
Journal of Mathematical Sciences, Vol. 169, No. 1, 2010

SOME NEW STEIN AND HARDY TYPE INEQUALITIES

L.-E. Persson

Lule̊a University of Technology
Lule̊a 917 87, Sweden

larserik@sm.luth.se

S. G. Samko ∗

Universidade do Algarve
Campus de Gambelas, Faro 8000, Portugal

ssamko@ualg.pt UDC 517.9

We prove a generalization of the pointwise Stein inequality, considering its two truncated
versions. More generally than in the Stein inequality, we assume that the kernel is
dominated by a radial function almost decreasing after the division by a power function
with nonnegative exponent in the case of the truncation to the ball of the radius x, and
almost increasing after the multiplication by a power function in the case of truncation
to the exterior of this ball. We give some applications to a series of inequalities of Hardy
type in norms of various function spaces, in particular, in the norm of variable exponent
Lebesgue spaces Lp(·)(Rn) with weights. Bibliography: 40 titles.

1. Introduction

Among the inequalities bearing the names of Hardy and Littlewood, there are the following
ones:
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with 1 < p � ∞, α > 0, and
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with 1 � p < ∞, 0 < α < 1
p , where

C1 = B

(

α,
1

p′

)

, C2 = Γ(α)Γ

(
1

p
− α

)

are the best constants (cf. [1] and also [2]). In the case α = 1, (1.1) coincides with the Hardy
inequality, C1 = p

p−1 in this case (cf. [3] and also, for example, [2]). The dramatic more than

10 years period of research until Hardy proved (1.1) with α = 1 in his paper [3] of 1925, was
recently described in detail in [4]. After that period Hardy inequalities have been generalized
and applied in an almost unbelievable way (cf., for example, the monographs [2], [5]–[8] and the
references therein). For instance, a characterization of the weights u = u(x) and v = v(x) for
which the weighted Hardy inequality

( ∞̂

0

(Hf(x))q dx

) 1
q

� Cp
2

( ∞̂

0

|f(x)|p dx
) 1

p

, Hf(x) =

xˆ

0

f(t) dt, (1.3)

is known for all 1 � p < ∞, 0 < q < ∞. When the Hardy operator H is replaced by a more
general operator

Hk,v,wf(x) := w(x)

xˆ

0

k(x, t)v(t)f(t) dt,

much less is known. Here, k(x, t) is a kernel, i.e., k(x, t) is locally integrable in t and k(x, t) � 0.
In this case, some characterizations of weights, for which the corresponding Hardy type inequality
of the form (1.3) holds, are known, in fact, only for the Oinarov kernels defined by the condition
that there exists C > 1 such that

1

C
k(x, t) � k(x, z) + k(x, t) � Ck(x, t)

for all 0 < t � z � x < ∞ (cf., for example, [8, Section 2.3] and [9] and the references given
there).

Moreover, for the multidimensional case there exist very few characterizations of weights for
Hardy type inequalities of the form (1.3) to hold (cf., for example, [8], the recent review article
[10] and the references therein).

Note that some Hardy inequalities of the form (1.3) are known for some spaces other than
weighted Lebesgue spaces, for example, for Orlicz, Lorentz, rearrangement invariant spaces,
Morrey spaces and even general Banach function spaces (cf., for example, [11, 10] and the
references therein).

In this paper, we prove some new Hardy type inequalities, but we cannot obtain necessary
and sufficient conditions of their validity. More exactly, we prove some new generalizations of
the inequalities (1.1) and (1.2) by considering the following multidimensional Hardy–Littlewood
type operators with a radial kernel defined by

k = k(t) � 0, t ∈ R
1
+

as follows:
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Hμf(x) := u(x)

ˆ

|y|<μ(x)

k(|x− y|)f(y) dy
v(y)

, x ∈ R
n, (1.4)

Hνf(x) := u(x)

ˆ

|y|>ν(x)

k(|x− y|)f(y) dy
v(y)

, x ∈ R
n, (1.5)

where μ(x) and ν(x) are arbitrary functions with the only restriction that

μ(x) � 0, ν(x) > |x| a.e.

and u and v are weight functions, within the frameworks of Banach Function spaces, in particular,
for the variable exponent Lebesgue spaces Lp(·)(Rn). Observe that one may admit ν(x) = |x|
on a set of positive measure by imposing a stronger condition on the kernel (cf. Remark 3.2).

Since ∣
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ˆ

|y|<μ(x)

· · · dy
∣
∣
∣
∣
∣
�

ˆ

|x−y|<|x|+μ(x)

| · · · |dy, (1.6)

integrals of such a type admit a pointwise estimate by the Hardy–Littlewood maximal function
in view of the Stein pointwise inequality
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(
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)

f(y) dy
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∣
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∣
∣
� CMf(x), (1.7)

where ε > 0 and

Mf(x) := sup
r>0

1

|B(x, r)|
ˆ

B(x,r)

|f(y)| dy (1.8)

is the maximal operator, under the condition that the least radial decreasing dominant

k0(|x|) := sup
|y|>|x|

|k(y)|

of the kernel is integrable:

ˆ

Rn

|k0(|x|)|dx < ∞,

and then C = ‖k0‖1 (cf. [12]).

In the pointwise estimate (1.7), the parameter ε may depend on x. Under the choice

k(x) =

⎧

⎨

⎩

|x|α−n, |x| < 1,

0, |x| � 1,

and ε = |x|, in particular, we have the pointwise estimate of the Hardy–Littlewood operator
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1

|x|α
ˆ

|y|<|x|

f(y) dy

|x− y|n−α

∣
∣
∣
∣
∣
� |Sn−1|

nα
Mf(x), (1.9)

where

|Sn−1| = 2π
n
2

Γ
(
n
2

)

is the area of the unit sphere in R
n.

In this paper, we prove that the Stein type pointwise inequality is valid under weaker as-
sumptions on the kernel (cf. Corollary 3.1).

This follows from our main Theorems 3.1 and 3.2 on pointwise Stein type inequalities which,
together with the known results for the maximal operator, imply new results concerning mul-
tidimensional Hardy inequalities even in the case of variable Lp(·)-spaces and with the general
operators (1.4) and (1.5) involved.

We admit kernels which are

(a) almost decreasing after division by a power function in the case of truncated convolutions
(1.4), 0 � μ(x) < ∞ a.e. in this case,

(b) almost increasing after the multiplication by a power function in the case of truncated
convolutions (1.5), ν(x) > |x| a.e. in this case.

We may admit ν(x) = |x| on a set of positive measure if the kernel k satisfies both above
conditions (a) and (b) (cf. Remark 3.2).

The paper is organized as follows. In order not to disturb our discussions later on, some
preliminaries are presented in Section 2. The announced Stein type inequalities are proved in
Section 3. Some preliminaries for applications in Section 4 can be found in Subsection 4.1.1 and
the new Hardy type inequalities are presented and proved in Subsection 4.2.

2. Preliminaries

Denote by L1
loc(R

1
+) the class of functions integrable over every finite interval (0, a), a < ∞.

Let n ∈ Z+, and let w(x) be a weight function on R
n. As is known [13], the weighted

maximal operator wM 1
w is bounded in the space Lp(Rn), 1 < p < ∞, if and only if wp is in the

Muckenhoupt class Ap, i.e.,

sup
B

⎛

⎝

 

B

w
1
p (y)dy

⎞

⎠

1
p
⎛

⎝

 

B

w
− 1

p′ (y)dy

⎞

⎠

1
p′

< ∞, (2.1)

where

 

B

· · · dy =
1

|B|
ˆ

B

· · · dy,

B is a ball in R
n, and p′ = p

p−1 .
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2.1. Assumptions on the kernel. A nonnegative function k(t) on R
1
+ is called almost

increasing if

k(τ) � Ck(t) for τ � t,

and almost decreasing if
g(t) � Cg(τ) for τ � t.

These notions go back to S. Bernstein [14].

As an example, we just mention that the function

k(t) = ta ln

(

C +
1

t

)

, a > 0, C > 0

is almost increasing (increasing when C is large enough), so that to include functions with the
behavior of type

k(t) = ta lnb
1

t
, ta lnb ln

(
1

t

)

etc. near the origin, the notion of the almost monotonicity becomes more appropriate.

Definition 2.1. We denote by Wβ = Wβ(R
1
+) and W γ = W γ(R1

+), β � 0, γ � 0, the set

of all nonnegative functions k(t) such that k(t)
tβ

is almost decreasing on R
1
+, and tγk(t) is almost

increasing on R
1
+ respectively.

Note that functions which become almost monotonic after the multiplication by a power
function are well known in the literature. For example, in an implicit form such functions were
used already in [15] and in the case of the usual monotonicity classes of such functions were first
introduced in connection with some problems in the theory of Fourier series and the interpolation
theory in [16] and [17] respectively. In the case of almost monotonicity, we also refer to the
study of properties of the classes of Wβ = Wβ(R

1
+) and W γ = W γ(R1

+), in particular, relations
between β and γ and Matuszewska–Orlicz indices, in [18] and [19].

We use the notation

Cβ(k) := sup
0<τ<t<∞

(τ

t

)β k(t)

k(τ)
for k ∈ Wβ,

Dγ(k) := sup
0<τ<t<∞

(τ

t

)γ k(τ)

k(t)
for k ∈ W γ .

Everywhere in the sequel, we assume that the kernel k(t), 0 < t < ∞, in (1.4) is nonnegative
and satisfies the conditions

k(t)tn−1 ∈ L1
loc(R

1
+), (2.2)

k ∈ Wβ(R
1
+) for some β � 0, (2.3)

in the case of operators of the form (1.4), and

∞̂

δ

k(t)tn−1 < ∞, (2.4)
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for every δ > 0, and

k ∈ W n+γ(R1
+) for some γ � 0, (2.5)

in the case of operators of the form (1.5)

Lemma 2.1. Let λ > 1 and δ < t < λδ, where 0 < δ < ∞. Then

1

λβCβ(k)k(λδ) � k(t) � λβCβ(k)k(δ) for k ∈ Wβ (2.6)

and

1

λγDγ(k)
k(δ) � k(t) � λγDγ(k)k(λδ) for k ∈ W γ . (2.7)

The proof of Lemma 2.1 follows almost immediately by using the definitions above, so we
omit the details.

3. Some Stein Type Inequalities

Keeping (1.6) in mind, everywhere in the sequel we use the notation

μ0(x) = μ(x) + |x|
and

ν0(x) = ν(x)− |x|.
Our first main result reads as follows.

Theorem 3.1. Let the kernel k satisfy the conditions (2.2) and (2.3), and let �(x) be a
measurable function on R

n satisfying the condition

A(k, �) := sup
x

|�(x)|
μ0(x)ˆ

0

k(t)tn−1dt < ∞. (3.1)

Then the following Stein type pointwise inequality holds:

∣
∣
∣
∣
∣
�(x)

ˆ

|y|<μ(x)

k(|x− y|)f(y) dy
∣
∣
∣
∣
∣
� C0Mf(x), (3.2)

where

C0 = |Sn−1|a(β)C2
β(k)A(k, �)

and

a(β) = 2

(

1 +
β

n

)(

2 + β
n

1 + β
n

) 2β
n

.
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Proof. We have

∣
∣
∣
∣
∣

ˆ

|y|<μ(x)

k(|x− y|)f(y) dy
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

ˆ

|z−x|<μ(x)

k(|z|)f(x − z) dz

∣
∣
∣
∣
∣

�
ˆ

|z|<μ0(x)

k(|z|)|f(x− z)| dz. (3.3)

To prove (3.2), we represent the last integral as

ˆ

|z|<2μ0(x)

k(|z|)|f(x − z)| dz =
∞∑

m=1

ˆ

λ−mμ0(x)<|z|<λ−m+1μ0(x)

k(|z|)|f(x − z)| dz,

where λ > 1. Observe that we use the decomposition with the parameter λ instead of the binary
decomposition in order to optimize the arising constant; in this relation we follow [20].

Making use of (2.6), we get

ˆ

|z|<μ0(x)

k(|z|)|f(x − z)| dz � λβDβ(k)

∞∑

m=1

k
(

λ−mμ0(x)
)

ˆ

|z|<λ−m+1μ0(x)

|f(x− z)| dz. (3.4)

Consequently,

ˆ

|z|<μ0(x)

k(|z|)|f(x − z)| dz � A(μ0(x))(Mf)(x) (3.5)

with

A(r) := λβDβ(k)
∞∑

m=1

k
(

λ−mr
) |B(0, λ−m+1r)|, r = μ0(x).

The function A(r), 0 < r < ∞, may be estimated via the integral which appeared in (3.1). To
this end, we proceed as follows:

rˆ

0

k(t)tn−1 dt =
∞∑

m=1

λ−m+1rˆ

λ−mr

k(t)tn−1 dt � 1

λβCβ(k)
∞∑

m=1

k(λ−m+1r)

λ−m+1rˆ

λ−mr

tn−1 dt

where we made use of the left-hand side inequality in (2.6). Hence
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rˆ

0

k(t)tn−1 dt � λn − 1

n

∞∑

m=1

k
(

λ−m+1r
)

λ−mn

� rn

λβCβ(k)
λn − 1

nλn

∞∑

m=1

k
(

λ−mr
)

λ−mn

=
λn − 1

λ2n+2β|Sn−1|C2
β(k)

A(r),

so that

A(r) �
|Sn−1|C2

β(k)λ
2n+2β

λn − 1

rˆ

0

k(t)tn−1 dt. (3.6)

This is minimized at

λn =
2n + 2β

n+ 2β
,

and then from (3.5) we have

ˆ

|z|<μ0(x)

k(|z|)|f(x − z)| dz � |Sn−1|a(β)C2
β(k)

μ0(x)ˆ

0

k(t)tn−1 dt (Mf)(x),

which yields (3.2) under the condition (3.1). The proof is complete. �

Remark 3.1. Note that for the constant a(β) we have

a(β) ∼ 2e2

n
β as β → ∞

which, in particular, shows that the constant in the estimate tends to infinity as β → ∞, when
the kernel k(t) loses the property to be almost decreasing after the division by a power function.

The corresponding version of Theorem 3.1 adjusted for the operator Hν reads as follows.

Theorem 3.2. Let ν(x) > |x| a.e., let the kernel k satisfy the conditions (2.4) and (2.5),
and let �(x) be a measurable function on R

n satisfying the condition

B(k, �) :=
∣
∣
∣ sup

x
�(x)

∣
∣
∣

∞̂

ν0(x)

k(t)tn−1dt < ∞. (3.7)

Then the following pointwise inequality holds:

∣
∣
∣
∣
∣
�(x)

ˆ

|y|>ν(x)

k(|x− y|)f(y) dy
∣
∣
∣
∣
∣
� C0Mf(x), (3.8)
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where
C0 = |Sn−1|b(γ)[Dn+γ(k)]2B(k, �)

and

b(γ) =
(

1 +
γ

n

)(2 + γ
n

1 + γ
n

) 2γ
n

.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1, so that we omit the
details of this proof, but give some inequalities of the main steps. It is obvious that

∣
∣
∣
∣
∣

ˆ

|y|>ν(x)

k(|x− y|)f(y) dy
∣
∣
∣
∣
∣
�

ˆ

|z|>ν0(x)

k(|z|)|f(x − z)| dz. (3.9)

Via the corresponding decompositions as in (3.4), we find

∣
∣
∣
∣
∣

ˆ

|y|>ν(x)

k(|x− y|)f(y) dy
∣
∣
∣
∣
∣
� B(ν0(x))Mf(x),

where

B(r) = |B(0, 1)|λn+γDn+γ(k)

∞∑

m=0

(λm+1r)nk(rλm+1)

� |Sn−1|λ2n+2γ [Dγ(k)]2

λn − 1

∞̂

r

k(t)tn−1dt, r = ν0(x),

compare with (3.6). By now minimizing the estimate with respect to λ, we obtain (3.8). �

Remark 3.2. In the case ν(x) = |x| on a set of positive measure, a similar inequality holds
if the kernel k satisfies both conditions (2.3) and (2.5). To see this, it suffices to split the integral
on the right-hand side of (3.9) as

ˆ

|y|>ν0(x)

�
ˆ

|y|<δ+ν0(x)

+

ˆ

|y|>δ+ν0(x)

, δ > 0,

and use Theorems 3.1 and 3.2. We do not dwell on the estimation of the arising constant in this
case.

From Theorems 3.1 and 3.2 we obtain, as a consequence, the following version of the Stein
type inequality.

Corollary 3.1. Let

κ(k) :=

∞̂

0

k(t)tn−1dt < ∞,

and let
k ∈ Wβ(R

1
+) ∩W n+γ(R1

+), β � 0, γ � 0.

121



Then

∣
∣
∣
∣
∣

1

εn

ˆ

Rn

k

( |x− y|
ε

)

f(y) dy

∣
∣
∣
∣
∣
� Cκ(k)Mf(x), (3.10)

where C > 0 depends on β and γ, but is independent of the function f , the kernel k, and ε > 0.

Proof. Let first ε = 1. Split the integral

ˆ

Rn

k(|z|)f(x − z) dz =

ˆ

|z|<2|x|
k(|z|)f(x − z) dz +

ˆ

|z|>2|x|
k(|z|)f(x − z) dz

and apply the estimates obtained in the proofs of Theorems 3.1 and 3.2, with �(x) ≡ 1. The
arising constant has the form Cκ(k), where C depends only on β and γ. To cover the case of
ε > 0, it suffices to denote

k1(x) =
1

εn
k
(x

ε

)

,

make the change of variables, and observe that κ(k1) = κ(k). �

Remark 3.3. The corresponding “dilation–invariant” versions of the inequalities (3.2) and
(3.8) have the following forms:

∣
∣
∣
∣
∣
�
(x

ε

) 1

εn

ˆ

|y|<εμ(x
ε )

k

( |x− y|
ε

)

f(y) dy

∣
∣
∣
∣
∣
� C0Mf(x), (3.11)

∣
∣
∣
∣
∣
�
(x

ε

) 1

εn

ˆ

|y|>εν(x
ε )

k

( |x− y|
ε

)

f(y) dy

∣
∣
∣
∣
∣
� C0Mf(x) (3.12)

under the same conditions (3.1) and (3.7), respectively. To check this, it suffices to observe that

Mfε

(x

ε

)

≡ Mf(x),

where
fε(y) = f(εy).

From Theorems 3.1 and 3.2 we also get the following corollary, in which we use the notation

A
(

k,
v

w

)

:= sup
x∈Rn

v(x)

w(x)

μ0(x)ˆ

0

k(t)tn−1dt, (3.13)

B
(

k,
v

w

)

:= sup
x∈Rn

v(x)

w(x)

∞̂

ν0(x)

k(t)tn−1dt, (3.14)

where u and w are weight functions, and the Banach function space X is understood in the
sense of [21].
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Corollary 3.2. Let u and w be weight functions, and let X = X(Rn) be an arbitrary Banach
function space, in which the weighted maximal operator wM 1

w is bounded. Then

∥
∥
∥
∥
∥
v(x)

ˆ

|y|<μ(x)

k(|x− y|) f(y)
w(y)

dy

∥
∥
∥
∥
∥
X

� A ‖f‖X (3.15)

if the kernel k satisfies the conditions (2.2) and (2.3), and A
(

k, v
w

)

< ∞, and

∥
∥
∥
∥
∥
v(x)

ˆ

|y|>ν(x)

k(|x− y|) f(y)
w(y)

dy

∥
∥
∥
∥
∥
X

� A ‖f‖X (3.16)

if the kernel k satisfies the conditions (2.4) and (2.5) and B
(

k, v
w

)

< ∞.

Under these conditions, one may take

A = |Sn−1|a(β)C2
β(k)A

(

k,
v

w

)

‖M‖X→X in (3.15)

and

A = |Sn−1|b(γ)[Dγ(k)]2B
(

k,
v

w

)

‖M‖X→X in (3.16).

Proof. Apply Theorems 3.1 and 3.2. �

4. Applications

Corollary 3.2 admits various useful consequences under a concrete choice of the Banach
function space X. We first give, in Subsection 4.1, some preliminaries on the basics of the
spaces we use, after which we formulate the corresponding corollaries in Subsection 4.2.

4.1. Preliminaries.

4.1.1. On variable exponent Lebesgue spaces. We refer to the paper [22] for the basics on
the variable exponent Lebesgue spaces and the surveying papers [23]–[26], but give necessary
definitions and some statements.

Let p be a measurable function on R
n such that p : Rn → (1,∞), n � 1. The generalized

Lebesgue space with variable exponent is defined via the modular

Ip (f) :=

ˆ

Rn

|f(x)|p(x) dx (4.1)

by the norm

‖f‖p(·) = inf

{

λ > 0 : Ip
(
f

λ

)

� 1

}

.

We denote by Lp(·)(Rn, �), where �(x) � 0, the weighted Banach space of measurable func-
tions f : X → C such that

‖f‖Lp(·)(Rn,
) := ‖�f‖p(·) = inf

⎧

⎨

⎩
λ > 0 :

ˆ

Rn

∣
∣
∣
∣

�(x)f(x)

λ

∣
∣
∣
∣

p(x)

dμ(x) � 1

⎫

⎬

⎭
< ∞. (4.2)
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We denote

p′(x) =
p(x)

p(x)− 1
.

In what follows, we assume that p(x) satisfies the conditions

1 < p− := ess inf
x∈Rn

p(x) � ess sup
x∈Rn

p(x) =: p+ < ∞, (4.3)

|p(x)− p(y)| � A

ln 1
|x−y|

, x, y ∈ R
n, |x− y| � 1

2
, (4.4)

and

|p(x)− p(∞)| � A

ln (2 + μ0(x))
, x ∈ R

n. (4.5)

We denote by P = P(Rn) the class of exponents p satisfying the conditions (4.3), (4.5).

The boundedness of the maximal operator in variable exponent Lebesgue spaces was first
proved by Diening [27, 28] for bounded domains in R

n under the conditions (4.3)–(4.4). The
result for the whole space R

n reads as follows (cf. [29]).

Theorem 4.1. Let p ∈ P. Then the maximal operator (1.8) is bounded in the space

Lp(·)(Rn).

For power weights the following statement is valid.

Theorem 4.2. Let p ∈ P, and let p(x) ≡ p∞ = const outside some large ball. Then the

maximal operator M is bounded in the space Lp(·)(Rn, �) with the weight

�(x) = (1 + μ(x))β
m∏

k=1

|x− xk|βk , xk ∈ R
n, (4.6)

if and only if

− n

p(xk)
< βk <

n

p′(xk)
, k = 1, . . . ,m, and − n

p∞
< β +

m∑

k=1

βk <
n

p′∞
. (4.7)

Theorem 4.2 was proved in [30] in the one-dimensional case (on infinite Carleson curves),
but the proof remains the same for Rn (cf. also its proof for bounded sets in the general setting
of measure metric spaces in [31]).

Recently, in [32] an analog of the Muckenhoupt result for the maximal operator was obtained.
It uses the Muckenhoupt type class

Ap(·) :=

{

w : sup
B

1

|B|pB ‖w‖L1(B)

∥
∥
∥
∥

1

w

∥
∥
∥
∥
L

1
p(·)−1 (B)

> ∞
}

, (4.8)

where

pB =

⎛

⎝

 

B

dx

p(x)

⎞

⎠

−1

and the supremum is taken with respect to all balls in R
n, and reads as follows.
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Theorem 4.3. Let p ∈ P. Then the weighted maximal operator is bounded in the space
Lp(·)(Rn, �) if and only if �p(·) ∈ Ap(·).

Corollary 4.1. Weights � of the form (4.6), (4.7) satisfy the condition �p(·) ∈ Ap(·).

Proof. The proof is indirect: the inclusion �p(·) ∈ Ap(·) for weight (4.6) is a consequence of
the fact that the conditions (4.7) are necessary for the boundedness of the maximal operator in
the weighted space Lp(·)(Rn, �) with such a weight, by Theorem 4.2. �

4.1.2. On variable exponent Morrey spaces. For Morrey spaces Lp,λ with constant param-
eters p and λ, 1 � p < ∞, 0 < λ < n, introduced in [33] in relation to the study of partial
differential equations, we refer, for example, to the book [7]. Such spaces with variable parame-
ters p(x) and λ(x) were studied in [34]–[37]. Let λ(·) be a measurable function on Ω with values

in [0, n]. The variable exponent Morrey space Lp(·),λ(·)(Rn) is introduced as the set of all locally
integrable functions f such that

Ip(·),λ(·)(f) := sup
x∈Ω, r>0

r−λ(x)

ˆ

˜B(x,r)

|f(y)|p(y)dy < ∞. (4.9)

The norm in the space Lp(·),λ(·)(Ω) is introduced in the form

‖f‖ := inf

{

η > 0 : Ip(·),λ(·)

(
f

η

)

� 1

}

= sup
x∈Ω, r>0

∥
∥
∥
∥
r
−λ(x)

p(·) f χ
˜B(x,r)

∥
∥
∥
∥
p(·)

,

the last equality being proved in [34].

The boundedness of the maximal operator in Morrey spaces in the case of constant exponents
p and λ was proved in [38]. The corresponding result for variable exponents was proved in [34]
in the case of bounded domains in R

n. Hästö [32] extended this result to the whole space R
n

by means of his “local-to-global” trick. The final result runs as follows.

Theorem 4.4. Let p ∈ P, and let 0 � λ(x) � λ+ < n. Then the maximal operator is
bounded in the space Lp(·),λ(·)(Rn).

4.2. Some new Hardy type inequalities via Corollary 3.2. We give some applications
of the Hardy–Littlewood type inequality (3.15) of Corollary 3.2.

Our first application will be to the case of the classical Lebesgue spaces.

Corollary 4.2. Let the kernel k satisfy the conditions (2.3) and (2.2). Then the inequality
(3.15) with X = Lp(Rn), 1 < p < ∞, holds under the conditions (3.13) and (2.1).

Remark 4.1. A one-dimensional nonweighted version close to the statement of Corollary
4.2 was given in [39]. Also, in the one-dimensional case this result does not follow from the
well-known characterization in the literature (cf. for example, [8, Section 2.3] and [9], where, in
particular, the kernels in the integral operator satisfy the Oinarov condition).

Of more interest is the next corollary for the variable exponent spaces. We start with the
nonweighted case.
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Corollary 4.3. Let the kernel k satisfy the conditions (2.3) and (2.2). If p ∈ P(Rn), then
the inequality

∥
∥
∥
∥
∥
∥
∥

�(x)

ˆ

|y|<μ(x)

k(|x− y|)f(y) dy

∥
∥
∥
∥
∥
∥
∥
p(·)

� A ‖f‖p(·) (4.10)

holds for any measurable function �(x) satisfying the condition (3.1).

Proof. Apply Corollary 3.2 with

X = Lp(·)(Rn), w(x) ≡ 1, u(x) = �(x)

and Theorem 4.1. �

Note that Corollary 4.4 is a particular case of what is stated in Corollary 4.5, but we single
out this case by the reasons given in Remark 4.2.

Corollary 4.4. Let the kernel k satisfy the assumptions (2.3), (2.2), and let p(x) fulfill the
conditions (4.3), (4.4) and be constant outside some large ball. Then the inequality

∥
∥
∥
∥
∥
�(x)�(x)

ˆ

|y|<μ(x)

k(|x− y|)f(y)
�(y)

dy

∥
∥
∥
∥
∥
p(·)

� A ‖f‖p(·) , (4.11)

holds for any measurable function �(x) satisfying the condition (3.1) and weight � of the form
(4.6) with the conditions (4.7).

Proof. Apply Corollary 3.2 with

X = Lp(·)(Rn), w(x) ≡ �(x), u(x) = �(x)�(x)

and Theorem 4.2. �

Corollary 4.5. Let the kernel k satisfy the conditions (2.3) and (2.2), and let p ∈ P(Rn).
Then the inequality (4.11) holds for any measurable function �(x) satisfying the condition (3.1)

and weight � such that �p(·) ∈ Ap(·).

Proof. Apply Corollary 3.2 with

X = Lp(·)(Rn), w(x) ≡ �(x), u(x) = �(x)�(x)

and Theorem 4.3. �

Remark 4.2. The statement of Corollary 4.5 covers, in particular, radial weights �(x) =

ϕ(|x − x0|), where ϕ(t) has the property that tαϕ(t) is almost increasing and ϕ(t)
tβ

is almost
decreasing for some α and β. However, note that it seems to be a hard task to check directly
that such weights satisfy or not the general Muckenhoupt type condition (4.8), but we can state
this indirectly since (4.8) is a necessary condition for the boundedness of the maximal operator,
as shown in [32], and the boundedness of the maximal operator in case of such radial type
weights was proved in [40]. Note that for such a weight � = ϕ(|x − x0|) the conditions on the
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weight may be given in terms of the Matuszewska–Orlicz indices of the function ϕ; we refer to
[40] for details.

Finally, we treat the case of the variable exponent Morrey spaces.

Corollary 4.6. Let the kernel k satisfy the conditions (2.3), and (2.2), let p ∈ P(Rn), and
let 0 � λ(x) � λ+ < n. Then the inequality

∥
∥
∥
∥
∥
�(x)

ˆ

|y|<μ(x)

k(|x− y|)f(y) dy
∥
∥
∥
∥
∥
Mp(·),λ(·)Rn

� A ‖f‖Mp(·),λ(·)(Rn) (4.12)

holds for any measurable function �(x) satisfying the condition (3.1).

Remark 4.3. The obtained inequalities may be extended to the case of metric measure
spaces, in the spirit of the approaches, developed for instance in [5]. The inequality (3.2), for
example, should be then read as follows:

∣
∣
∣
∣
∣
�(x)

ˆ

B(x0,μ(x)

k(d(x, y))f(y) dy

∣
∣
∣
∣
∣
� CMf(x).

We do not dwell on such extensions in this paper.

Remark 4.4. Finally, we note that all the inequalities in this section are related to the
inequality (3.15). The “dual” inequalities related to (3.16) can be proved in the same way. We
leave the details to the interested reader.
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23. L. Diening, P. Hästö, and A. Nekvinda, “Open problems in variable exponent Lebesgue
and Sobolev spaces,” In: Function Spaces, Differential Operators and Nonlinear Analysis,
Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June
2, 2004. Math. Inst. Acad. Sci. Czech Republick, Praha.

24. V. Kokilashvili, “On a progress in the theory of integral operators in weighted Banach
function spaces,” In: Function Spaces, Differential Operators and Nonlinear Analysis, Pro-
ceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2,
2004. Math. Inst. Acad. Sci. Czech Republick, Praha.

25. V. Kokilashvili and S. Samko, “Weighted boundedness of the maximal, singular and poten-
tial operators in variable exponent spaces,” In: Analytic Methods of Analysis and Differen-
tial Equations, pp. 139–164. Cambridge Sci. Publ. (2008).

26. S. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal
and singular operators,” Integral Transforms Spec. Funct 16, No. 5-6, 461–482 (2005).

27. L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph.D Thesis,
Univ. Freiberg, Germany (2002).

28. L. Diening, “Maximal function on generalized Lebesgue spaces Lp(·),” Math. Inequal. Appl.
7, NO. 2, 245–253 (2004).

128



29. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, “The maximal function on variable
Lp-spaces,” Ann. Acad. Scient. Fenn. Math. 28, 223–238 (2003).

30. V. Kokilashvili and S. Samko, “Boundedness of maximal operators and potential operators
on Carleson curves in Lebesgue spaces with variable exponent,” Acta Math. Sin. (Engl.
Ser.) 24, No. 11, 1775–1800 (2008).

31. V. Kokilashvili and S. Samko, “The maximal operator in weighted variable exponent spaces
on metric spaces,” Georgian Math. J. 15, No. 4, 683-712 (2008).
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