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We consider generalized Morrey type spaces //ﬂ’(')’g(')’w(')(Q) with variable exponents
p(x), O(r) and a general function w(x,r) defining a Morrey type norm. In the case
of bounded sets & C R™, we prove the boundedness of the Hardy-Littlewood mazximal
operator and Calderéon—Zygmund singular integral operators with standard kernel. We
prove a Sobolev-Adams type embedding theorem 4PN )10 (Q) — g 1():02()w2()(Q)
for the potential operator I®) of variable order. In all the cases, we do not impose any
monotonicity type conditions on w(x,r) with respect to r. Bibliography: 40 titles.

1 Introduction

In the study of local properties of solutions of partial differential equations, Morrey spaces
AMPNQ), together with weighted Lebesgue spaces, play an important role (cf. [1, 2]). These
spaces were introduced by Morrey [3] in 1938. The norm in a Morrey space is defined by

_A
||fH///p,A(Q) = sup P ‘|fHLp(§($7T))v

x, r>
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where E(:C,r) =B(z,r )N, 0< A< n, 1 <p<oo,and Q CR"™ is an open set.

During last two decades, there has been an increasing interest in the study of spaces with
variable exponents and operators with variable parameters in such spaces (cf., for example,
[4]-{71)-

The Morrey spaces .#P()*)(Q) with variable exponents were introduced and studied in the
Euclidean setting [8, 9] and in the setting of metric measure spaces [10].

In particular, in the case of bounded sets, there were proved [8] the boundedness of the max-
imal operator in variable exponent Morrey spaces .#?()*()(Q) provided that p(-) satisfies the
log-condition and a Sobolev—Adams type theorem .#P()A() — 790)A() for potential operators
provided that p(-) and A(-) satisfy the log-condition and

égf a(z) >0, 21618[)\(3:) + a(x)p(z)] < n.

In the case of constant «, there was also proved a boundedness theorem in the limiting case

n— A(x)
pla) = =2
if the potential operator I* acts from .#Z7()A() into BMO.

In [9], the maximal operator and potential operators were considered in more general spaces,
but under more restrictive conditions on p(x). Hésto [11] used his new “local-to-global” approach
to extend the result of [8] about the maximal operator to the whole space R™.

The boundedness of the maximal operator and singular integral operators in the variable
exponent Morrey spaces .#P()A() in the general setting of metric measure spaces was proved in
[10].

For constant p and A the results on the boundedness of potential operators and classical
Calderén—Zygmund singular integral operators go back to [12] and [13] respectively, whereas
the boundedness of the maximal operator in the Euclidean setting was proved in [14] (cf., for
example, [15]-[20] for further results for constant p and \).

The generalized variable exponent Morrey spaces .#" p(')""(')(Q) equipped with the norm

p()

Hlgperw = sup f 1< p <o,
llasirs = s TP,y
were introduced in [21]; here,
inf  w(x,r)>0. (1.1)
z€Q,r>0

Owing to the last assumption, the space is nontrivial. Hereinafter, w(z,r) is a nonnegative
measurable function on Q x (0,¢), ¢ = diam Q. In [21], the maximal, singular, and potential
operators were studied in the case of bounded sets, £ < cc.

We introduce the generalized Morrey type spaces .2P():?()«()(Q) with variable exponent.
In comparison with the usual definition of Morrey norm, the L°-norm in r is replaced by the
L%-norm. Such spaces with constant p were first introduced in [22, 23] (cf. [16], [24]-[30] for
further development).

dr]

The case of spaces

zM"(R”)::{ \If\lpw—sup[/ / ()" dy)
0
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goes back to [31], where such spaces first appeared. In [31, p. 44], a theorem on mapping
properties of the Riesz potential operator in such spaces was given (cf. also a reformulation of
this result in [19, Theorem 3]).

In the spaces .4 p(')ﬂ(')’“’(')(Q) with bounded open sets 2 C R", we consider the Hardy—
Littlewood maximal operator

M (z) = sup | Bz, )| L/)\f(yﬂdy,

r>0

B(z,r)

the potential type operator

10 f@) = [ o= 3" )y, 0< a(e) <n,
Q
the fractional maximal operator
M) f(a) = sup Ba,r) [ I )ldy. 0<ala) <

r>0

B(z,r)

of variable order a(x), and the Calderén-Zygmund type singular operator

Tf(z)= [ K(z,y)f(y)dy,
/

where K (z,y) is a “standard singular kernel,” i.e., a continuous function on {(z,y) € Q x Q :
x # y} such that

K (2,9)] < Cla—y| ™ forall o #y,

o
K(ag) = K(2)| < O, 020 i fomy) > 2y~ ],
|z — &|° .
|K(1‘7y)—K(§7?/)\<CW= o>0 if |z—y[>2z-¢

We find a condition on w(x,r) for the boundedness of the maximal operator M and the singular
integral operator T' in the generalized Morrey space .# p(')ﬂ(')’“’(')(Q) with variable exponent
p(z) provided that p(z) satisfies the log-condition. For potential operators, under the same
log-condition and the assumptions

inf a(z) >0, supa(z)p(z) <mn,
e z€Q

we also find the condition on w(z,r) and ¢(x) for the validity of the mapping theorem,
P00y 5 ga0)020)w20) ()

which recovers the Sobolev—Adams type result [8] in the case of the classical Morrey spaces with
variable exponents, when




and
1 1 a(x)

g(z)  p(x) n—Aaz)

The paper is organized as follows. In Section 2, we recall some facts concerning Lebesgue
spaces LP()(Q) and Morrey spaces .#P()A()(Q) with variable exponents. Section 3 contains
necessary information about generalized Morrey spaces .4 p(')""(')(Q) with variable exponent. In
Section 4, we introduce a new type of generalized Morrey spaces .#P()-9()«()(Q) with variable
exponents. In this section, we also prove some embeddings (Subsection 4.1) and formulate the
main results (Subsections 4.2-4.4) which are proved in Section 5.

Note that we do not impose any monotonicity type conditions on w(x, ), which was possible
due to the usage of the results of our previous paper [21]. We assume that the variable exponent
p(x) is log-continuous, whereas for the variable exponent 6(r) no log-Holder condition is used;
only in some reformulations of the results for the case of power functions w, we impose a log-type
decay condition on #(r) at the point r = 0.

Notation

R" is the n-dimensional Euclidean space,

) C R™ is an open set,

¢ = diam (,

XE(x) is the characteristic function of a set £ C R™,

B(z,r) ={y e R": |z —y| < r}), B(x,r) = B(z,r)NQ,

¢, C, c1, co etc are various absolute positive constants.

An open set € is assumed to be bounded throughout the paper.

2 Preliminaries. Variable Exponent Lebesgue Spaces Lp(')(Q)
and Morrey Spaces .Z")0)(Q)

Let p(-) be a measurable function on € with the values in [1,00). We suppose that

1 <p- <plx) < pt <o, (2.1)
where
p_ :=essinfp(z), ps :=esssupp(x) < oo.
zefd zeQ

We denote by LP()(Q) the space of measurable functions f(z) on € such that

Lo (f) = [ 1#(@)P s < o
Q

This space equipped with the norm

£l = inf {n >0 fp@(%) <1



is a Banach space. The conjugate exponent p’ is defined by the formula

Basic facts concerning Lebesgue spaces with variable exponents can be found in [32, 33].

In the case Q = (0,¢), we consider variable exponent Lebesgue spaces L()(0,¢) admitting
the value 0(t) = co. In this case, we suppose that 6(t) is bounded outside the set

E(0) ={t €(0,0) : 0(t) = o0}
and the norm is introduced in the standard way:

@lloy = |I¥ ) + sup |@(f)]
lellocy = llell Lo 0,00\ Bos (0)) teEm(g)\ @)l

We denote by P(0,¢) the set of measurable exponents 6(¢) with the values in [1, oo] such that

0 € L>((0,£)\Ex(0)).

Definition 2.1. Denote by 228 = 221°8(Q) the class of functions that are defined on © and
satisfy the log-condition

; T,y €8, (2.2)

N =

A
_ < - — <
Ip(x) p@”\—mu—yv [z —y| <

where A = A(p) > 0 is independent of z and y. If Q = (0,¢), we denote by Z(0,¢) the set
of bounded measurable functions 6 on (0, ¢) with the values in [1,00) such that there exists the
limit

0(0) = lim 6(¢)

t—0
and 4 )
0(t) —00)] < —F=, 0<t< 2.
9(6) = 00)| < 7 0 <<
We write 6 € .#,(0,¢) if there exists a constant ¢ € R! such that ¢+ 6(t) € (0, £).
The following theorem was proved in [34] under the condition that the maximal operator is

bounded in LP()(Q). As is known, this condition may be omitted due to the result of Diening
[35].

Theorem 2.1. Suppose that p,a € F'°8(Q) satisfy (2.1) and the following conditions:

inf a(x) >0, sup a(z)p(z) <n. (2.3)
z€R™ TERM

Then I°C) is bounded from LPO)(Q) to LI (Q), where

=25 (2.4)



Singular integral operators in spaces with variable exponents were studied in [36].
We will use the following estimate (cf. the corollary to Lemma 2.22 in [37]).

Lemma 2.1. Suppose that p, 1 < p(z) < p4 < 00, satisfies (2.2) and

supv(z) < oo, inf[n+ v(z)p(x)] > 0.
z€Q z€eQ

Then .
lle = "Xy Ol < OO0, 2 €0, 0<r < = diam Q, (2.5)

where C' is independent of x and r.
It can be shown that the dependence of the constant C' in (2.5) on £ can be expressed as
o = o),

where Cj is independent of €.
For the weighted Hardy type operator

¢
Hoywf(t) fQw(&)dg, te(0,0),
o fren

the following assertion was proved in [38].

Lemma 2.2. Let 0(t) and r(t) be measurable functions on I = (0,¢) such that

1< inf 6O(t), sup r(t) <oo, O(t) <r(t), te(0,0). (2.6)
te(0,¢) t€(0,£)
If
(&)
¢ £ ()
sup /v(é)r(f) /w[e(f)y(r)dr d¢ < oo,
0<t<t
0 t
where

) = int, 6(5).

then the operator H,,, is bounded from LC)(0,£) to L™0)(0, 7).

Note that there are no assumptions on the continuity of () and r(-) in Lemma 2.2.

Remark 2.1. For power weights

1
o(t) =W, w(g) = EG)

Lemma 2.2 means that, under the assumption (2.6), the condition

¢ 7(§)
sup / B dé < o0
t€(0,¢) 0 te(s) )



guarantees the validity of the Hardy inequality

l

d

o / gl(i)ﬁ(g < I f ey o
! ()

where no continuity assumptions are imposed on 6(t), r(t), and «(t).
In the case «, 5 € #y(0,0), 0,r € P,(0,¢), where

1 1
— = — 0) — a0
the following necessary and sufficient conditions for the validity of the Hardy inequality (2.7)

are known [39]:
1 1

8(0) > “900) B(0) < a(0) < 70y + 5(0).

Let A(z) be a measurable function on © with the values in [0,n]. The variable exponent
Morrey space 4P ) (Q) is defined [8] as the set of measurable functions f on € with the
finite norm

_ A=)
1L aver o) = $€S§2u1t’>0t PONIX B |20 (@)-

3 Preliminaries. Generalized Variable Exponent Morrey
Spaces .70 (Q)

The generalized Morrey space .#P()+()(Q) was introduced in [21] as the space of functions
equipped with the norm

n

T (@)

| fIl gorwey = sup

2EQI>0 m HfHLp(A)(g(x’r)) .

In Subsection 3.2, we recall some results obtained in [21] for the spaces .#7()+()(Q). The case
of a constant p is treated in Subsection 3.1.

3.1 Generalized Morrey spaces with constant exponent p

Sufficient conditions on w; and ws for the boundedness of a singular operator T from
AMP(R™) to P2 (R™) were obtained in [22, 23, 26, 27]. In particular, monotonicity type
conditions, together with some integral conditions, were imposed on w; and ws in [26, 27],
whereas no monotonicity conditions were required in [22, 23].

The following statement containing the results of [26, 27] was proved in [22] (cf. also [23, 28]).

Theorem 3.1 (cf. [22]). Let 1 < p < oo, and let wi(z,r), wa(z,r) be positive measurable

functions such that
o

dt
/wl(%t)7 < cqwa(z, 1),

T



where ¢1 > 0 is independent of x € R™ and t > 0. Then the operators M and T are bounded
from AP (R™) to AP*2(R™).

1 1
Theorem 3.2 (cf. [22]). Suppose that0 < o <n,l1<p<oo, —=—— % Let wi(z,r) and
qg p n

wa(x, 1) be positive measurable functions such that

o0

dt
/tawl(:v,t)T < ¢ wa(zx,r).

T

Then the operators M* and I* are bounded from .#P“'(R"™) to .#9*2(R"™).

Theorem 3.3 (cf. [28]). Suppose that 1 <p < oo and 0 <« < 7. Let w(x,t) be such that

/ (o) < Culant)
T
t

and
x

d )
t“w(x,t) + /ro‘ w(:c,r)% < Cw(:v,t)z,
t
where ¢ = p and C' is independent of x € R™ and t > 0. Suppose that for almost all x € R™ the

function w(z,r) satisfies the condition
there exist a = a(x) > 0 such that w(zx,-) : [0,00] — [a,00) is a surjection.

Then the operators My and I, are bounded from M ,(R") to M p/a(R™).

3.2  Generalized Morrey spaces .#"")“()(Q)) with variable exponents

The following three theorems were proved in [21].

Theorem 3.4. Suppose that p € P'°8(Q) satisfies (2.1) and wi(z,7), wa(x,r) satisfy the

condition
VA

/wl(x,t)% < Cwolx,r), (3.1)

T

where C' is independent of x andt. Then the operators M and T are bounded from .#P)«10)(Q)
to P)w20)(Q).

Theorem 3.5. Suppose that p,q € 2'°8(Q) satisfy (2.1), a(x), q(z) satisfy (2.3), (2.4), and
wi(x,r), we(x,r) satisfy the condition

¢
dt
/to‘(":)wl(aj,t)T < Cwolx,r),

T

where C' is independent of © and r. Then the operators M) and I*C) are bounded from

MPOO(Q) to 1)) (Q).



Theorem 3.6. Suppose that p € P2'°8(Q) satisfies (2.1), a(x) satisfies (2.3), and w(z,t)
satisfies (3.1) and the conditions

_ C
w(x, T) X ro(@)/(1-p(z)/q(z))’

l
/to‘(‘v)_l w(z,t)dt < Cw(z,r)a@

T

where q(x) > p(x) and C is independent of x € Q and r € (0,¢]. Suppose also that for almost
all z € Q the function w(z,r) satisfies the condition

there exist a = a(x) > 0 such that w(x,-) : [0,{] — [a,00) is a surjection.

Then the operators M) and I°C) are bounded from .70 (Q) to 41«0 (Q).

4 The Main Results

We introduce generalized spaces .#P()~()(Q).

Definition 4.1. Let w(z,r) : 2 x (0,¢) — [0,00) and 6(r) : (0,¢) — [1,00] be measurable
functions. The space .#P()00)«()(Q) is the set of functions with the finite norm

w(zx,r)

ijHLp(»(E(W))

I fIl.zecr.00).00) () = sup
rp(z)

z€Q

L90)(0,6) '
If 6(r) = oo, then .#?()>«()(Q) is the space of functions with the finite norm

sup (@) PO | F oo Bear
x€Q,re(0,0) Lre)(B(e,r)

In the above notation, we can write

%p(')’oovw(')(g) — %p()vﬁ (Q)

Note that we impose the standard local log-condition on the exponent p(z) to obtain state-
ments on the maximal, singular, and potential operators. However, the local log-condition is
not required for the variable exponent 6(r) when we integrate the means

[ 1rwray

B(z,r)

over balls with radius r. In some statements (for example, Theorems 4.1, 4.3-4.5), there are no
log decay type conditions on 6(r) as r — 0, whereas such a condition is imposed, for example,
in Theorem 4.2.



Throughout the paper, we assume that w(z,r) satisfies the condition

sup [[w(z, )| Loc) (0,0 < 0©-
€N

(4.1)

Then the space .#P()-9()«()(Q) contains bounded functions (cf. Lemma 4.1) and thereby is

nonempty.

The fact that //ﬂ’(')’g(')’“(')(Q) is a Banach space can be proved in a standard way.

4.1 Embeddings L*(Q) — .#P90«0)(Q) and .#P00«0(Q) — LPO(Q)
Lemma 4.1. Suppose that p € 2'°5(Q) and 6 € P(0,¢). Then the condition (4.1) is suffi-

cient for the embedding
L(Q) = aPOPO0) ().
If Q) is such that

inf QN B(z,7)| > cr™,
€N

then the condition (4.1) is also necessary.

Proof. For f(z) =1 we have

1o = X 0@
so that

1] zmer00) w00 @) < sup lw(@, )l Loc 0,y < 00
e

in view of (2.5) and (4.1).

To prove the necessity, we note that

1o By = Il = X o gy = Cr 7,

where the last inequality is easily checked by the definition of the norm:

XB (y) P
/ (z,r) : dy > 1
o \AB(z,r)[*@

for some A > 0, which is valid for p € 22'°8(Q).

Corollary 4.1. If Q satisfies the assumption (4.3), then the condition

¢
sup/w(x,'r)dr < 00
€ 0

is necessary for the embedding (4.2).

(4.2)

(4.3)

The following lemma provides us with a condition on w(z,r) that guarantees the embedding

POBOL0 Q) <5 1PO/(Q).

10

(4.4)



Lemma 4.2. Let p be a bounded measurable function with the values in [1,00), and let
0 € P(0,0). If there exists § € (0,¢) such that

inf [lw(z,llzocr s > 0, (4.5)
then the embedding (4.4) holds.
Proof. We have
w(z,r) w(z,r)
n / W B(x,r > ‘ — || f V(B(z,r
‘ 7P | HLF()(B( ) L2G)(0,0) 7P | HLP()(B( ) LOC)(5,6)

> Cllfll oo @y 190 Pl pocr g -

Hence
I arer00000

llw(@, )l Loc) s,0)

171l o> By < L <Nl amtrar o

for all x € Q. For given ¢ there exists a finite set of balls B(x,r) covering 2, which yields
(4.4). O

It is convenient to introduce the following definition.

Definition 4.2. For given 6 € (0,¢) we denote by #(4,¢) the set of pairs (0, w) satisfying
the condition (4.5).

Thus, for p € 2'°8() the embeddings
L®(Q) < P00 (Q) — 1PO(Q) (4.6)
hold if (4.1) is satisfied (which implies the left embedding) and there exists 6 € (0,¢) such that
(0,w) € #(6,£) (which implies the right embedding).
4.2 Maximal operator

The following assertion extends the result obtained in [8] to the generalized Morrey spaces

APOIOSO) (Q).

Theorem 4.1. Let p € 2'°8(Q) satisfy (2.1), and let

1<6] <O01(t) <0 <0, 0<t<{,
1<0; <Oy(t) <Of <0, O<t<L o
Assume that there exists 6 > 0 such that
01(t) < b2(t), te(0,9), (4.8)

and
(091,&)1) S ”//((5, 6)

11



If

02(8)
¢ 9 g [61(©))
sup /wg(:c,g)92(f) / " , d¢ < oo, (4.9)
€N, 0<t<d 9 / [rwl(gj7r)][91(§)]
where N
91 (5) = sel?ffé) 91(8)7

then the operator M is bounded from #PO)010)«10)(Q) to .P()02()w20) ().

Remark 4.1. Note that the condition (4.9) is imposed only in a neighborhood (0, §), where
d can be arbitrarily small. No log conditions on 6;(r) and 05(r) or even log decay type conditions
are imposed at the point » = 0.

Corollary 4.2. Under the assumptions of Theorem 4.1, the following embedding holds:
///p(')791(')7w1(')(9) SN ///P(')ﬂz('),wz(')(g))

Corollary 4.3. If wi(z,r) = wa(z,7) = @) 0,(r) = O5(r) =: 0(r), and

1
f —— 4.1
Inf 5@ >~y (4.10)
te(4,0)
then (4.9) takes the form
/ 2)0(E)
sup / < > d('{ (4.11)
€N, 0<t<d 0(¢)
0
(there is no log-conditions on (&) and B(x)). In particular, if
O(t)=6=const, 1<6< o0,

then the conditions

pe @), inf Ba) >

z€Q

are sufficient for the boundedness of the maximal operator M in the space ///p(')’e””a(m)(ﬁ).

In the following assertion, we show that for the power functions
wi(z,r) =10 wo(z,r) =), (4.12)
where 3,y € #,(0,£), the conditions on 6;(-) and #5(-) can be simplified (cf. (4.14)—(4.13) and
(4.11)) provided that 61(-) and 65(-) satisfy a log decay type condition as r — 0.

Theorem 4.2. Suppose that p € P'°8(Q) satisfies (2.1), 01,05 € Py(0,0), and wy, wo
have the form (4.12). Then the mazimal operator M is bounded from .#P)01()w1()(Q) to
APO020)20)(Q) provided that

7(0) > — - < B(0) < ~(0) (4.13)

and

—— = —— + 3(0) —(0). (4.14)

12



Theorem 4.3. Let p € 2'°8(Q) satisfy (2.1), and let 6 € P(0,¢). Assume that there exists
d > 0 such that (0,w1) € #(5,£) and

5 o(t) 5

sup / / dt + sup / < 00.
z€Q rwi(w,T) te(o,a)mEoo(G rwy(z,r)
(0,0)\Exs (0) t t

(4.15)
Then the operator M is bounded from .#P()><10)(Q) into aP)0C)w20)(Q),

Theorem 4.3 recovers Theorem 3.4 with constant 6.

4.3 Potential operators

We begin with a Spanne type result (with respect to ¢(-)) when 6;(-) is bounded. This result
was proved in [22] (cf. also [23]) for constant p(z), ¢(x), a(z), and 6(t).

Theorem 4.4. Suppose that p,o € 28(Q) satisfy (2.1), (2.3) and
1 1 ax)

a(@) ~pl) n
Let 0, and 0y satisfy (4.7). If there exists 6 € (0,£) such that (01,w1) € #(6,¢), (4.8) is satisfied,
and

02(8)

t 6 NG 01067
02(¢) ro@-
sup /wg(a:,ﬁ) 2 / — dr d¢ < o0 (4.16)
z€N, 0<t<S ] wi(z,7)

t

n (0,6), then M) and I*C) are bounded from #P)010)«10)(Q) to .a10)02()w20) ().

The following assertion is also a Spanne type result (with respect to ¢(-)) in the case 6, (r) =
oo. It recovers Theorem 3.5 with 6(t) = co.

Theorem 4.5. Suppose that p,a € P'°8(Q) satisfy the conditions (2.1) and (2.3),
1 1 o

qx)  plx) n
and 0 € P(0,0). Assume that there exists 6 > 0 such that (0,w1) € #(6,¢) and

i

ldr ldr
sup (x,t) dt + sup (x,t) < 0.
w1 Wl

te(O,é)ﬂEoo(G
(0,0)\Ex (0) t t

(4.17)
Then M*C) and 1°C) are bounded from .#P)>«1()(Q) into 410)0)w20)(Q).

Like Theorem 4.2, the following theorem asserts that for wi(x,r) and ws(x,r) of the form
(4.12) the boundedness conditions can be written in a very simple form provided that 61,65 €
P4(0,0). We set

a(z) = o = const

13



(for variable a(x) we must deal with spaces for which 6(¢) may depend also on x; this case is
not considered in this paper).

Theorem 4.6. Suppose that p € P'°8(Q) satisfies (2.1), 01,09 € P4(0,£), and wy, wo have
the form (4.12). Then the potential operator I*,0 < « < n, is bounded from ///p(')’gl(')""l(')(ﬁ)
to 21050220 () with

e
g(z)  plx) n
provided that . )
7(0) >_ma a—m < B(0) < a+~(0) (4.18)
and
= o (0) —(0) — o (4.19)

02(0)  6.(0)

The following assertion is an Adams type result (with respect to ¢(-)) for bounded 604 (-). It
was proved in [28] for constant p(z), ¢(x), a(x), and 6(t).

Theorem 4.7. Suppose that p,a € F2'°8(Q) satisfy (2.1) and (2.3). Assume that q(x) > p(x)
on Q, 01, 0y satisfy (4.7), and w(x,r) satisfies the condition

ta(x)fl

a(@)p(e)

< Cr” a@—»p@) (4.20)

w1 (CE, t) Le’l(A)(r 0

where C' is independent of x € Q and r € (0,¢]. If there exists § € (0,£) such that (61,w1) €
W (8,0) and the conditions (4.8) and (4.9) hold on (0,8), then the operators M) and I*C) are
bounded from P10 (Q) to 1002009200 ().

4.4  Singular operators

Consider the maximal singular operator

T.f(x) = sup |1 f(x)],
e>0

where
i@ = [ Ko
lz—y|>e
The following assertion was proved in [22] (cf. also [23]) for constant p(z) and 6(t) .

Theorem 4.8. Suppose that p € 2'°8(Q) satisfies (2.1) and 61,05 € P(0,¢). Assume that
there exists 0 > 0 such that (61,w1) € #(0,¢) and

S
N
o~
—

t

1)
d
sup /WQ(%QGQ(@ /—Ta/() dr de < oo.
z€Q, 0<t<d ) ) [rwl(x,’r)] i€

Then T and T, are bounded from .#P)0()w1()(Q) to .aP()020)w20)(Q).

Y
=
™
<
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The following assertion recovers the result of Theorem 3.4 in the case 65(t) = oco.
Theorem 4.9. Under the assumptions of Theorem 4.3, the operators T and T are bounded
from P00 (Q) dnto PO w2 ().

Theorem 4.10. Suppose that p € P2'°8(Q) satisfies (2.1), 01,02 € P(0,), and wyi, wo
have the form (4.12). Then T and T, are bounded from .4P)010)«1()(Q) to aP()02()«20)(Q)
provided that the conditions (4.13) and (4.14) are satisfied.

5 Proofs of the Main Results

To shorten the notation, we write
XP = PO = 9
1 Y )<

qu = %q(')vgi(')vwi(')7 1= ]_,2

5.1 Maximal operator

In this subsection, we use the estimate

L

_n_ __n__q
HMfHLp«)(E(M)) < Ctr@) /7” r(z) HfHLp«)(E(%T))dTu 0<t<9, (5.1)
t

for f € LPO)(Q), where C is independent of f,z € Q and t (but depends on § and increases as
§ — £). By [21, Theorem 4.1], this estimate is valid if p belongs to 2'°¢(Q2) and satisfies the
condition (2.1).

Proof of Theorem 4.1. Let f € X{(£2). We have

WQ(xat)
Mf pgsupH - Mf s
141y < 500 | Z2IM s ey
WQ(xat)
+ su — M s =11 + 5. 5.2
168 75 | fHLp()(B(x,t)) L2050 1 2 (5.2)

An estimate for the term Iy directly follows from the embeddings (4.6). Indeed, by the
condition (4.1) for (03, ws),

Iy < CHMfHLP(~)(Q)HW2($a ')HL%(‘)(&@ < C||Mf||Lp(~)(Q)-

Then
I <O fllpror

15



since the maximal operator is bounded (cf. [35]) in variable exponent Lebesgue spaces if p(x)
satisfies the log-condition. Consequently,

I < Cllf |l s

by the embedding in (4.4).

To estimate the term I, we use (5.1) and find

4

B < Csup (e t) [ 177 . (5.3)
e
t L92()(0,5)

Now, we need to estimate the one-dimensional Hardy operator in the variable exponent
Lebesgue spaces. Splitting the integral with respect to r into two integrals over (0,4d) and (4, £),
we estimate the integral over (4,¢) as above and the integral over (0,d) by using Lemma 2.2.
This lemma can be applied in view of the embedding (4.4). Then we find

wl(xvt)
7@

<C|flxr-

L <C|f p—l—Csup‘
| HXl ze B(=.1)) LA10)(0,6)

The theorem is proved. 0

Proof of Corollary 4.2. This assertion is an immediate consequence of the inequality

f(@) < Mf(z). .

Proof of Corollary 4.3. It suffices to note that the inner integral in (4.9) is explicitly
calculated in the case wy (z,r) = r®@). O

Proof of Theorem 4.2 is the same as that of Theorem 4.1 with the only difference that
the Hardy operator in (5.3) is now estimated by using the criterion in Remark 2.1. O

Proof of Theorem 4.3. In the expression for ||M f|| ,u().00).w2(), we split the integral with
respect to ¢ in the same way as in (5.2). Hence it suffices to consider only the integral over (0, ).
We have

w2(,t)

i)

sup

veh ||Mf||Lp >(B(:vt))

L?4)(0,5)

V4
< C'sup ||we(x, t) / @) 1 dr
168 2( J ||f||Lp O)(B(z,r))

L90)(0,6)

)

S C\FIl gproowiy | 1+ sup ||wa(x,t) / —dr . (5.4)
e TP(I )
t L90)(0,6)

Indeed, the first inequality follows from the estimate (5.1). We split the integral with respect to
r in the second line of formula (5.4) into two integrals over (4,¢) and (0,d). The first integral
is easily estimated in the same way as in (5.3). Thus, the required assertion will be proved if

16



we show that the second integral is finite. But this term is the norm in the variable exponent
Lebesgue space L) and, as is well known, it is finite if and only if the corresponding modulus
is finite, which is the condition (4.15). O

5.2 Potential operators

To prove Theorem 4.4 for potential operators, we use the following estimate similar to (5.1):

n

¢
al N
11 ()f”Lq(.)(E(x,t)) < Cta@) /7« o By drs 0 <t <4, (5.5)
t

where 0 < § < ¢ and
1 1 o
qx) plx) n
This estimate is valid for f € LP()(Q) if p and « bleong to 22'°%(Q) and satisfy the conditions
(2.1) and (2.3) (cf. [21, Theorem 5.1]), where the constant C' is independent of x and ¢, but
depends on §. If p(z), q(x), a(z), 0(t) are constant, this estimate was proved in [22] (cf. also
[23]).
To prove the Adams type result in Theorem 4.7, we use the pointwise estimate

l
‘Ia(')f(x)‘ < Cte@) Mf(z) + C/?”a(gc)_ﬁ_lﬂfﬂmo(é(w T))dn 0<t<9, (5.6)
t

where 0 < § < £ and p,a € 2'°8(Q) satisfy the conditions (2.1) and (2.3) (cf. [21, Theorem
5.4]), the constant C is independent of = and ¢, but depends on J. In the case where p(z), ¢(x),
a(x), O(t) are constant, this estimate was proved in [28].

Proof of Theorem 4.4. By the well known pointwise estimate
MV f(z) < CUIV|f])(@),

it suffices to consider only the case of the operator I*(). Let f € X P(Q). As usual, we split the
integral with respect to ¢ in the expression for the norm as follows:

t)
190 £l ya < sup ‘ % IO f s
| Iixg < sup tat I st By 1920(0,5)
+‘M||Ia(')f||m(,>(§( 9) =: sup[Ji () + Jo(z)]. (5.7)
ta(@) T L2 (5.0) zeQ

To estimate Ja(x), we note that
1% Fll Lt By < MO Fllzaor@) < Cllf ooy
in view of Theorem 2.1. Using the embedding (4.4), we find

sup.Jo(x) < C flLxg. (5.8)
S



To estimate Jy(z), we use (5.5). We have

-1
||f||Lp(~)(§($7r))d7“ . (5.9)
L92()(0,0)

z€eQ)

1)
sup J1(z) < Cl s + € sup (e t) [ 777
z€eQ
t
It remains to use the embedding (4.4) for the first term and apply Lemma 2.2 for the last term,
which yields

w1 (a: t)

<O flxe-

sup 510 < g + Cup |5 10 5,

‘L‘)l(‘)(o,é)
The theorem is proved. 0

Proof of Theorem 4.5. Let f € .#P():>*%1(Q). We argue in the same way as in (5.7).
Hence it suffices to estimate the term J;(z). Using (5.9) and (4.2), we find

ﬁ

E

1

5
sup J1(x) < CllfI| go0).000100 () | 1+ sup ||wa(z, 1) /
e €N 0

L9()(0,6)

Thus, we obtain the required result if we show that the L?()(0,§)-norm in the last expression is
finite, which is equivalent to the condition (4.17). O

Proof of Theorem 4.6 is the same as that of Theorem 4.4, but, in this case, the Hardy
operator in (5.9) is esitmated by means of the criterion in Remark 2.1. O

Proof of Theorem 4.7. It suffices to consider only the operator I a(). The intial steps of
the proof are exactly the same as in the case (5.7), (5.8) in the proof of Theorem 4.4. Hence it
suffices to estimate Jj(z). For this purpose, we use the estimate (5.6) where we first apply the
Hélder inequality with the variable exponent 6 (-) to obtain

‘ wiz,r)

tr@@)

ra(z)fl

110 f(2)] < C19@) M f(z) + C 1A 2ot (B

w(zx,r) |L91(‘)(t,f) ‘

L O (1,0)
By (4.20), we have

_ alp()
170 f(2)] < Ct*@ M f(z) + Ct a0 ||f] o

(z)—p(x)
IFllxp ) =
M () |

where f is not identical to 0. Hence for every x € (2

Then we choose

p(z)

190 ()| < C(M f(2) ||f||Xp‘“”-

The required assertion follows from the boundedness of the maximal operator M in the space
MPO010)9 () because of Theorem 4.1 and the condition (4.9).

18



5.3 Singular operators

The estimate
V4

_n_ __n__3
||Tf||Lp(»>(§(g;7t)) < Ctr@) /T r(@) ||f||Lp('>(§($,r))d7"7 0<t<o, (5.10)
t

with 0 < 6 < £ and f € LP()(Q), where p, o belong to 22'°%(Q2) and satisfy (2.1), (2.3), is the
same as the estimate (5.1) for the maximal operator (cf. [21, Theorem 6.1]). Therefore, the
proof of Theorems 4.8 and 4.9 for the operator 7' is the same as that of Theorems 4.1 and 4.3
with the only difference that in order to estimate the term Is, we should use, instead of the
boundedness of the maximal operator in the space Lp(')(Q), the boundedness of the operator
T in such spaces established in [36]. Theorem 4.10 is obtained in the known way by using the
results in [39] for Hardy inequalities.

The boundedness of the operator T follows from the known pointwise estimate [40, p. 34]
Tof (z) < c[M(Tf)(z) + M f(x)]

and the corresponding theorems on the maximal operator.
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