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Abstract. The main results of the paper are: (1) The boundedness of
singular integral operators in the variable exponent Lebesgue spaces
e (T',w) on a class of composed Carleson curves I' where the weights
w have a finite set of oscillating singularities. The proof of this result is
based on the boundedness of Mellin pseudodifferential operators on the
spaces LP (‘)(]RJF, dp) where dp is an invariant measure on multiplicative
group Ry = {r € R:r > 0}. (2) Criterion of local invertibility of singu-
lar integral operators with piecewise slowly oscillating coefficients acting
on LPO) (I, w) spaces. We obtain this criterion from the corresponding
criteria of local invertibility at the point 0 of Mellin pseudodifferential
operators on R; and local invertibility of singular integral operators
on R. (3) Criterion of Fredholmness of singular integral operators in
the variable exponent Lebesgue spaces LP¢)(I', w) where T’ belongs to a
class of composed Carleson curves slowly oscillating at the nodes, and
the weight w has a finite set of slowly oscillating singularities.

Mathematics Subject Classification (2000). Primary 47G30.

Keywords. Pseudodifferential operators, Hormander class,
Singular operators, Variable exponent, Generalized Lebesgue space,
Fredholmness.

1. Introduction

Last decade there arose a big interest to investigation of the classical operators
of Analysis, i.e. singular and maximal operators, Hardy operators, pseudo-
differential operators, in the LP()-spaces with variable exponents p(+). Many
papers have been devoted to the extension of various results on the bounded-
ness of operators, well known for the constant p, to the case of variable p(+).
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This extension is essentially nontrivial and demands new ideas and methods,
see for instance [7-11,28,44] and references therein.

Similar to the case of the constant p, the Fredholm theory of the men-
tioned operators in spaces related to LP(*) has also a big interest. With respect
to one-dimensional singular integral operators in variable exponent Lebesgue
spaces we refer, for instance, to [17-26,41].

In our paper [41] we proved the boundedness of pseudodifferential oper-
ators of the class OPSY , acting in the variable exponent Lebesgue spaces
LPO)(R™) and obtained the necessary and sufficient conditions of the Fredhom
property of operators of the class OPS%O with symbols slowly oscillating at
infinity, in the spaces LP()(R™). The proof of the sufficiency of conditions
of the Fredholmness is more or less standard being based on the calculus of
pseudodifferential operators, the boundedness theorems and the interpolation
in the spaces LP()(R™), while the proof of the necessity of those conditions
meet big difficulties. (In particular, they are connected with the fact that the
shift and dilation operators are unbounded in LP()).

The main aim of the paper is the Fredholm theory of singular inte-
gral operators (SIOs) on composed curves I' with whirling points and coeffi-
cients having slowly oscillating discontinuities acting in the weighted spaces
LPO)(T,w). Applying results from [41] we prove that singular integral oper-
ators are bounded in Lp(‘)(F7 w) and they are the local type operators in the
Simonenko sense [46-48]. Consequently, for the investigation of the Fredholm
property we can apply the Simonenko local principle. This principle reduces
the investigation of the Fredholm property of local type operators to the
investigation of the local invertibility of their local representatives which are
simpler operators than the original one.

For instance, the investigation of the Fredholm property of the SIO

A = al +bSr,

with continuous coefficients a and b and a Lyapunov curve I', in the space
LP(T),1 < p < o0, is known to be reduced to investigation of local rep-
resentatives at every point ¢y € I' which are operators of the type A, =
a(to)I 4 b(to)Sr. Their local invertibility in LP(R) coincides with the invert-
ibility which is equivalent to the condition a(ty)£b(tg) # 0. The investigation
of the Fredholm property of the operator A = al + bSt with piece-wise con-
tinuous coefficients on a simple Lyapunov curve I" in the space LP(T", w) with
power weight w, is reduced to the investigation of the local invertibility of
the homogeneous operators of the form al 4+ bSg acting in LP(R), where a,b
are piecewise constant functions with the only discontinuity at the origin and
infinity. These operators are realized as Mellin convolutions and conditions
of their invertibility are given in the terms of the Mellin transform of the
kernel.

In [2-5,33-36,38], the Simonenko local method was applied to SIO
on some composed Carleson curves with discontinuous coefficients acting
on weighted LP-spaces, and in the paper [39] for SIO acting on weighted
Holder spaces. In this case the local representatives are Mellin pseudodiffer-
ential operators with variable symbols. The symbols of local representatives
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(the local symbols) explain the appearance of the logarithmic double spirales
and spiral horns in the local spectrums of SIO. Note that in the theory of
Gohberg et al. [14] and Spitkovsky [49] for SIO on Lyapunov curves in LP-
spaces with Muckenhoupt weights, the typical local spectra are circular arcs
and circular horns.

We extend here the results of the mentioned papers to the case of vari-
able exponent p(-). The local representatives of the SIO at the singular points
t € I" appear as Mellin pseudodifferential operators with a symbol depending
on the curve, weight and coefficients and also on the values of p(+) at singular
points t. Making use of the results on local invertibility of Mellin pseudodif-
ferential operators, we obtain necessary and sufficient conditions of the local
invertibility of SIOs at singular points of the curves, weights and coefficients.
Finally, the application of the Simonenko local principle allows to obtain the
necessary and sufficient conditions of Fredhomness in LP(T, w).

The methods of localization developed in the paper can be applied to
the study of the Fredholm property of multidimensional SIOs and pseudodif-
ferential operators on compact and noncompact manifolds, boundary value
problems in Sobolev and Besov spaces connected with LP(). We hope to do
this in forthcoming papers.

Another approach to the investigation of the algebra of operators gen-
erated by the operator St of singular integration along a general composed
Carleson curve I' and operators of multiplication by piece-wise continuous
functions, acting in LP(T,w), where 1 < p < oo, and w is a Muckenhoupt
weight, based on the Wiener—Hopf factorization and theory of submultipli-
cative functions was given by Bottcher and Karlovich (see book [1] and ref-
erences therein). In [18-20], some results of the book [1] were transferred to
algebras of SIO acting in the Lebesgue spaces with variable exponents.

The paper is organized as follows. In Sect. 2 we consider pseudodifferen-
tial operators on R acting in the variable exponent Lebesgue spaces LP(") (R).
The main result of this section is a criterion of local invertibility, at the
point +oo, of pseudodifferential operators with slowly oscillating symbols,
and a criterion of local invertibility of pseudodifferential operators and sin-
gular integral operators at the point zg € R.

In Sect. 3 the results of Sect. 2 are reformulated for the Mellin pseudodif-
ferential operators acting on LP()(R, , dy) with the invariant measure dy =
% on the multiplicative group R .

In Sect. 4 we apply the results of Sects. 2 and 3 to the investigation of
boundedness, local invertibility and Fredholmness of singular integral opera-
tors on composed Carleson curves acting on the Lebesgue spaces LP(')(F7 w)
with weights having a finite set of oscillating singularities. We obtain here
the following results:

(1) Theorem on the boundedness of SIO on composed Carleson curves T’
acting on the Lebesgue spaces LP(I',w) with weights having a finite
set of oscillating singularities. The proof of this theorem is based on
the local boundedness of Mellin pseudodifferential operators on the
spaces LP()(R,,dp) and an admissible partition of unity on the curve
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I'. The pseudodifferential operators approach demands that the curve
near every node is infinitely smooth. But in fact we use the existence of
only a finite number of derivatives.

(2) Criterion of the local invertibility and Fredholmness of SIOs on slowly
oscillating composed curves with piecewise slowly oscillating coefficients,
in the spaces LPO)(I',w) with the weight w slowly oscillating at the
nodes. The main tools of this section is the local principle of Simonenko
and necessary and sufficient conditions of local invertibility of Mellin
pseudodifferential operators acting in LP() (R+7 %) at the point 0, and
pseudodifferential and singular integral operators acting in LP()(R) at
the point zg € R.

Section 5 is devoted to a comparison of the used class of oscillating
weights with the Bary-Stechkin type weights. In particular, we show in
Lemma 56 that our assumption on the differentiability of weights near the
nodes is inessential in the sense that any function in the Bary-Stechkin class
is equivalent to NV times differentiable function in this class, for any given
finite N, the Matuszewska-Orlicz indices coinciding under the equivalence,
as is known. However, the conditions on the weights in terms of the Simo-
nenko indices are somewhat stricter than in terms of the Matuszewska-Orlicz
indices, see Remark 57.

We will use the following notations:

e for a Banach space X, B(X) stands for the space of all bounded opera-
tors in X,
C>(R) is the linear space of infinitely differentiable functions on R,
C§°(R) is a subspace of C*°(R) of functions with compact support,
C°(R) is a subspace of C*°(R) of functions bounded on R with all their
derivatives,

e S(R) is the L. Schwartz space of functions in C°°(R) decreasing at
infinity with all their derivatives faster than every power |z|™" ,n € N.

e If ¢ is a function or matrix, by al we denote the operator of multipli-
cation by a.

2. Pseudodifferential Operators on R

2.1. Some Properties

In this section we give an auxiliary material on pseudodifferential operators
(more information may be found for instance in [38, Chapter 4], or [37]).

Definition 1. (i) We say that a function a € C*°(R x R) is a symbol of the
class ST if

laly, .= Y sup [970Fa(x, )] (€)TT < oo, (2.1)

a<ly,p<l, (©:8)ER?
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1/2
for every 11,1y € Ng = {0} UN, where (§) = (1 + |§\2) . To a symbol
a we relate the pseudodifferential operator (¢ do)

Oplayule) = 5- [ dé [ atw.uty)e™%ay, (2.2)
R R

where u € C§°(R); by OPSY ; we denote the class of 1do’s with symbols
in S?,o-

We say that a function a € C°(R x R x R) is a double symbol of the
class ST ¢ if

Loty = > sup  |92070¢a(z,y,&)] (£)*" < oo (2.3)

a<ly,B<ly y<lg (BY-E)ER?

la

for every ly,l3,l3 € Ny. To a symbol a we relate the pseudodifferential
operator with double symbol

Opalayu(o) = 5- [ d¢ [ ooy, ue™ 4y, (2
R R

where v € C§°(R), and we denote the class of 1do’s with symbols in
Sflo,o by OPS’f?O’O.

Proposition 2. (Calderon—Vaillancourt, see for instance [38, Theorem
4.1.12]). Let Op(a) € OPSY . Then the operator Op(a) is bounded in L*(R)

and

10p(a)ll 5(r2m)) < Clals s, (2.5)

where C' does not depend on a.

Proposition 3. (see [38, Chapter /])

(i)

Let a; € SY4,j = 1,2 and C = Op(a1)Op(az). Then C €
OPST§*™ . C = Op(c) where

(.6 = o [ [ alw & i+ ey (2.6)
RZ

Moreover,

c(x,€) = a(x, b(x, §) + t(x,E), (2.7)

where t € ST5+m271.
Let a € ST o. Then Opa(a) € OPSTYy, Opg(a) = OP(a#) where

1 )
a¥ (2,8) = — a(z,x +y,&+n)e” Y dydn. (2.8)
2w /R[

Moreover, a*(z,¢) = a(z,z,&) +t(z,£), where t € 517071'
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Note that the operators in O PS7", are bounded in S(R) (see for instance
[38, Proposition 4.1.5]).
We say that an operator A™ is formally adjoint to A = Op(a) € OPSTY
if
(ATu,v) = (u, Av)
for all u,v € S(R™), where (-, -) is the standard scalar product corresponding
to L?(R).

Proposition 4. Let a € STy Then the operator A™ formally adjoint to A =
Op(a) belongs to OPSTY, and AT = Op(a™) with

£ = % //d(w +y, &+ m)e” Y dydn. (2.9)

a’(z,§) = a(x, &) + t(x,§), where t € STy

The integrals in (2.6), (2.8), (2.9) are understood as oscillatory (see [38,
Chap. 4.1.2], [37, Chap. 2)).

Definition 5. (i) We say that a symbol a € 57 is slowly oscillating at
the point +o0, if

000¢a(w,£)] < Caplx) (€)™, (2.10)

and lim,_, 1o Cop(z) = 0 for all @ € Ny and 8 € N. We denote this
class by SO and the corresponding class of 1do’s by OPSO, .

(ii) We say that a double symbol a € S{ is slowly oscillating at the
point +oo, if

1020]0¢ a(x,y,&)| < Capy(z,y) (£)7°

where lim, ., oo Copy (2, y) = 0 uniformly with respect y for all o,y €
Ny and (€N, and lim,_. 4 Copy(x,y) = 0 uniformly with respect
z for all a, 3 € Ny and v € N. We denote this class by SO, 4 and
the corresponding class of ¥do’s by OPSO 4 4.

(iii) We say that a € S, o, if the coefficient Cop(x) in estimate (2.10)
satisfies the condition lim, . Cog(z) = 0 for all o, 8 € Ny. The
corresponding class of 1do’s is denoted by OP§+OO.

Proposition 6. ( /38, Chap. /])
(i) Let Op(a;) € OPSO1w,j = 1,2 and B = Op(a1)Op(az). Then B €
OPSO4 o and B = Op(b) with
b(irvf) = al(xvg)aﬁ(xvg) + q(xvf)v

where q € §+oo.
(ii) Let Opa(a) € OPSOina. Then Opg(a) = Op(a#) € OPSO, .,
where

a*(x,€) = alz,z,€) + q(, ),
and q € §+Oo.
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(iii) Let Op(a) € OPSO4 . Then the formal adjoint operator (Op(a))™ =
Op(a™) is in OPSO4 . with
aT(x’ g) = d(x7 x’ g) Jr Q(x7 5)7
and q € STOO
2.2. Pseudodifferential Operators on Lebesgue Space with Variable
Exponent

We give the definition of variable exponent Lebesgue spaces for the general
case where the underlying space is an arbitrary quasimetric measure space,
because such spaces will be used in various settings in this paper.

Let (X,d,u) be a quasimetric measure space, i.e. a topological space
endowed with the quasimetric d: X x X — R}r and nonnegative Borel mea-
sure p (we refer to [6,12,15] for quasimetric measure spaces). Let p : X —
(1,00) be a measurable function on X.

Definition 7. The variable exponent Lebesgue space Lp(')(X ) is introduced
via the modular

O(f) = / F@)P® dp(z) < oo (2.11)
X

by the norm
1f1l Loy (x) = inf {A >0: %) ({) < 1} .

We also use a similar space L5 (X) of vector-functions on X with values in
C™, defined via norm

I£1l oo () = inf {/\ >0: 10 (J;) < 1} ,

where 157 (f) = [y [ F(@) |5 dp(z) < oo.
Everywhere in the sequel we assume that p(-) satisfies the conditions:

(i) there exists numbers p_,py € (1,00) such that

1<p_ <p(z) <py < . (2.12)
(ii) there holds the log-condition
A 1
p(x) —p)| < 75— wyeR, dlzy) <5, (213
log 753 2

*

Under condition (2.12) the space LP() (X) is reflexive and (LP()(X))" =
L) (X)) where ﬁ + Tlx) =1l,zeX.

The case X = R" will be the main one in this paper and in this case we
also suppose that

(iii) there exists the limit ‘ 1|im p(x) = p(oc0) and

A

< 2 rzeR 2.14
< g @1 1al) (2.14)

p(z) — p(0)
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Note that under condition (2.12) for a function a € L*(X) we have
lalllszo0r ey < llall o) (2.15)

which follows from the definition of the norm in LP()(X), and that the mod-
ular convergence is equivalent to the norm convergence. The latter follows
from the properties:

cr S| fllroxy S =3 < IPO(f) < 4 (2.16)
and
CL<IPO(f) < Cy = Cy < ||l pwore < Ca (2.17)
with ¢5 = min (=, &%) s = max (ch,c47) .Gy = min (€37, /"),
C, = max (C;/P—7021/P+)_
In the case X = R" the imbeddings
Cs°(R™) C S(R™) c LPO(R™)

hold; they are dense under under assumptions (2.12), (2.13), (2.14) (see, for
instance, Theorem 2.11 in [29]).

Proposition 8. ( [10]) Let p; : R" — [1,00),7 = 1,2, be bounded measurable
functions, A be a linear operator defined on LP*()(R™) N LP2C)(R™) and
HAUHLPJ‘(')(Rn) < Cj ||U||ij('>(]Rn) , J=12. (2.18)
Then A is also bounded on the intermediate space LP*C)(R™), where
1 0 1-46
= +
po(z)  pi(z)  pa()

, 0€0,1],

and

2 1-6
1Al gLrocry < NAllgeoy 1Al g praco) -

The following proposition is an extension of the well-known theorem
of Krasnosel’skii [30] on the interpolation of the compactness property in
LP-spaces with a constant p.

Proposition 9. ( [41, Proposition 2.2]) Let p; : R — [1,00),5 = 1,2, be
bounded measurable functions satisfying assumptions (2.12)—(2.14) and let a
linear operator A defined on LP*C)(R™) N LP2C)(R™) satisfy the boundedness
assumptions in (2.18). If

A: P O(R™) — LPO(R™)
is a compact operator, then
A: LPeO(R™) — LPe()(R™)
is a compact operator in every intermediate space LP*C)(R™), 6 € (0,1].

Theorem 10. (/41, Theorem 5.1]) An operator Op(a) € OPSY  is bounded
in LPC)(R) and there exists M > 0 and C > 0 not depending on a such that

Hop(a)HB(LP(-)(R)) <cC |G|M,M
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Proposition 3 and Theorem 10 imply the following

Corollary 11. An operator Op(a) € OPSY  , is bounded in LP*)(R) and there
exists M > 0 and C' > 0 not depending on A such that

HOp(a)||B(LP(~)(R)) <cC |a|M,M,M )
where C' > 0 and M > 0 do not depend on a.

Note that, because S(R) is dense in LP()(R), the formal adjoint A” to
the operator A = Op(a) € OPS%0 coincides with the operator A* adjoint to

the operator A acting in LP()(R). Hence A* = Op(a™) € OPSY, where a”
is defined by (2.9).

Proposition 12. Let x i be the characteristic function of the segment R, +00),
Q =O0p(q) € OPS;. Then

REI}:OO HXRQHB(LP(~>(R)) = REI}:OO ||QXRI||B(LP(~)(]R)) =0. (2.19)

Proof. Let ¢ € C*(R) be a real-valued function such that

_J1, xz>1
wl) = 0, z<1/2”

and pr(r) = o(E), R > 0. We have prQ = Op(prq). Since q € S, We
have

B}me |‘PRQ|11712 =0
for every lj,lo € Ny. Applying Theorem 10, we obtain that Rlim ler
Qllp(Lr)r)) = 0. Now we will prove that Rlir}rlw 1QerIllpLrc)®)) = O

We have HQSDRIHB(LP(-)(R)) = H‘PRQ*HB(LL:(-)(R))a where Q" € OP§+oo by
statement (iii) of Proposition 6. Hence

ngnoo ||Q‘PRI||B(LP(-)(R)) = B}me ||<PRQ*||B(Lq(-)(R)) =0. (2.20)
Since ¢rXRrR = XR, equality (2.20) implies (2.19). O

2.3. Local Invertibility at +oco
Definition 13. We say that an operator A € B(LP()(R)) is locally invertible
at the point 4oc0, if there exist operators L and Rp such that
Lr AXrl = xrI,xrRARR = Xr!. (2.21)
We also need the following propositions, where by
Vhu(z) = u(z — h)

we denote the translation operator.
Proposition 14. (41, Proposition 6.3]) Let a sequence (R 3) h,, — 400, and
wy, (€ C(R)) be a sequence converging in the sup-norm on R to a func-
tion w € C(R). Suppose also that there exists a constant C > 0 such that
[wm ()] < % for every m € N and |w(z)| < % Then

mhinoo ||thmeLp(-)(R) = ||w||Lp(+oo>(]R) : (2:22)
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Proposition 15. ([/1, Proposition 6.4]) Let Op(a) € OPSOis, and a
sequence h,, — +00. Then there exists a subsequence hy,, of hy, and a symbol
ay € OPS?’O not depending on x, such that for every function u € C§°(R)

ler{:o Vb, Op(a)thk_ u = Op(ap))u
in the topology of S(R).

In what follows, if a is a symbol and h € R, then a” denotes the symbol
shifted in x, that is, a"(x, &) = a(z + h, £). Note that V_,0p(a)V}, = Op(ah).

Proposition 16. Let Op(a) € OPSO, o, and a sequence hy, — +oo. Then
for every function u € C§°(R)

"}i_{noo IV-h,,Op(a)Vh,,u |Lp<~>(R) =0. (2.23)

Proof. We have V_;, Op(a)V,,, = Op(a”). Let ¢ € C5°(R) such that pu =
u. Hence

V_n, Op(a)Vi, u = Opa(a™ o)u.
Applying formula (2.8) we obtain that Opg(a"™¢) = Op(b,,) where

1 )
bn.€) = 5= [l + b€ 4 o+ gy, (220
R2
Then applying the definition of the oscillatory integral in (2.24) we obtain
that

lim  sup ]afjagbm(x,g)\:o
M0 (2,6)ER?

for all a, 8 € Ny. Theorem 10 implies that
Jim (|Op(bm )| Lo @)y = m_[|Opalan,, @)l prre @y = 0. (2.25)
Hence the statement of the proposition follows from formula (2.25). O

Theorem 17. Let Op(a) € OPSO4 . Then the operator Op(a) :
LPO(R) —LPC)(R) is locally invertible at the point +oc if and only if

lim inf inf . 2.2
;ﬂgoglgRla(x,ﬁ)bO (2.26)

Proof. (a) First we prove that condition (2.26) is sufficient for the local
invertibility of Op(a) at the point +o00. Let pr be the function from the
proof of Proposition 16. Condition (2.26) implies that there exists an Ry > 0
such that bg, = pr,a™! € SO . Hence by Proposition 6

Op(br,)Op(a) = ¢roI + Qry, (2.:27)
where Qr, € OP§'+OO. Equality (2.27) implies that
Op(bRO)Op(a)XRI = (IJr QROXRI)XRL (2.28)

where R is such that ¢r,xr = xr. By Proposition 12 we can choose an R
such that |QxrI | e (r)) < 1. Hence

(I+Qxrl)"'Op(br)Op(a)xrl = xrl.
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Thus, the operator Op(a) is locally left invertible at the point 4o0o. In the
same way we prove that Op(a) is locally right invertible at the point +oo.

(b) Now we prove the necessity of condition (2.26) for the local invert-
ibility of Op(a) at the point +oco. Let Op(a) : LPC)(R) — LPO)(R) be a locally
invertible operator. Then there exists C' > 0 and R > 0 such that

10p(a)xrull oo ) 2 C lIxrUll Lo (R) (2.29)

for every u € C§°(R).

Let a sequence h,, € R tend to +oco, and u € C§°(R). Then for a fixed
R > 0 there exists mo > 0 such that xgVj,, u = V3, u for m > mg. Hence for
such m

Vi, (V=r,, OP(@) Vi, )| o gy = 10P(@)X RV, wll Lo )
2 CHthuHLP(-)(]R)' (2.30)

Let h,,, be a subsequence of h,, defined in Proposition 15 and let

wg = V_p Op(a)thku =Op (ahmk) .

mip

Applying Proposition 15, we obtain that wy — w = Op(a())u in the space
S(R). Then we can use Proposition 14 to pass to the limit in the inequality

Vi, ¢ ||Va, vl

> ;
LP() (R) LrC) (R)

and obtain that
HOP(C‘(h))uHLp(+oo)(R) >C Hu||Lp<+oo>(]R) ) (2.31)

where the symbol a(;) depends only on {. Estimate (2.31) implies the
condition
inf > 0. 2.32
inf lagn ()] (2.32)
Thus, we proved that for every sequence h,, — 4oc there exists a subse-
quence hy,, and a limit symbol a(,) € S 5 such that the sequence a(hy,,€)
converges uniformly on R to the limit function a(y(§) for which condition
(2.32) holds. Suppose now that condition (2.26) is not satisfied. Then there
exists a sequence (N, &m ), i — +00 such that
lim a(hy,,&n) =0. (2.33)

m—00

Choose a subsequence h,,, of the sequence h,, such that a(h,,,,&) converges
uniformly with respect to £ € R to the limit function a;(€) for which condi-
tion (2.32) holds. Then

klim a(hmy, s Emy,) =0 (2.34)
and
Hm |a(R, s &m,.) — an)y(Em,)| = 0. (2.35)

k—oo

Hence (2.34) and (2.35) contradict to (2.32). O
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By OPSY ((n) (OPSO, «(n)) we denote the class of 1»do’s Op(a), where
a is a matrix with entries a;; € S7 o (SO4o0).
Theorem 17 is reformulated for the matrix case in the following form.

Theorem 18. Let Op(a) € OPSO o (n). Then Op(a) : Lﬁ(')(R) —>L§’L(')(R) is
locally invertible at the point +o00 if and only if

lim inf inng|det(a(x,§))| > 0. (2.36)
ce

T—+00 &

2.4. Local Invertibility at the Point g € R

Definition 19. We say that A € B(LP()(R)) is locally invertible at the point
xo € R, if there exist an interval Z.(xzo) = (xo — €, 20 + ¢ ) and operators
LayesRauge € B(LPO(R)) such that

»C:DmEAX?OI = X?DI, X?DARIO,E = XEOI’

where xZ° = X7_(4,) is the characteristic function of Z.(z). The operators
Ly, c(Ray ) are called left (right) locally inverse operators.

We consider a subclass 5’(1)70 of symbols in 7 for which there exist
functions a* € C2°(R) such that

lim sup|a(z,§) — ai(x)’ =0. (2.37)
§—+oo zeR

Let Op(a) € OPSY,. Then we set

7ay(A) = {a" (z0),a™ (z0) }
and say that o,,(Op(a)) is the local symbol of the operator Op(a) at the
point g € R. Note that if Op(a;) € OPSY g, j = 1,2, then

20 (Op(a1)Op(az)) = 0, (Op(a1))ou, (Op(az)

= {af (x0)a3 (z0), ay (zo)ay (z0)} .

The vdo Op(a) € OPS?,O is called elliptic at the point xg, if the local symbol

04,(0p(a)) is invertible, that is, a®(zg) # 0.
In this section we also need the following propositions.

Proposition 20. Lett € S, and

lim t(z,&) =0. 2.38
i 1,6) 2:3%)
Then Op(t) is a compact operator in LPC)(R), where p(-) satisfies conditions
(2.12)-(2.14).

Proof. Condition (2.38) implies that Op(t) is compact in L?(R) (see [37, The-
orem 5.8.3]). We can find a function r : R — (1, 00) satisfying (2.12)—(2.14)
such that LP()(R) is an intermediate space between L?(R) and L"()(R).
Hence Op(t) is a compact operator in LP()(R) by Proposition 9. O

Let p € C°(R), p(z) = 1if [z| < 1, suppp = [~1,1],and 0 < p(z) < 1.
We set 20 (x) = p(E=20).

€



Vol. 69 (2011) PDO Approach to Singular Integral Operators 417

Proposition 21. Let t € S, and

lim sup [t(x,&)| =0. (2.39)
§—00 pcRn
Then
giE%HOP( IX: I||B(Lp( Y(R)) = hm IX2°Op(t )HB(LD(-)(R)) =0 (240
and

3 Lo — 13 Zo —
gli% [Op(t)2 I”B(Lp(-)(R)) = Ehi% [ Op(t)”B(LP(-)(]R)) =0. (241)

Proof. Fix g9 > 0 and let 0 < & < g9. Then Op(t)x2°I = Op(t)xZoxZ°1. The
operator Op(t)xZ°1 is compact by Proposition 20, and x2°/ — 0 if ¢ — 0
strongly in LP()(R). Hence lim, g 10p(t)x2° I 5100 (r)) = O- Passing to the
adjoint operators and taking into account that (2.39) implies the convergence

hm sup |t7(z, )| =0,
o zeR"

we obtain that
giﬂ% IX2°Op() | roe) )y = || (Op(t))” X?OIHB(M(»)(R)) =0.
Formula (2.41) follows from (2.40). O
Proposition 22. Let (74, su)(x) = 5oy (25%2) .6 > 0. Then
i 17 50 0 oy = 1l e
for every function u € C§°(R).

Proof. Fix a function u € C§°(R) and set

z—z0 |P®)
F(\,0) = PO (1, s5u) = / % 5 'dz, A>0
R
After the change of the variables *=* =y we get
(zo+6
B ( ) 0+9y)
F(\0) = —~ dy. (2.42)

R
Passing to the limit in (2.42) as § — 0, we obtain

p(zo)
%H% F(\0) = / # dx := F(\,0) (2.43)
R

where the convergence is uniform with respect to A > 0 on every segment
[a,b] C R.

Note that F': (0, +00) x [0, 1] — R is a continuous function. Moreover,
there exists a partial derivative F§ (\,6) < 0 for every (\,0) € (0,+00) x
[0,1]. Hence for every fix § € [0,1], F(-,d) is a monotonically decreasing
function of A on (0,00). It implies that

750l s gy = i {A > 0 F (X, 8) < 1} = A(9)
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where A(0) is a solution of the equation F (A,d) = 1. One can see that for
6 = 0 the equation F'(A,0) = 1 has an unique solution A(0) = [[ul[;r(z) (r)-
Moreover,

F (Jlull s gy -0) # 0.

Hence by the Implicit Function Theorem we obtain that there exists a unique
solution A(d) of the equation F (A, d) = 1 for small § and A\(d) is a continuous
function in a neighborhood of the point 0.

Hence

[0l e sy = AO) 2= i A(8) = i 17z, sl

for every function u € C5°(R). O
Let ¢ € C§°(R) be a real-valued function such that ¢(§) =1 if |§| < 1,

¢(§) =0 if [(]>2, and 0<¢(§) <1. Let also ¢r(§) =¢(¢/R) and Pr=1— ¢r.

Theorem 23. Let a € S%O. Then Op(a) : LPO(R) — LPO)(R) is locally
invertible at a point xo € R if and only if Op(a) is an elliptic operator at the
point xg.

Proof. (i) First we prove that the local ellipticity of Op(a) at the point
implies the local invertibility at this point. Let a®(z,¢) = at(2)0(¢) +
a=(&)(1 —6(€)), where 0 is the characteristic function of R,. Since a € S?’O,
we then obtain

Jim s (ale,€) — o, )n(8)] = 0. (2.44)
—H00 (,6)ER?
and

li_I)r(l) sup ’(ai(x) — a®(z0)) %O (z)| = 0. (2.45)
Hence

(00—, ) @] =0, (2:46)

In view of the ellipticity of Op(a) at the point zy and relation (2.46
we obtain that there exist g9 and Ry such that the symbol b(z,&) =

afl(x,f)apgg ()R, (€) is in S?,0~ Then
Op(b)Op(a) = Op(@Zr,) + Op(teo,ry) (2.47)

where t., g, € Sié by formula (2.7).
Formula (2.47) implies that

Op(b)Op(a) = ©Z 1 + 02 Op(¢r,) + Op(teq R, )- (2.48)
Choose € > 0 such that x20@Z® = xZ°. Then from (2.48) we get
Op(b)Op(a)xZ°1 = x2°I + Q«, (2.49)

where

Qe = 0200p(PRy) X1 + Op(tey o)X 1
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is a compact operator in LP(*)(R) by Proposition 20. Since we have the strong
convergence x*°I — 0 in LP()(R), we can choose &’ > 0 small enough such
that ||Q:x2"I|| < 1. Hence

(I +Qex? 1)~ Op(b)Opla)x P T = X1
Hence £ = (I + Q-x21)"*Op(b) is the left locally inverse operator at the
point x¢p € R. In the same way we prove that there exists a right locally
inverse operator at the point xg.
(ii) Now we prove that the local invertibility of A = Op(a) at the point
xo implies the local ellipticity of Op(a) at this point. We denote

A =a*P, +a P,
A = a(20) Py +a~ (x)P_,

where

1 u(y)d
(I+58) and (Spu)(x) = — / y(y_) xy.
R
Note that the SIOs A° and A% are bounded in LP()(R) (see for instance
[41]). By the multiplicative inequality (see for instance [50, p. 22], or [37,
Proposition 5.8.1]) formula (2.44) implies that
lim  sup [0/0F ((a(e,6) — o’ (@, ()] =

R=400 (.6)eR

Py

w\)—*

By Theorem 10, for each > 0 we can find an Ry > 0 such that

hm H (A— AO)Op (Vr,) HB (LrO @)y < (2.50)

Continuity of the coefficients a* at the point z, implies that for every
1 > 0 there exists an g9 > 0 such that for all € € (0, £¢)

||(AO o AwO)QPgOIHB(LM‘)(R)) <n. (2.51)
Furthermore,
1(A = AMG2 || gy < 1(A = ANOP(R)CET || 0 ()
+ H (A— AO)OP(¢R0 Pe IHB(LP(‘)(R)) ’ (2.52)
and

(A~ AO)OP(¢R0)SD?IHB(LP(-)(]R))
<A = Al 5100 ) 10P(@R) O Tl 10 () -

By Proposition 21, for small € > 0 we have

z Ui
or .
10p(Pr,y)p: ”B(LP(-)(]R)) < (A= 4O)||B(LP(') )

Hence
(A= A)0p(62)02 T g 10 ) < - (2.53)
Thus, estimates (2.50), (2.52) and (2.53) yield that
[(A =A%) | g 1o )y < 3 (2.54)
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for small € > 0. Let A be locally invertible at zg. Then there exist ¢’ > 0 and
C > 0 such that the following estimate holds

HAX?OUHLP(-)(R) >C ||X;E'OUHLP(-)(R) (2'55)

for every u € C§°(R). Note that for € > 0 small enough xZ° p¥° = ¢Z°. Then
(2.55) implies

[AeZull ocr gy 2 C lleZ°ull oy @),  u € C5°(R). (2.56)
Let 7 = €. Then (2.54) and (2.56) yield that

x €T C X oo
A OSOEOUHLp(-)(JR) 2 9 ||9050U||Lp<~>(1g)7 u € Cg°(R). (2.57)

We replace u in (2.57) by 7, su where § > 0. Then for § > 0 small
enough p20(7y, su) = Ty su. Since Ay, commutes with the operator 74, s,
from (2.57) we obtain

N c
720,64 OUHLp<-)(R) 2 B HTmo,éuHLm-)(R)« (2.58)
Passing to the limit as 6 — 0 in (2.58) and applying Proposition 22, we obtain
the estimate
C
||A$OU||LP<wo>(R) = B ||U||Lp(wo>(]1{<) (2.59)
for every u € C§°(R). In the same way, from the estimate
ANl oy = C Il gy wE CF(R)  (260)
we obtain that
xr * C o0
[[(A*°) U||Lq<zo>(R) = 9 ||U||Lq<mo>(R) ;v € Cg°(R). (2.61)

Since C§°(R) is dense in LP(¥0)(R), estimates (2.60) and (2.61) imply
the invertibility of A®0 in LP(*0)(R). It remains to note that the invertibility
of the SIO A% in the space LP(R) with constant p € (1,00) implies, as is
well known, the condition ay(z) # 0 (see for instance [47]). O

Theorem 24. Let A° = at P, +a~P_ be a SIO with coefficients a* € L>(R)
continuous at a point o € R. Then A : LPC)(R) — LPC)(R) is locally invert-
ible at the point xq, if and only if a™(xq) # 0.

Proof. (i) Let the condition a®*(z¢) # 0 hold. By the continuity of a* at the
point xg, for every n > 0 we can find an € > 0 such that
(A% —A™) SD?IHB(LP(-)(R)) <1 (2.62)
Hence
AT = Ao T + T, (2.63)
where ||T.|| < 1. The condition a*(x¢) # 0 implies that there exists the
inverse operator (A7) ™" = a*(20) " Py +a (x0)  P_. Let n < H(A””O)_1 .

xro __ T

Then there exists an ¢’ such that ¢Z0x2? = xI?. From formula (2.63) we get
(I +ToxZ0 1)~ (A7) A0\ T = 0 1.
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Hence there exists a left locally inverse operator for A° at the point zg. In
the same way we prove that there exists a right locally inverse operator.

(i) Let A° be a locally invertible operator at the point zo. Then
(2.62) implies that A is also locally invertible at the point xy. Hence for
every u € C§°(R) estimate (2.59) holds. As in the part (ii) of the proof of
Theorem 23 we obtain that ay (z¢) # 0. O

3. Mellin Pseudodifferential Operators
3.1. Main Property

In this section we reformulate the results of Sect. 2 for the Mellin pseudodif-
ferential operators. (See, for instance [38, Chapter 4.5]).

Definition 25. (i) We say that a matrix-function @ = (a;;)7;_; belongs
to £(n), if a;; € C° (R4 xR) and

lal,, 1, =  max  sup |(0,)° 0 aij(r,€)| (6)” < o0,
s ISZ’JSTL(T‘7€)€R+XRQ§ZI§§[2 < (31)
(€)= (1+€2)2

for all l1,lo € Np.
ii) We say that a matrix-function a = (a;;)"._; belongs to £;(n), if a;;
J7)i,5=1 J
€ C*®(Ry x Ry xR) and

‘a|l1,12,l3
= max s > |00 (00,) 000 r,0)| (6) <ox,
TSRS (rp SR xRy xR 1y 55T, <y

(3.2)

for all 11,105,135 € Ng.
(iii) Let a € £(n). The operator

(Op(ayu)(r) = (2m) " / e / a(r.&) (ro Yu(p)p  dp,  (33)
R R,

where u € C§°(R4,C™), is called the Mellin pseudodifferential oper-
ator (M1do) with symbol a € £(n). We denote by OPE(n) the class
of all such operators and by OPE&4(n) the class of the double Mdo’s
Opgy(a) with symbols a € E4(n) which are defined by formula (3.3)
with the symbol a of two variables replaced by the double symbol a
of three variables.

(iv) We say that a matrix-function a (€ £(n)) is slowly oscillating at the
point r = 0 and belongs to g (n), if

i By, .. a _
A, 8up |(rdr) "0 ay; (r, E)(6) = 0, (3-4)

for all @« € Ny and 8 € N. By &(n) we denote the set of matrix-
functions satisfying condition (3.4) for all a, 8 € Ny.
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We say that the matrix-function a = (ai;)7;—; € Ea(n) is slowly oscil-
lating at the point 0 and belongs to £ 4(n) if

lim  sup |(rd,)"(p8,)" 08 as;(r, p, |(E)* =0

T=H0 (p€)eRy xR

for all B € N and every v, a € Ny, and
lim  sup [(r0,)"(pd,)" 0 ai;(r, p, €)|(E)* =0

P10 (1 6)eR, xR
for all v € N and every 3, a € Ny. The corresponding classes of Mellin ¥do’s
are denoted by OPE&,(n), OPEy 4(n), OP&y(n).

Remark 26. Note that the Mellin 1do’s are 1)do’s on the multiplicative group

R, with the invariant measure dy = %. The M1pdo's are obtained from 1do’s

on R by means of the change of the variables : Ry 3 r = ¢7* z € R which
maps the point +oo to the point 0. The main properties of M1do’s easily
follow from the corresponding properties of 1)do’s on R (see [38, Chap. 4.5]).

By LZ(R.,du) we denote the space of measurable C"-valued functions
w on Ry with the norm

1/2

2
Jull iy = | [ T2

Proposition 27. ([38, Chap. 4]) Let A = Op(a) € OPE(n). Then the operator
A is bounded in L2 (R, du) and there exists C > 0 not depending on A such
that

ANz R duy) < Clals s - (3.5)

Proposition 28. ([38, Chap. 4])

(i) Let Op(a),Op(b) € OPE(n). Then C = Op(a)Op(b) € OPE(n), and
C = Op(c) with

ré) = % / / a(r, & +n)b(rp,€)p~"dpdn. (3:6)
Ry R

(ii) Let Opg(a) € OPEy(n). Then Opgy(a) € OPE(n),Opg(a) = Op(a™)
and

1 —i
— 5 [ [ otrrocmprdpan (3.7)
R2

(iii) Let A = Op(a) € OPS( ) and acting in L2 (R, dp). Then the adjoint
operator A* € OPE( , and A* = Op(b)

// (rp, & +n)p~"dpdn, (3.8)

where a*(r, &) is the Hermite adjoint matriz to a(r,§).
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The integrals in (3.6), (3.7), (3.8) are understood as oscillatory (see [38,
Chap. 4]).

Proposition 29. (i) Let Op(a),Op(b) € OPEy(n). Then Op(a)Op(b) =
Op(c) € OP&g(n), where

c(r, &) = a(r, )b(r, &) + q(r,€),
and q(r,§) € Eo(n). (ii) Let Opy(a) € OPEyq(n). Then Opgla) =
Op(a™) € OPEy(n), where
a*(r,) = a(r,r,€) +q(r,€)

and o(r,€) € E(n).
(ii) Let Op(a) € OPEy(n) and act in L*(R,,du,C"). Then the adjoint
operator Op(a)* = Op(b) € OPEg(n) and

b(r, &) = a™(r, &) + q(r,€),

where a*(r,€) is the Hermite adjoint matriz to a*(r,€), and q € E(n).

Let w=expv, where v € C*°(Ry) is a real valued function such that

(-4) o

for every k € N. Moreover, we assume that there exists an interval (¢,d) 3 0
such that the function s, = rv’ satisfies the condition

sup
reRy

< 0 (3.9)

¢ < inf s4,(r) < sup s,(r) <d. (3.10)
reRy reRy

We say that w = e” is the weight of the class R(c, d), if conditions (3.9) and
(3.10) hold, and of the class Ry (c,d), if w € R(e,d) and

lirr(l] ra (r) = 0. (3.11)
The weights in R (¢, d) are called slowly oscillating at the point 0.

Definition 30. We say that a symbol a defined on Ry x R belongs to
E(n, (c,d)), if a is analytically extended with respect to the second variable
¢ into the strip II={{e€C:73() € (¢,d)} and

sup ‘(r@r)ﬁaaaij(r,f + zn)| < 00
(r,é+in)eRy XTI
for all o, 8 € Nyg. By OPE(n, (c,d)) we denote the corresponding class of
M1)do’s with analytical symbols.

The class OPE&4(n, (¢,d)) of Mdo's with double symbols defined on
R+ x Ry x R and analitically extended, with respect to the third variable,
into the strip 1I is introduced in the obvious way.

Proposition 31. ([38, Chap. 4]) . (i) Leta € E(n, (c,d)) andw = e’ € R(e,d).
Then

wOp(a)w™ = Opy(ay), (3.12)
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where ay(r, p, &) = a(r, p, & +i0,(r, p)) and

1
Dy (r, p) = /%U(rlprT)dT.
0

(Note that condition (3.10) yields that ¥,(r,p) € (¢,d) for all m,p € Ry).
(ii) Let A = Op(a) € OPEy(n,(c,d)) ,w € Rg(c,d). Then wOp(a)w™! €
OPEg(n) and

wOp(a)w™" = Op(a.,) + Op(q) (3.13)
where @, (r,§) = a(r,§ +isx,(r)) and g € Ey(n).

3.2. Mellin 1 do in the Spaces LP() (R, dp)

In this subsection we deal with the space Lﬁ(')(R+, dp) with variable expo-

nent, defined in a general form by Definition 7; now we take

d
X =Ry and du(r)= 7T

Let p : Ry — (1,00) be a measurable function satisfying condition
(2.12) on X = Rﬁr. We suppose that the function p satisfies the log-condition
of the form

A
p(r) = p(P) < (1 (3.14)
& Tios 7]

for all r,p € R}y such that ﬁ < 7 < e Note that condition (3.14) is
nothing else but condition (2.13) with the metric d(r, p) =

spondingly to (2.14) we also suppose that there exist the coinciding limits

. Corre-

,
log -

p(0):= lim p(r) =p(c0) := lim p(r)

and

C

— < R,. 1

Note that the mapping R 32 — expz € R generates an isomorphism
of the spaces Lﬁ(‘)(RﬁL, dp) and Lg(')(R), where p(r) = p(logr), so that con-
ditions (3.14) and (3.15) have their obvious origin in conditions (2.13) and
(2.14) with d(z,y) = |z — y| on RL.

Theorem 32. Let p satisfy assumption (2.13) and conditions (3.14) and
(3.15). Then every operator Op(a) € OPE(n) (Opgla) € OPEy(n)) is
bounded in Lfl(')(RJr, dp) and there exist M > 0 such that
||Op(a)HB(L§’L<‘>(R+,dp)) <C |a‘M,M7 (3.16)
(10pa(a)ll 3 1r0> @, apyy < Clalasnr,ne)- (3.17)
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Proof. Let u be a measurable function on R with values in C". We set
(Pu)(r) = u(—logr),r € Ry. It is evident that the mapping
W : IO(R) —L20 (R, dp)

where p(r) = p(—logr),r € Ry, is an isomorphism between the Banach
spaces. This isomorphism generates the isomorphism of the spaces of opera-
tors

U B(LLO (R, dp) — B(LEY(R))

by the formula W(A) = U 'AV A € B(Lﬁ(')(R_Hdu)). Moreover, W
(OPE(n)) = OPS%O(n). Hence Theorem 32 follows from Theorem 10 and
Corollary 11. O

Let w be a weight, that is, a.e. positive measurable function on R . We
introduce the weighted space Lﬁ(')(RJr, w, dp) by the norm

ull Lo g o,y = N0ttll po gy < 00

Theorem 33. Let Op(a) € OPE(n, (¢,d)),w = e € R(c,d). Then Op(a) is
bounded in Lﬁ(')(R+,w,du) and there exist constants M > 0,C > 0, not
depending of a such that

HOp(a)”B(Lﬁ(')(RJr,w,du)) <C ‘a|M,M |U|M’ (3'18)
where
M
ol = > sup [o¥)(r)].
k—1 reR4

Proof. The boundedness of A in o) (Ry,w,du) is equivalent to the bound-

edness of wAw=! in L5 (R4, dp). Applying formula (3.12) and Theorem 32
we obtain estimate (3.18). O

3.2.1. Local Invertibility of Mellin Pseudodifferential Operators. Let A €
B(Lﬁ(')(R+,du)). We say that A is locally invertible at the point 0, if there
exists an R > 0 and operators L, Rr € B(Lﬁ(')(]&r, dp)) such that

LrAx0,r/I = X0,r)L; Xj0,r]ARR = X[0,r]!-

Theorem 34. Let Op(a) € OPE&y(n) and act in Lﬁ(')(R+,u). Then Op(a) is
locally invertible at the point O , if and only if

lim inf inf |det 0.
ri dgfetatn 9>
Proof. Note that the operator A € B(Lﬂ(‘)(RJr,,u)) is locally invertible at
the point 0, if and only if the operator VAV € B(Lfl(')(R)) is locally
invertible at the point +oo. Moreover, W(OPE&g(n)) = OPSO4 o (n). Hence
Theorem 34 follows from Theorem 18. O
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4. Singular Integral Operators on Some Carleson Curves

4.1. Curves, Weights, Coefficients

We say that a complex-valued function a € C™(0,¢),e > 0, if a € C™(0,¢)
and

re(0,e)

f9r every 7 = 0,1,...,m, and a € CDO(O,E)~if m = oo. We say that a €
C™(0,¢) if s, = 7’% € C™(0,¢e), and a € C*(0,¢) if m = oo. A function
a € C™(0,e),m > 1 is said to be slowly oscillating at the point 0 and belong

to the class CJ}(0,¢) if

ling) »q(r) = 0.

We write C(0,¢) if m = oco. We denote by C77(0,¢),m > 1 the class of
functions a € C™(0,¢) such that s, € C}(0, ). We write C*(0,¢) if m = oo.
If a € C™(0,e),m > 1 we set

1
Ya(r,p) = /%a(rl_TpT)dT.
0

A set v C C is called a simple locally Lyapunov arc, if there exists
a homeomorphism ¢ : [0,1] — v such that ¢ € C((0,1)), ¢'(r) # 0 for
all 7 € (0,1), and for every segment [a,b] C (0,1) there exist C' > 0 and
a € (0,1] such that

1" (r) — ¢’ (p)| < C'|r—p|* forall rp€la,b).

The points ¢(0) and (1) are called the endpoints of v. We refer to a set
I'(c C)as a composed curve if T'= UleFk, where I'y,...,['x are oriented
and rectifiable simple locally Lyapunov arc, each pair of which has at most
endpoints in common. A node of T is a point which is endpoint of at least
one of the arcs I'y, ..., 'k . The set of all the nodes is denoted by F.

Let tg € F. We suppose that there exists an € > 0 such that the portion

I(to,e) ={tel:|to—t| <e}
is of the form
[(to,e) = {to} UL}, U---U F?o(t())
where
P{O B {Z €C:z=ty+re¥0i . re(0,),(j = 1,...,n(t0))} )
and

D105 (1) = Y1o (1) + Pty,5(7),
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where ¥y, ¥ig15 -+ Vrgn(,) are real-valued functions such that: iy, €
C>=(0,¢), 1, ; € C=(0,¢), and
0 <my < Pyy1(r) < My < mg <Py a(r) < My
<<y, < Wi, (1) < My, <21

for all » € (0,¢) with certain constants m;, M;. Note that the function 1,
defines the rotation, and the functions 1, ; define the oscillations of the
curves F{ , hear the node to.

We suppose that these conditions hold for every node, and we denote
such class of curves by L.

If 1y, € C(0,€), 0,5 € CF(0,€) in the above conditions for every node
to € F, then we say that the curve I' is slowly oscillating at every node .
We denote such class of curves by Ly;.

For example, if

Pro,i (1) = 0t log T + e g, j=1,...,n(to), 7€ (0,¢)
with 0 < prg1 < pg2 < -+ < flagn,, < 2, then the above conditions on the
node 0 are fulfilled.
Let I' be a locally rectifiable composed curve with Lebesgue length mea-

sure. The curve I is said to be a Carleson curve ( an Ahlfors—David regular
curve) (see for instance [1, p. 2]) if

Cr = supsup

tel’ e>0

where |T'(¢, )| is the length of the portion T'(¢,¢).
Taking into account that

[d(re )| = U+ (e ()%,

it easy to see that I' € L is a Carleson curve. Throughout what follows we
assume that I' € £ and we suppose for simplicity that I" is a compact curve.

Let p : T' — (1,00) be a measurable function satisfying assumption
(2.13) on X = I'\F. For ¢, € F we suppose that there exist an € > 0 such
that the functions

Prog (r) := plto +re'ro )y = py (1), 7 €(0,¢) (4.1)

do not depend on j and belong to C*°(0,¢) and satisfy assumption (2.12)
and conditions (3.14) and (3.15). It follows from condition (3.15) that py, is
a continuous function at the origin and

< 00,

T, e)|

Tli—I>r%)pto (1) = Pty (0) = p(to).

Let w : T' — [0, 00] be a measurable function referred in the sequel as a
weight. The weighted variable exponent Lebesgue space Lp(')(l", w) is defined
as the space of functions f such that [w(m)]ﬂlw) € LPC)(T), the latter being
introduced by Definition 7. We write LP()(T) if w = 1.

We consider weights on Ry of the form

w = exp v, (4.2)
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where a real-valued function v € C*°(0,). We denote such a class of weights
by Ro. Let s, = rv’, and

rw'(r)

2 = limsup s, (r) = limsu , 4.3
w = limsup 2, (r) = lim sup o) (4.3)
and
L. . Lrw'(r)
»,, = liminf »,(r) = liminf (4.4)

r—0 r—0 ’LU(T) ’

By Ri! we denote the class of weights w = expv with v € C(0,¢). For
instance, if

v(r) = f(log(—logr))logr, r € (0,¢)
and f € Cp°(R), then w € R§'. For f =sinz

2, (r) = cos(log(—logr)) + sin(log(—logr))
T
2 cos <log(—log r) — 5)
and s = /2,2, = —V/2.

Proposition 35. Let w = e¥ € Ry. Then for every § > 0 there exists an
"€ (0,e) such that

w(p)r* et < w(r) < w(p)r e
for p,r € (0,¢). (4.5)

/ _ =)
Then

w(r)w 1 (p) = (M =v(p) _ 0u(r,p)(logr—logp) _ (rp—1)19v(np). (4.6)

For every 6 > 0 we can find &’ € (0,¢) such that
sy, — 8 < Vy(r,p) < 3cf +6 (4.7)
for all r, p € (0,¢’). Estimate (4.5) follows then from (4.6) and (4.7). O

Proof. Let

1
Dy (r, p) = /%U(pl TrT dT_
0

Let w be a weight on the curve I'. We suppose that for every point ¢t; € F
there exists a neighborhood U; such that w and w™! belong L>®(I'\ Uy,ex
(I' N Uj)). We say that w € Rr, if for every point ty € F and for every
je{l,...,n(to)} the function

Wy, (r) = w(to + rei%o,j(r)) — eV (T)’ re (076) (4.8)

does not depend on j and wy, = e € Rg. By Ap)(I') we denote the class
of weights in Rr such that

< hmmf oy, (1) < limsup se,, (1) <1 (4.9)

1 1
p(tO) r—0 T r—0 0 p(tO) ’
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for every node ty € F, and by .A;l(‘)(I‘) the class of weights in A,.)(I") such
that wy, € R for every node tq € F.

Proposition 36. If w € A,)(I"), then w € LPO)(T) and w=' € L1O)(T).

Proof. First we prove that if ¢ty € F, then there exists an € > 0 such that
w € LPO)(T(tg,€)). We will prove that
1 o w) = [ w(er® | < oc. (4.10)
F(t[),é:)

Applying expressions (4.1) and (4.8) for the weight w and exponent p on the
portion I'(tg,£), we obtain that

’ﬂto

) @) =3 / w(t)?® |dt|
j=1"
FJ

0
ney 6
= / W} ()14 (rp, () ?dr.
j:l 0

Applying Proposition 35 we obtain that for every § > 0 there exist an ¢ €
(0,1) such that

Wi, (1) < O’ e (0,4),

where
1

p(to)
Note that py, is a continuous function and p,(0) = p(tp). Then applying
estimate (4.5) we can find first a § > 0 and then an € > 0 such that

Vo = Inf py(r) (e, —0) > -1 (4.12)
re(0,e) Y

Hogy = llg(r)lf Sy, (1) > —

(4.11)

Estimate (4.12) yields that

W0 (1) < ey =)o) _ gy, (4.13)

to
Hence Ig%tz 0 (w) < oo, because v, > —1. In the same way applying the

right hand side inequality from (4.9), we obtain that w=! € LI0)(T'(tg,¢))
for sufficiently small € > 0. Since w and w~! are L° —functions outside the
union of small neighborhoods of the nodes t;, € F , and LP()(K) D L>®(K)
for every compact set K, we obtain that w € LP()(I") and w=' € LC)(T).
U

A function a : I' — C is said to be piecewise slowly oscillating on T, if
a € C(I'\F) and for each node ty € F we have

a(to + rei“""O‘f(r)) =a, ;(r), r€(0,e), je{l,....,n(to)},

and ay,,; € Cor(0,¢).
We denote the class of piecewise slowly oscillating functions by PSO(T).
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4.2. Representation of a Singular Integral Operator at the Node as a Mellin
Pseudodifferential Operators

We suppose that I' is a compact Carleson curve of the class £ and w €
Apy(I') is a weight satisfying conditions given in Sect. 4.1. We consider the
Cauchy SIO defined on I as

(Srf) (1) = lim / fT(T_)‘i77 tel. (4.14)
M\I(to,e)
For the point ty € F we introduce the mapping
@y 2 LPO(Dlto,2). w) — L13((0.9). dp), (4.15)
where
P i (1) (to + re#ior (")
(@1, f) (r) = : =f(r), re(0e).

rﬁ wy, (1) f (to + reromca (M)

The inverse mapping <I>_1 transforms the vector-function f = ( fi,eooifn (to)) €

Lflt(ot())(( €),du) to the function f on the curve T'(tg,e) = n(to)l"toj by the

rule

flre,; (to +retProi (M) = p T 0@ () f(r).

Proposition 37. The mapping Py, is an isomorphism between the correspond-
ing Banach spaces.

Proof. We have
n(to)
# o= [ w@i@r® lar=3" [ s .
T(fo.e) I=ri;
(4.16)

After the change of variables T = ty + re'#t0.i(") we obtain

jw(r) f(m)PT) dr] (4.17)

T'(to,e)
€

/ |w(to + re’®rod ) f(tg + re'#ros () Pro(r) /1 4+ (TQDQUJ‘(T))QdT
0

n

—~

to

Z

1

.
Il

3
[

0

(

N

Il
o,

1 .
P70 wy, (1) f (to + rei®ros M) P /1 4 (7”9020]-(7’))2(1/1(7”)-
=1

.

Since

0< (ionf) 1+ (rwgoj(r))Q <supy/1+ (rcpgoj(r))Q < o0, (4.18)
. (0,)
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estimate (4.18) implies that the modular fF(to 9 lw(T) f(T)[PT) |dr| is
bounded if and only the modulars

/V%mw )£ (to + retos )Pl 14 (vl (1)) du(r)

are bounded for every j =1,2,...,n(ty). Hence the mapping
By, : LPO (D(tg, €),w) — L) ((0,€), dp)

M(tg)
is bounded.
In the same way we show that

Db 12 ((0,0),dp) — LPO (Tt €), w)

n(to)
is bounded. Hence ®;, is an isomorphism between the corresponding Banach
spaces. O

To formulate the main results, we need the following notation. Put
er = 1, if o is the starting point of an oriented arc I'y 1 and e, = —1, if ¢ is
its ending point. Define

v:[0,27) x (C\iZ) — C
by

coth(rz), 6§=0
v(0,2) =4 -9 5 € (0,27). (4.19)

Let ¢, € C5°(I'(to,¢)) and equal to 1 in a smaller neighborhood of .

sinh(wz)’

Proposition 38. Let T' be a composed compact curve of the class L, the expo-
nent p(-) satisfy the above conditions on T and w € Ay, (T'). Then for every
point tg € F the operator

Sto = q>t0¢tOSF¢toq}tiol = Op(8t0)7

is a Mellin 1do in the class OPE4(n) with the double symbol s'o = (3%)?%@1
where

555.(r p, )

; 1 .
eti 2 00, )

1+ipe; ()

Ek‘f’j,tu(T)fﬁk,tu(P)WV(Qﬂ + Py, 1(7') Piq,k(P)s W)’ J<k,
- - 1+ipp. . (p) iy o (15P))
@400 (1)b5,00 (P)ek 755, fokk(r 2y v (0, 1+u9vt (7‘ ) ) J=Fks
- - 1+ipe, ,(p) E+i( s 00, (10) )
Emﬁjtn(7”)¢ktn(P)WMV(¢tm(r) = ¥e,k(p), W)a J>k,
(4.20)

and éj’to (1) = ¢, (to + reiﬂ"to,j(T))'

Remark 39. Proposition 38 has been proved first in [35] for the constant
p: 1< p< oo (see the proof of Proposition 3.4 in [35]). The detailed proof is
contained in the book [38, Chapter 4.6]. The proof for the variable exponents
uses Propositions 28, 29 , 31 and repeats, word for word, the proof for the
constant p.
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4.3. Boundedness of the Singular Integral Operator in LP() (T, w)

Note that in the case of simple Carleson curves and the weights of the form

N
= [Tt
j=1

where wj may grow and have oscillations at the point 0, the boundedness of
Sp : LPO)(I',w) — LPO)(T',w) has been established in [23], but we may not
use this result for composed Carleson curves.

In the following theorem we give some conditions of the boundedness
of Sp : LPO)(T,w) — LPC)(T',w) which are based on the boundedness of the
Mellin pseudodifferential operators.

We say that a nonnegative function ¢, € C5°(I'(tg,€)) is a smooth
cut-off function of a neighborhood I'(¢g, ) of the point ¢y, if there exists an
g’ < e such that ¢, (t) =1 for all t € I'(to,€’).

Theorem 40. Let T be a composed compact curve of the class L, and let p(+)
satisfy the above conditions on T and w € Apy(I'). Then Sr : Lp( (T, w) —
LPO(T, w) is a bounded operator.

Proof. Let

N
D gr(t)=1, teT (4.21)
k=0

be a partition of unity on I, where N is a number of nodes on I', ¢ € Cy(T")
(the class of continuous functions with a compact support), ¢;,7 =1,..., N,
be smooth cut-off functions such that supp ¢; contains only one node ¢;, and
let mapping (4.15) be defined on supp ¢;, j =1,...,N. It is clear that I'N
supp ¢o is a Lyapunov curve, and w and w™! belong L (supp ¢p). Let 1;
be another smooth cut-off function of a neighborhood of the point ¢; with
supp 1, in a small neighborhood of supp ¢; and ;(t) =1 for t € supp ;.
Then

N N
Sr =Y WiSroil + ) (1 —1)Sre;l. (4.22)

=0 Jj=0

The boundedness @oSripol : LPO(T,w) — LPO)(T,w) follows from [23]
because ¢gSripl is defined on a simple Lyapunov portion of I', and w and
w™! belong L* on this portion.

It follows from Proposition 38 that for every j = 1,..., N the oper-
ator St = @tjijpgojq);le is the Mellin pseudodifferential operator in
OP&;(n(t;)) with a double symbol defined by formulas (4.19) and (4.20). B

Theorem 32 S% is bounded on Lné() (R4, dp). Hence 9;Srp;I is a bounded

operator in LP()(T',w). Let us consider the operator Ki;j = (1 —1;)Srp;I.
Since supp(1 — ;) N suppyp; = 0, the operator K;; has a smooth kernel, and
K;; is bounded from L'(T') in L>°(T). By Proposition 36, w € LP()(T) and
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w~' € LIO)(I). Applying the Holder inequality for the space LP() with vari-
able exponents p(-), we obtain that the operator u — w™!u is a bounded oper-
ator from LPO)(T') into L(T'). Since the operator K;; is bounded from L'(T")
into L>(T') and the operator v — wwv is bounded from L>(T) to LP()(T),
we obtain that wK;;w™'I is a bounded operator in the space LPO)(T). This
concludes the proof. O
4.4. The Fredholm Property of Singular Integral Operators in LP() (T, w)
4.5. Local Invertibility

Definition 41. We say that an operator A € B(LP()(T,w)) is locally invert-
ible at the point ¢y € I, if there exist a neighborhood U, (C I') of the point
to, and operators Ry, , Ly, € B(LPO) (T, w)) such that

RU,L0 AXUtO I = XUtO I and ALUtO XUtO I = XUtU I,
where Xy, is a characteristic function of Uy, .
We set
7' (Sr) = (53)7k
where

59, &) = s35.(r,1,€)

Eti( gy trvr (1) .
Eklj(2ﬂ' =+ wto’j(r) — 1/1t0,k(7"), %), 1< k,
0
S-‘ri(ﬁﬁ-rv;o(r)) .
= ErV (07 W 5 ] = k, .

E+i( pgy oL, (1) .

o (0,0~ vatr), UERROL)
If a € PSO(T) and tg € F, then we set
ato,l(r)

ato,Q(T)

' (al)(r) =

Ato,n(to)(T)
Let
Ar =al +bSp, a,be PSO(T). (4.23)
Then we define
" (Ar)(r,&)=a" (al)(r)+a" (bI)(r)a" (Sr)(r, ), e (0,6), EER,
(4.24)
and
3" (Ar) = {a(to) + b(to), a(to) — b(to)} (4.25)

if tg € T\ F.
In the following theorem we deal with the class L4 of slowly oscillating
curves and the class A;l(.) (T") of weights slowly oscillating at every node of T.
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Theorem 42. LetI' € L , w = expv € Aff(,)(I‘) and Ar be an operator of
form (4.23) which acts in LPC) (T, w). Then:
(i) Ar is locally invertible at the point to € F, if and only if

. . ~to

11£nJ61f glel]% |det 6 (Ar)(r, )| > 0. (4.26)

(ii) Ar is locally invertible at the point to € T\F, if and only if % (Ar) is
inwvertible, that is

alto) =+ b(ty) # 0. (4.27)

Proof. (i) Note that Ap : LPO)(T,w) — LPO)(I',w) is locally invertible at the
point tg € T, if and only if the operator

_ . (- dr o (- dr
AL = B, 6y Agy, @7 : L0000 ((076), r) — il <0,e), r)

is locally invertible at the point 0, where the operator A?“ is a Mellin ¢ do with
double symbol in the class OPE&;(n(ty)) given by formulas (4.19) and (4.20).
The conditionsT" € L, w € A;l(‘)(lﬂ) and a,b € PSO(T") and Proposition 38
imply that AR € OPE&, 4 (n(ty)) (see for instance [38, Chapter 4.6.5]). It fol-
lows from statement (ii) of Proposition 27 that the Mellin symbol o(Af) of
AL is of the form

(AR)(r,§) = 5" (Ar)(r, €) + g1, (, ),
where q;, = (qéz):l;tz‘))l and

}ii% sup ag(ra,)ﬁqig(r, =0
€€R

for all a, 8 € Ny. By Theorem 42 condition (4.26) is necessary and suffi-
cient for the local invertibility of the Mellin 1»do A% at the point 0. Hence
condition (4.26) is necessary and sufficient for the local invertibility of Ar :
LPO(T,w) — LPU)(T,w) at the point o € F.

Note that the condition of the local invertibility in the spaces LP() (T, w)
depends on the value p(-) only at the point t.

(ii) Let tg € T\F. Then there exist a simple locally Lyapunov curve
I'; C T such that tg € intT';, where ¢; : (0,1) — intT'; is the parametri-
zation of the curve intl';. Let ¢;(ro) = to, and ¢)(ro) = 1. Let ¢ > 0 be

sufficiently small and I‘;O’E = ¢;j(Zty.e), Tty,e = (ro—¢,70+¢). The restriction
to,E

©; of the mapping ¢; on Z;, . is the homeomorphism Z;, . on on’g. Let
@ DPOTT) - 1O (T,
with p(z) = p(¢;(z)) be the isomorphism defined as
(% u)(z) = u(p)" (x)),

and (@;0’5)71 D LPO(Ty, o) — LP(')(F;’.“’&) be the inverse mapping.
It is well known (see for instance [2]) that

BN Srve (50°) T = oSeRT + To, (4.28)
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where y. and x. are the characteristic functions of I‘tO’ and Z;, ., respec-

tively, 1. is a compact operator in LP(Z,, ) for every constant p € (1,00).
Moreover, it follows from (4.28) and boundedness of CI)tO “XeSTXe (<I>t° ) -
and X.Sgpx.] in LPC )(Itme) that T, is also a bounded operator in LPC )(Ztmg)
if p(-) satisfies conditions (2.12), (2.13). By Proposition 9 we obtain that T
is a compact operator in LP()(Z;, ). Let ¢ € Co((—1,1)) and ¢(0) = 1. We
set

Tr — X

ona) =6 (TS ) . 3s(0) = ésley 0.

Then ¢sxe = ¢s for sufficiently small § > 0. Hence we obtain from
(4.28) that

DU p5 ST s (D1 ) = sSrsI + sT-¢s1,
Gs(t) = ds(; ' (1))

The sequence @51 strongly converges to 0 in LP()(Z;, .) as § — 0. Hence

(4.29)

I H T. H —0. 4.30
im bsTops1 B Ty ) (4.30)

It yields that Ap : LPO)(T, w) — LPO)(T, w) is locally invertible at the point
to, if and only if the operator
G5 AR D51 : L") (Zy,0) — LPO(Z, ),
with AR = (ao <p;°’€)I + (bo ¢§°’E)SR, is locally invertible at the point xg =
@;0’8 (to) € R. Applying Theorem 24 we obtain that qS(;A]%O os1 is locally invert-
ible at the point z¢ € R, if and only if
(a0 @) (ro) £ (bo @) (ro)
= a(to) + b(to) 7é 0.
O

4.6. Simonenko’s Local Principle in LP() (X)

We prove here Simonenko’s local principle in variable exponent Lebesgue
spaces Lp(')(X ) in the general setting where the underlying space X is a
quasimetric measure space, as introduced by Definition 7. In this subsection
we assume that X is a Hausdorff compact space.

Definition 43. An operator A € B(LP()(X)) is called an operator of local
type, if for every two closed set F; and F, such that Fy N Fr, = &, the
operator xr, Axr,I is compact.

Definition 44. An operator A € B(LP(")(X)) is called locally Fredholm at the
point zg € X, if there exist a neighborhood U of the point xy and operators
L*, R ¢ B(LPM) (X)) such that

L*Axyl = xyI +T1 and xpAR™ = xyl + Ts, (4.31)
where T, Ty are compact operators in LPC)(X). If T} = 0 and T, = 0, A is
called a locally invertible operator at the point xg.
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Remark 45. We say that the space X does not have discrete components, if
for every point z¢ € X there exists a sequence Uy DUy D --- D U; D ---. of
neighborhoods of the point xy such that

lim p(U;) =0. (4.32)
j—oo

If X does not have discrete components, the local Fredholmness coincides
with the local invertibility. Indeed, let L*° AxyI = xylI + 11, and U D Uy D
Uy D---DU; D---, then we obtain

L Axu, I = (I + Tixu,Dxu, 1. (4.33)

Condition (4.32) implies that the sequence xy,I strongly tends to 0 in
LPO)(X). Hence

i 120, | 0 x)) = 0

It implies that the operators I +T1xy, I are invertible for sufficiently large j.
Then (I + Tlejj ])—1[,930 is a left local inverse operator at xg. In the same
way one can prove the existence of a right local inverse operator.

Theorem 46. (Simonenko’s local principle [46-48]) Let A € B(LP) (X, i) be
an operator of local type. Then A is a Fredholm operator if and only if A is
a locally Fredholm operator at every point x € X. If the space X does not
have discrete components, we can replace the local Fredholmness by the local
invertibility.

The proof of Theorem 46 for variable p(-) repeats word by word the
Simonenko’s proof for a constant p (See for instance [48, pp 21-24]).

4.7. Fredholmness of SIO

Theorem 47. Let T be a composed compact curve of the class L, let p(-)
satisfy the above conditions on I and w € A,y(T). Then Sp : LPO(D, w) —
Lp(')(F,w) 1s a local type operator in the sense of Simonenko, that is, for
every closed set ', Fy» C I' such that Fy N Fy = @ the operator X, StXF, 1 is
a compact operator in LPC) (T, w).

Proof. The operator xp, SrxrmI has a kernel & € C°(I' x T'). Hence
XF,StXF, I ¢ L) — L*(T) is a compact operator. Because u — w™lu
is a bounded operator from LP()(T,w) in L(T') and v — wv is a bounded
operator from L®(T") to LP()(T,w), the operator xr, Srxr,I is compact in
LPO(T, w). O

Theorem 48. Let Ar be an operator of form (4.23) and T' and w satisfy the
assumptions of Theorem 42. Then

Ap o LPO(T,w) — LPO(T, w)

is a Fredholm operator, if and only if there hold condition (4.26) for every
point tog € F and condition (4.27) for every point tg € T\ F.

Proof. Make use of Theorems 42, 46 and 47. 0
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Remark 49. If we freeze the variable exponent p(-) at the point ¢, condition
(4.26) coincides with the Fredholmness condition obtained in paper [3] for the
case of the constant Lebesgue exponent p € (1, 00), while condition (4.27) is
classical and does not depend on p(-).

Let
N M
=> ] A (4.34)
j=1k=1

where Ajfk = a;i + b1 Sr, and aji, bji, € PSO(T).
We define the local symbol of AMN at the point ¢ € I' by the formula

:;g (AR,

where &t(AJf ) are defined by formulas (4.24) and (4.25). Note that
' (ArY) = {4 (AP™), 6L (A M)}
in the case t € T'\F, where

AMN Z H a]k ibjk ))

We say that the symbol 6¢(AMYN) is invertible if
11m1nf 1nf |deta (AMNY (., 5)‘ >0,

r—0

fort € F,and ¢ (AMN)#0fort € T\F.
Theorem 48 and the Simonenko local principle imply the following
result.

Theorem 50. The operator AMN  where T' and w satisfy the assumptions of
Theorem 42, is a Fredholm operator in Lp(')(F,w), if and only if the local
symbol &t (AMN) is invertible for every pointt € T.

Remark 51. The statement of Theorem 50 can be extended on opera-
tors in the Banach algebra obtained by the closure of operators AIM N in
B(LPO) (T, w)). We are going to do it in a forthcoming paper.

4.7.1. Index Formula. Let A = al +bSr, where a,b € PSO(T') and T € L.
Let A be a Fredholm operator in LPC)(T, w), where w € .A;l(,)(l“). Then the
Fredholm index of A : LP()(I",w) — LPC)(T',w) is given by the formula

a(t) + b(t)}
a(t) = b(t) | ser

K

index A = — Z (2m)~" {arg

j=1
L
- (@ hm larg det 5(AY)(r,€)] . (4.35)

j=1
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In this formula, K is the number of the oriented and rectifiable simple smooth
arcs generating the composed curve I', and L is the number of nodes of the
curve I'.

The index formula (4.35) is proved by the method of separation of sin-
gularities, and this proof is similar to that for the constant p (see for instance
[3,4,36]).

Remark 52. All the results of the paper remain valid if we replace the clas-

ses COO(O,E),CNOO(O,e),C?f (0,5),55?(0,5) in the assumptions on the curve I’

and the weights near nodes by the classes C™ (0, ¢), CN’”(O7 €),C(0,¢), CZ?(O, £)
where m is sufficiently large.

In relation to Remark 52, see also Definition 55 and Lemma 56 in the
next section.

5. On Comparison of the Used Class of Oscillating Weights
with the Bary—Stechkin Type Weights

We wish to compare the class of weights w used in this paper with the class of
oscillating weights known as Bary—Stechkin class which was used in various
papers, see for instance [23,27]. In the proofs in this section we follow some
ideas of paper [43].

We call two non-negative functions f and g equivalent, if

af(x) <glx) <cof(x), c¢1 >0, coa>0.

Note that the weighted variable exponent spaces obviously does not change
if we replace the weight by an equivalent weight; for us it is also important
to observe that the Bary-Stechkin class, defined below, is also closed with
respect to the equivalence of functions.

We need some definitions. Recall that a non-negative function f on
[0,£],0 < ¢ < oo, is called almost increasing (almost decreasing), if there
exists a constant C'(> 1) such that f(z) < Cf(y) for all x < y (z > vy, respec-
tively). Equivalently, a function f is almost increasing (almost decreasing),
if it is equivalent to an increasing (decreasing, resp.) function g.

5.1. Bary—Stechkin class ®

Definition 53. Let 0 < ¢ < co. 1) By W = W([0,¢]) we denote the class of

functions ¢ continuous and positive on (0, ¢] such that there exists the finite

limit limy, .0 p(z); 2) by Wy = Wy([0,4]) we denote the class of functions

v € W almost increasing on (0,£); 3) by W= W([O,é]) we denote the class

of functions w € W such that z%w(z) € Wy for some a = a(w) € R; 4) by

W =W([0, £]) we denote the class of functions w € W such that there exists
I

a number b € R! such that 5 1s almost decreasing.

The classes WO, W, are known to be characterized in terms of the
Matuszewska-Orlicz indices m(w) and M (w) of w:
w € Wy < —oc0 < m(w) < oo, (5.1)
we W, < —oo < m(w) < oo;
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We refer to [31,32] for the Matuszewska-Orlicz indices and to [16] and [42]
for statements (5.1) and (5.2).

Definition 54. We introduce the Bary—Stechkin class ® as the class of func-
tions in W with finite Matuszewska-Orlicz indices, that is,

d=WnNW. (5.3)
Note that the Bary—Stechkin class is usually introduced as the two-parameter
class @3 of functions w € W satistying the conditions

T L

w(t) w(z) w(t) w(z)
/tHadtSC ) /twdtgc ) (5.4)
0 T

non-empty if and only if o < 3; we have
D = U e
—oco<a< <400

which follows from the fact that w € ®4, if and only if o < m(w) < M(w) <
3, see [16,42].

5.2. Simonenko Type Class S2
Let 0 < ¢ < co. The indices

xw'(x) zw'(x)

plw) = Oér;fg w(x)

. q(w) = sup (5.5)

0<z<t w(m)

which appeared in (4.3) and (4.4) are known as Simonenko indices, see [45],
and it is known that

p(w) < m(w) < M(w) < q(w), (5.6)

see [32, Theorem 11.11]. The class of functions on (0, £) with finite Simonenko
indices may be called Simonenko class. We introduce a slight generalization
of this notion as inspired by conditions (3.9) and (3.11).

Definition 55. We say that a weight function w = ¢*(*) is in the Simonenko
type class SV, N =1,2,3,..., if

(1) v

lim (;CCZ)QU(;E) 0. (5.8)

x—0

sup
z€(0,0)

<oo, k=1,2,...,N (5.7)

and

Obviously, S¥*! ¢ SV. We are mainly interested in the case N = 2. A
connection of this class with Simonenko indices becomes clear, if we observe
that conditions (5.7) and (5.8) with N = 2 in terms of the weight w itself
have the form

d zw'(x)
T
dx w(zx)

sup
z€(0,¢)

< o0, sup
z€(0,¢)

< o0 (5.9)
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and
!
lim xi 2w (z) =0.
z—0 dr \ w(x)
Lemma 56. Given a function w € WO NW,, for every N =1,2,3,.... there

exists a function
wy € CN([0,4) N (WO mm)

equivalent to w, and such that v(x) = logwy (x) satisfies conditions (5.7). It
may be chosen as

)N—l

[ w(t) (n 2
wy(x) =2 [ —————dt (5.10)
/

t1+a

with any o such that o < m(w).

Proof. Let first N = 1. The proof of the equivalence w; (z) ~ w(z) is direct,
via the usage of the properties

m(w) = sup {p >0: w—f) is almost increasing} , (5.11)
T

M (w) = inf {u >0: Kzg) is almost decreasing} , (5.12)
x

see [16, Theorem 3.6], for the proof of (5.11) and (5.12). By direct differen-
tiation of wi(x) we obtain

d
w1 (x) = awy(x) + w(x). (5.13)

Then the first inequality in (5.9), corresponding to the case N = 1, holds

because wy ~ w. Note that w € Wo NW, = w; € Wy N W, and w
and w; as equivalent functions have equal Matuszewska-Orlich indices, see
[32, Theorem 11.4].

For N > 1 the statement is obtained by iteration of the procedure.
Indeed, by the already proved equivalence w; ~ w, we have

w(x) ~ wq(z) ~ z® / wi(t) dt = x(’/ wis)ds [ dt = wo(x).
0 0

slta t
S

By direct differentiation we obtain
d

x%wg(:v) = aws(x) + w1 (x). (5.14)
Consequently
rwja) | w)
wa () =a+ wa ()’ (5.15)

whence the first inequality in (5.9) follows in view of the equivalence wy ~ ws.
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Furthermore, differentiating (5.15), by (5.14) and (5.15) we obtain
/ 2
d awy(x) _w (w1>

dr wo(x)  we Wy

whence the second inequality in (5.9) follows in view of the equivalence w ~
wi ~ Wa.

For N > 2 the statement is obtained by induction following (5.13) and
(5.15). O

Remark 57. Tt is known that the interval defined by Matuszewska-Orlicz indi-
ces in general is narrower than that defined by Simonenko indices, namely

[m(w), M(w)] € [p(w), g(w)], (5.16)
see [32, Theorem 11.11]. Therefore, any function having finite Simonenko

indices, also has finite Matuszewska-Orlicz indices and consequently belongs
to the Bary—Steckin class ®.
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