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We consider generalized Morrey type spaces M p(·),θ(·),ω(·)(Ω) with variable exponents

p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case

of bounded sets Ω ⊂ R
n, we prove the boundedness of the Hardy–Littlewood maximal

operator and Calderón–Zygmund singular integral operators with standard kernel. We

prove a Sobolev–Adams type embedding theorem M p(·),θ1(·),ω1(·)(Ω) → M q(·),θ2(·),ω2(·)(Ω)
for the potential operator Iα(·) of variable order. In all the cases, we do not impose any

monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles.

1 Introduction

In the study of local properties of solutions of partial differential equations, Morrey spaces

M p,λ(Ω), together with weighted Lebesgue spaces, play an important role (cf. [1, 2]). These

spaces were introduced by Morrey [3] in 1938. The norm in a Morrey space is defined by

‖f‖M p,λ(Ω) := sup
x, r>0

r−
λ
p ‖f‖

Lp( ˜B(x,r))
,
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where ˜B(x, r) = B(x, r) ∩Ω, 0 � λ < n, 1 � p < ∞, and Ω ⊆ R
n is an open set.

During last two decades, there has been an increasing interest in the study of spaces with

variable exponents and operators with variable parameters in such spaces (cf., for example,

[4]–[7]).

The Morrey spaces M p(·),λ(·)(Ω) with variable exponents were introduced and studied in the

Euclidean setting [8, 9] and in the setting of metric measure spaces [10].

In particular, in the case of bounded sets, there were proved [8] the boundedness of the max-

imal operator in variable exponent Morrey spaces M p(·),λ(·)(Ω) provided that p(·) satisfies the

log-condition and a Sobolev–Adams type theorem M p(·),λ(·) → M q(·),λ(·) for potential operators
provided that p(·) and λ(·) satisfy the log-condition and

inf
x∈Ω

α(x) > 0, sup
x∈Ω

[λ(x) + α(x)p(x)] < n.

In the case of constant α, there was also proved a boundedness theorem in the limiting case

p(x) =
n− λ(x)

α

if the potential operator Iα acts from M p(·),λ(·) into BMO.

In [9], the maximal operator and potential operators were considered in more general spaces,

but under more restrictive conditions on p(x). Hästö [11] used his new “local-to-global” approach

to extend the result of [8] about the maximal operator to the whole space R
n.

The boundedness of the maximal operator and singular integral operators in the variable

exponent Morrey spaces M p(·),λ(·) in the general setting of metric measure spaces was proved in

[10].

For constant p and λ the results on the boundedness of potential operators and classical

Calderón–Zygmund singular integral operators go back to [12] and [13] respectively, whereas

the boundedness of the maximal operator in the Euclidean setting was proved in [14] (cf., for

example, [15]–[20] for further results for constant p and λ).

The generalized variable exponent Morrey spaces M p(·),ω(·)(Ω) equipped with the norm

‖f‖M p(·),ω = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖

Lp(·)( ˜B(x,r))
, 1 � p < ∞,

were introduced in [21]; here,

inf
x∈Ω,r>0

ω(x, r) > 0. (1.1)

Owing to the last assumption, the space is nontrivial. Hereinafter, ω(x, r) is a nonnegative

measurable function on Ω × (0, �), � = diam Ω. In [21], the maximal, singular, and potential

operators were studied in the case of bounded sets, � < ∞.

We introduce the generalized Morrey type spaces M p(·),θ(·),ω(·)(Ω) with variable exponent.

In comparison with the usual definition of Morrey norm, the L∞-norm in r is replaced by the

Lθ-norm. Such spaces with constant p were first introduced in [22, 23] (cf. [16], [24]–[30] for

further development).

The case of spaces

L p,λ,θ(Rn) :=

{

f : ‖f‖p.λ,θ = sup
x∈Ω

[ ∞
∫

0

( 1

rλ

∫

B(x,r)

|f(y)|p dy
) θ

p
dr

] 1
θ

< ∞
}

(1.2)
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goes back to [31], where such spaces first appeared. In [31, p. 44], a theorem on mapping

properties of the Riesz potential operator in such spaces was given (cf. also a reformulation of

this result in [19, Theorem 3]).

In the spaces M p(·),θ(·),ω(·)(Ω) with bounded open sets Ω ⊂ R
n, we consider the Hardy–

Littlewood maximal operator

Mf(x) = sup
r>0

|B(x, r)|−1

∫

˜B(x,r)

|f(y)|dy,

the potential type operator

Iα(x)f(x) =

∫

Ω

|x− y|α(x)−nf(y)dy, 0 < α(x) < n,

the fractional maximal operator

Mα(x)f(x) = sup
r>0

|B(x, r)|α(x)
n

−1

∫

˜B(x,r)

|f(y)|dy, 0 � α(x) < n,

of variable order α(x), and the Calderón–Zygmund type singular operator

Tf(x) =

∫

Ω

K(x, y)f(y) dy,

where K(x, y) is a “standard singular kernel,” i.e., a continuous function on {(x, y) ∈ Ω × Ω :

x 	= y} such that

|K(x, y)| � C|x− y|−n for all x 	= y,

|K(x, y) −K(x, z)| � C
|y − z|σ

|x− y|n+σ
, σ > 0 if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| � C
|x− ξ|σ

|x− y|n+σ
, σ > 0 if |x− y| > 2|x− ξ|.

We find a condition on ω(x, r) for the boundedness of the maximal operator M and the singular

integral operator T in the generalized Morrey space M p(·),θ(·),ω(·)(Ω) with variable exponent

p(x) provided that p(x) satisfies the log-condition. For potential operators, under the same

log-condition and the assumptions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n,

we also find the condition on ω(x, r) and q(x) for the validity of the mapping theorem,

M p(·),θ1(·),ω1(·)(Ω) → M q(·),θ2(·),ω2(·)(Ω),

which recovers the Sobolev–Adams type result [8] in the case of the classical Morrey spaces with

variable exponents, when

ω(x, r) = r
λ(x)−n
p(x)
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and
1

q(x)
=

1

p(x)
− α(x)

n− λ(x)
.

The paper is organized as follows. In Section 2, we recall some facts concerning Lebesgue

spaces Lp(·)(Ω) and Morrey spaces M p(·),λ(·)(Ω) with variable exponents. Section 3 contains

necessary information about generalized Morrey spaces M p(·),ω(·)(Ω) with variable exponent. In

Section 4, we introduce a new type of generalized Morrey spaces M p(·),θ(·),ω(·)(Ω) with variable

exponents. In this section, we also prove some embeddings (Subsection 4.1) and formulate the

main results (Subsections 4.2–4.4) which are proved in Section 5.

Note that we do not impose any monotonicity type conditions on ω(x, r), which was possible

due to the usage of the results of our previous paper [21]. We assume that the variable exponent

p(x) is log-continuous, whereas for the variable exponent θ(r) no log-Hölder condition is used;

only in some reformulations of the results for the case of power functions ω, we impose a log-type

decay condition on θ(r) at the point r = 0.

Notation

R
n is the n-dimensional Euclidean space,

Ω ⊆ R
n is an open set,

� = diam Ω,

χE(x) is the characteristic function of a set E ⊆ R
n,

B(x, r) = {y ∈ R
n : |x− y| < r}), ˜B(x, r) = B(x, r) ∩Ω,

c, C, c1, c2 etc are various absolute positive constants.

An open set Ω is assumed to be bounded throughout the paper.

2 Preliminaries. Variable Exponent Lebesgue Spaces Lp(·)(Ω)
and Morrey Spaces M p(·),λ(·)(Ω)

Let p(·) be a measurable function on Ω with the values in [1,∞). We suppose that

1 < p− � p(x) � p+ < ∞, (2.1)

where

p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x) < ∞.

We denote by Lp(·)(Ω) the space of measurable functions f(x) on Ω such that

Ip(·)(f) =
∫

Ω

|f(x)|p(x)dx < ∞.

This space equipped with the norm

‖f‖p(·) = inf
{

η > 0 : Ip(·)
(f

η

)

� 1
}
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is a Banach space. The conjugate exponent p′ is defined by the formula

p′(·) = p(x)

p(x)− 1
, x ∈ Ω.

Basic facts concerning Lebesgue spaces with variable exponents can be found in [32, 33].

In the case Ω = (0, �), we consider variable exponent Lebesgue spaces Lθ(·)(0, �) admitting

the value θ(t) = ∞. In this case, we suppose that θ(t) is bounded outside the set

E∞(θ) = {t ∈ (0, �) : θ(t) = ∞}

and the norm is introduced in the standard way:

‖ϕ‖θ(·) = ‖ϕ‖Lθ(·)((0,�)\E∞(θ)) + sup
t∈E∞(θ)

|ϕ(t)|.

We denote by P(0, �) the set of measurable exponents θ(t) with the values in [1,∞] such that

θ ∈ L∞((0, �)\E∞(θ)).

Definition 2.1. Denote by P log = P log(Ω) the class of functions that are defined on Ω and

satisfy the log-condition

|p(x)− p(y)| � A

− ln |x− y| , |x− y| � 1

2
, x, y ∈ Ω, (2.2)

where A = A(p) > 0 is independent of x and y. If Ω = (0, �), we denote by P0(0, �) the set

of bounded measurable functions θ on (0, �) with the values in [1,∞) such that there exists the

limit

θ(0) = lim
t→0

θ(t)

and

|θ(t)− θ(0)| � A

ln(1/t)
, 0 < t � 1

2
.

We write θ ∈ M0(0, �) if there exists a constant c ∈ R
1 such that c+ θ(t) ∈ P0(0, �).

The following theorem was proved in [34] under the condition that the maximal operator is

bounded in Lp(·)(Ω). As is known, this condition may be omitted due to the result of Diening

[35].

Theorem 2.1. Suppose that p, α ∈ P log(Ω) satisfy (2.1) and the following conditions:

inf
x∈Rn

α(x) > 0, sup
x∈Rn

α(x)p(x) < n. (2.3)

Then Iα(·) is bounded from Lp(·)(Ω) to Lq(·)(Ω), where

1

q(x)
=

1

p(x)
− α(x)

n
. (2.4)
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Singular integral operators in spaces with variable exponents were studied in [36].

We will use the following estimate (cf. the corollary to Lemma 2.22 in [37]).

Lemma 2.1. Suppose that p, 1 � p(x) � p+ < ∞, satisfies (2.2) and

sup
x∈Ω

ν(x) < ∞, inf
x∈Ω

[n+ ν(x)p(x)] > 0.

Then

‖|x− ·|ν(x)χ
˜B(x,r)

(·)‖p(·) � Cr
ν(x)+ n

p(x) , x ∈ Ω, 0 < r < � = diam Ω, (2.5)

where C is independent of x and r.

It can be shown that the dependence of the constant C in (2.5) on Ω can be expressed as

C = C0�
n
(

1
p−− 1

p+

)

,

where C0 is independent of Ω.

For the weighted Hardy type operator

Hv,wf(t) = v(t)

�
∫

t

f(ξ)w(ξ)dξ, t ∈ (0, �),

the following assertion was proved in [38].

Lemma 2.2. Let θ(t) and r(t) be measurable functions on I = (0, �) such that

1 < inf
t∈(0,�)

θ(t), sup
t∈(0,�)

r(t) < ∞, θ(t) � r(t), t ∈ (0, �). (2.6)

If

sup
0<t<�

t
∫

0

v(ξ)r(ξ)

⎛

⎝

�
∫

t

w[˜θ(ξ)]′(r)dr

⎞

⎠

r(ξ)

[˜θ(ξ)]′

dξ < ∞,

where
˜θ(ξ) = inf

s∈(ξ,�)
θ(s),

then the operator Hv,w is bounded from Lθ(·)(0, �) to Lr(·)(0, �).

Note that there are no assumptions on the continuity of θ(·) and r(·) in Lemma 2.2.

Remark 2.1. For power weights

v(t) = tα(t), w(ξ) =
1

ξ1+β(ξ)

Lemma 2.2 means that, under the assumption (2.6), the condition

sup
t∈(0,�)

t
∫

0

[

ξα(ξ)

t
1

θ(ξ)
− β(ξ)

1+β(ξ)

]r(ξ)

dξ < ∞
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guarantees the validity of the Hardy inequality
∥

∥

∥

∥

∥

∥

tα(t)
�
∫

t

f(ξ) dξ

ξ1+β(ξ)

∥

∥

∥

∥

∥

∥

r(·)

� ‖f‖θ(·), (2.7)

where no continuity assumptions are imposed on θ(t), r(t), and α(t).

In the case α, β ∈ M0(0, �), θ, r ∈ P0(0, �), where

1

r(0)
=

1

θ(0)
+ β(0)− α(0),

the following necessary and sufficient conditions for the validity of the Hardy inequality (2.7)

are known [39]:

β(0) > − 1

θ(0)
, β(0) � α(0) <

1

θ(0)
+ β(0).

Let λ(x) be a measurable function on Ω with the values in [0, n]. The variable exponent

Morrey space M p(·),λ(·)(Ω) is defined [8] as the set of measurable functions f on Ω with the

finite norm

‖f‖M p(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)

p(x) ‖fχ
˜B(x,t)‖Lp(·)(Ω).

3 Preliminaries. Generalized Variable Exponent Morrey

Spaces M p(·),ω(·)(Ω)

The generalized Morrey space M p(·),ω(·)(Ω) was introduced in [21] as the space of functions

equipped with the norm

‖f‖M p(·),ω(·) = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖Lp(·)( ˜B(x,r)).

In Subsection 3.2, we recall some results obtained in [21] for the spaces M p(·),ω(·)(Ω). The case

of a constant p is treated in Subsection 3.1.

3.1 Generalized Morrey spaces with constant exponent p

Sufficient conditions on ω1 and ω2 for the boundedness of a singular operator T from

M p,ω1(Rn) to M p,ω2(Rn) were obtained in [22, 23, 26, 27]. In particular, monotonicity type

conditions, together with some integral conditions, were imposed on ω1 and ω2 in [26, 27],

whereas no monotonicity conditions were required in [22, 23].

The following statement containing the results of [26, 27] was proved in [22] (cf. also [23, 28]).

Theorem 3.1 (cf. [22]). Let 1 < p < ∞, and let ω1(x, r), ω2(x, r) be positive measurable

functions such that
∞
∫

r

ω1(x, t)
dt

t
� c1 ω2(x, r),
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where c1 > 0 is independent of x ∈ R
n and t > 0. Then the operators M and T are bounded

from M p,ω1(Rn) to M p,ω2(Rn).

Theorem 3.2 (cf. [22]). Suppose that 0 < α < n, 1 < p < ∞,
1

q
=

1

p
− α

n
. Let ω1(x, r) and

ω2(x, r) be positive measurable functions such that

∞
∫

r

tαω1(x, t)
dt

t
� c1 ω2(x, r).

Then the operators Mα and Iα are bounded from M p,ω1(Rn) to M q,ω2(Rn).

Theorem 3.3 (cf. [28]). Suppose that 1 < p < ∞ and 0 < α < n
p . Let ω(x, t) be such that

∞
∫

t

ω(x, r)
dr

r
� C ω(x, t)

and

tαω(x, t) +

∞
∫

t

rα ω(x, r)
dr

r
� Cω(x, t)

p
q ,

where q � p and C is independent of x ∈ R
n and t > 0. Suppose that for almost all x ∈ R

n the

function w(x, r) satisfies the condition

there exist a = a(x) > 0 such that ω(x, ·) : [0,∞] → [a,∞) is a surjection.

Then the operators Mα and Iα are bounded from Mp,ω(R
n) to Mq,ωp/q(Rn).

3.2 Generalized Morrey spaces M p(·),ω(·)(Ω) with variable exponents

The following three theorems were proved in [21].

Theorem 3.4. Suppose that p ∈ P log(Ω) satisfies (2.1) and ω1(x, r), ω2(x, r) satisfy the

condition
�
∫

r

ω1(x, t)
dt

t
� C ω2(x, r), (3.1)

where C is independent of x and t. Then the operators M and T are bounded from M p(·),ω1(·)(Ω)
to M p(·),ω2(·)(Ω).

Theorem 3.5. Suppose that p, q ∈ P log(Ω) satisfy (2.1), α(x), q(x) satisfy (2.3), (2.4), and

ω1(x, r), ω2(x, r) satisfy the condition

�
∫

r

tα(x)ω1(x, t)
dt

t
� C ω2(x, r),

where C is independent of x and r. Then the operators Mα(·) and Iα(·) are bounded from

M p(·),ω1(·)(Ω) to M q(·),ω2(·)(Ω).
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Theorem 3.6. Suppose that p ∈ P log(Ω) satisfies (2.1), α(x) satisfies (2.3), and ω(x, t)

satisfies (3.1) and the conditions

ω(x, r) � C

rα(x)/(1−p(x)/q(x))
,

�
∫

r

tα(x)−1 ω(x, t)dt � Cω(x, r)
p(x)
q(x) ,

where q(x) > p(x) and C is independent of x ∈ Ω and r ∈ (0, �]. Suppose also that for almost

all x ∈ Ω the function w(x, r) satisfies the condition

there exist a = a(x) > 0 such that ω(x, ·) : [0, �] → [a,∞) is a surjection.

Then the operators Mα(·) and Iα(·) are bounded from M p(·),ω(·)(Ω) to M q(·),ω(·)(Ω).

4 The Main Results

We introduce generalized spaces M p(·),ω(·)(Ω).

Definition 4.1. Let ω(x, r) : Ω × (0, �) → [0,∞) and θ(r) : (0, �) → [1,∞] be measurable

functions. The space M p(·),θ(·),ω(·)(Ω) is the set of functions with the finite norm

‖f‖M p(·),θ(·),ω(·)(Ω) = sup
x∈Ω

∥

∥

∥

∥

ω(x, r)

r
n

p(x)

‖f‖Lp(·)( ˜B(x,r))

∥

∥

∥

∥

Lθ(·)(0,�)
.

If θ(r) ≡ ∞, then M p(·),∞,ω(·)(Ω) is the space of functions with the finite norm

sup
x∈Ω,r∈(0,�)

ω(x, r)r
− n

p(x) ‖f‖Lp(·)( ˜B(x,r)).

In the above notation, we can write

M p(·),∞,ω(·)(Ω) = M
p(·), 1

ω(·) (Ω).

Note that we impose the standard local log-condition on the exponent p(x) to obtain state-

ments on the maximal, singular, and potential operators. However, the local log-condition is

not required for the variable exponent θ(r) when we integrate the means

∫

B(x,r)

|f(y)|pdy

over balls with radius r. In some statements (for example, Theorems 4.1, 4.3–4.5), there are no

log decay type conditions on θ(r) as r → 0, whereas such a condition is imposed, for example,

in Theorem 4.2.
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Throughout the paper, we assume that ω(x, r) satisfies the condition

sup
x∈Ω

‖ω(x, ·)‖Lθ(·)(0,�) < ∞. (4.1)

Then the space M p(·),θ(·),ω(·)(Ω) contains bounded functions (cf. Lemma 4.1) and thereby is

nonempty.

The fact that M p(·),θ(·),ω(·)(Ω) is a Banach space can be proved in a standard way.

4.1 Embeddings L∞(Ω) ↪→ M p(·),θ(·),ω(·)(Ω) and M p(·),θ(·),ω(·)(Ω) ↪→ Lp(·)(Ω)

Lemma 4.1. Suppose that p ∈ P log(Ω) and θ ∈ P(0, �). Then the condition (4.1) is suffi-

cient for the embedding

L∞(Ω) ↪→ M p(·),θ(·),ω(·)(Ω). (4.2)

If Ω is such that

inf
x∈Ω

|Ω ∩B(x, r)| � crn, (4.3)

then the condition (4.1) is also necessary.

Proof. For f(x) ≡ 1 we have

‖f‖Lp(·)( ˜B(x,r)) = ‖χ
˜B(x,r)‖Lp(·)(Ω),

so that

‖f‖M p(·),θ(·),ω(·)(Ω) � sup
x∈Ω

‖ω(x, ·)‖Lθ(·)(0,�) < ∞

in view of (2.5) and (4.1).

To prove the necessity, we note that

‖f‖Lp(·)( ˜B(x,r)) = ‖χ
˜B(x,r)‖Lp(·)(Ω) � c‖χB(x,r)‖Lp(·)(Ω) � Cr

n
p(x) ,

where the last inequality is easily checked by the definition of the norm:

∫

Ω

(

χB(x,r)(y)

λ|B(x, r)| 1
p(x)

)p(y)

dy � 1

for some λ > 0, which is valid for p ∈ P log(Ω).

Corollary 4.1. If Ω satisfies the assumption (4.3), then the condition

sup
x∈Ω

�
∫

0

ω(x, r)dr < ∞

is necessary for the embedding (4.2).

The following lemma provides us with a condition on ω(x, r) that guarantees the embedding

M p(·),θ(·),ω(·)(Ω) ↪→ Lp(·)(Ω). (4.4)
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Lemma 4.2. Let p be a bounded measurable function with the values in [1,∞), and let

θ ∈ P(0, �). If there exists δ ∈ (0, �) such that

inf
x∈Ω

‖ω(x, ·)‖Lθ(·)(δ,�) > 0, (4.5)

then the embedding (4.4) holds.

Proof. We have
∥

∥

∥

∥

ω(x, r)

r
n

p(x)

‖f‖Lp(·)( ˜B(x,r))

∥

∥

∥

∥

Lθ(·)(0,�)
�
∥

∥

∥

∥

ω(x, r)

r
n

p(x)

‖f‖Lp(·)( ˜B(x,r))

∥

∥

∥

∥

Lθ(·)(δ,�)

� C‖f‖
Lp(·)( ˜B(x,δ))

‖ω(x, r)‖Lθ(·)(δ,�) .

Hence

‖f‖Lp(·)( ˜B(x,δ)) � C
‖f‖M p(·),θ(·),ω(·)(Ω)

‖ω(x, r)‖Lθ(·)(δ,�)
� C‖f‖M p(·),θ(·),ω(·)(Ω)

for all x ∈ Ω. For given δ there exists a finite set of balls B(x, r) covering Ω, which yields

(4.4).

It is convenient to introduce the following definition.

Definition 4.2. For given δ ∈ (0, �) we denote by W (δ, �) the set of pairs (θ, ω) satisfying

the condition (4.5).

Thus, for p ∈ P log(Ω) the embeddings

L∞(Ω) ↪→ M p(·),θ(·),ω(·)(Ω) ↪→ Lp(·)(Ω) (4.6)

hold if (4.1) is satisfied (which implies the left embedding) and there exists δ ∈ (0, �) such that

(θ, ω) ∈ W (δ, �) (which implies the right embedding).

4.2 Maximal operator

The following assertion extends the result obtained in [8] to the generalized Morrey spaces

M p(·),θ(·),ω(·)(Ω).

Theorem 4.1. Let p ∈ P log(Ω) satisfy (2.1), and let

1 < θ−1 � θ1(t) � θ+1 < ∞, 0 < t < �,

1 � θ−2 � θ2(t) � θ+2 < ∞, 0 < t < �.
(4.7)

Assume that there exists δ > 0 such that

θ1(t) � θ2(t), t ∈ (0, δ), (4.8)

and

(θ1, ω1) ∈ W (δ, �).
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If

sup
x∈Ω, 0<t<δ

t
∫

0

ω2(x, ξ)
θ2(ξ)

⎛

⎝

δ
∫

t

dr

[rω1(x, r)][
˜θ1(ξ)]′

⎞

⎠

θ2(ξ)

[˜θ1(ξ)]
′

dξ < ∞, (4.9)

where
˜θ1(ξ) = inf

s∈(ξ,�)
θ1(s),

then the operator M is bounded from M p(·),θ1(·),ω1(·)(Ω) to M p(·),θ2(·),ω2(·)(Ω).

Remark 4.1. Note that the condition (4.9) is imposed only in a neighborhood (0, δ), where

δ can be arbitrarily small. No log conditions on θ1(r) and θ2(r) or even log decay type conditions

are imposed at the point r = 0.

Corollary 4.2. Under the assumptions of Theorem 4.1, the following embedding holds:

M p(·),θ1(·),ω1(·)(Ω) ↪→ M p(·),θ2(·),ω2(·)(Ω).

Corollary 4.3. If ω1(x, r) = ω2(x, r) = rβ(x), θ1(r) = θ2(r) =: θ(r), and

inf
x∈Ω

β(x) > − 1

inf
t∈(δ,�)

θ(t)
, (4.10)

then (4.9) takes the form

sup
x∈Ω, 0<t<δ

t
∫

0

(

ξ

t

)β(x)θ(ξ) dξ

t
θ(ξ)
˜θ(ξ)

< ∞ (4.11)

(there is no log-conditions on θ(ξ) and β(x)). In particular, if

θ(t) ≡ θ = const , 1 < θ < ∞,

then the conditions

p ∈ P log(Ω), inf
x∈Ω

β(x) > −1

θ

are sufficient for the boundedness of the maximal operator M in the space M p(·),θ,rα(x)
(Ω).

In the following assertion, we show that for the power functions

ω1(x, r) = rβ(r), ω2(x, r) = rγ(r), (4.12)

where β, γ ∈ M0(0, �), the conditions on θ1(·) and θ2(·) can be simplified (cf. (4.14)–(4.13) and

(4.11)) provided that θ1(·) and θ2(·) satisfy a log decay type condition as r → 0.

Theorem 4.2. Suppose that p ∈ P log(Ω) satisfies (2.1), θ1, θ2 ∈ P0(0, �), and ω1, ω2

have the form (4.12). Then the maximal operator M is bounded from M p(·),θ1(·),ω1(·)(Ω) to

M p(·),θ2(·),ω2(·)(Ω) provided that

γ(0) > − 1

θ1(0)
, − 1

θ1(0)
< β(0) � γ(0) (4.13)

and
1

θ2(0)
=

1

θ1(0)
+ β(0)− γ(0). (4.14)

12



Theorem 4.3. Let p ∈ P log(Ω) satisfy (2.1), and let θ ∈ P(0, �). Assume that there exists

δ > 0 such that (θ, ω1) ∈ W (δ, �) and

sup
x∈Ω

⎧

⎪

⎨

⎪

⎩

∫

(0,δ)\E∞(θ)

⎡

⎣ω2(x, t)

δ
∫

t

dr

rω1(x, r)

⎤

⎦

θ(t)

dt+ sup
t∈(0,δ)∩E∞(θ)

ω2(x, t)

δ
∫

t

dr

rω1(x, r)

⎫

⎪

⎬

⎪

⎭

< ∞.

(4.15)

Then the operator M is bounded from M p(·),∞,ω1(·)(Ω) into M p(·),θ(·),ω2(·)(Ω).

Theorem 4.3 recovers Theorem 3.4 with constant θ.

4.3 Potential operators

We begin with a Spanne type result (with respect to q(·)) when θ1(·) is bounded. This result
was proved in [22] (cf. also [23]) for constant p(x), q(x), α(x), and θ(t).

Theorem 4.4. Suppose that p, α ∈ P log(Ω) satisfy (2.1), (2.3) and

1

q(x)
=

1

p(x)
− α(x)

n
.

Let θ1 and θ2 satisfy (4.7). If there exists δ ∈ (0, �) such that (θ1, ω1) ∈ W (δ, �), (4.8) is satisfied,

and

sup
x∈Ω, 0<t<δ

t
∫

0

ω2(x, ξ)
θ2(ξ)

⎛

⎝

δ
∫

t

(

rα(x)−1

ω1(x, r)

)[˜θ1(ξ)]′

dr

⎞

⎠

θ2(ξ)

[˜θ1(ξ)]
′

dξ < ∞ (4.16)

on (0, δ), then Mα(·) and Iα(·) are bounded from M p(·),θ1(·),ω1(·)(Ω) to M q(·),θ2(·),ω2(·)(Ω).

The following assertion is also a Spanne type result (with respect to q(·)) in the case θ1(r) ≡
∞. It recovers Theorem 3.5 with θ(t) ≡ ∞.

Theorem 4.5. Suppose that p, α ∈ P log(Ω) satisfy the conditions (2.1) and (2.3),

1

q(x)
=

1

p(x)
− α(x)

n
,

and θ ∈ P(0, �). Assume that there exists δ > 0 such that (θ, ω1) ∈ W (δ, �) and

sup
x∈Ω

⎧

⎪

⎨

⎪

⎩

∫

(0,δ)\E∞(θ)

⎡

⎣ω2(x, t)

δ
∫

t

rα(x)−1dr

ω1(x, r)

⎤

⎦

θ(t)

dt+ sup
t∈(0,δ)∩E∞(θ)

ω2(x, t)

δ
∫

t

rα(x)−1dr

ω1(x, r)

⎫

⎪

⎬

⎪

⎭

< ∞.

(4.17)

Then Mα(·) and Iα(·) are bounded from M p(·),∞,ω1(·)(Ω) into M q(·),θ(·),ω2(·)(Ω).

Like Theorem 4.2, the following theorem asserts that for ω1(x, r) and ω2(x, r) of the form

(4.12) the boundedness conditions can be written in a very simple form provided that θ1, θ2 ∈
P0(0, �). We set

α(x) = α = const

13



(for variable α(x) we must deal with spaces for which θ(t) may depend also on x; this case is

not considered in this paper).

Theorem 4.6. Suppose that p ∈ P log(Ω) satisfies (2.1), θ1, θ2 ∈ P0(0, �), and ω1, ω2 have

the form (4.12). Then the potential operator Iα, 0 < α < n, is bounded from M p(·),θ1(·),ω1(·)(Ω)
to M q(·),θ2(·),ω2(·)(Ω) with

1

q(x)
=

1

p(x)
− α

n

provided that

γ(0) > − 1

θ1(0)
, α− 1

θ1(0)
< β(0) � α+ γ(0) (4.18)

and
1

θ2(0)
=

1

θ1(0)
+ β(0)− γ(0) − α. (4.19)

The following assertion is an Adams type result (with respect to q(·)) for bounded θ1(·). It

was proved in [28] for constant p(x), q(x), α(x), and θ(t).

Theorem 4.7. Suppose that p, α ∈ P log(Ω) satisfy (2.1) and (2.3). Assume that q(x) > p(x)

on Ω, θ1, θ2 satisfy (4.7), and ω(x, r) satisfies the condition
∥

∥

∥

∥

∥

tα(x)−1

ω1(x, t)

∥

∥

∥

∥

∥

Lθ′
1
(·)(r,�)

� Cr
− α(x)p(x)

q(x)−p(x) , (4.20)

where C is independent of x ∈ Ω and r ∈ (0, �]. If there exists δ ∈ (0, �) such that (θ1, ω1) ∈
W (δ, �) and the conditions (4.8) and (4.9) hold on (0, δ), then the operators Mα(·) and Iα(·) are
bounded from M p(·),θ1(·),ω1(·)(Ω) to M q(·),θ2(·),ω2(·)(Ω).

4.4 Singular operators

Consider the maximal singular operator

T∗f(x) = sup
ε>0

|Tεf(x)|,

where

Tεf(x) =

∫

|x−y|�ε

K(x, y)f(y)dy.

The following assertion was proved in [22] (cf. also [23]) for constant p(x) and θ(t) .

Theorem 4.8. Suppose that p ∈ P log(Ω) satisfies (2.1) and θ1, θ2 ∈ P(0, �). Assume that

there exists δ > 0 such that (θ1, ω1) ∈ W (δ, �) and

sup
x∈Ω, 0<t<δ

t
∫

0

ω2(x, ξ)
θ2(ξ)

⎛

⎝

δ
∫

t

dr

[rω1(x, r)]
˜θ′1(ξ)

dr

⎞

⎠

θ2(ξ)
˜θ′1(ξ)

dξ < ∞.

Then T and T∗ are bounded from M p(·),θ1(·),ω1(·)(Ω) to M p(·),θ2(·),ω2(·)(Ω).
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The following assertion recovers the result of Theorem 3.4 in the case θ2(t) = ∞.

Theorem 4.9. Under the assumptions of Theorem 4.3, the operators T and T∗ are bounded

from M p(·),∞,ω1(·)(Ω) into M p(·),θ(·),ω2(Ω).

Theorem 4.10. Suppose that p ∈ P log(Ω) satisfies (2.1), θ1, θ2 ∈ P0(0, �), and ω1, ω2

have the form (4.12). Then T and T∗ are bounded from M p(·),θ1(·),ω1(·)(Ω) to M p(·),θ2(·),ω2(·)(Ω)
provided that the conditions (4.13) and (4.14) are satisfied.

5 Proofs of the Main Results

To shorten the notation, we write

Xp
i := M p(·),θi(·),ωi(·), i = 1, 2,

Xq
i := M q(·),θi(·),ωi(·), i = 1, 2.

5.1 Maximal operator

In this subsection, we use the estimate

‖Mf‖Lp(·)( ˜B(x,t)) � Ct
n

p(x)

�
∫

t

r
− n

p(x)
−1‖f‖Lp(·)( ˜B(x,r))dr, 0 < t < δ, (5.1)

for f ∈ Lp(·)(Ω), where C is independent of f, x ∈ Ω and t (but depends on δ and increases as

δ → �). By [21, Theorem 4.1], this estimate is valid if p belongs to P log(Ω) and satisfies the

condition (2.1).

Proof of Theorem 4.1. Let f ∈ Xp
1 (Ω). We have

‖Mf‖Xp
1
� sup

x∈Ω

∥

∥

∥

∥

ω2(x, t)

t
n

p(x)

‖Mf‖Lp(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ2(·)(0,δ)

+ sup
x∈Ω

∥

∥

∥

∥

ω2(x, t)

t
n

p(x)

‖Mf‖
Lp(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ2(·)(δ,�)
=: I1 + I2. (5.2)

An estimate for the term I2 directly follows from the embeddings (4.6). Indeed, by the

condition (4.1) for (θ2, ω2),

I2 � C‖Mf‖Lp(·)(Ω)‖ω2(x, ·)‖Lθ2(·)(δ,�) � C‖Mf‖Lp(·)(Ω).

Then

I2 � C‖f‖Lp(·)(Ω)

15



since the maximal operator is bounded (cf. [35]) in variable exponent Lebesgue spaces if p(x)

satisfies the log-condition. Consequently,

I2 � C‖f‖Xp
1

by the embedding in (4.4).

To estimate the term I1, we use (5.1) and find

I1 � C sup
x∈Ω

∥

∥

∥

∥

∥

∥

ω2(x, t)

�
∫

t

r
− n

p(x)
−1‖f‖

Lp(·)( ˜B(x,r))
dr

∥

∥

∥

∥

∥

∥

Lθ2(·)(0,δ)

. (5.3)

Now, we need to estimate the one-dimensional Hardy operator in the variable exponent

Lebesgue spaces. Splitting the integral with respect to r into two integrals over (0, δ) and (δ, �),

we estimate the integral over (δ, �) as above and the integral over (0, δ) by using Lemma 2.2.

This lemma can be applied in view of the embedding (4.4). Then we find

I1 � C‖f‖Xp
1
+ C sup

x∈Ω

∥

∥

∥

∥

ω1(x, t)

t
n

p(x)

‖f‖
Lp(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ1(·)(0,δ)
� C‖f‖Xp

1
.

The theorem is proved. �

Proof of Corollary 4.2. This assertion is an immediate consequence of the inequality

f(x) � Mf(x). �

Proof of Corollary 4.3. It suffices to note that the inner integral in (4.9) is explicitly

calculated in the case ω1(x, r) = rα(x). �

Proof of Theorem 4.2 is the same as that of Theorem 4.1 with the only difference that

the Hardy operator in (5.3) is now estimated by using the criterion in Remark 2.1. �

Proof of Theorem 4.3. In the expression for ‖Mf‖M p(·),θ(·),ω2(·) , we split the integral with

respect to t in the same way as in (5.2). Hence it suffices to consider only the integral over (0, δ).

We have

sup
x∈Ω

∥

∥

∥

∥

ω2(x, t)

t
n

p(x)

‖Mf‖Lp(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ(·)(0,δ)

� C sup
x∈Ω

∥

∥

∥

∥

∥

∥

ω2(x, t)

�
∫

t

r
− n

p(x)
−1‖f‖Lp(·)( ˜B(x,r))dr

∥

∥

∥

∥

∥

∥

Lθ(·)(0,δ)

� C‖f‖M p(·),∞,ω1(·)

⎛

⎜

⎝
1 + sup

x∈Ω

∥

∥

∥

∥

∥

∥

ω2(x, t)

δ
∫

t

dr

r
n

p(x)
+1

ω1(x, r)
dr

∥

∥

∥

∥

∥

∥

Lθ(·)(0,δ)

⎞

⎟

⎠
. (5.4)

Indeed, the first inequality follows from the estimate (5.1). We split the integral with respect to

r in the second line of formula (5.4) into two integrals over (δ, �) and (0, δ). The first integral

is easily estimated in the same way as in (5.3). Thus, the required assertion will be proved if
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we show that the second integral is finite. But this term is the norm in the variable exponent

Lebesgue space Lθ(·) and, as is well known, it is finite if and only if the corresponding modulus

is finite, which is the condition (4.15). �

5.2 Potential operators

To prove Theorem 4.4 for potential operators, we use the following estimate similar to (5.1):

‖Iα(·)f‖Lq(·)( ˜B(x,t)) � Ct
n

q(x)

�
∫

t

r
− n

q(x)
−1‖f‖Lp(·)( ˜B(x,r))dr, 0 < t < δ, (5.5)

where 0 < δ < � and
1

q(x)
=

1

p(x)
− α(x)

n
.

This estimate is valid for f ∈ Lp(·)(Ω) if p and α bleong to P log(Ω) and satisfy the conditions

(2.1) and (2.3) (cf. [21, Theorem 5.1]), where the constant C is independent of x and t, but

depends on δ. If p(x), q(x), α(x), θ(t) are constant, this estimate was proved in [22] (cf. also

[23]).

To prove the Adams type result in Theorem 4.7, we use the pointwise estimate

|Iα(·)f(x)| � Ctα(x)Mf(x) + C

l
∫

t

r
α(x)− n

p(x)
−1‖f‖

Lp(·)( ˜B(x,r))
dr, 0 < t � δ, (5.6)

where 0 < δ < � and p, α ∈ P log(Ω) satisfy the conditions (2.1) and (2.3) (cf. [21, Theorem

5.4]), the constant C is independent of x and t, but depends on δ. In the case where p(x), q(x),

α(x), θ(t) are constant, this estimate was proved in [28].

Proof of Theorem 4.4. By the well known pointwise estimate

Mα(·)f(x) � C(Iα(·)|f |)(x),
it suffices to consider only the case of the operator Iα(·). Let f ∈ Xp

1 (Ω). As usual, we split the

integral with respect to t in the expression for the norm as follows:

‖Iα(·)f‖Xq
2
� sup

x∈Ω

(

∥

∥

∥

∥

ω2(x, t)

t
n

q(x)

‖Iα(·)f‖Lq(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ2(·)(0,δ)

+

∥

∥

∥

∥

ω2(x, t)

t
n

q(x)

‖Iα(·)f‖Lq(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ2(·)(δ,�)

)

=: sup
x∈Ω

[J1(x) + J2(x)]. (5.7)

To estimate J2(x), we note that

‖Iα(·)f‖Lq(·)( ˜B(x,t)) � ‖Iα(·)f‖Lq(·)(Ω) � C‖f‖Lp(·)(Ω)

in view of Theorem 2.1. Using the embedding (4.4), we find

sup
x∈Ω

J2(x) � C‖f‖Xp
1 .

(5.8)
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To estimate J1(x), we use (5.5). We have

sup
x∈Ω

J1(x) � C‖f‖Lp(·)(Ω) + C sup
x∈Ω

∥

∥

∥

∥

∥

∥

ω2(x, t)

δ
∫

t

r
− n

q(x)
−1‖f‖

Lp(·)( ˜B(x,r))
dr

∥

∥

∥

∥

∥

∥

Lθ2(·)(0,δ)

. (5.9)

It remains to use the embedding (4.4) for the first term and apply Lemma 2.2 for the last term,

which yields

sup
x∈Ω

J1(x) � C‖f‖Xp
1
+ C sup

x∈Ω

∥

∥

∥

∥

ω1(x, t)

t
n

p(x)

‖f‖
Lp(·)( ˜B(x,t))

∥

∥

∥

∥

Lθ1(·)(0,δ)
� C‖f‖Xp

1
.

The theorem is proved. �

Proof of Theorem 4.5. Let f ∈ M p(·),∞,ω1(Ω). We argue in the same way as in (5.7).

Hence it suffices to estimate the term J1(x). Using (5.9) and (4.2), we find

sup
x∈Ω

J1(x) � C‖f‖M p(·),∞,ω1(·)(Ω)

⎛

⎜

⎝
1 + sup

x∈Ω

∥

∥

∥

∥

∥

∥

ω2(x, t)

δ
∫

0

rα(x)−1

ω1(x, r)
dr

∥

∥

∥

∥

∥

∥

Lθ(·)(0,δ)

⎞

⎟

⎠
.

Thus, we obtain the required result if we show that the Lθ(·)(0, δ)-norm in the last expression is

finite, which is equivalent to the condition (4.17). �

Proof of Theorem 4.6 is the same as that of Theorem 4.4, but, in this case, the Hardy

operator in (5.9) is esitmated by means of the criterion in Remark 2.1. �

Proof of Theorem 4.7. It suffices to consider only the operator Iα(·). The intial steps of

the proof are exactly the same as in the case (5.7), (5.8) in the proof of Theorem 4.4. Hence it

suffices to estimate J1(x). For this purpose, we use the estimate (5.6) where we first apply the

Hölder inequality with the variable exponent θ1(·) to obtain

|Iα(·)f(x)| � Ctα(x)Mf(x) +C

∥

∥

∥

∥

∥

rα(x)−1

ω(x, r)

∥

∥

∥

∥

∥

Lθ′1(·)(t,�)

∥

∥

∥

∥

ω(x, r)

t
n

p(x)

‖f‖Lp(·)( ˜B(x,r))

∥

∥

∥

∥

Lθ1(·)(t,�)
.

By (4.20), we have

|Iα(·)f(x)| � Ctα(x)Mf(x) +Ct
− α(x)p(x)

q(x)−p(x) ‖f‖Xp
1
.

Then we choose

t =

( ‖f‖Xp
1

Mf(x)

)
q(x)−p(x)
α(x)q(x)

,

where f is not identical to 0. Hence for every x ∈ Ω

|Iα(·)f(x)| � C(Mf(x))
p(x)
q(x) ‖f‖1−

p(x)
q(x)

Xp
1

.

The required assertion follows from the boundedness of the maximal operator M in the space

M p(·),θ1(·),ω(Ω) because of Theorem 4.1 and the condition (4.9).
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5.3 Singular operators

The estimate

‖Tf‖Lp(·)( ˜B(x,t)) � Ct
n

p(x)

�
∫

t

r
− n

p(x)
−1‖f‖Lp(·)( ˜B(x,r))dr, 0 < t � δ, (5.10)

with 0 < δ < � and f ∈ Lp(·)(Ω), where p, α belong to P log(Ω) and satisfy (2.1), (2.3), is the

same as the estimate (5.1) for the maximal operator (cf. [21, Theorem 6.1]). Therefore, the

proof of Theorems 4.8 and 4.9 for the operator T is the same as that of Theorems 4.1 and 4.3

with the only difference that in order to estimate the term I2, we should use, instead of the

boundedness of the maximal operator in the space Lp(·)(Ω), the boundedness of the operator

T in such spaces established in [36]. Theorem 4.10 is obtained in the known way by using the

results in [39] for Hardy inequalities.

The boundedness of the operator T∗ follows from the known pointwise estimate [40, p. 34]

T∗f(x) � c[M(Tf)(x) +Mf(x)]

and the corresponding theorems on the maximal operator.
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36. L. Diening and M. Rüźićka, “Calderón–Zygmund operators on generalized Lebesgue spaces
Lp(·) and problems related to fluid dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).

37. S. Samko, “Convolution type operators in Lp(x),” Integral Transforms Spec. Funct. 7, No.
1-2, 123–144 (1998).

38. D. E. Edmunds, V. M. Kokilashvilii, and A. Meskhi, “On the boundedness and compactness
of weighted Hardy operators in spaces Lp(x),” Georg. Math. J. 12, No. 1, 27–44 (2005).

39. L. Diening and S. Samko, “Hardy inequality in variable exponent Lebesgue spaces,” Fract.
Calc. Appl. Anal. 10, No. 1, 1–18 (2007).

40. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory
Integrals, Princeton Univ. Press, Princeton, NJ (1993).

Submitted on September 2, 2010

21



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>

    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
    /RUS <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [594.000 792.000]
>> setpagedevice


