∞). We define the variable

exponent Campanato space L p(·),λ(·) (X) as the set of all integrable functions f on X such that

I p(·),λ(·) (f) := sup
x∈X,r>0

1

(μB(x, r))λ(x)

ˆ

B(x,r)

∣∣f(y) − fB(x,r)

∣∣p(y) dμ(y) < ∞, (3.1)

where fB(x,r) is the integral average of a function f on B(x, r).

We endow the variable Campanato space with the seminorms

1�f�p(·)λ(·) := inf

{
η > 0 : I p(·),λ(·)

(
f

η

)
� 1

}
(3.2)
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and

2�f�p(·)λ(·) := sup
x∈X;r>0

∥∥∥∥(μB(x, r))
−λ(x)

p(·)
(
f − fB(x,r)

)
χB(x,r)

∥∥∥∥
Lp(·)(X)

. (3.3)

When no confusion arise, we simply write �f�1 and �f�2 to avoid, as much as possible,

cumbersome notation.

As in the case of variable Lebesgue space, we have some relation between the functional (3.1)

and seminorms (3.2) and (3.3). We follow [8] in the proof of the following lemmas.

Lemma 3.1. Let (X, d, μ) be a quasimetric measure space. For every function f ∈ L p(·),λ(·) (X)

�f�θi � I p(·),λ(·) (f) � �f�σi , i = 1, 2, (3.4)

where

θ =

{
p+ if �f�i � 1,

p− if �f�i � 1,
and σ =

{
p− if �f�i � 1,

p+ if �f�i � 1,

Proof. Let

Fx,r(η) =
1

(μB(x, r))λ(x)

ˆ

B(x,r)

∣∣∣∣f(y) − fB(x,r)

η

∣∣∣∣
p(y)

dμ(y). (3.5)

We note that for fixed (x, r) ∈ X × (0, dX ) the function Fx,r(η) is continuous and decreasing

in η ∈ (0,∞). We have

sup
x∈X,r>0

Fx,r(1) = I p(·),λ(·) (f) . (3.6)

By the definition of seminorm �f�1,

sup
x∈X,r>0

Fx,r (�f�1) = 1. (3.7)

The relation (3.4) with i = 1 follows from (3.6), (3.7), and the monotonicity of Fx,r(η).

In the case i = 2, we define

φx,r(·) := (μB(x, r))
−λ(x)

p(·)
(
f(·) − fB̃(x,r)

)
χB̃(x,r)(·).

By (2.12) and (2.13), we have

‖φx,r(·)‖p−p(·) � Ip(·)(φx,r(·)) � ‖φx,r(·)‖p+p(·)
if

‖φx,r(·)‖p(·) � 1

and similarly in the case ‖φx,r(·)‖p(·) � 1. Taking the supremum with regard to x and r, we

obtain the desired result.

Lemma 3.2. Let (X, d, μ) be a quasimetric measure space. Then for f ∈ L p(·),λ(·) (X) we

have

�f�1 = �f�2.
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Proof. We have

�f�2 = sup
x∈X;r>0

{μx,r > 0 : Fx,r(μx,r) = 1},

where Fx,r(·) is the function defined in (3.5). By Fx,r(μx,r) = 1 and the inequality Fx,r(�f�1) � 1

which follows from (3.7) we obtain

�f�2 � �f�1
in view of the monotonicity of Fx,r(η) in η.

The other inequality follows since, by (3.4), we have

�f�1 �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�f�
p−
p+

2 if �f�1 � 1,

�f�2 if �f�1 � 1, �f�2 � 1,

�f�
p+
p−
2 if �f�1 � 1, �f�2 � 1.

Substituting f by
f

�f�2 , we find

⌊
f

�f�2

⌋
1

� 1, which gives the opposite inequality. The lemma

is proved.

We now define the variable exponent Campanato norm.

Definition 3.3. The variable exponent Campanato space L p(·),λ(·) (X) is endowed with the

norm

‖f‖L p(·),λ(·)(X) := 1�f�p(·)λ(·) + ‖f‖L1(X). (3.8)

Since �·�1 and �·�2 coincide, we can take either �f�2 or �f�1 in (3.8).

We can also introduce the Campanato seminorm in the form

∗�f�p(·)λ(·) = sup
x∈X;r>0

(μB(x, r))
−λ(x)

p(x)
∥∥f − fB(x,r)

∥∥
Lp(·)(B(x,r))

. (3.9)

The seminorms ∗�f� and �f�2 are equivalent for p ∈ P log
μ (X). Correspondingly, we can also

deal with the norm

‖f‖∗L p(·),λ(·)(X)
:= ∗�f�p(·)λ(·) + ‖f‖L1(X), (3.10)

not distinguishing between (3.8) and (3.10) when p ∈ P log
μ (X).

3.2 Imbedding theorem

Theorem 3.4. Let (X, d, μ) be a quasimetric measure space with finite measure, and let λ

and ν be nonnegative bounded functions. If p, q ∈ P log
μ (X), 1 � p(x) � q(x) � q+ < ∞, and

1 − λ(x)

p(x)
� 1 − ν(x)

q(x)
, (3.11)

then

L q(·),ν(·) (X) ↪→ L p(·),λ(·) (X) . (3.12)
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Proof. We only need to show that I p(·),λ(·) (f) � C with some C > 0 independent of f

whenever I q(·),ν(·) (f) � 1, or equivalently 1�f�q(·)ν(·) � 1.

By the Hölder inequality with exponent p1(·) = q(·)/p(·),
ˆ

B(x,r)

|f(y) − fB(x,r)|p(y) dμ(y) � C‖χB(x,r)‖p′1(·) ‖(f(·) − fB(x,r))
p(·)χB(x,r)‖p1(·)︸ ︷︷ ︸

Ψx,r(f)

. (3.13)

By Lemma 2.5,

‖χB(x,r)‖p′1(·) � C(μB(x, r))

(
1− p(x)

q(x)

)
. (3.14)

For the other norm, we have the estimate

Ψx,r(f) = inf

{
η > 0 :

ˆ

B(x,r)

|f(y) − fB(x,r)|q(y)η−
q(y)
p(y) dμ(y) � 1

}

� Ap+(μB(x, r))
ν(x)

p(x)
q(x) , (3.15)

where A � 1 is the constant (independent of x, y, r) from the inequalities

A−1(μB(x, r))
ν(x)
q(y) � (μB(x, r))

ν(x)p(x)
q(x)p(y) � A(μB(x, r))

ν(x)
q(y) (3.16)

obtained in a similar way as (2.21).

Using (3.14) and (3.15) in (3.13), we obtain

(μB(x, r))−λ(x)

ˆ

B(x,r)

|f(y) − fB(x,r)|p(y) dμ(y) � C(μB(x, r))
p(x)
q(x)

(ν(x)−1)+1−λ(x)

which implies (3.12) in view of the inequality (3.11).

3.3 Coincidence of variable exponent Campanato spaces with variable
exponent Morrey spaces in the case λ+ < 1

We start with the following lemma. Recall that the modulars I p(·),λ(·) (f) and Ip(·),λ(·) (f)

were introduced in (3.1) and (2.25).

Lemma 3.5. Suppose that (X, d, μ) is a quasimetric measure space with finite measure,

p ∈ P log
μ (X) satisfies (2.8), and 0 � λ(x) � 1. For f ∈ Lp(·),λ(·) (X) such that Ip(·),λ(·) (f) � 1

I p(·),λ(·) (f) � C
[
Ip(·),λ(·) (f) + sup

x∈X,r>0
(μB(x, r))1−λ(x)

]
, (3.17)

where C is independent of f and x.

Proof. We have

I p(·),λ(·) (f) = sup
x∈X,r>0

1

(μB(x, r))λ(x)

ˆ

B(x,r)

∣∣ f(y) − fB(x,r)

∣∣p(y) dμ(y).
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By the inequality

(a + b)p � 2p−1(ap + bp),

we have

I p(·),λ(·) (f) � sup
x∈X,r>0

2p+−1

(μB(x, r))λ(x)

ˆ

B(x,r)

{
|f(y)|p(y) +

∣∣∣∣∣
 

B(x,r)

|f(ξ)|dμ(ξ)

∣∣∣∣∣
p(y)}

dμ(y).

In the second term, we use the Diening inequality (2.33), which is possible since

Ip(·),λ(·) (f) � 1

yields

‖f‖Lp(·),λ(·)(X) � 1.

As a result, we obtain

I p(·),λ(·) (f) � C sup
x∈X,r>0

(
1

(μB(x, r))λ(x)

ˆ

B(x,r)

|f(y)|p(y) dμ(y) + (μB(x, r))1−λ(x)

)
.

Hence (3.17) follows.

Corollary 3.6. Suppose that (X, d, μ) is a quasimetric measure space with finite measure,

p ∈ P log
μ (X) satisfies (2.8), and 0 � λ(x) � 1. Then

Lp(·),λ(·) (X) ↪→ L p(·),λ(·) (X) . (3.18)

Proof. It suffices to show that

‖f‖L p(·),λ(·)(X) := ‖f‖L1 + �f�1 � C

for all f such that ‖f‖Lp(·),λ(·)(X) � 1. By (2.31), the inequality ‖f‖L1 � C‖f‖Lp(·),λ(·)(X) follows

from (2.31) and the estimate of the seminorm �f�1 follows from (3.17).

To prove the other embedding, we need some auxiliary assertions.

Lemma 3.7. Let (X, d, μ) be a quasimetric measure space with finite measure. Then there

exists a constant C such that

|fB(x,ρ) − fB(x,σ)| � C

(
(μB(x, ρ))λ(x) + (μB(x, σ))λ(x)

μB(x, σ)

) 1
p(x)

‖f‖∗L p(·),λ(·)(X)
(3.19)

for all x ∈ X and 0 < σ < ρ < dX .
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Proof. By Lemma 2.5,

‖fB(x,ρ) − fB(x,σ)‖Lp(·)(B(x,σ)) =
∣∣fB(x,ρ) − fB(x,σ)

∣∣ ‖χB(x,σ)‖Lp(·)(X)

� c
∣∣fB(x,ρ) − fB(x,σ)

∣∣ (μB(x, σ))
1

p(x) .

Hence

∣∣fB(x,ρ) − fB(x,σ)

∣∣ � c

(μB(x, σ))
1

p(x)

‖fB(x,ρ) − fB(x,σ)‖Lp(·)(B(x,σ))

� c

(μB(x, σ))
1

p(x)

(
‖f − fB(x,σ)‖Lp(·)(B(x,σ)) + ‖f − fB(x,ρ)‖Lp(·)(B(x,ρ))

)
.

By (3.9), we arrive at (3.19).

Lemma 3.8. Let (X, d, μ) be a space of homogeneous type with finite measure, and let λ be

a nonnegative real-valued function with λ+ < 1. Then there exists a constant C = C(p, λ,D)

such that

|fB(x,r) − fB(x,r/2m)| � C‖f‖∗L p(·),λ(·)(X)
(μB(x, r))

λ(x)−1
p(x)

m−1∑
k=0

D
kN 1−λ(x)

p(x) (3.20)

for all (x, r) ∈ X × (0, dX ), where D is the constant from the doubling condition (2.4) and

N = log2 D is the exponent from (2.5).

Proof. By Lemma 3.7,

|fB(x,r/2k+1) − fB(x,r/2k)| � CΘ
1

p(x)

r,k,x,λ · ‖f‖∗L p(·),λ(·)(X)
, (3.21)

where

Θr,k,x,λ :=
(μB(x, r/2k+1))λ(x) + (μB(x, r/2k))λ(x)

μB(x, r/2k+1)
. (3.22)

This expression may be estimated as follows:

Θ
1

p(x)

r,k,x,λ � (μB(x, r/2k+1))
λ(x)−1
p(x)

(
1 + Dλ(x)

) 1
p(x)

� 2
1

p− D
λ(x)
p(x) D

1−λ(x)
p(x) 2

kN 1−λ(x)
p(x) (μB(x, r))

λ(x)−1
p(x)

� c · DkN 1−λ(x)
p(x) (μB(x, r))

λ(x)−1
p(x) (3.23)

where the first inequality comes from the doubling condition (2.4) and the second one is obtained

from (2.5) with N = log2 D .

Then from (3.21) and (3.23), for k = 1, 2, . . . we obtain

|fB(x,r/2k+1) − fB(x,r/2k)| � C‖f‖∗L p(·),λ(·)(X)D
kN

1−λ(x)
p(x) (μB(x, r))

λ(x)−1
p(x) (3.24)

where C is independent of k. Summing over k = 0, 1, . . . ,m− 1, we obtain (3.20).
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Lemma 3.9. Suppose that (X, d, μ) is a space of homogeneous type with finite measure, the

condition (2.6) is satisfied, and λ is a nonnegative real-valued function with λ+ < 1. Then

there exists a constant C = C(D , p, λ) > 0 such that for any f ∈ L p(·),λ(·) (X) and all (x, ρ) ∈
X × (0, dX)

|fB(x,ρ)| � |fX | + C‖f‖∗L p(·),λ(·)(X)
(μB(x, ρ))λ(x)−1/p(x). (3.25)

Proof. Fix f ∈ L p(·),λ(·) (X) and ρ ∈ (0, dX ). For a constant a � 2, which will be deter-

mined later, we choose m ∈ N0 such that

dX
am+1

� ρ <
dX
am

.

We have

|fB(x,ρ)| � |fX | + |fX − fB(x,dX/am)| + |fB(x,dX/am) − fB(x,ρ)|.
By Lemma 3.7 applied to |fB(x,dX/am) − fB(x,ρ)|, we obtain

|fB(x,dX/am) − fB(x,ρ)| � C‖f‖∗L p(·),λ(·)(X)
(μB(x, ρ))

λ(x)−1
p(x)

(
1 +

(
μB(x, dX/am)

μB(x, ρ)

)λ(x)) 1
p(x)

(3.26)

and the quotient of the measures in (3.26) is uniformly bounded by the doubling condition (2.5)

and the relation between ρ and dX/am.

Since fX = fB(x,dX) for all x ∈ X, we can apply Lemma 3.8 to |fB(x,dX/am) − fX |, which

yields

|fB(x,dX/am) − fX | � C‖f‖∗L p(·),λ(·)(X)
(μB(x, dX))

λ(x)−1
p(x)

D
mN

1−λ(x)
p(x) − 1

D
N 1−λ(x)

p(x) − 1︸ ︷︷ ︸
σ

� C‖f‖∗L p(·),λ(·)(X)
(amγμB(x, ρ))

λ(x)−1
p(x) · σ

where the second inequality comes from the reverse doubling condition (2.7). Taking aγ � DN ,

we see that σa
mγ

λ(x)−1
p(x) is bounded, which gives (3.25).

Lemma 3.10. Let (X, d, μ) be a space of homogeneous type with finite measure. For all

f ∈ L 1,λ(·)(X) and all x, y ∈ X there exists a constant C = C(D , λ) such that for r = 2Qd(x, y)

(where Q is the constant from (2.1))

|fB(x,r) − fB(y,r)| � C‖f‖∗L 1,λ(·)(X)

[
(μB(x, r))λ(x)−1 + (μB(y, r))λ(y)−1

]
.

Proof. Let Υr := B(x, r) ∩B(y, r). We have

B
(
x,

r

2Q

)
⊂ Υr ⊂ B(x, r) (3.27)

which implies

μ(Υr) � μ
(
B
(
x,

r

2Q

))
� Cμ(B(x, r)),
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where the last inequality comes from the doubling condition (2.5). It is obvious that

μ(Υr) � Cμ(B(y, r)).

For t ∈ Υr we have

|fB(x,r) − fB(y,r)| � |fB(x,r) − f(t)| + |f(t) − fB(y,r)|. (3.28)

Integrating (3.28) with respect to the variable t over Υr, we obtain

|fB(x,r) − fB(y,r)|μ(Υr) � ‖f‖∗L 1,λ(·)(X)

[
(μB(x, r))λ(x) + (μB(y, r))λ(y)

]

which implies the required assertion.

We are now in position to prove the coincidence of the spaces Lp(·),λ(·)(X) and L p(·),λ(·)(X),

up to the equivalence of norms, in the case where λ(x) does not attain the value 1.

Theorem 3.11. Suppose that (X, d, μ) is a space of homogeneous type with finite measure,

p ∈ P log
μ (X) satisfies (2.8), and λ is a nonnegative real-valued function with λ+ < 1. Then

L p(·),λ(·)(X) ∼= Lp(·),λ(·)(X).

Proof. We need to prove that

c1‖f‖∗Lp(·),λ(·)(X)
� ‖f‖∗L p(·),λ(·)(X)

� c2‖f‖∗Lp(·),λ(·)(X)
. (3.29)

In view of Corollary 3.6, it suffices to prove the left inequality in (3.29). By the definition of

the norm in (2.29), we need to estimate ‖f‖Lp(·)(B(x,r)). We have

‖f‖Lp(·)(B(x,r)) � ‖f − fB(x,r)‖Lp(·)(B(x,r)) + |fB(x,r)| · ‖χB(x,r)‖p(·).

Using the estimate (2.23) and the inequality (3.25) in the last term, we obtain

(μB(x, r))
−λ(x)

p(x) ‖f‖Lp(·)(B(x,r))

� ‖f‖∗L p(·),λ(·)(X)
+ C(μB(x, r))

1−λ(x)
p(x)

(
|fX | + (μB(x, r))

λ(x)−1
p(x) ‖f‖∗L p(·),λ(·)(X)

)

which implies the left inequality in (3.29).

3.4 Coincidence of variable exponent Campanato space with variable
exponent Hölder spaces in the case λ− > 1

Note that the assumption λ− > 1 in Theorems 3.14– 3.16 below yields inf
x∈X

α(x) > 0 for the

resulting exponent α(x).

We need the following two lemmas. The first lemma is a counterpart to Lemma 3.8.

Lemma 3.12. Let (X, d, μ) be a quasimetric measure space satisfying the reverse doubling

condition (2.7) (by Lemma 2.1, it holds if (X, d, μ) is homogenous, X has finite measure and
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the condition (2.6) is fulfilled), and let λ be a bounded real-valued function with λ− > 1. Then

there exists a constant C = C(p, λ,D) such that

|fB(x,r) − fB(x,r/2m)| � C‖f‖∗L p(·),λ(·)(X)
(μB(x, r))

λ(x)−1
p(x)

m−1∑
k=0

2
kγ 1−λ(x)

p(x) (3.30)

for all (x, r) ∈ X × (0, dX), where γ is the exponent from the reverse doubling condition (2.7).

Proof. Let Θr,k,x,λ be as in (3.22). We have

Θ
1

p(x)

r,k,x,λ �
(
μB(x, r/2k+1)

)λ(x)−1
p(x)

(
1 + Dλ(x)

) 1
p(x) � C2

kγ
1−λ(x)
p(x) (μB(x, r))

λ(x)−1
p(x) (3.31)

where the second inequality comes from the reverse doubling condition (2.7). By (3.21) and

(3.31), for k = 1, 2, . . . we get

|fB(x,r/2k+1) − fB(x,r/2k)| � C‖f‖∗L p(·),λ(·)(X)2
kγ

1−λ(x)
p(x) (μB(x, r))

λ(x)−1
p(x) (3.32)

where C is independent of k. Summing over k = 0, 1, . . . ,m− 1, we obtain (3.30).

In the following lemma, we use the notation

S(λ) := {x ∈ X : λ(x) = 1},
Xδ(λ) = {x ∈ X : λ(x) � 1 + δ}, δ > 0.

Lemma 3.13. Let (X, d, μ) be a quasimetric measure space satisfying the reverse doubling

condition (2.7), and let λ be a real-valued bounded function with values in [1,∞). If μS(λ) = 0,

then for every f ∈ L p(·),λ(·) (X) there exists a function f̃ defined on X such that f is equal to

f̃ almost everywhere on X and

lim
r→0+

fB(x,r) = f̃(x)

for all x ∈ X\S(λ), where the convergence is uniform on every bounded subset of Xδ(λ) for

every fixed δ > 0.

Proof. The fact that

lim
r→0+

fB(x,r) = f(x)

almost everywhere in X, is the content of the well-known Lebesgue differentiation theorem (cf.

[17, p. 17]).

Let us now prove the uniform convergence of fB(x,r) with respect to x ∈ Xδ . We fix r ∈
(0, dX ). By Lemma 3.12 and the reverse doubling condition (2.7), for x /∈ S(λ) we have

|fB(x,r/2m) − fB(x,r/2m+q)| �
C

1 − 2
γ

1−λ(x)
p(x)

‖f‖∗L p(·),λ(·)(X)
(μB(x, r/2m))

λ(x)−1
p(x)

� C

λ(x) − 1
‖f‖∗L p(·),λ(·)(X)

2
mγ

(
1−λ(x)
p(x)

)
(μB(x, r))

λ(x)−1
p(x)︸ ︷︷ ︸

I1

(3.33)
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where the constant C is independent of x, m, q. From (3.33) we see that the sequence

{fB(x,r/2m)}∞m=1 is a Cauchy sequence uniformly in x on every set Xδ. Let

f̃(x) := lim
m→∞ fB(x,r/2m), x ∈ X.

The function f̃ is well defined in the sense that it is independent of r since for any 0 < s �= r < dX

|fB(x,s/2m) − f̃(x)| � |fB(x,r/2m) − f̃(x)| + |fB(x,r/2m) − fB(x,s/2m)|
� C‖f‖∗L p(·),λ(·)(X)

I1 + |fB(x,r/2m) − fB(x,s/2m)|

� C‖f‖∗L p(·),λ(·)(X)
(I1 + I2), (3.34)

where I1 comes from (3.33) and I2 is given by

I2 � C(μB(x, r/2m))
λ(x)−1
p(x)

(
μB(x, r/2m)

min{μB(x, r/2m), μB(x, s/2m)}
) 1

p(x)

+ C(μB(x, s/2m))
λ(x)−1
p(x)

(
μB(x, s/2m)

min{μB(x, r/2m), μB(x, s/2m)}
) 1

p(x)

due to Lemma 3.7 and the monotonicity of measure.

Since I2 tends to 0 as m → ∞ because of the reverse doubling condition (2.7), (3.34) tends

to 0 as m → ∞ uniformly in x ∈ Xδ . Therefore, f̃ is the uniform limit of any sequence of type

{fB(x,s/2m)}∞m=1, uniform in x ∈ Xδ, where s is an arbitrary real number in (0, dX ).

Letting m → ∞ in (3.30), we obtain

|fB(x,r) − f̃(x)| � C‖f‖∗L p(·),λ(·)(X)
(μB(x, r))

λ(x)−1
p(x) , x ∈ Xδ (3.35)

which uniformly tends to zero as r → 0 by the reverse doubling condition.

In the following assertions, we prove the equivalence between variable exponent Campanato

spaces and variable exponent Hölder spaces whenever the exponents p and λ are log-Hölder

continuous.

Theorem 3.14. Suppose that (X, d, μ) is a space of homogeneous type with finite measure,

p ∈ P log(X), and λ is a bounded real-valued function with λ− > 1. Then

Hα(·)(X) ↪→ L p(·),λ(·) (X) (3.36)

if α satisfies the log-Hölder continuity condition (2.17) and α(x) � N
λ(x) − 1

p(x)
.

Proof. Let f ∈ Hα(·)(X) be such that ‖f‖Hα(·)(X) � 1. We only need to prove that

‖f‖∗L p(·),λ(·)(X)
� C. (3.37)

It suffices to check that �f�∗ � C since

‖f‖L1(X) � μX‖f‖L∞(X) � C.
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Since the case r � 1/2 is obvious, we only consider the case r < 1/2. We have

‖f − fB(x,r)‖Lp(·)(B(x,r)) �
∥∥∥∥∥

 

B(x,r)

|f(·) − f(t)|dμ(t)

∥∥∥∥∥
Lp(·)(B(x,r))

�
∥∥∥∥∥

 

B(x,r)

d(·, t)max{α(·),α(t)}�f�α(·) dμ(t)

∥∥∥∥∥
Lp(·)(B(x,r))

. (3.38)

Since

‖f‖Hα(·)(X) � 1,

from the log-Hölder continuity of α, Lemma 2.5, and the lower Ahlfors condition we get

‖f − fB(x,r)‖Lp(·)(B(x,r)) � Crα(x)‖χB(x,r)‖Lp(·)(X)

� Crα(x)(μB(x, r))
1

p(x) � C(μB(x, r))
α(x)
N

+ 1
p(x) , (3.39)

which proves (3.37).

Theorem 3.15. Suppose that (X, d, μ) is a space of homogeneous type with finite measure,

the condition (2.6) is satisfied, p ∈ P log(X) satisfies (2.8), and λ is a bounded real-valued

function with λ− > 1. Then

L p(·),λ(·) (X) ↪→ Hα(·)(X) (3.40)

if α satisfies the log-Hölder continuity condition (2.17) and α(x) � γ
λ(x) − 1

p(x)
.

Proof. It suffices to prove that

L 1,α(·)
γ

+1
(X) ↪→ Hα(·)(X) (3.41)

since

L p(·),λ(·) (X) ↪→ L 1,
α(·)
γ

+1(X)

by the embedding (3.12).

Let f ∈ L 1,α(·)
γ

+1
(X). To prove the estimate

�f�α(·) � C‖f‖∗
L

1,
α(·)
γ +1

(X)
, (3.42)

we proceed as follows. By Lemma 3.13, when 1 < λ−, we can take f̃ instead of f . Assuming

that d(x, y) is small and r = 2Qd(x, y), we then have

|f̃(x) − f̃(y)| � |f̃(x) − fB(x,r)| + |fB(x,r) − fB(y,r)| + |f̃(y) − fB(y,r)|

� C‖f‖∗
L

1,
α(·)
γ +1

(X)

[
(μB(x, r))

α(x)
γ + (μB(y, r))

α(y)
γ
]

� C‖f‖∗
L

1,
α(·)
γ +1

(X)

(
rα(x) + rα(y)

)

� C‖f‖∗
L

1,
α(·)
γ +1

(X)
rmax{α(x),α(y)},
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where the second inequality comes from (3.35) and Lemma 3.10, the third inequality comes from

the fact that μ is upper Ahlfors γ-regular, and the last inequality is obtained from the fact that

α is log-Hölder continuous.

To estimate the essential supremum norm on X, we observe that for any fixed 0 < r � dX

‖f‖L∞(B(x,r)) � ‖f − fB(x,r)‖L∞(B(x,r)) + ‖fB(x,r)‖L∞(B(x,r)). (3.43)

The estimate

‖fB(x,r)‖L∞(B(x,r)) � ‖f‖L1(X)(μB(x, r))−1

is obvious. For the other norm we have

∥∥f − fB(x,r)

∥∥
L∞(B(x,r))

�
∥∥∥∥∥

 

B(x,r)

|f(·) − f(t)|dμ(t)

∥∥∥∥∥
L∞(B(x,r))

�
∥∥∥∥∥

 

B(x,r)

d(·, t)max{α(·),α(t)}�f�α(·) dμ(t)

∥∥∥∥∥
L∞(B(x,r))

� C�f�α(·),

where C is independent of r, but depends only on dX and α+. Collecting (3.43) and the estimates

obtained for ‖ · ‖L∞ , and taking r = dX , we find

‖f‖L∞(X) � C
(‖f‖L1(X) + �f�α(·)

)

which, together with (3.42), gives us (3.41).

Theorem 3.16. Suppose that (X, d, μ) is a space of homogeneous type with finite measure,

p ∈ P log(X), λ is a real-valued function with λ− > 1, μ is Ahlfors Q-regular, and λ satisfies

the log-Hölder continuity condition (2.17). Then

L p(·),λ(·) (X) ∼= Hα(·)(X), (3.44)

where α(x) = Q
λ(x) − 1

p(x)
.

Proof. The assertion follows from the embeddings obtained in Theorems 3.14 and 3.15.
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