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Abstract. The main results of the paper are: (1) The boundedness of
singular integral operators in the variable exponent Lebesgue spaces
Lp(·)(Γ, w) on a class of composed Carleson curves Γ where the weights
w have a finite set of oscillating singularities. The proof of this result is
based on the boundedness of Mellin pseudodifferential operators on the
spaces Lp(·)(R+, dμ) where dμ is an invariant measure on multiplicative
group R+ = {r ∈ R : r > 0}. (2) Criterion of local invertibility of singu-
lar integral operators with piecewise slowly oscillating coefficients acting
on Lp(·)(Γ, w) spaces. We obtain this criterion from the corresponding
criteria of local invertibility at the point 0 of Mellin pseudodifferential
operators on R+ and local invertibility of singular integral operators
on R. (3) Criterion of Fredholmness of singular integral operators in

the variable exponent Lebesgue spaces Lp(·)(Γ, w) where Γ belongs to a
class of composed Carleson curves slowly oscillating at the nodes, and
the weight w has a finite set of slowly oscillating singularities.
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1. Introduction

Last decade there arose a big interest to investigation of the classical operators
of Analysis, i.e. singular and maximal operators, Hardy operators, pseudo-
differential operators, in the Lp(·)-spaces with variable exponents p(·). Many
papers have been devoted to the extension of various results on the bounded-
ness of operators, well known for the constant p, to the case of variable p(·).
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This extension is essentially nontrivial and demands new ideas and methods,
see for instance [7–11,28,44] and references therein.

Similar to the case of the constant p, the Fredholm theory of the men-
tioned operators in spaces related to Lp(·) has also a big interest. With respect
to one-dimensional singular integral operators in variable exponent Lebesgue
spaces we refer, for instance, to [17–26,41].

In our paper [41] we proved the boundedness of pseudodifferential oper-
ators of the class OPS0

1,0 acting in the variable exponent Lebesgue spaces
Lp(·)(Rn) and obtained the necessary and sufficient conditions of the Fredhom
property of operators of the class OPS0

1,0 with symbols slowly oscillating at
infinity, in the spaces Lp(·)(Rn). The proof of the sufficiency of conditions
of the Fredholmness is more or less standard being based on the calculus of
pseudodifferential operators, the boundedness theorems and the interpolation
in the spaces Lp(·)(Rn), while the proof of the necessity of those conditions
meet big difficulties. (In particular, they are connected with the fact that the
shift and dilation operators are unbounded in Lp(·)).

The main aim of the paper is the Fredholm theory of singular inte-
gral operators (SIOs) on composed curves Γ with whirling points and coeffi-
cients having slowly oscillating discontinuities acting in the weighted spaces
Lp(·)(Γ, w). Applying results from [41] we prove that singular integral oper-
ators are bounded in Lp(·)(Γ, w) and they are the local type operators in the
Simonenko sense [46–48]. Consequently, for the investigation of the Fredholm
property we can apply the Simonenko local principle. This principle reduces
the investigation of the Fredholm property of local type operators to the
investigation of the local invertibility of their local representatives which are
simpler operators than the original one.

For instance, the investigation of the Fredholm property of the SIO

A = aI + bSΓ,

with continuous coefficients a and b and a Lyapunov curve Γ, in the space
Lp(Γ), 1 < p < ∞, is known to be reduced to investigation of local rep-
resentatives at every point t0 ∈ Γ which are operators of the type At0 =
a(t0)I + b(t0)SR. Their local invertibility in Lp(R) coincides with the invert-
ibility which is equivalent to the condition a(t0)±b(t0) �= 0. The investigation
of the Fredholm property of the operator A = aI + bSΓ with piece-wise con-
tinuous coefficients on a simple Lyapunov curve Γ in the space Lp(Γ, w) with
power weight w, is reduced to the investigation of the local invertibility of
the homogeneous operators of the form aI + bSR acting in Lp(R), where a, b
are piecewise constant functions with the only discontinuity at the origin and
infinity. These operators are realized as Mellin convolutions and conditions
of their invertibility are given in the terms of the Mellin transform of the
kernel.

In [2–5,33–36,38], the Simonenko local method was applied to SIO
on some composed Carleson curves with discontinuous coefficients acting
on weighted Lp-spaces, and in the paper [39] for SIO acting on weighted
Hölder spaces. In this case the local representatives are Mellin pseudodiffer-
ential operators with variable symbols. The symbols of local representatives
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(the local symbols) explain the appearance of the logarithmic double spirales
and spiral horns in the local spectrums of SIO. Note that in the theory of
Gohberg et al. [14] and Spitkovsky [49] for SIO on Lyapunov curves in Lp-
spaces with Muckenhoupt weights, the typical local spectra are circular arcs
and circular horns.

We extend here the results of the mentioned papers to the case of vari-
able exponent p(·). The local representatives of the SIO at the singular points
t ∈ Γ appear as Mellin pseudodifferential operators with a symbol depending
on the curve, weight and coefficients and also on the values of p(·) at singular
points t. Making use of the results on local invertibility of Mellin pseudodif-
ferential operators, we obtain necessary and sufficient conditions of the local
invertibility of SIOs at singular points of the curves, weights and coefficients.
Finally, the application of the Simonenko local principle allows to obtain the
necessary and sufficient conditions of Fredhomness in Lp(Γ, w).

The methods of localization developed in the paper can be applied to
the study of the Fredholm property of multidimensional SIOs and pseudodif-
ferential operators on compact and noncompact manifolds, boundary value
problems in Sobolev and Besov spaces connected with Lp(·). We hope to do
this in forthcoming papers.

Another approach to the investigation of the algebra of operators gen-
erated by the operator SΓ of singular integration along a general composed
Carleson curve Γ and operators of multiplication by piece-wise continuous
functions, acting in Lp(Γ, w), where 1 < p < ∞, and w is a Muckenhoupt
weight, based on the Wiener–Hopf factorization and theory of submultipli-
cative functions was given by Böttcher and Karlovich (see book [1] and ref-
erences therein). In [18–20], some results of the book [1] were transferred to
algebras of SIO acting in the Lebesgue spaces with variable exponents.

The paper is organized as follows. In Sect. 2 we consider pseudodifferen-
tial operators on R acting in the variable exponent Lebesgue spaces Lp(·)(R).
The main result of this section is a criterion of local invertibility, at the
point +∞, of pseudodifferential operators with slowly oscillating symbols,
and a criterion of local invertibility of pseudodifferential operators and sin-
gular integral operators at the point x0 ∈ R.

In Sect. 3 the results of Sect. 2 are reformulated for the Mellin pseudodif-
ferential operators acting on Lp(·)(R+, dμ) with the invariant measure dμ =
dr
r on the multiplicative group R+.

In Sect. 4 we apply the results of Sects. 2 and 3 to the investigation of
boundedness, local invertibility and Fredholmness of singular integral opera-
tors on composed Carleson curves acting on the Lebesgue spaces Lp(·)(Γ, w)
with weights having a finite set of oscillating singularities. We obtain here
the following results:

(1) Theorem on the boundedness of SIO on composed Carleson curves Γ
acting on the Lebesgue spaces Lp(Γ, w) with weights having a finite
set of oscillating singularities. The proof of this theorem is based on
the local boundedness of Mellin pseudodifferential operators on the
spaces Lp(·)(R+, dμ) and an admissible partition of unity on the curve
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Γ. The pseudodifferential operators approach demands that the curve
near every node is infinitely smooth. But in fact we use the existence of
only a finite number of derivatives.

(2) Criterion of the local invertibility and Fredholmness of SIOs on slowly
oscillating composed curves with piecewise slowly oscillating coefficients,
in the spaces Lp(·)(Γ, w) with the weight w slowly oscillating at the
nodes. The main tools of this section is the local principle of Simonenko
and necessary and sufficient conditions of local invertibility of Mellin
pseudodifferential operators acting in Lp(·)

(
R+,

dr
r

)
at the point 0, and

pseudodifferential and singular integral operators acting in Lp(·)(R) at
the point x0 ∈ R.

Section 5 is devoted to a comparison of the used class of oscillating
weights with the Bary-Stechkin type weights. In particular, we show in
Lemma 56 that our assumption on the differentiability of weights near the
nodes is inessential in the sense that any function in the Bary-Stechkin class
is equivalent to N times differentiable function in this class, for any given
finite N , the Matuszewska-Orlicz indices coinciding under the equivalence,
as is known. However, the conditions on the weights in terms of the Simo-
nenko indices are somewhat stricter than in terms of the Matuszewska-Orlicz
indices, see Remark 57.

We will use the following notations:

• for a Banach space X, B(X) stands for the space of all bounded opera-
tors in X,

• C∞(R) is the linear space of infinitely differentiable functions on R,
• C∞

0 (R) is a subspace of C∞(R) of functions with compact support,
• C∞

b (R) is a subspace of C∞(R) of functions bounded on R with all their
derivatives,

• S(R) is the L. Schwartz space of functions in C∞(R) decreasing at
infinity with all their derivatives faster than every power |x|−n , n ∈ N.

• If a is a function or matrix, by aI we denote the operator of multipli-
cation by a.

2. Pseudodifferential Operators on R

2.1. Some Properties

In this section we give an auxiliary material on pseudodifferential operators
(more information may be found for instance in [38, Chapter 4], or [37]).

Definition 1. (i) We say that a function a ∈ C∞(R × R) is a symbol of the
class Sm1,0 if

|a|l1,l2 =
∑

α≤l1,β≤l2
sup

(x,ξ)∈R2

∣
∣∂βx∂

α
ξ a(x, ξ)

∣
∣ 〈ξ〉−m+α

< ∞, (2.1)
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for every l1, l2 ∈ N0 = {0} ∪ N, where 〈ξ〉 =
(
1 + |ξ|2

)1/2
. To a symbol

a we relate the pseudodifferential operator (ψdo)

Op(a)u(x) =
1
2π

∫

R

dξ

∫

R

a(x, ξ)u(y)ei(x−y)·ξdy, (2.2)

where u ∈ C∞
0 (R); by OPS0

1,0 we denote the class of ψdo′s with symbols
in S0

1,0.
(ii) We say that a function a ∈ C∞(R × R × R) is a double symbol of the

class Sm1,0,0 if

|a|l1,l2,l3 =
∑

α≤l1,β≤l2,γ≤l3
sup

(x,y,ξ)∈R3

∣
∣∂βx∂

γ
y ∂

α
ξ a(x, y, ξ)

∣
∣ 〈ξ〉α−m

< ∞ (2.3)

for every l1, l2, l3 ∈ N0. To a symbol a we relate the pseudodifferential
operator with double symbol

Opd(a)u(x) =
1
2π

∫

R

dξ

∫

R

a(x, y, ξ)u(y)ei(x−y)·ξdy, (2.4)

where u ∈ C∞
0 (R), and we denote the class of ψdo′s with symbols in

Sm1,0,0 by OPSm1,0,0.

Proposition 2. (Calderon–Vaillancourt, see for instance [38, Theorem
4.1.12]). Let Op(a) ∈ OPS0

1,0. Then the operator Op(a) is bounded in L2(R)
and

‖Op(a)‖B(L2(R)) ≤ C |a|2,2 , (2.5)

where C does not depend on a.

Proposition 3. (see [38, Chapter 4])

(i) Let aj ∈ S
mj
1,0 , j = 1, 2 and C = Op(a1)Op(a2). Then C ∈

OPSm1+m2
1,0 , C = Op(c) where

c(x, ξ) =
1
2π

∫ ∫

R2

a(x, ξ + η)b(x+ y, ξ)e−iy·ηdydη. (2.6)

Moreover,

c(x, ξ) = a(x, ξ)b(x, ξ) + t(x, ξ), (2.7)

where t ∈ Sm1+m2−1
1,0 .

(ii) Let a ∈ Sm1,0,0. Then Opd(a) ∈ OPSm1,0, Opd(a) = OP (a#) where

a#(x, ξ) =
1
2π

∫ ∫

R2

a(x, x+ y, ξ + η)e−iy·ηdydη. (2.8)

Moreover, a#(x, ξ) = a(x, x, ξ) + t(x, ξ), where t ∈ Sm−1
1,0 .
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Note that the operators in OPSm1,0 are bounded in S(R) (see for instance
[38, Proposition 4.1.5]).

We say that an operator Aτ is formally adjoint to A = Op(a) ∈ OPSm1,0
if

(Aτu, v) = (u,Av)

for all u, v ∈ S(Rn), where (·, ·) is the standard scalar product corresponding
to L2(R).

Proposition 4. Let a ∈ Sm1,0 Then the operator Aτ formally adjoint to A =
Op(a) belongs to OPSm1,0 and Aτ = Op(aτ ) with

aτ (x, ξ) =
1
2π

∫ ∫

R2

ā(x+ y, ξ + η)e−iy·ηdydη. (2.9)

aτ (x, ξ) = ā(x, ξ) + t(x, ξ), where t ∈ Sm−1
1,0 .

The integrals in (2.6), (2.8), (2.9) are understood as oscillatory (see [38,
Chap. 4.1.2], [37, Chap. 2]).

Definition 5. (i) We say that a symbol a ∈ S0
1,0 is slowly oscillating at

the point +∞, if
∣
∣∂βx∂

α
ξ a(x, ξ)

∣
∣ ≤ Cαβ(x) 〈ξ〉−α

, (2.10)

and limx→+∞ Cαβ(x) = 0 for all α ∈ N0 and β ∈ N. We denote this
class by SO+∞ and the corresponding class of ψdo′s by OPSO+∞.

(ii) We say that a double symbol a ∈ S0
1,0,0 is slowly oscillating at the

point +∞, if
∣
∣∂βx∂

γ
y ∂

α
ξ a(x, y, ξ)

∣
∣ ≤ Cαβγ(x, y) 〈ξ〉−α

where limx→+∞ Cαβγ(x, y) = 0 uniformly with respect y for all α, γ ∈
N0 and β ∈ N, and limy→+∞ Cαβγ(x, y) = 0 uniformly with respect
x for all α, β ∈ N0 and γ ∈ N. We denote this class by SO+∞,d and
the corresponding class of ψdo′s by OPSO+∞,d.

(iii) We say that a ∈ S̊+∞, if the coefficient Cαβ(x) in estimate (2.10)
satisfies the condition limx→+∞ Cαβ(x) = 0 for all α, β ∈ N0. The
corresponding class of ψdo′s is denoted by OPS̊+∞.

Proposition 6. ( [38, Chap. 4])
(i) Let Op(aj) ∈ OPSO+∞, j = 1, 2 and B = Op(a1)Op(a2). Then B ∈

OPSO+∞ and B = Op(b) with

b(x, ξ) = a1(x, ξ)a2(x, ξ) + q(x, ξ),

where q ∈ S̊+∞.
(ii) Let Opd(a) ∈ OPSO+∞,d. Then Opd(a) = Op(a#) ∈ OPSO+∞,

where

a#(x, ξ) = a(x, x, ξ) + q(x, ξ),

and q ∈ S̊+∞.
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(iii) Let Op(a) ∈ OPSO+∞. Then the formal adjoint operator (Op(a))τ =
Op(aτ ) is in OPSO+∞ with

aτ (x, ξ) = ā(x, x, ξ) + q(x, ξ),

and q ∈ S̊m+∞.

2.2. Pseudodifferential Operators on Lebesgue Space with Variable
Exponent

We give the definition of variable exponent Lebesgue spaces for the general
case where the underlying space is an arbitrary quasimetric measure space,
because such spaces will be used in various settings in this paper.

Let (X, d, μ) be a quasimetric measure space, i.e. a topological space
endowed with the quasimetric d : X ×X → R

1
+ and nonnegative Borel mea-

sure μ (we refer to [6,12,15] for quasimetric measure spaces). Let p : X →
(1,∞) be a measurable function on X.

Definition 7. The variable exponent Lebesgue space Lp(·)(X) is introduced
via the modular

I
p(·)
X (f) =

∫

X

|f(x)|p(x) dμ(x) < ∞ (2.11)

by the norm

‖f‖Lp(·)(X) = inf
{
λ > 0 : Ip(·)X

(
f

λ

)
≤ 1
}
.

We also use a similar space Lp(·)n (X) of vector-functions on X with values in
C
n, defined via norm

‖f‖
L
p(·)
n (X)

= inf
{
λ > 0 : Ip(·)n

(
f

λ

)
≤ 1
}
,

where Ip(·)n (f) :=
∫
X

‖f(x)‖p(x)
Cn

dμ(x) < ∞.

Everywhere in the sequel we assume that p(·) satisfies the conditions:
(i) there exists numbers p−, p+ ∈ (1,∞) such that

1 < p− ≤ p(x) ≤ p+ < ∞. (2.12)

(ii) there holds the log-condition

|p(x) − p(y)| ≤ A

log 1
d(x,y)

, x, y ∈ R, d(x, y) ≤ 1
2
, (2.13)

Under condition (2.12) the space Lp(·)(X) is reflexive and
(
Lp(·)(X)

)∗
=

Lq(·)(X) where 1
p(x) + 1

q(x) = 1, x ∈ X.
The case X = R

n will be the main one in this paper and in this case we
also suppose that

(iii) there exists the limit lim
|x|→∞

p(x) = p(∞) and

|p(x) − p(∞)| ≤ A

log (2 + |x|) , x ∈ R
n. (2.14)
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Note that under condition (2.12) for a function a ∈ L∞(X) we have

‖aI‖B(Lp(·)(X)) ≤ ‖a‖L∞(X) (2.15)

which follows from the definition of the norm in Lp(·)(X), and that the mod-
ular convergence is equivalent to the norm convergence. The latter follows
from the properties:

c1 ≤ ‖f‖Lp(·)(X) ≤ c2 =⇒ c3 ≤ Ip(·)(f) ≤ c4 (2.16)

and

C1 ≤ Ip(·)(f) ≤ C2 =⇒ C3 ≤ ‖f‖Lp(·)(R) ≤ C4 (2.17)

with c3 = min
(
c
p−
1 , c

p+
1

)
, c4 = max

(
c
p−
2 , c

p+
2

)
, C3 = min

(
C

1/p−
2 , C

1/p+
2

)
,

C4 = max
(
C

1/p−
2 , C

1/p+
2

)
.

In the case X = R
n the imbeddings

C∞
0 (Rn) ⊂ S(Rn) ⊂ Lp(·)(Rn)

hold; they are dense under under assumptions (2.12), (2.13), (2.14) (see, for
instance, Theorem 2.11 in [29]).

Proposition 8. ( [10]) Let pj : R
n → [1,∞), j = 1, 2, be bounded measurable

functions, A be a linear operator defined on Lp1(·)(Rn) ∩ Lp2(·)(Rn) and

‖Au‖
Lpj(·)(Rn)

≤ Cj ‖u‖
Lpj(·)(Rn)

, j = 1, 2. (2.18)

Then A is also bounded on the intermediate space Lpθ(·)(Rn), where
1

pθ (x)
=

θ

p1 (x)
+

1 − θ

p2 (x)
, θ ∈ [0, 1] ,

and

‖A‖B(Lpθ(·)) ≤ ‖A‖θB(Lp1(·)) ‖A‖1−θ
B(Lp2(·)) .

The following proposition is an extension of the well-known theorem
of Krasnosel′skii [30] on the interpolation of the compactness property in
Lp-spaces with a constant p.

Proposition 9. ( [41, Proposition 2.2]) Let pj : R
n → [1,∞), j = 1, 2, be

bounded measurable functions satisfying assumptions (2.12)–(2.14) and let a
linear operator A defined on Lp1(·)(Rn) ∩ Lp2(·)(Rn) satisfy the boundedness
assumptions in (2.18). If

A : Lp1(·)(Rn) → Lp1(·)(Rn)

is a compact operator, then

A : Lpθ(·)(Rn) → Lpθ(·)(Rn)

is a compact operator in every intermediate space Lpθ(·)(Rn), θ ∈ (0, 1].

Theorem 10. ([41, Theorem 5.1]) An operator Op(a) ∈ OPS0
1,0 is bounded

in Lp(·)(R) and there exists M > 0 and C > 0 not depending on a such that

‖Op(a)‖B(Lp(·)(R)) ≤ C |a|M,M
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Proposition 3 and Theorem 10 imply the following

Corollary 11. An operator Op(a) ∈ OPS0
1,0,0 is bounded in Lp(·)(R) and there

exists M > 0 and C > 0 not depending on A such that

‖Op(a)‖B(Lp(·)(R)) ≤ C |a|M,M,M ,

where C > 0 and M > 0 do not depend on a.

Note that, because S(R) is dense in Lp(·)(R), the formal adjoint Aτ to
the operator A = Op(a) ∈ OPS0

1,0 coincides with the operator A∗ adjoint to
the operator A acting in Lp(·)(R). Hence A∗ = Op(aτ ) ∈ OPS0

1,0, where aτ

is defined by (2.9).

Proposition 12. Let χR be the characteristic function of the segment [R,+∞),
Q = Op(q) ∈ OPS̊+∞. Then

lim
R→+∞

‖χRQ‖B(Lp(·)(R)) = lim
R→+∞

‖QχRI‖B(Lp(·)(R)) = 0. (2.19)

Proof. Let ϕ ∈ C∞(R) be a real-valued function such that

ϕ(x) =
{

1, x ≥ 1
0, x ≤ 1/2 ,

and ϕR(x) = ϕ( xR ), R > 0. We have ϕRQ = Op(ϕRq). Since q ∈ S̊+∞, we
have

lim
R→∞

|ϕRq|l1,l2 = 0

for every l1, l2 ∈ N0. Applying Theorem 10, we obtain that lim
R→∞

‖ϕR
Q‖B(Lp(·)(R)) = 0. Now we will prove that lim

R→+∞
‖QϕRI‖B(Lp(·)(R)) = 0.

We have ‖QϕRI‖B(Lp(·)(R)) = ‖ϕRQ∗‖B(Lq(·)(R)) , where Q∗ ∈ OPS̊+∞ by
statement (iii) of Proposition 6. Hence

lim
R→∞

‖QϕRI‖B(Lp(·)(R)) = lim
R→∞

‖ϕRQ∗‖B(Lq(·)(R)) = 0. (2.20)

Since ϕRχR = χR, equality (2.20) implies (2.19). �
2.3. Local Invertibility at +∞
Definition 13. We say that an operator A ∈ B(Lp(·)(R)) is locally invertible
at the point +∞, if there exist operators LR and RR such that

LR AχRI = χRI, χRARR = χRI. (2.21)

We also need the following propositions, where by

Vhu(x) = u(x− h)

we denote the translation operator.

Proposition 14. ([41, Proposition 6.3]) Let a sequence (R �)hm → +∞, and
wm (∈ C (R)) be a sequence converging in the sup-norm on R to a func-
tion w ∈ C(R). Suppose also that there exists a constant C > 0 such that
|wm (x) | ≤ C

|x| for every m ∈ N and |w(x)| ≤ C
|x| . Then

lim
m→∞ ‖Vhmwm‖Lp(·)(R) = ‖w‖Lp(+∞)(R) . (2.22)
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Proposition 15. ([41, Proposition 6.4]) Let Op(a) ∈ OPSO+∞, and a
sequence hm → +∞. Then there exists a subsequence hmk of hm and a symbol
a(h) ∈ OPS0

1,0 not depending on x, such that for every function u ∈ C∞
0 (R)

lim
k→∞

V−hmkOp(a)Vhmku = Op(a(h))u

in the topology of S(R).

In what follows, if a is a symbol and h ∈ R, then ah denotes the symbol
shifted in x, that is, ah(x, ξ) = a(x+h, ξ). Note that V−hOp(a)Vh = Op(ah).

Proposition 16. Let Op(a) ∈ OPSO̊+∞, and a sequence hm → +∞. Then
for every function u ∈ C∞

0 (R)

lim
m→∞ ‖V−hmOp(a)Vhmu‖Lp(·)(R) = 0. (2.23)

Proof. We have V−hmOp(a)Vhm = Op(ahm). Let ϕ ∈ C∞
0 (R) such that ϕu =

u. Hence

V−hmOp(a)Vhmu = Opd(ahmϕ)u.

Applying formula (2.8) we obtain that Opd(ahmϕ) = Op(bm) where

bm(x, ξ) =
1
2π

∫

R2

a(x+ hm, ξ + η)ϕ(x+ y)e−iy·ηdydη. (2.24)

Then applying the definition of the oscillatory integral in (2.24) we obtain
that

lim
m→∞ sup

(x,ξ)∈R2

∣
∣∂βx∂

α
ξ bm(x, ξ)

∣
∣ = 0

for all α, β ∈ N0. Theorem 10 implies that

lim
m→∞ ‖Op(bm)‖B(Lp(·)(R)) = lim

m→∞ ‖Opd(ahmϕ)‖B(Lp(·)(R)) = 0. (2.25)

Hence the statement of the proposition follows from formula (2.25). �

Theorem 17. Let Op(a) ∈ OPSO+∞. Then the operator Op(a) :
Lp(·)(R) →Lp(·)(R) is locally invertible at the point +∞ if and only if

lim inf
x→+∞ inf

ξ∈R

|a(x, ξ)| > 0. (2.26)

Proof. (a) First we prove that condition (2.26) is sufficient for the local
invertibility of Op(a) at the point +∞. Let ϕR be the function from the
proof of Proposition 16. Condition (2.26) implies that there exists an R0 > 0
such that bR0 = ϕR0a

−1 ∈ SO+∞. Hence by Proposition 6

Op(bR0)Op(a) = ϕR0I +QR0 , (2.27)

where QR0 ∈ OPS̊+∞. Equality (2.27) implies that

Op(bR0)Op(a)χRI = (I +QR0χRI)χRI, (2.28)

where R is such that ϕR0χR = χR. By Proposition 12 we can choose an R
such that ‖QχRI‖B(Lp(·)(R)) < 1. Hence

(I +QχRI)−1Op(bR)Op(a)χRI = χRI.
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Thus, the operator Op(a) is locally left invertible at the point +∞. In the
same way we prove that Op(a) is locally right invertible at the point +∞.

(b) Now we prove the necessity of condition (2.26) for the local invert-
ibility of Op(a) at the point +∞. Let Op(a) : Lp(·)(R) → Lp(·)(R) be a locally
invertible operator. Then there exists C > 0 and R > 0 such that

‖Op(a)χRu‖Lp(·)(R) ≥ C ‖χRu‖Lp(·)(R) (2.29)

for every u ∈ C∞
0 (R).

Let a sequence hm ∈ R tend to +∞, and u ∈ C∞
0 (R). Then for a fixed

R > 0 there exists m0 > 0 such that χRVhmu = Vhmu for m ≥ m0. Hence for
such m

‖Vhm (V−hmOp(a)Vhmu)‖Lp(·)(R) = ‖Op(a)χRVhmu‖Lp(·)(R)

≥ C ‖Vhmu‖Lp(·)(R) . (2.30)

Let hmk be a subsequence of hm defined in Proposition 15 and let

wk = V−hmkOp(a)Vhmku = Op
(
ahmk
)
u.

Applying Proposition 15, we obtain that wk → w = Op(a(h))u in the space
S(R). Then we can use Proposition 14 to pass to the limit in the inequality

∥
∥
∥Vhmkwk

∥
∥
∥
Lp(·)(R)

≥ C
∥
∥
∥Vhmku

∥
∥
∥
Lp(·)(R)

,

and obtain that
∥
∥Op(a(h))u

∥
∥
Lp(+∞)(R)

≥ C ‖u‖Lp(+∞)(R) , (2.31)

where the symbol a(h) depends only on ξ. Estimate (2.31) implies the
condition

inf
ξ∈R

∣
∣a(h)(ξ)

∣
∣ > 0. (2.32)

Thus, we proved that for every sequence hm → +∞ there exists a subse-
quence hmk and a limit symbol a(h) ∈ S0

1,0 such that the sequence a(hmk , ξ)
converges uniformly on R to the limit function a(h)(ξ) for which condition
(2.32) holds. Suppose now that condition (2.26) is not satisfied. Then there
exists a sequence (hm, ξm), hm → +∞ such that

lim
m→∞ a(hm, ξm) = 0. (2.33)

Choose a subsequence hmk of the sequence hm such that a(hmk , ξ) converges
uniformly with respect to ξ ∈ R to the limit function ah(ξ) for which condi-
tion (2.32) holds. Then

lim
k→∞

a(hmk , ξmk) = 0 (2.34)

and

lim
k→∞
∣
∣a(hmk , ξmk) − a(h)(ξmk)

∣
∣ = 0. (2.35)

Hence (2.34) and (2.35) contradict to (2.32). �
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By OPS0
1,0(n) (OPSO+∞(n)) we denote the class of ψdo′s Op(a), where

a is a matrix with entries aij ∈ S0
1,0 (SO+∞).

Theorem 17 is reformulated for the matrix case in the following form.

Theorem 18. Let Op(a) ∈ OPSO+∞(n). Then Op(a) : Lp(·)n (R) →L
p(·)
n (R) is

locally invertible at the point +∞ if and only if

lim inf
x→+∞ inf

ξ∈R

|det(a(x, ξ))| > 0. (2.36)

2.4. Local Invertibility at the Point x0 ∈ R

Definition 19. We say that A ∈ B(Lp(·)(R)) is locally invertible at the point
x0 ∈ R, if there exist an interval Iε(x0) = (x0 − ε, x0 + ε ) and operators
Lx0,ε,Rx0,ε ∈ B(Lp(·)(R)) such that

Lx0,εAχ
x0
ε I = χx0

ε I, χ
x0
ε ARx0,ε = χx0

ε I,

where χx0
ε = χIε(x0) is the characteristic function of Iε(x0). The operators

Lx0,ε(Rx0,ε) are called left (right) locally inverse operators.

We consider a subclass S̃0
1,0 of symbols in S0

1,0 for which there exist
functions a± ∈ C∞

b (R) such that

lim
ξ→±∞

sup
x∈R

∣
∣a(x, ξ) − a±(x)

∣
∣ = 0. (2.37)

Let Op(a) ∈ OPS̃0
1,0. Then we set

σx0(A) =
{
a+(x0), a−(x0)

}

and say that σx0(Op(a)) is the local symbol of the operator Op(a) at the
point x0 ∈ R. Note that if Op(aj) ∈ OPS̃0

1,0, j = 1, 2, then

σx0(Op(a1)Op(a2)) = σx0(Op(a1))σx0(Op(a2)
:=
{
a+
1 (x0)a+

2 (x0), a−
1 (x0)a−

1 (x0)
}
.

The ψdo Op(a) ∈ OPS̃0
1,0 is called elliptic at the point x0, if the local symbol

σx0(Op(a)) is invertible, that is, a±(x0) �= 0.
In this section we also need the following propositions.

Proposition 20. Let t ∈ S0
1,0 and

lim
(x,ξ)→0

t(x, ξ) = 0. (2.38)

Then Op(t) is a compact operator in Lp(·)(R), where p(·) satisfies conditions
(2.12)–(2.14).

Proof. Condition (2.38) implies that Op(t) is compact in L2(R) (see [37, The-
orem 5.8.3]). We can find a function r : R → (1,∞) satisfying (2.12)–(2.14)
such that Lp(·)(R) is an intermediate space between L2(R) and Lr(·)(R).
Hence Op(t) is a compact operator in Lp(·)(R) by Proposition 9. �

Let ϕ ∈ C∞
0 (R), ϕ(x) = 1 if |x| ≤ 1

2 , suppϕ = [−1, 1] , and 0 ≤ ϕ(x) ≤ 1.
We set ϕx0

ε (x) = ϕ(x−x0
ε ).
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Proposition 21. Let t ∈ S0
1,0 and

lim
ξ→∞

sup
x∈Rn

|t(x, ξ)| = 0. (2.39)

Then

lim
ε→0

‖Op(t)χx0
ε I‖B(Lp(·)(R)) = lim

ε→0
‖χx0

ε Op(t)‖B(Lp(·)(R)) = 0 (2.40)

and

lim
ε→0

‖Op(t)ϕx0
ε I‖B(Lp(·)(R)) = lim

ε→0
‖ϕx0

ε Op(t)‖B(Lp(·)(R)) = 0. (2.41)

Proof. Fix ε0 > 0 and let 0 < ε < ε0. Then Op(t)χx0
ε I = Op(t)χx0

ε0χ
x0
ε I. The

operator Op(t)χx0
ε0 I is compact by Proposition 20, and χx0

ε I → 0 if ε → 0
strongly in Lp(·)(R). Hence limε→0 ‖Op(t)χx0

ε I‖B(Lp(·)(R)) = 0. Passing to the
adjoint operators and taking into account that (2.39) implies the convergence

lim
ξ→∞

sup
x∈Rn

|tτ (x, ξ)| = 0,

we obtain that

lim
ε→0

‖χx0
ε Op(t)‖B(Lp(·)(R)) =

∥
∥(Op(t))∗

χx0
ε I
∥
∥

B(Lq(·)(R))
= 0.

Formula (2.41) follows from (2.40). �

Proposition 22. Let (τx0,δu)(x) = δ− 1
p(x)u
(
x−x0
δ

)
, δ > 0. Then

lim
δ→0

‖τx0,δu‖Lp(·)(R) = ‖u‖Lp(x0)(R)

for every function u ∈ C∞
0 (R).

Proof. Fix a function u ∈ C∞
0 (R) and set

F (λ, δ) = I
p(·)
λ (τx0,δu) =

∫

R

∣
∣
∣
∣
∣
u
(
x−x0
δ

)

λ

∣
∣
∣
∣
∣

p(x)

δ−1dx, λ > 0

After the change of the variables x−x0
δ = y we get

F (λ, δ) =
∫

R

∣
∣
∣
∣
u (y)
λ

∣
∣
∣
∣

p(x0+δy)

dy. (2.42)

Passing to the limit in (2.42) as δ → 0, we obtain

lim
δ→0

F (λ, δ) =
∫

R

∣
∣
∣
∣
u (y)
λ

∣
∣
∣
∣

p(x0)

dx := F (λ, 0) (2.43)

where the convergence is uniform with respect to λ > 0 on every segment
[a, b] ⊂ R.

Note that F : (0,+∞)× [0, 1] → R+ is a continuous function. Moreover,
there exists a partial derivative F ′

λ (λ, δ) < 0 for every (λ, δ) ∈ (0,+∞) ×
[0, 1]. Hence for every fix δ ∈ [0, 1], F (·, δ) is a monotonically decreasing
function of λ on (0,∞). It implies that

‖τx0,δu‖Lp(·)(R) = inf {λ > 0 : F (λ, δ) ≤ 1} = λ(δ)
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where λ(δ) is a solution of the equation F (λ, δ) = 1. One can see that for
δ = 0 the equation F (λ, 0) = 1 has an unique solution λ(0) = ‖u‖Lp(x0)(R).
Moreover,

F ′
λ

(
‖u‖Lp(x0)(R) , 0

)
�= 0.

Hence by the Implicit Function Theorem we obtain that there exists a unique
solution λ(δ) of the equation F (λ, δ) = 1 for small δ and λ(δ) is a continuous
function in a neighborhood of the point 0.

Hence

‖u‖Lp(x0)(Rn) = λ(0) := lim
δ→0

λ(δ) = lim
δ→0

‖τx0,δu‖Lp(·)(Rn)

for every function u ∈ C∞
0 (R). �

Let φ ∈ C∞
0 (R) be a real-valued function such that φ(ξ) = 1 if |ξ| ≤ 1,

φ(ξ)=0 if |ξ|≥2, and 0≤φ(ξ)≤1. Let also φR(ξ)=φ(ξ/R) and ψR=1− φR.

Theorem 23. Let a ∈ S̃0
1,0. Then Op(a) : Lp(·)(R) → Lp(·)(R) is locally

invertible at a point x0 ∈ R if and only if Op(a) is an elliptic operator at the
point x0.

Proof. (i) First we prove that the local ellipticity of Op(a) at the point x0

implies the local invertibility at this point. Let a0(x, ξ) = a+(x)θ(ξ) +
a−(ξ)(1 − θ(ξ)), where θ is the characteristic function of R+. Since a ∈ S̃0

1,0,
we then obtain

lim
R→+∞

sup
(x,ξ)∈R2

∣
∣(a(x, ξ) − a0(x, ξ))ψR(ξ)

∣
∣ = 0. (2.44)

and

lim
ε→0

sup
x

∣
∣(a±(x) − a±(x0)

)
ϕx0
ε (x)
∣
∣ = 0. (2.45)

Hence

lim
ε→0,R→+∞

sup
(x,ξ)∈R2

∣
∣(a(x, ξ) − a0(x0, ξ))ϕx0

ε (x)ψR(ξ)
∣
∣ = 0. (2.46)

In view of the ellipticity of Op(a) at the point x0 and relation (2.46)
we obtain that there exist ε0 and R0 such that the symbol b(x, ξ) =
a−1(x, ξ)ϕx0

ε0 (x)ψR0(ξ) is in S0
1,0. Then

Op(b)Op(a) = Op(ϕx0
ε0ψR0) +Op(tε0,R0), (2.47)

where tε0,R0 ∈ S−1
1,0 by formula (2.7).

Formula (2.47) implies that

Op(b)Op(a) = ϕx0
ε0 I + ϕx0

ε0Op(φR0) +Op(tε0,R0). (2.48)

Choose ε > 0 such that χx0
ε ϕ

x0
ε0 = χx0

ε . Then from (2.48) we get

Op(b)Op(a)χx0
ε I = χx0

ε I +Qε, (2.49)

where

Qε = ϕx0
ε0Op(φR0)χ

x0
ε I +Op(tε0,R0)χ

x0
ε I
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is a compact operator in Lp(·)(R) by Proposition 20. Since we have the strong
convergence χx0

ε I → 0 in Lp(·)(R), we can choose ε′ > 0 small enough such
that ‖Qεχx0

ε′ I‖ < 1. Hence

(I +Qεχ
x0
ε′ I)−1Op(b)Op(a)χx0

ε′ I = χx0
ε′ I.

Hence L = (I + Qεχ
x0
ε′ I)−1Op(b) is the left locally inverse operator at the

point x0 ∈ R. In the same way we prove that there exists a right locally
inverse operator at the point x0.

(ii) Now we prove that the local invertibility of A = Op(a) at the point
x0 implies the local ellipticity of Op(a) at this point. We denote

A0 = a+P+ + a−P−,
Ax0 = a+(x0)P+ + a−(x0)P−,

where

P± =
1
2

(I ± SR) and (SRu)(x) =
1
πi

∫

R

u(y)dy
y − x

.

Note that the SIOs A0 and Ax0 are bounded in Lp(·)(R) (see for instance
[41]). By the multiplicative inequality (see for instance [50, p. 22], or [37,
Proposition 5.8.1]) formula (2.44) implies that

lim
R→+∞

sup
(x,ξ)∈R2

∣
∣∂βx∂

α
ξ ((a(x, ξ) − a0(x, ξ))ψR(ξ))

∣
∣ = 0,

By Theorem 10, for each η > 0 we can find an R0 > 0 such that

lim
R→∞
∥
∥(A−A0)Op(ψR0)

∥
∥

B(Lp(·)(R))
< η. (2.50)

Continuity of the coefficients a± at the point x0 implies that for every
η > 0 there exists an ε0 > 0 such that for all ε ∈ (0, ε0)

∥
∥(A0 −Ax0)ϕx0

ε I
∥
∥

B(Lp(·)(R))
< η. (2.51)

Furthermore,
∥
∥(A−A0)ϕx0

ε I
∥
∥

B(Lp(·)(R))
≤ ∥∥(A−A0)Op(ψR0)ϕ

x0
ε I
∥
∥

B(Lp(·)(R))

+
∥
∥(A−A0)Op(φR0)ϕ

x0
ε I
∥
∥

B(Lp(·)(R))
, (2.52)

and
∥
∥(A−A0)Op(φR0)ϕ

x0
ε I
∥
∥

B(Lp(·)(R))

≤ ∥∥(A−A0)
∥
∥

B(Lp(·)(R))
‖Op(φR0)ϕ

x0
ε I‖B(Lp(·)(R)) .

By Proposition 21, for small ε > 0 we have

‖Op(φR0)ϕ
x0
ε I‖B(Lp(·)(R)) <

η

‖(A−A0)‖B(Lp(·)(R))

.

Hence
∥
∥(A−A0)Op(φR0)ϕ

x0
ε I
∥
∥

B(Lp(·)(R))
< η. (2.53)

Thus, estimates (2.50), (2.52) and (2.53) yield that

‖(A−Ax0)ϕx0
ε I‖B(Lp(·)(R)) < 3η (2.54)
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for small ε > 0. Let A be locally invertible at x0. Then there exist ε′ > 0 and
C > 0 such that the following estimate holds

‖Aχx0
ε′ u‖Lp(·)(R) ≥ C ‖χx0

ε′ u‖Lp(·)(R) (2.55)

for every u ∈ C∞
0 (R). Note that for ε > 0 small enough χx0

ε′ ϕx0
ε = ϕx0

ε . Then
(2.55) implies

‖Aϕx0
ε u‖Lp(·)(R) ≥ C ‖ϕx0

ε u‖Lp(·)(R) , u ∈ C∞
0 (R). (2.56)

Let η = C
6 . Then (2.54) and (2.56) yield that

‖Ax0ϕx0
ε u‖Lp(·)(R) ≥ C

2
‖ϕx0

ε u‖Lp(·)(R) , u ∈ C∞
0 (R). (2.57)

We replace u in (2.57) by τx0,δu where δ > 0. Then for δ > 0 small
enough ϕx0

ε (τx0,δu) = τx0,δu. Since Ax0 commutes with the operator τx0,δ,
from (2.57) we obtain

‖τx0,δA
x0u‖Lp(·)(R) ≥ C

2
‖τx0,δu‖Lp(·)(R) . (2.58)

Passing to the limit as δ → 0 in (2.58) and applying Proposition 22, we obtain
the estimate

‖Ax0u‖Lp(x0)(R) ≥ C

2
‖u‖Lp(x0)(R) (2.59)

for every u ∈ C∞
0 (R). In the same way, from the estimate

‖A∗χx0
ε u‖Lq(·)(R) ≥ C ‖χx0

ε u‖Lq(·)
n (R)

, u ∈ C∞
0 (R) (2.60)

we obtain that

‖(Ax0)∗v‖Lq(x0)(R) ≥ C

2
‖v‖Lq(x0)(R) , v ∈ C∞

0 (R). (2.61)

Since C∞
0 (R) is dense in Lp(x0)(R), estimates (2.60) and (2.61) imply

the invertibility of Ax0 in Lp(x0)(R). It remains to note that the invertibility
of the SIO Ax0 in the space Lp(R) with constant p ∈ (1,∞) implies, as is
well known, the condition a±(x0) �= 0 (see for instance [47]). �

Theorem 24. Let A0 = a+P+ +a−P− be a SIO with coefficients a± ∈ L∞(R)
continuous at a point x0 ∈ R. Then A : Lp(·)(R) → Lp(·)(R) is locally invert-
ible at the point x0, if and only if a±(x0) �= 0.

Proof. (i) Let the condition a±(x0) �= 0 hold. By the continuity of a± at the
point x0, for every η > 0 we can find an ε > 0 such that

∥
∥(A0 −Ax0

)
ϕx0
ε I
∥
∥

B(Lp(·)(R))
< η. (2.62)

Hence

A0ϕx0
ε I = Ax0ϕx0

ε I + Tε, (2.63)

where ‖Tε‖ < η. The condition a±(x0) �= 0 implies that there exists the
inverse operator (Ax0)−1 = a+(x0)−1P+ +a−(x0)−1P−. Let η <

∥
∥
∥(Ax0)−1

∥
∥
∥.

Then there exists an ε′ such that ϕx0
ε χ

x0
ε′ = χx0

ε′ . From formula (2.63) we get

(I + Tεχ
x0
ε′ I)−1 (Ax0)−1

A0χx0
ε′ I = χx0

ε′ I.
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Hence there exists a left locally inverse operator for A0 at the point x0. In
the same way we prove that there exists a right locally inverse operator.

(ii) Let A0 be a locally invertible operator at the point x0. Then
(2.62) implies that Ax0 is also locally invertible at the point x0. Hence for
every u ∈ C∞

0 (R) estimate (2.59) holds. As in the part (ii) of the proof of
Theorem 23 we obtain that a±(x0) �= 0. �

3. Mellin Pseudodifferential Operators

3.1. Main Property

In this section we reformulate the results of Sect. 2 for the Mellin pseudodif-
ferential operators. (See, for instance [38, Chapter 4.5]).

Definition 25. (i) We say that a matrix-function a = (aij)ni,j=1 belongs
to E(n), if aij ∈ C∞(R+×R) and

|a|l1,l2 = max
1≤i,j≤n

sup
(r,ξ)∈R+×R

∑

α≤l1,β≤l2

∣
∣(r∂r)β∂αξ aij(r, ξ)

∣
∣ 〈ξ〉β < ∞,

〈ξ〉 = (1 + ξ2)1/2
(3.1)

for all l1, l2 ∈ N0.
(ii) We say that a matrix-function a = (aij)ni,j=1 belongs to Ed(n), if aij

∈ C∞(R+ × R+×R) and

|a|l1,l2,l3
= max

1≤i,j≤n
sup

(r,ρ,ξ)∈R+×R+×R

∑

α≤l1,β≤l2,γ≤l3

∣
∣
∣(r∂r)α(ρ∂ρ)γ∂

β
ξ aij(r, ρ, ξ)

∣
∣
∣ 〈ξ〉β<∞,

(3.2)

for all l1, l2, l3 ∈ N0.
(iii) Let a ∈ E(n). The operator

(Op(a)u)(r) = (2π)−1

∫

R

dξ

∫

R+

a(r, ξ) (rρ−1)iξu(ρ)ρ−1dρ, (3.3)

where u ∈ C∞
0 (R+,C

n), is called the Mellin pseudodifferential oper-
ator (Mψdo) with symbol a ∈ E(n). We denote by OPE(n) the class
of all such operators and by OPEd(n) the class of the double Mψdo′s
Opd(a) with symbols a ∈ Ed(n) which are defined by formula (3.3)
with the symbol a of two variables replaced by the double symbol a
of three variables.

(iv) We say that a matrix-function a (∈ E(n)) is slowly oscillating at the
point r = 0 and belongs to Esl(n), if

lim
r→+0

sup
ξ∈R

|(r∂r)β∂αξ aij(r, ξ)|〈ξ〉α = 0, (3.4)

for all α ∈ N0 and β ∈ N. By E0(n) we denote the set of matrix-
functions satisfying condition (3.4) for all α, β ∈ N0.
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We say that the matrix-function a = (aij)ni,j=1 ∈ Ed(n) is slowly oscil-
lating at the point 0 and belongs to Esl,d(n) if

lim
r→+0

sup
(ρ,ξ)∈R+×R

|(r∂r)β(ρ∂ρ)γ∂αξ aij(r, ρ, ξ)|〈ξ〉α = 0

for all β ∈ N and every γ, α ∈ N0, and

lim
ρ→+0

sup
(r,ξ)∈R+×R

|(r∂r)β(ρ∂ρ)γ∂αξ aij(r, ρ, ξ)|〈ξ〉α = 0

for all γ ∈ N and every β, α ∈ N0. The corresponding classes of Mellin ψdo′s
are denoted by OPEsl(n), OPEsl,d(n), OPE0(n).

Remark 26. Note that the Mellin ψdo′s are ψdo′s on the multiplicative group
R+ with the invariant measure dμ = dr

r . TheMψdo′s are obtained from ψdo′s
on R by means of the change of the variables : R+ � r = e−x, x ∈ R which
maps the point +∞ to the point 0. The main properties of Mψdo′s easily
follow from the corresponding properties of ψdo′s on R (see [38, Chap. 4.5]).

By L2
n(R+, dμ) we denote the space of measurable C

n-valued functions
u on R+ with the norm

‖u‖L2
n(R+,dμ) =

⎛

⎜
⎝
∫

R+

‖u(r)‖2
Cn
dμ

⎞

⎟
⎠

1/2

.

Proposition 27. ([38, Chap. 4]) Let A = Op(a) ∈ OPE(n). Then the operator
A is bounded in L2

n(R+, dμ) and there exists C > 0 not depending on A such
that

‖A‖B(L2
n(R+,dμ)) ≤ C |a|2,2 . (3.5)

Proposition 28. ([38, Chap. 4])
(i) Let Op(a), Op(b) ∈ OPE(n). Then C = Op(a)Op(b) ∈ OPE(n), and

C = Op(c) with

c(r, ξ) =
1
2π

∫

R+

∫

R

a(r, ξ + η)b(rρ, ξ)ρ−iηdρdη. (3.6)

(ii) Let Opd(a) ∈ OPEd(n). Then Opd(a) ∈ OPE(n), Opd(a) = Op(a#)
and

a#(r, ξ) =
1
2π

∫ ∫

R2

a(r, rρ, ξ + η)ρ−iηdρdη. (3.7)

(iii) Let A = Op(a) ∈ OPE(n) and acting in L2
n(R+, dμ). Then the adjoint

operator A∗ ∈ OPE(n), and A∗ = Op(b)

b(r, ξ) =
1
2π

∫ ∫

R2

a∗(rρ, ξ + η)ρ−iηdρdη, (3.8)

where a∗(r, ξ) is the Hermite adjoint matrix to a(r, ξ).



Vol. 69 (2011) PDO Approach to Singular Integral Operators 423

The integrals in (3.6), (3.7), (3.8) are understood as oscillatory (see [38,
Chap. 4]).

Proposition 29. (i) Let Op(a), Op(b) ∈ OPEsl(n). Then Op(a)Op(b) =
Op(c) ∈ OPEsl(n), where

c(r, ξ) = a(r, ξ)b(r, ξ) + q(r, ξ),

and q(r, ξ) ∈ E0(n). (ii) Let Opd(a) ∈ OPEd,sl(n). Then Opd(a) =
Op(a#) ∈ OPEsl(n), where

a#(r, ξ) = a(r, r, ξ) + q(r, ξ)

and q(r, ξ) ∈ E0(n).
(ii) Let Op(a) ∈ OPEsl(n) and act in L2(R+, dμ,C

n). Then the adjoint
operator Op(a)∗ = Op(b) ∈ OPEsl(n) and

b(r, ξ) = a∗(r, ξ) + q(r, ξ),

where a∗(r, ξ) is the Hermite adjoint matrix to a∗(r, ξ), and q ∈ E0(n).

Let w=exp v, where v ∈ C∞(R+) is a real valued function such that

sup
r∈R+

∣
∣
∣
∣
∣

(
r
d

dr

)k
v(r)

∣
∣
∣
∣
∣
< ∞ (3.9)

for every k ∈ N. Moreover, we assume that there exists an interval (c, d) � 0
such that the function κv = rv′ satisfies the condition

c < inf
r∈R+

κv(r) ≤ sup
r∈R+

κv(r) < d. (3.10)

We say that w = ev is the weight of the class R(c, d), if conditions (3.9) and
(3.10) hold, and of the class Rsl(c, d), if w ∈ R(c, d) and

lim
r→0

rκ′
v(r) = 0. (3.11)

The weights in Rsl(c, d) are called slowly oscillating at the point 0.

Definition 30. We say that a symbol a defined on R+ × R belongs to
E(n, (c, d)), if a is analytically extended with respect to the second variable
ξ into the strip Π = {ξ ∈ C : I(ξ) ∈ (c, d)} and

sup
(r,ξ+iη)∈R+×Π

∣
∣(r∂r)β∂αaij(r, ξ + iη)

∣
∣ < ∞

for all α, β ∈ N0. By OPE(n, (c, d)) we denote the corresponding class of
Mψdo′s with analytical symbols.

The class OPEd(n, (c, d)) of Mψdo′s with double symbols defined on
R+ × R+ × R and analitically extended, with respect to the third variable,
into the strip Π is introduced in the obvious way.

Proposition 31. ([38, Chap. 4]) . (i) Let a ∈ E(n, (c, d)) and w = ev ∈ R(c, d).
Then

wOp(a)w−1 = Opd(aw), (3.12)
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where aw(r, ρ, ξ) = a(r, ρ, ξ + iϑv(r, ρ)) and

ϑv(r, ρ) =

1∫

0

κv(r1−τρτ )dτ.

(Note that condition (3.10) yields that ϑv(r, ρ) ∈ (c, d) for all r, ρ ∈ R+).
(ii) Let A = Op(a) ∈ OPEsl(n, (c, d)) , w ∈ Rsl(c, d). Then wOp(a)w−1 ∈
OPEsl(n) and

wOp(a)w−1 = Op(ãw) +Op(q) (3.13)

where ãw(r, ξ) = a(r, ξ + iκv(r)) and q ∈ E0(n).

3.2. Mellin ψdo in the Spaces Lp(·)
n (R+, dμ)

In this subsection we deal with the space Lp(·)n (R+, dμ) with variable expo-
nent, defined in a general form by Definition 7; now we take

X = R+ and dμ(r) =
dr

r
.

Let p : R+ → (1,∞) be a measurable function satisfying condition
(2.12) on X = R

1
+. We suppose that the function p satisfies the log-condition

of the form

|p(r) − p(ρ)| ≤ A

log 1

|log r
ρ |

(3.14)

for all r, ρ ∈ R+ such that 1√
e

≤ r
ρ ≤ √

e. Note that condition (3.14) is

nothing else but condition (2.13) with the metric d(r, ρ) =
∣
∣
∣log r

ρ

∣
∣
∣. Corre-

spondingly to (2.14) we also suppose that there exist the coinciding limits

p(0) := lim
r→+0

p(r) = p(∞) := lim
r→+∞ p(r)

and

|p(r) − p(0)| ≤ C

log (2 + | log r|) , C > 0, r ∈ R+. (3.15)

Note that the mapping R �x → expx ∈ R+ generates an isomorphism
of the spaces Lp(·)n (R+, dμ) and L

p̃(·)
n (R), where p(r) = p̃(log r), so that con-

ditions (3.14) and (3.15) have their obvious origin in conditions (2.13) and
(2.14) with d(x, y) = |x− y| on R

1.

Theorem 32. Let p satisfy assumption (2.13) and conditions (3.14) and
(3.15). Then every operator Op(a) ∈ OPE(n) (Opd(a) ∈ OPEd(n)) is
bounded in L

p(·)
n (R+, dμ) and there exist M > 0 such that

‖Op(a)‖B(L
p(·)
n (R+,dμ))

≤ C |a|M,M , (3.16)

(‖Opd(a)‖B(L
p(·)
n (R+,dμ))

≤ C |a|M,M,M ). (3.17)
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Proof. Let u be a measurable function on R with values in C
n. We set

(Ψu)(r) = u(− log r), r ∈ R+. It is evident that the mapping

Ψ : Lp̃(·)n (R) →Lp(·)n (R+, dμ)

where p(r) = p̃(− log r), r ∈ R+, is an isomorphism between the Banach
spaces. This isomorphism generates the isomorphism of the spaces of opera-
tors

Ψ̃ : B(Lp(·)n (R+, dμ)) → B(Lp̃(·)n (R))

by the formula Ψ̃(A) = Ψ−1AΨ,A ∈ B(Lp(·)n (R+, dμ)). Moreover, Ψ̃
(OPE(n)) = OPS0

1,0(n). Hence Theorem 32 follows from Theorem 10 and
Corollary 11. �

Let w be a weight, that is, a.e. positive measurable function on R+. We
introduce the weighted space Lp(·)n (R+, w, dμ) by the norm

‖u‖
L
p(·)
n (R+,w,dμ)

= ‖wu‖
L
p(·)
n (R+,dμ)

< ∞.

Theorem 33. Let Op(a) ∈ OPE(n, (c, d)), w = ev ∈ R(c, d). Then Op(a) is
bounded in L

p(·)
n (R+, w, dμ) and there exist constants M > 0, C > 0, not

depending of a such that

‖Op(a)‖B(L
p(·)
n (R+,w,dμ))

≤ C |a|M,M |v|M , (3.18)

where

|v|M =
M∑

k=1

sup
r∈R+

∣
∣
∣v(k)(r)

∣
∣
∣ .

Proof. The boundedness of A in Lp(·)n (R+, w, dμ) is equivalent to the bound-
edness of wAw−1 in Lp(·)n (R+, dμ). Applying formula (3.12) and Theorem 32
we obtain estimate (3.18). �

3.2.1. Local Invertibility of Mellin Pseudodifferential Operators. Let A ∈
B(Lp(·)n (R+, dμ)). We say that A is locally invertible at the point 0, if there
exists an R > 0 and operators LR,RR ∈ B(Lp(·)n (R+, dμ)) such that

LRAχ[0,R]I = χ[0,R]I, χ[0,R]ARR = χ[0,R]I.

Theorem 34. Let Op(a) ∈ OPEsl(n) and act in L
p(·)
n (R+, μ). Then Op(a) is

locally invertible at the point 0 , if and only if

lim inf
r→+0

inf
ξ∈R

|det a(r, ξ)| > 0.

Proof. Note that the operator A ∈ B(Lp(·)n (R+, μ)) is locally invertible at
the point 0, if and only if the operator ΨAΨ−1 ∈ B(Lp̃(·)n (R)) is locally
invertible at the point +∞. Moreover, Ψ̃(OPEsl(n)) = OPSO+∞(n). Hence
Theorem 34 follows from Theorem 18. �
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4. Singular Integral Operators on Some Carleson Curves

4.1. Curves, Weights, Coefficients

We say that a complex-valued function a ∈ Cm(0, ε), ε > 0, if a ∈ Cm(0, ε)
and

sup
r∈(0,ε)

∣
∣
∣
∣
∣

(
r
d

dr

)j
a(r)

∣
∣
∣
∣
∣
< ∞

for every j = 0, 1, . . . ,m, and a ∈ C∞(0, ε) if m = ∞. We say that a ∈
C̃m(0, ε) if κa = r dadr ∈ Cm(0, ε), and a ∈ C̃∞(0, ε) if m = ∞. A function
a ∈ Cm(0, ε),m ≥ 1 is said to be slowly oscillating at the point 0 and belong
to the class Cmsl (0, ε) if

lim
r→0

κa(r) = 0.

We write C∞
sl (0, ε) if m = ∞. We denote by C̃msl (0, ε),m ≥ 1 the class of

functions a ∈ C̃m(0, ε) such that κa ∈ Cmsl (0, ε). We write C̃∞(0, ε) if m = ∞.
If a ∈ C̃m(0, ε),m ≥ 1 we set

ϑa(r, ρ) =

1∫

0

κa(r1−τρτ )dτ.

A set γ ⊂ C is called a simple locally Lyapunov arc, if there exists
a homeomorphism ϕ : [0, 1] → γ such that ϕ ∈ C1((0, 1)), ϕ′(r) �= 0 for
all r ∈ (0, 1), and for every segment [a, b] ⊂ (0, 1) there exist C > 0 and
α ∈ (0, 1] such that

|ϕ′(r) − ϕ′(ρ)| ≤ C |r − ρ|α for all r, ρ ∈ [a, b].

The points ϕ(0) and ϕ(1) are called the endpoints of γ. We refer to a set
Γ(⊂ C) as a composed curve if Γ = ∪Kk=1Γk, where Γ1, . . . ,ΓK are oriented
and rectifiable simple locally Lyapunov arc, each pair of which has at most
endpoints in common. A node of Γ is a point which is endpoint of at least
one of the arcs Γ1, . . . ,ΓK . The set of all the nodes is denoted by F .

Let t0 ∈ F . We suppose that there exists an ε > 0 such that the portion

Γ(t0, ε) = {t ∈ Γ : |t0 − t| < ε}
is of the form

Γ(t0, ε) = {t0} ∪ Γ1
t0 ∪ · · · ∪ Γn(t0)

t0

where

Γjt0 =
{
z ∈ C : z = t0 + reiϕt0,j(r) : r ∈ (0, ε), (j = 1, . . . , n(t0))

}
,

and

ϕt0,j(r) = ψt0(r) + ψt0,j(r),
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where ψt0 , ψt0,1, . . . , ψt0,n(t0) are real-valued functions such that: ψt0 ∈
C̃∞(0, ε), ψt0,j ∈ C∞(0, ε), and

0 ≤ m1 < ψt0,1(r) < M1 < m2 < ψt0,2(r) < M2

< · · · < mnt0
< ψt0,nt0 (r) < Mnt0

< 2π

for all r ∈ (0, ε) with certain constants mj ,Mj . Note that the function ψt0
defines the rotation, and the functions ψt0,j define the oscillations of the
curves Γjt0 near the node t0.

We suppose that these conditions hold for every node, and we denote
such class of curves by L.

If ψt0 ∈ C̃∞
sl (0, ε), ψt0,j ∈ C∞

sl (0, ε) in the above conditions for every node
t0 ∈ F , then we say that the curve Γ is slowly oscillating at every node t0.
We denote such class of curves by Lsl.

For example, if

ϕt0,,j(r) = δt0 log r + μt0,j , j = 1, . . . , n(t0), r ∈ (0, ε)

with 0 ≤ μt01 < μt02 < · · · < μt0nt0 < 2π, then the above conditions on the
node 0 are fulfilled.

Let Γ be a locally rectifiable composed curve with Lebesgue length mea-
sure. The curve Γ is said to be a Carleson curve ( an Ahlfors–David regular
curve) (see for instance [1, p. 2]) if

CΓ = sup
t∈Γ

sup
ε>0

|Γ(t, ε)|
ε

< ∞,

where |Γ(t, ε)| is the length of the portion Γ(t, ε).
Taking into account that

∣
∣
∣d(reiϕ(r))

∣
∣
∣ =
√

(1 + (rϕ′(r))2dr,

it easy to see that Γ ∈ L is a Carleson curve. Throughout what follows we
assume that Γ ∈ L and we suppose for simplicity that Γ is a compact curve.

Let p : Γ → (1,∞) be a measurable function satisfying assumption
(2.13) on X = Γ\F . For t0 ∈ F we suppose that there exist an ε > 0 such
that the functions

pt0j(r) := p(t0 + reiϕt0,j(r)) = pt0(r), r ∈ (0, ε) (4.1)

do not depend on j and belong to C∞(0, ε) and satisfy assumption (2.12)
and conditions (3.14) and (3.15). It follows from condition (3.15) that pt0 is
a continuous function at the origin and

lim
r→0

pt0(r) = pt0(0) = p(t0).

Let w : Γ → [0,∞] be a measurable function referred in the sequel as a
weight. The weighted variable exponent Lebesgue space Lp(·)(Γ, w) is defined
as the space of functions f such that [w(x)]

1
p(x) ∈ Lp(·)(Γ), the latter being

introduced by Definition 7. We write Lp(·)(Γ) if w ≡ 1.
We consider weights on R+ of the form

w = exp v, (4.2)
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where a real-valued function v ∈ C̃∞(0, ε). We denote such a class of weights
by R0. Let κv = rv′, and

κ
+
w = lim sup

r→0
κv(r) = lim sup

r→0

rw′(r)
w(r)

, (4.3)

and

κ
−
w = lim inf

r→0
κv(r) = lim inf

r→0

rw′(r)
w(r)

. (4.4)

By Rsl
0 we denote the class of weights w = exp v with v ∈ C̃∞

sl (0, ε). For
instance, if

v(r) = f(log(− log r)) log r, r ∈ (0, ε)

and f ∈ C∞
b (R), then w ∈ Rsl

0 . For f = sinx

κv(r) = cos(log(− log r)) + sin(log(− log r))

=
√

2 cos
(
log(− log r) − π

2

)

and κ
+
w =

√
2,κ−

w = −√
2.

Proposition 35. Let w = ev ∈ R0. Then for every δ > 0 there exists an
ε′ ∈ (0, ε) such that

w(ρ)rκ
+
w+δ ≤ w(r) ≤ w(ρ)rκ

−
w−δ

for ρ, r ∈ (0, ε′). (4.5)

Proof. Let

ϑv(r, ρ) :=

1∫

0

κv(ρ1−τrτ )dτ =
1

ln r
ρ

r∫

ρ

κv(t)
t

dt =
v(r) − v(ρ)

ln r
ρ

.

Then

w(r)w−1(ρ) = ev(r)−v(ρ) = eϑv(r,ρ)(log r−log ρ) =
(
rρ−1
)ϑv(r,ρ)

. (4.6)

For every δ > 0 we can find ε′ ∈ (0, ε) such that

κ
−
w − δ < ϑv(r, ρ) < κ

+
w + δ (4.7)

for all r, ρ ∈ (0, ε′). Estimate (4.5) follows then from (4.6) and (4.7). �

Let w be a weight on the curve Γ. We suppose that for every point tj ∈ F
there exists a neighborhood Uj such that w and w−1 belong L∞(Γ\ ∪tj∈F
(Γ ∩ Uj)). We say that w ∈ RΓ, if for every point t0 ∈ F and for every
j ∈ {1, . . . , n(t0)} the function

wt0(r) = w(t0 + reiϕt0,j(r)) = evt0 (r), r ∈ (0, ε) (4.8)

does not depend on j and wt0 = evt0 ∈ R0. By Ap(·)(Γ) we denote the class
of weights in RΓ such that

− 1
p(t0)

< lim inf
r→0

κvt0
(r) ≤ lim sup

r→0
κvt0

(r) < 1 − 1
p(t0)

, (4.9)
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for every node t0 ∈ F , and by Asl
p(·)(Γ) the class of weights in Ap(·)(Γ) such

that wt0 ∈ Rsl
0 for every node t0 ∈ F .

Proposition 36. If w ∈ Ap(·)(Γ), then w ∈ Lp(·)(Γ) and w−1 ∈ Lq(·)(Γ).

Proof. First we prove that if t0 ∈ F , then there exists an ε > 0 such that
w ∈ Lp(·)(Γ(t0, ε)). We will prove that

I
p(·)
Γ(t0,ε)

(w) =
∫

Γ(t0,ε)

w(t)p(t) |dt| < ∞. (4.10)

Applying expressions (4.1) and (4.8) for the weight w and exponent p on the
portion Γ(t0, ε), we obtain that

I
p(·)
Γ(t0,ε)

(w) =
nt0∑

j=1

∫

Γjt0

w(t)p(t) |dt|

=
nt0∑

j=1

ε∫

0

w
pt0 (r)
t0 (r)

√
1 + (rϕt0,j(r))

2
dr.

Applying Proposition 35 we obtain that for every δ > 0 there exist an ε ∈
(0, 1) such that

wt0(r) ≤ Cr
κ

−
wt0

−δ
, r ∈ (0, δ),

where

κ
−
wt0

= lim inf
r→0

κvt0
(r) > − 1

p(t0)
. (4.11)

Note that pt0 is a continuous function and pt0(0) = p(t0). Then applying
estimate (4.5) we can find first a δ > 0 and then an ε > 0 such that

γt0 = inf
r∈(0,ε)

pt0(r)(κ
−
wt0

− δ) > −1. (4.12)

Estimate (4.12) yields that

w
pt0 (r)
t0 (r) ≤ Cpt0 (r)r

(
κ

−
wt0

−δ
)
pt0 (r) = C1r

γt0 . (4.13)

Hence Ip(·)Γ(t0,ε)
(w) < ∞, because γt0 > −1. In the same way applying the

right hand side inequality from (4.9), we obtain that w−1 ∈ Lq(·)(Γ(t0, ε))
for sufficiently small ε > 0. Since w and w−1 are L∞−functions outside the
union of small neighborhoods of the nodes tk ∈ F , and Lp(·)(K) ⊃ L∞(K)
for every compact set K, we obtain that w ∈ Lp(·)(Γ) and w−1 ∈ Lq(·)(Γ).

�
A function a : Γ → C is said to be piecewise slowly oscillating on Γ, if

a ∈ C(Γ\F) and for each node t0 ∈ F we have

a(t0 + reiϕt0,j(r)) = at0,j(r), r ∈ (0, ε), j ∈ {1, . . . , n(t0)} ,
and at0,j ∈ C∞

sl (0, ε).
We denote the class of piecewise slowly oscillating functions by PSO(Γ).
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4.2. Representation of a Singular Integral Operator at the Node as a Mellin
Pseudodifferential Operators

We suppose that Γ is a compact Carleson curve of the class L and w ∈
Ap(·)(Γ) is a weight satisfying conditions given in Sect. 4.1. We consider the
Cauchy SIO defined on Γ as

(SΓf) (t) = lim
ε→0

∫

Γ\Γ(t0,ε)

f(τ)dτ
τ − t

, t ∈ Γ. (4.14)

For the point t0 ∈ F we introduce the mapping

Φt0 : Lp(·)(Γ(t0, ε), w) → L
pt0 (·)
n(t0)

((0, ε), dμ), (4.15)

where

(Φt0f) (r) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r
1

pt0 (r)wt0(r)f(t0 + reiϕt0,1(r))
·
·
·

r
1

pt0 (r)wt0(r)f(t0 + reiϕt0,n(t0)(r))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= f̃(r), r ∈ (0, ε).

The inverse mapping Φ−1
t0 transforms the vector-function f̃=(f̃1, . . . , f̃n(t0))∈

L
pt0 (·)
n(t0)

((0, ε), dμ) to the function f on the curve Γ(t0, ε) = ∪n(t0)
j=1 Γt0j by the

rule

f |Γt0j (t0 + reiϕt0,j(r)) = r
− 1
pt0 (r)w−1

t0 (r)f̃j(r).

Proposition 37. The mapping Φt0 is an isomorphism between the correspond-
ing Banach spaces.

Proof. We have

I
p(·)
Γ(t0,ε)

(f, w)=
∫

Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ |=
n(t0)∑

j=1

∫

Γt0j

|w(τ)f(τ)|p(τ) |dτ | .

(4.16)

After the change of variables τ = t0 + reiϕt0,j(r) we obtain
∫

Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ | (4.17)

=
n(t0)∑

j=1

ε∫

0

|w(t0 + reiϕt0,j(r))f(t0 + reiϕt0,j(r))|pt0 (r)
√

1 +
(
rϕ′

t0j
(r)
)2
dr

=
n(t0)∑

j=1

ε∫

0

|r
1

pt0 (r)wt0(r)f(t0 + reiϕt0,j(r))|pt0 (r)
√

1 +
(
rϕ′

t0j
(r)
)2
dμ(r).

Since

0 < inf
(0,ε)

√
1 +
(
rϕ′

t0j
(r)
)2 ≤ sup

(0,ε)

√
1 +
(
rϕ′

t0j
(r)
)2
< ∞, (4.18)
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estimate (4.18) implies that the modular
∫
Γ(t0,ε)

|w(τ)f(τ)|p(τ) |dτ | is
bounded if and only the modulars

ε∫

0

|r
1

pt0 (r)wt0(r)f(t0 + reiϕt0,j(r))|pt0 (r)
√

1 +
(
rϕ′

t0j
(r)
)2
dμ(r)

are bounded for every j = 1, 2, . . . , n(t0). Hence the mapping

Φt0 : Lp(·)(Γ(t0, ε), w) → L
pt0 (·)
n(t0) ((0, ε), dμ)

is bounded.
In the same way we show that

Φ−1
t0 : Lpt0 (·)

n(t0)
((0, ε), dμ) → Lp(·)(Γ(t0, ε), w)

is bounded. Hence Φt0 is an isomorphism between the corresponding Banach
spaces. �

To formulate the main results, we need the following notation. Put
εk = 1, if t0 is the starting point of an oriented arc Γt0k and εk = −1, if t0 is
its ending point. Define

ν : [0, 2π) × (C\iZ) → C

by

ν(δ, z) =

{
coth(πz), δ = 0
e(π−δ)z
sinh(πz) , δ ∈ (0, 2π).

(4.19)

Let φt0 ∈ C∞
0 (Γ(t0, ε)) and equal to 1 in a smaller neighborhood of t0.

Proposition 38. Let Γ be a composed compact curve of the class L, the expo-
nent p(·) satisfy the above conditions on Γ and w ∈ Ap(·)(Γ). Then for every
point t0 ∈ F the operator

St0 := Φt0φt0SΓφt0Φ
−1
t0 = Op(st0),

is a Mellin ψdo in the class OPEd(n) with the double symbol st0 = (st0jk)
n(t0)
j,k=1

where

s
t0
jk(r, ρ, ξ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εkφ̃j,t0 (r)φ̃k,t0 (ρ)
1+iρϕ′

t0 ,k
(ρ)

1+iϑψt0
(r,ρ)ν(2π + ψt0,j(r) − ψt0,k(ρ),

ξ+i
(

1
pt0 (r)

+ϑvt0
(r,ρ)

)

1+iϑψt0
(r,ρ) ), j<k,

φ̃j,t0 (r)φ̃j,t0 (ρ)εk
1+iρϕ′

t0,k
(ρ)

1+iϑϕt0,k
(r,ρ)ν(0,

ξ+i( 1
pt0 (r)

+ϑvt0
(r,ρ))

1+iϑψt0
(r,ρ) ), j=k,

εkφ̃jt0 (r)φ̃kt0 (ρ)
1+iρϕ′

t0 ,k
(ρ)

1+iϑψt0 ,k
(r,ρ)ν(ψt0,j(r) − ψt0,k(ρ),

ξ+i( 1
pt0 (r)

+ϑvt0
(r,ρ))

1+iϑψt0
(r,ρ) ), j>k,

,

(4.20)

and φ̃j,t0(r) = φt0(t0 + reiϕt0,j(r)).

Remark 39. Proposition 38 has been proved first in [35] for the constant
p : 1 < p < ∞ (see the proof of Proposition 3.4 in [35]). The detailed proof is
contained in the book [38, Chapter 4.6]. The proof for the variable exponents
uses Propositions 28, 29 , 31 and repeats, word for word, the proof for the
constant p.
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4.3. Boundedness of the Singular Integral Operator in Lp(·)(Γ, w)

Note that in the case of simple Carleson curves and the weights of the form

w(t) =
N∏

j=1

ωj(|t− tj |)

where ωj may grow and have oscillations at the point 0, the boundedness of
SΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) has been established in [23], but we may not
use this result for composed Carleson curves.

In the following theorem we give some conditions of the boundedness
of SΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) which are based on the boundedness of the
Mellin pseudodifferential operators.

We say that a nonnegative function φt0 ∈ C∞
0 (Γ(t0, ε)) is a smooth

cut-off function of a neighborhood Γ(t0, ε) of the point t0, if there exists an
ε′ < ε such that φt0(t) = 1 for all t ∈ Γ(t0, ε′).

Theorem 40. Let Γ be a composed compact curve of the class L, and let p(·)
satisfy the above conditions on Γ and w ∈ Ap(·)(Γ). Then SΓ : Lp(·)(Γ, w) →
Lp(·)(Γ, w) is a bounded operator.

Proof. Let

N∑

k=0

φk(t) = 1, t ∈ Γ (4.21)

be a partition of unity on Γ, where N is a number of nodes on Γ, φ0 ∈ C0(Γ)
(the class of continuous functions with a compact support), φj , j = 1, . . . , N,
be smooth cut-off functions such that supp φj contains only one node tj , and
let mapping (4.15) be defined on supp φj , j = 1, . . . , N . It is clear that Γ∩
supp φ0 is a Lyapunov curve, and w and w−1 belong L∞(supp φ0). Let ψj
be another smooth cut-off function of a neighborhood of the point tj with
supp ψj in a small neighborhood of supp ϕj and ψj(t) = 1 for t ∈ supp ϕj .
Then

SΓ =
N∑

j=0

ψjSΓϕjI +
N∑

j=0

(1 − ψj)SΓϕjI. (4.22)

The boundedness ϕ0SΓψ0I : Lp(·)(Γ, w) → Lp(·)(Γ, w) follows from [23]
because ϕ0SΓψ0I is defined on a simple Lyapunov portion of Γ, and w and
w−1 belong L∞ on this portion.

It follows from Proposition 38 that for every j = 1, . . . , N the oper-
ator Stj := ΦtjψjSΓϕjΦ−1

tj I is the Mellin pseudodifferential operator in
OPEd(n(tj)) with a double symbol defined by formulas (4.19) and (4.20). By

Theorem 32 Stj is bounded on L
ptj (·)
n(tj)

(R+, dμ). Hence ψjSΓϕjI is a bounded

operator in Lp(·)(Γ, w). Let us consider the operator Kij = (1 − ψj)SΓϕjI.
Since supp(1 − ψj) ∩ suppϕj = ∅, the operator Kij has a smooth kernel, and
Kij is bounded from L1(Γ) in L∞(Γ). By Proposition 36, w ∈ Lp(·)(Γ) and
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w−1 ∈ Lq(·)(Γ). Applying the Hölder inequality for the space Lp(·) with vari-
able exponents p(·), we obtain that the operator u → w−1u is a bounded oper-
ator from Lp(·)(Γ) into L1(Γ). Since the operator Kij is bounded from L1(Γ)
into L∞(Γ) and the operator v → wv is bounded from L∞(Γ) to Lp(·)(Γ),
we obtain that wKijw

−1I is a bounded operator in the space Lp(·)(Γ). This
concludes the proof. �

4.4. The Fredholm Property of Singular Integral Operators in Lp(·)(Γ, w)
4.5. Local Invertibility

Definition 41. We say that an operator A ∈ B(Lp(·)(Γ, w)) is locally invert-
ible at the point t0 ∈ Γ, if there exist a neighborhood Ut0(⊂ Γ) of the point
t0, and operators RUt0 , LUt0 ∈ B(Lp(·)(Γ, w)) such that

RUt0AχUt0 I = χUt0 I and ALUt0χUt0 I = χUt0 I,

where χUt0 is a characteristic function of Ut0 .

We set

σ̃t0(SΓ) = (s̃t0jk)
m
j,k,

where

s̃t0jk(r, ξ) = st0jk(r, r, ξ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

εkν(2π + ψt0 ,j(r) − ψt0,k(r),
ξ+i
(

1
p(t0 )+rv

′
t0

(r)
)

1+irψ′
t0

(r) ), j < k,

εkν

(

0,
ξ+i
(

1
p(t0 )+rv

′
t0

(r)
)

1+irψ′
t0

(r)

)

, j = k,

ν

(
ψt0,j (r) − ψt0,k(r),

ξ+i
(

1
p(t0)+rv

′
t0

(r)
)

1+irψ′
t0

(r)

)
, j > k,

.

If a ∈ PSO(Γ) and t0 ∈ F , then we set

σ̃t0(aI)(r) =

⎛

⎜
⎜
⎜
⎜
⎝

at0,1(r)
at0,2(r)

·
·
at0,n(t0)(r)

⎞

⎟
⎟
⎟
⎟
⎠
.

Let

AΓ = aI + bSΓ, a, b ∈ PSO(Γ). (4.23)

Then we define

σ̃t0(AΓ)(r, ξ)= σ̃t0(aI)(r)+σ̃t0(bI)(r)σ̃t0(SΓ)(r, ξ), r ∈ (0, ε), ξ ∈ R,

(4.24)

and

σ̃t0(AΓ) = {a(t0) + b(t0), a(t0) − b(t0)} (4.25)

if t0 ∈ Γ\F .
In the following theorem we deal with the class Lsl of slowly oscillating

curves and the class Asl
p(·)(Γ) of weights slowly oscillating at every node of Γ.
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Theorem 42. Let Γ ∈ Lsl , w = exp v ∈ Asl
p(·)(Γ) and AΓ be an operator of

form (4.23) which acts in Lp(·)(Γ, w). Then:
(i) AΓ is locally invertible at the point t0 ∈ F , if and only if

lim inf
r→0

inf
ξ∈R

∣
∣det σ̃t0(AΓ)(r, ξ)

∣
∣ > 0. (4.26)

(ii) AΓ is locally invertible at the point t0 ∈ Γ\F , if and only if σ̃t0(AΓ) is
invertible, that is

a(t0) ± b(t0) �= 0. (4.27)

Proof. (i) Note that AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) is locally invertible at the
point t0 ∈ Γ, if and only if the operator

At0Γ = Φt0φt0Aφt0Φ
−1
t0 : Lpt0 (·)

nt0

(
(0, ε),

dr

r

)
→ L

pt0 (·)
nt0

(
0, ε),

dr

r

)

is locally invertible at the point 0, where the operator At0Γ is a Mellin ψdo with
double symbol in the class OPEd(n(t0)) given by formulas (4.19) and (4.20).
The conditions Γ ∈ Lsl , w ∈ Asl

p(·)(Γ) and a, b ∈ PSO(Γ) and Proposition 38
imply that At0Γ ∈ OPEd,sl(n(t0)) (see for instance [38, Chapter 4.6.5]). It fol-
lows from statement (ii) of Proposition 27 that the Mellin symbol σ(At0Γ ) of
At0Γ is of the form

σ(At0Γ )(r, ξ) = σ̃t0(AΓ)(r, ξ) + qt0(r, ξ),

where qt0 = (qijt0)
n(t0)
i,j=1 and

lim
r→0

sup
ξ∈R

∣
∣
∣∂αξ (r∂r)βq

ij
t0(r, ξ)

∣
∣
∣ = 0

for all α, β ∈ N0. By Theorem 42 condition (4.26) is necessary and suffi-
cient for the local invertibility of the Mellin ψdo At0Γ at the point 0. Hence
condition (4.26) is necessary and sufficient for the local invertibility of AΓ :
Lp(·)(Γ, w) → Lp(·)(Γ, w) at the point t0 ∈ F .

Note that the condition of the local invertibility in the spaces Lp(·)(Γ, w)
depends on the value p(·) only at the point t0.

(ii) Let t0 ∈ Γ\F . Then there exist a simple locally Lyapunov curve
Γj ⊂ Γ such that t0 ∈ intΓj , where ϕj : (0, 1) → intΓj is the parametri-
zation of the curve intΓj . Let ϕj(r0) = t0, and ϕ′

j(r0) = 1. Let ε > 0 be
sufficiently small and Γt0,εj = ϕj(It0,ε), It0,ε = (r0 −ε, r0 +ε). The restriction
ϕt0,εj of the mapping ϕj on It0,ε is the homeomorphism It0,ε on Γt0,εj . Let

Φt0,εj : Lp(·)(Γt0,εj ) → Lp̃(·)(It0,ε),
with p̃(x) = p(ϕj(x)) be the isomorphism defined as

(Φt0,εj u)(x) = u(ϕt0,εj (x)),

and
(
Φt0,εj

)−1
: Lp̃(·)(It0,ε) → Lp(·)(Γt0,εj ) be the inverse mapping.

It is well known (see for instance [2]) that

Φt0,εj χεSΓχε
(
Φt0,εj

)−1
= χ̃εSRχ̃εI + Tε, (4.28)
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where χε and χ̃ε are the characteristic functions of Γt0,εj and It0,ε, respec-
tively, Tε is a compact operator in Lp(It0,ε) for every constant p ∈ (1,∞).
Moreover, it follows from (4.28) and boundedness of Φt0,εj χεSΓχε

(
Φt0,εj

)−1

and χ̃εSRχ̃εI in Lp̃(·)(It0,ε) that Tε is also a bounded operator in Lp̃(·)(It0,ε)
if p(·) satisfies conditions (2.12), (2.13). By Proposition 9 we obtain that Tε
is a compact operator in Lp̃(·)(It0,ε). Let φ ∈ C0((−1, 1)) and φ(0) = 1. We
set

φδ(x) = φ

(
x− x0

δ

)
, φ̃δ(t) = φδ(ϕ−1

j (t)).

Then φδχε = φδ for sufficiently small δ > 0. Hence we obtain from
(4.28) that

Φt0,εj φδSΓφδ
(
Φt0,εj

)−1
= φ̃δSRφ̃δI + φ̃δTεφ̃δI,

φ̃δ(t) = φδ(ϕ−1
j (t)).

(4.29)

The sequence φ̃δI strongly converges to 0 in Lp(·)(It0,ε) as δ → 0. Hence

lim
δ→0

∥
∥
∥φ̃δTεφ̃δI

∥
∥
∥

B(Lp(·)(It0,ε))
= 0. (4.30)

It yields that AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w) is locally invertible at the point
t0, if and only if the operator

φ̃δA
t0
R
φ̃δI : Lp̃(·)(It0,ε) → Lp̃(·)(It0,ε),

with At0
R

= (a ◦ ϕt0,εj )I + (b ◦ ϕt0,εj )SR, is locally invertible at the point x0 =
Φt0,εj (t0) ∈ R. Applying Theorem 24 we obtain that φ̃δAt0R φ̃δI is locally invert-
ible at the point x0 ∈ R, if and only if

(a ◦ ϕt0,εj )(r0) ± (b ◦ ϕt0,εj )(r0)

= a(t0) ± b(t0) �= 0.

�

4.6. Simonenko’s Local Principle in Lp(·)(X)
We prove here Simonenko’s local principle in variable exponent Lebesgue
spaces Lp(·)(X) in the general setting where the underlying space X is a
quasimetric measure space, as introduced by Definition 7. In this subsection
we assume that X is a Hausdorff compact space.

Definition 43. An operator A ∈ B(Lp(·)(X)) is called an operator of local
type, if for every two closed set F1 and F2 such that F1 ∩ F2 = ∅, the
operator χF1AχF2I is compact.

Definition 44. An operator A ∈ B(Lp(·)(X)) is called locally Fredholm at the
point x0 ∈ X, if there exist a neighborhood U of the point x0 and operators
Lx0 , Rx0 ∈ B(Lp(·)(X)) such that

Lx0AχUI = χUI + T1 and χUAR
x0 = χUI + T2, (4.31)

where T1, T2 are compact operators in Lp(·)(X). If T1 = 0 and T2 = 0, A is
called a locally invertible operator at the point x0.
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Remark 45. We say that the space X does not have discrete components, if
for every point x0 ∈ X there exists a sequence U1 ⊃ U2 ⊃ · · · ⊃ Uj ⊃ · · ·. of
neighborhoods of the point x0 such that

lim
j→∞

μ(Uj) = 0. (4.32)

If X does not have discrete components, the local Fredholmness coincides
with the local invertibility. Indeed, let Lx0AχUI = χUI + T1, and U ⊃ U1 ⊃
U2 ⊃ · · · ⊃ Uj ⊃ · · · , then we obtain

Lx0AχUjI = (I + T1χUjI)χUjI. (4.33)

Condition (4.32) implies that the sequence χUjI strongly tends to 0 in
Lp(·)(X). Hence

lim
j→∞
∥
∥T1χUjI

∥
∥

B(Lp(·)(X))
= 0.

It implies that the operators I+T1χUjI are invertible for sufficiently large j.
Then (I + T1χUjj I)

−1Lx0 is a left local inverse operator at x0. In the same
way one can prove the existence of a right local inverse operator.

Theorem 46. (Simonenko’s local principle [46–48]) Let A ∈ B(Lp(·)(X,μ)) be
an operator of local type. Then A is a Fredholm operator if and only if A is
a locally Fredholm operator at every point x ∈ X. If the space X does not
have discrete components, we can replace the local Fredholmness by the local
invertibility.

The proof of Theorem 46 for variable p(·) repeats word by word the
Simonenko’s proof for a constant p (See for instance [48, pp 21–24]).

4.7. Fredholmness of SIO

Theorem 47. Let Γ be a composed compact curve of the class L, let p(·)
satisfy the above conditions on Γ and w ∈ Ap(·)(Γ). Then SΓ : Lp(·)(Γ, w) →
Lp(·)(Γ, w) is a local type operator in the sense of Simonenko, that is, for
every closed set F1, F2 ⊂ Γ such that F1 ∩F2 = ∅ the operator χF1SΓχF2I is
a compact operator in Lp(·)(Γ, w).

Proof. The operator χF1SΓχF2I has a kernel k ∈ C∞(Γ × Γ). Hence
χF1SΓχF2I : L1(Γ) → L∞(Γ) is a compact operator. Because u → w−1u
is a bounded operator from Lp(·)(Γ, w) in L1(Γ) and v → wv is a bounded
operator from L∞(Γ) to Lp(·)(Γ, w), the operator χF1SΓχF2I is compact in
Lp(·)(Γ, w). �

Theorem 48. Let AΓ be an operator of form (4.23) and Γ and w satisfy the
assumptions of Theorem 42. Then

AΓ : Lp(·)(Γ, w) → Lp(·)(Γ, w)

is a Fredholm operator, if and only if there hold condition (4.26) for every
point t0 ∈ F and condition (4.27) for every point t0 ∈ Γ\F .

Proof. Make use of Theorems 42, 46 and 47. �
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Remark 49. If we freeze the variable exponent p(·) at the point t0, condition
(4.26) coincides with the Fredholmness condition obtained in paper [3] for the
case of the constant Lebesgue exponent p ∈ (1,∞), while condition (4.27) is
classical and does not depend on p(·).

Let

AMN
Γ =

N∑

j=1

M∏

k=1

AjkΓ , (4.34)

where AjkΓ = ajkI + bjkSΓ, and ajk, bjk ∈ PSO(Γ).
We define the local symbol of AMN

Γ at the point t ∈ Γ by the formula

σ̃t(AMN
Γ ) =

N∑

j=1

M∏

k=1

σ̃t(AjkΓ ),

where σ̃t(AjkΓ ) are defined by formulas (4.24) and (4.25). Note that

σ̃t(AMN
Γ ) =

{
σ̃t+(AMN

Γ ), σ̃t−(AMN
Γ )
}
,

in the case t ∈ Γ\F , where

σ̃t±(AMN
Γ ) =

N∑

j=1

M∏

k=1

(ajk(t) ± bjk(t)).

We say that the symbol σ̃t(AMN
Γ ) is invertible if

lim inf
r→0

inf
ξ∈R

∣
∣det σ̃(AMN

Γ )(r, ξ)
∣
∣ > 0,

for t ∈ F , and σ̃ t
+(AMN

Γ ) �= 0 for t ∈ Γ\F .
Theorem 48 and the Simonenko local principle imply the following

result.

Theorem 50. The operator AMN
Γ , where Γ and w satisfy the assumptions of

Theorem 42, is a Fredholm operator in Lp(·)(Γ, w), if and only if the local
symbol σ̃t(AMN

Γ ) is invertible for every point t ∈ Γ.

Remark 51. The statement of Theorem 50 can be extended on opera-
tors in the Banach algebra obtained by the closure of operators AMN

Γ in
B(Lp(·)(Γ, w)). We are going to do it in a forthcoming paper.

4.7.1. Index Formula. Let A = aI+ bSΓ, where a, b ∈ PSO(Γ) and Γ ∈ Lsl.
Let A be a Fredholm operator in Lp(·)(Γ, w), where w ∈ Asl

p(·)(Γ). Then the
Fredholm index of A : Lp(·)(Γ, w) → Lp(·)(Γ, w) is given by the formula

indexA = −
K∑

j=1

(2π)−1

[
arg

a(t) + b(t)
a(t) − b(t)

]

t∈Γj

−
L∑

j=1

(2π)−1 lim
r→0

[
arg det σ̃(Atj )(r, ξ)

]∞
ξ=−∞ . (4.35)
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In this formula, K is the number of the oriented and rectifiable simple smooth
arcs generating the composed curve Γ, and L is the number of nodes of the
curve Γ.

The index formula (4.35) is proved by the method of separation of sin-
gularities, and this proof is similar to that for the constant p (see for instance
[3,4,36]).

Remark 52. All the results of the paper remain valid if we replace the clas-
ses C∞(0, ε), C̃∞(0, ε), C∞

sl (0, ε), C̃∞
sl (0, ε) in the assumptions on the curve Γ

and the weights near nodes by the classes Cm(0, ε), C̃m(0, ε), Cmsl (0, ε), C̃msl (0, ε)
where m is sufficiently large.

In relation to Remark 52, see also Definition 55 and Lemma 56 in the
next section.

5. On Comparison of the Used Class of Oscillating Weights
with the Bary–Stechkin Type Weights

We wish to compare the class of weights w used in this paper with the class of
oscillating weights known as Bary–Stechkin class which was used in various
papers, see for instance [23,27]. In the proofs in this section we follow some
ideas of paper [43].

We call two non-negative functions f and g equivalent, if

c1f(x) ≤ g(x) ≤ c2f(x), c1 > 0, c2 > 0.

Note that the weighted variable exponent spaces obviously does not change
if we replace the weight by an equivalent weight; for us it is also important
to observe that the Bary-Stechkin class, defined below, is also closed with
respect to the equivalence of functions.

We need some definitions. Recall that a non-negative function f on
[0, �], 0 < � < ∞, is called almost increasing (almost decreasing), if there
exists a constant C(≥ 1) such that f(x) ≤ Cf(y) for all x ≤ y (x ≥ y, respec-
tively). Equivalently, a function f is almost increasing (almost decreasing),
if it is equivalent to an increasing (decreasing, resp.) function g.

5.1. Bary–Stechkin class Φ
Definition 53. Let 0 < � < ∞. 1) By W = W ([0, �]) we denote the class of
functions ϕ continuous and positive on (0, �] such that there exists the finite
limit limx→0 ϕ(x); 2) by W0 = W0([0, �]) we denote the class of functions
ϕ ∈ W almost increasing on (0, �); 3) by W̃ = W̃ ([0, �]) we denote the class
of functions w ∈ W such that xaw(x) ∈ W0 for some a = a(w) ∈ R

1; 4) by
W = W ([0, �]) we denote the class of functions w ∈ W such that there exists
a number b ∈ R

1 such that f(t)
tb

is almost decreasing.

The classes W̃0, W 0 are known to be characterized in terms of the
Matuszewska-Orlicz indices m(w) and M(w) of w:

w ∈ W̃0 ⇐⇒ −∞ < m(w) ≤ ∞, (5.1)
w ∈ W 0 ⇐⇒ −∞ ≤ m(w) < ∞; (5.2)
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We refer to [31,32] for the Matuszewska-Orlicz indices and to [16] and [42]
for statements (5.1) and (5.2).

Definition 54. We introduce the Bary–Stechkin class Φ as the class of func-
tions in W with finite Matuszewska-Orlicz indices, that is,

Φ = W̃ ∩W. (5.3)

Note that the Bary–Stechkin class is usually introduced as the two-parameter
class Φαβ of functions w ∈ W̃ satisfying the conditions

x∫

0

w(t)
t1+α

dt ≤ C
w(x)
xα

,

�∫

x

w(t)
t1+β

dt ≤ C
w(x)
xβ

, (5.4)

non-empty if and only if α < β; we have

Φ =
⋃

−∞<α<β<+∞
Φαβ ,

which follows from the fact that w ∈ Φαβ , if and only if α < m(w) ≤ M(w) <
β, see [16,42].

5.2. Simonenko Type Class S
2

Let 0 < � < ∞. The indices

p(w) = inf
0<x≤�

xw′(x)
w(x)

, q(w) = sup
0<x≤�

xw′(x)
w(x)

(5.5)

which appeared in (4.3) and (4.4) are known as Simonenko indices, see [45],
and it is known that

p(w) ≤ m(w) ≤ M(w) ≤ q(w), (5.6)

see [32, Theorem 11.11]. The class of functions on (0, �) with finite Simonenko
indices may be called Simonenko class. We introduce a slight generalization
of this notion as inspired by conditions (3.9) and (3.11).

Definition 55. We say that a weight function w = ev(x) is in the Simonenko
type class S

N , N = 1, 2, 3, . . . , if

sup
x∈(0,�)

∣
∣
∣
∣
∣

(
x
d

dx

)k
v(x)

∣
∣
∣
∣
∣
< ∞, k = 1, 2, . . . , N (5.7)

and

lim
x→0

(
x
d

dx

)2

v(x) = 0. (5.8)

Obviously, S
N+1 ⊂ S

N . We are mainly interested in the case N = 2. A
connection of this class with Simonenko indices becomes clear, if we observe
that conditions (5.7) and (5.8) with N = 2 in terms of the weight w itself
have the form

sup
x∈(0,�)

∣
∣
∣
∣
xw′(x)
w(x)

∣
∣
∣
∣ < ∞, sup

x∈(0,�)

∣
∣
∣
∣x

d

dx

xw′(x)
w(x)

∣
∣
∣
∣ < ∞ (5.9)
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and

lim
x→0

x
d

dx

(
xw′(x)
w(x)

)
= 0.

Lemma 56. Given a function w ∈ W̃0 ∩W 0, for every N = 1, 2, 3, . . . . there
exists a function

wN ∈ CN ([0, �]) ∩
(
W̃0 ∩W 0

)

equivalent to w, and such that v(x) = logwN (x) satisfies conditions (5.7). It
may be chosen as

wN (x) = xα
x∫

0

w(t)
(
ln x

t

)N−1

t1+α
dt (5.10)

with any α such that α < m(w).

Proof. Let first N = 1. The proof of the equivalence w1(x) ∼ w(x) is direct,
via the usage of the properties

m(w) = sup
{
μ > 0 :

w(x)
xμ

is almost increasing
}
, (5.11)

M(w) = inf
{
ν > 0 :

w(x)
xν

is almost decreasing
}
, (5.12)

see [16, Theorem 3.6], for the proof of (5.11) and (5.12). By direct differen-
tiation of w1(x) we obtain

x
d

dx
w1(x) = αw1(x) + w(x). (5.13)

Then the first inequality in (5.9), corresponding to the case N = 1, holds
because w1 ∼ w. Note that w ∈ W̃0 ∩ W 0 =⇒ w1 ∈ W̃0 ∩ W 0 and w
and w1 as equivalent functions have equal Matuszewska-Orlich indices, see
[32, Theorem 11.4].

For N > 1 the statement is obtained by iteration of the procedure.
Indeed, by the already proved equivalence w1 ∼ w, we have

w(x) ∼ w1(x) ∼ xα
x∫

0

w1(t)
t1+α

dt = xα
x∫

0

w(s)ds
s1+α

x∫

s

dt

t
= w2(x).

By direct differentiation we obtain

x
d

dx
w2(x) = αw2(x) + w1(x). (5.14)

Consequently

xw′
2(x)

w2(x)
= α+

w1(x)
w2(x)

, (5.15)

whence the first inequality in (5.9) follows in view of the equivalence w1 ∼ w2.
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Furthermore, differentiating (5.15), by (5.14) and (5.15) we obtain

x
d

dx

xw′
2(x)

w2(x)
=

w

w2
−
(
w1

w2

)2

whence the second inequality in (5.9) follows in view of the equivalence w ∼
w1 ∼ w2.

For N > 2 the statement is obtained by induction following (5.13) and
(5.15). �

Remark 57. It is known that the interval defined by Matuszewska-Orlicz indi-
ces in general is narrower than that defined by Simonenko indices, namely

[m(w),M(w)] ⊆ [p(w), q(w)], (5.16)

see [32, Theorem 11.11]. Therefore, any function having finite Simonenko
indices, also has finite Matuszewska-Orlicz indices and consequently belongs
to the Bary–Steckin class Φ.
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