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Abstracts

We consider non-standard Holder spaces H*)(X) of functions f on a metric measure space (X, d, 1),
whose Holder exponent A(z) is variable, depending on z € X. We establish theorems on mapping
properties of potential operators of variable order a(z), from such a variable exponent Holder space with
the exponent A(x) to another one with a "better” exponent A(z)+«(z), and similar mapping properties of
hypersingular integrals of variable order a(z) from such a space into the space with the ”worse” exponent
A(z) — a(z) in the case a(z) < A(x).

These theorems are derived from the Zygmund type estimates of the local continuity modulus of
potential and hypersingular operators via such modulus of their densities. These estimates allow us to
treat not only the case of the spaces H*()(X), but also the generalized Holder spaces H*(»)(X) of
functions whose continuity modulus is dominated by a given function w(z,h),z € X,h > 0.

We admit variable complex valued orders a(x), where Roa(x) may vanish at a set of measure zero.



To cover this case, we consider the action of potential operators to weighted generalized Holder spaces
with the weight a(z).
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1 Introduction

Last decade there was a strong rise of increase of interest to studies of variable spaces,
when the parameters defining the space, which are usually constant, may vary from point
to point. A typical example is a generalized Lebesgue space with variable exponent

defined by the modular [ |f(z)|P® dz (see the surveying papers [2], [11], [24] on this
)

topic), or more generally, Musielak-Orlicz spaces with the Young function also varying
from point to point. Another example is the generalized Holder space of variable order:
sup |f(x +h) — f(z)| < Oz € R™.
|h|<t

Within the frameworks of the Holder spaces H)(Q) with a variable exponent A(z)
and more general spaces H")(X) with a given variable dominant of continuity modulus
of functions, we study mapping properties of potential operators of the form

(19 )() = fly) dp(y)

W, [BEQCX, (11)
Q

also of variable order, for functions f defined on an open set of a quasimetric measure space
(X, 0, 1), where we admit complex values of the variable exponent «a(z), 0 < Ra(zr) <
1, the "dimension” N is the exponent from the growth condition, see (2.4), € is an
open bounded set in a quasimetric measure space X. We also study the corresponding
hypersingular operators

o p =ty [ ST ), cea (12)

yeQo(w,y)>e

within the frameworks of such spaces. We reveal the mapping properties of the operators
I* and D in dependence of local values of a(x) and A(x), including the worsening of
the mapping properties when Ra(x) may tend to zero: we admit that Ra(z) may be

degenerate at some set of points in 2. We denote
I, ={z € Q: Ra(zx) =0}
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and suppose that p(I1,) = 0.

In the case of constant « such kind of problems were widely studied in the case where
X = S"! for spherical potential operators and related hypersingular integrals and even in
a more general setting of generalized Holder spaces defined by a given (variable) dominant
w(z, h) of continuity modulus; we refer to [26], [27], [32], [33], [34] for the case w = w(h),
28], [29], [30] for the case w = h*®) and [31] for the general case w = w(x, h). In the case
X = S" !, the progress was essentially based on the usage of properties of the sphere S*~!,
in particular its group properties, which is no more applicable since we do not assume
group properties of X.

In the general setting of quasimetric measure spaces (X, o, 1) with growth condition,
mapping properties of the operators /¢ and D® in Holder spaces H*(X) were studied, in
the case of constant A and constant real «, in [4], [5], [6], [7].

In the variable exponents case, to obtain results stating that the range of the potential
operator over a Holder type space is imbedded into a better space of a similar nature,
we use the method of Zygmund type estimates, which also allows to cover the case of
the generalized Holder spaces H “’("’)(Q). In the case we study, these estimates are local,
depending on points x € 2. The same approach is also used for hypersingular integrals.
Note that we deal with an open set €2 in X rather than with ”the whole” space X, so that
the so called cancellation property over €2, see (3.3), (3.4), in general no more holds. Thus
the final statements for potentials depend essentially on the properties of the potential
of the constant function. The admission of the case where the cancellation property may
fail, is important in application, for instance, to the case of domains €2 in R".

It is known that in the case of X = S""! and constant o with 0 < Ra < 1, the range
of the operator (1.1) over a generalized Hélder space with the characteristic w(z, h) is
isomorphic to a similar space with the ”improved” characteristic h%%w(z, h), this showing
a natural improvement of the local smoothness exactly by the order Re, see [29], [30],
[31]. The same is valid for the case X = R", if Holder spaces are considered with power
weights (14 |z|)" at infinity, see [26]. In the general setting of quasimetric measure spaces,

we may obtain statements on the mapping properties of the type
1°: Q) — grAO+0(Q),

and separately D : HA)+e()(Q) — HA0)(Q). However, these two statements in general do
not provide the isomorphisn I*(H*)(Q)) = H*)+2()(Q), since D and I* are not inverse
operators in general. Recall that when o = const and Q = X =R or Q = X = S"!,

we have D*I* = ¢l with some constant factor ¢, see [23], which no more holds when « is
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variable or X is a more general set. As shown in [5] for constant «, the composition D*I¢,
in case of metric measure space X with cancellation property, is a Calderon-Zygmund
operator with standard kernel. We also refer to [22], where in the one-dimensional case
X = R!, but for variable a(z), it was shown that the composition D$I¢ of Liouville
fractional operators is an invertible operator of the form I + T with compact T

The paper is organized as follows. Section 2 contains necessary preliminaries, includ-

ing estimations of some integrals of the form [ flo(z,y)]du(y) in terms of one-dimensional
Q
integrals, which replaces in a sense the passage to polar coordinates typical for the case

X = R". It also includes definition of generalized Holder spaces with variable characteris-
tics on a quasimetric measure space, as well as definition of variable Bary-Stechkin classes
of characteristics for these spaces. Section 3 contains the main results.

By C, ¢ we denote various absolute constants which do not depend on = € X. Note
that we pay an attention to estimation of arising constants, more careful than usual,

because of variable exponents and the possibility for a(z) to degenerate at some set.

2 Preliminaries

2.1 Notation and two technical lemmas

Let (X, 0, 1) be a quasimetric measure space with measure p and the quasidistance g, i.e.

a function o : X x X — [0, 00) which satisfies the conditions
0(2,y) =0<=z=vy, o(r,y) =o0(y,z), forall xandy in X, (2.1)

o(z,y) < klo(z,2) + o(z,y)], k=1 (2.2)

The space (X o, 1) is called homogeneous if the measure satisfies the doubling condition
uB(x,2r) < CuB(x,r). We refer, for instance to [3] for basics on homogeneous spaces.
As was shown in [12], a homogeneous space (X, o, 1) admits an equivalent quasimetric

01 for which there exists an exponent ¢ € (0, 1] such that the property

‘(Q1<x72) - Ql(Z/;Z)l < MQ?(JZ’,:(/) {Q1<£IZ',Z) + Ql(yVZ)}l_e (23)

holds. When p is a metric, then o automatically satisfies property (2.3) with # = 1 and
M =1.

Definition 2.1. We say that the quasimetric ¢ is regular of order 0 € (0, 1], if it itself
satisfies property (2.3). (This notion does not preassume that (X, o, 1) is homogeneous).
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In the sequel we suppose that all the balls B(z,r) = {y € X : o(z,y) < r} are
measurable and pS(x,r) = 0 for all the spheres S(z,r) = {y € X : o(z,y) = r},z €
X, r > 0. We also suppose that measures of balls satisfy the condition

pB(z,r) < Kr™ as r—0, K >0, (2.4)

where N > 0 need not be an integer.
Let € be an open set in X and d = diamQ. By WL() we denote the class of
functions f defined on 2 satisfying the weak Lipshitz condition

min(1, d)
|f($)_f(y)|§1n 9

A
—, o(z,y) < , T,y €€, (2.5)

o(z,y)

where the constant A = A(f) > 0 does not depend on z and y.
We say that a non-negative function L(x,t) defined on Q x [0,d],0 < d < oo, is almost

increasing in ¢ uniformly in z, if there exists a constant C, > 1 such that

L(xz,t) < CpL(z,7) forall 0<t<r7t<d.

L(x,t)

Everywhere below we take C, = sup sup CER

€ O<t<T<d

ma(t):{ at_17 170

Let a > 1 and

Ina, t=0 ‘
It is easy to check that m(#) is increasing for all ¢ € R*.

Lemma 2.2. Let L(xz,t) be a non-negative function defined on Q2 x [0,d],0 < d < oo,
almost increasing in t uniformly in x, and v(x) an arbitrary real-valued function. Then

i L (z,a7"r) - 1 / L(z,t) dt (2.6)

= (akr)® T Crmg[y(2)] / @) ¢

and
'S8

iL(m,akr) < Cra"@ /L(:U,t) dt  L(x,r)

—+
—kp\Y@) T my[y(x (@) ¢ ()
o (a7Fr) ()] )

where a > 1, 0<r <d and x € Q. If L(x,t) satisfies the "doubling-type” condition

: (2.7)

L(z,at) < Dp(a)L(z,t), a>1 (2.8)

where Dy (a) > 0 does not depend on t (but may in general depend on x), then (2.7) is

valid also in the form

i L (z,a7%r) < CrDy(a) / L(z,t) dt (2.9)

2 @@ S mah(@) ] e T



Proof. We have

"1 L(wt)dt )
/ @ T < OpL(z,a "r)Gy(z),
a=k—1p

a Fr
where Gi(z) = [ ¢77@~1dt. Treating separately the cases where v(z) # 0 and v(z) =
a~k-1p
0, we see that

Gr(r) = M [v(2)]

= ()@ (2.10)
in both the cases. Therefore,
a Fr
L(z,t)dt L(z,a ")
/ @ g S Cﬂ%h(@]m
a=k=1p

and we arrive at (2.6). To prove (2.7), we again use the almost monotonicity of L(x,t)

and have
a Fr
[ Lt Lo ) mbie) et
@) ¢ Cr Cr (aFrp@
a~k=1p
Therefore,
i L(z,a " 1r) CL /L(m,t) dt (2.11)
= (aFrp@ Tmgy(2)] ) 0@t '
Since . .
Z L(z,a "r) _ @ Z L(z,a % tr)  L(z,7)
(a*kr)W(ff) (a*kr)V(m) 7“7(5”) ’
=0 k=0
we arrive at (2.7). Inequality (2.9) follows immediately from (2.11) by (2.8). O

Remark 2.3. The possibility to choose an arbitrary a > 1 in lemma 2.2 will be later

used in applications of this lemma in order to optimize constants in some inequalities.

Lemma 2.4. Let L(z,r) and vy(x) be as in Lemma 2.2 and a > 1. The inequalities

are valid

; [log, ] d
1 L(z,t) dt L(z,a*r) _ CpDy(a) [ L(z,t)dt
CLma[V(l’)]/ po TS 2 (akr) @ = mah(x)]/ Sor 7 TEQ (212)

T - T

where it is also assumed that L(x,t) satisfies the doubling condition (2.8) in the case of the
right hand side inequality, and 0 < r < g in the left-hand side inequality and 0 < r < d

i the right-hand side one.



Proof. Since L(z,t) is almost increasing in ¢, we have

akr akr
Lz, t)dt (a)— L(z,a"r)
/ t,y(m) 7 S CLL(.T, akr) / t (@) ldt = CLma[’Y(.T)]W
ak—1r ak=1r
by (2.10). Hence
log,, 4 og, ¢ aPr da—"
EﬁL@MM> 1 [iffzmﬁ@_ 1 /me@
2 (@ Z Cmb@] 2= ) 0@ ¢ Gmp@)] ) 6@
- - ak—lr r
where
d d
n =n(r) = log, o log, - €[0,1). (2.13)

Since da™" > £, we arrive at the left-hand side inequality in (2.12). To obtain the inverse
inequality, we again use the almost monotonicity of L(z,t) and have

akr akr

/ L(z,t) dt 1 L L) / @1 gy _ m,[y(z)] L(av,ak_lr)‘

tr(@) ? - CL CL (akr)’Y(l’)
ak—1lp ak—1p
Therefore,
log, ¢ a d
[ir] L(x, ak’lr) ir / t) dt < _Co / L(x,t) dt
(ahr)rt) t ~muy(z)] ) @ ¢
k=1 ak 1p r
and we arrive at the right-hand side inequality. O

2.2 Estimation of truncated potential type integrals via one-

dimensional integrals

Lemmas 2.5 and 2.8 given below provide in sense a replacement of the formula of the

passage to polar coordinates used in the case X = R".

Lemma 2.5. Let L(x,t) be a non-negative function defined on 2 x [0,d],0 < d < oo,
almost increasing in t uniformly in x. If X satisfies condition (2.4) and v(x) is an

arbitrary real-valued non-negative function, then

L[J:;Q(ZE,Z)] y(x)_N r thlL(l',t) V(:E) L(x7/r=)
/ Wdﬂ(z) < Oa(«r)a /Wdt + CLK(I m, (214)
B(z,r) 0



where x € Q, 0 <r < d,

KC2a*®
m,(v(z) — N)’
and a > 1 is an arbitrarily chosen number. If L(x,t) additionally satisfies condition (2.8),
then (2.14) is valid also in the form

Lz, o(x, 2)] [N ()
/ oz, 2)® du(z) < C(z) / — dt, ze€Q, 0<r<d, (2.16)
B(z,r) 0

Co(z) = (2.15)

where C(z) = mings1 Cy(x)Dr(a). In the cases where Dp(a) has a power growth, i.e.
Dr(a) = Dpa®® Dy = const, B(z) > 0, we have

v(z)+B(x)

v(z)+ B(x)\ *@
C(z) = KC}DL[N + B(2)] (%ﬂ(;))) : (2.17)
v(z)+B(x)
v(@)+6(@) ) VN _
with (W) = €.
v(z)=N

Proof. We have

<CLKZM( )V = C ke x>z (z.ar)

—kl)() krl/(fv

Then by (2.7) and (2.9) we arrive at inequalities (2.14)—(2.16). In the cases where Dy (a) =

D1a’®) | we can minimize the constant C, ( )Dp(a). Direct calculation shows that the

! 1
minimum is attained at a = (Z&ﬁ;?i?) "7 for those x where v(xz) # N and a = eN+5@
when v(z) = N. After easy calculations this gives the ”constant” (2.17).

O

Remark 2.6. Lemma 2.5 will be applied in the sequel to the case where L(x,t) =
w(f,z,t) is the local continuity modulus. As is well known, condition (2.8) in this case
holds with Dy (a) =[a] +1 <a+ 1 < 2a.

Corollary 2.7. Let condition (2.4) be satisfied and a(x) > 0,z € Q. Then for all the
points x, where a(x) > 0, the estimate holds

dp(z) re®
/ - < KCon () (2.18)

A x, z)N-alz) = ’ a(x)
olz,z)<r



1—-_I
where Co n(z) = N [1 — %} " and N < can(z) < e[N + a(z)].

Proof. Estimate (2.18) is derived from (2.16)-(2.17) with L(z,t) = 1 and v(z) =
N — a(x). The left-hand side bound N < ¢, n(x) is obvious, while the right-hand side
one may be obtained from the inequality ;= < e(1 — t)t,t € [0,1], which may be verified
by standard tools of analysis.

Observe that estimates of the type (2.18) are known in the case of constant a(z) =
const with some constant in the inequality (see for instance, [5], Lemma 1); our goal
was to obtain the constant explicitly dependent on the parameters involved, including

dependence on the values of a(x) which may tend to zero. Note that in the Euclidean
case X = RY inequality (2.18) holds with K = |S | and Can = O

Lemma 2.8. Let X satisfy condition (2.4), L(x,t) be as in Lemma 2.2 and fulfill the
doubling condition (2.8) and let v(x) be as in Lemma 2.5. Then

Llz, oz, 2)] KC3Dy(a)a"® / t" Lz, ) vy L. )
ZUE Ey <)) < |
/ o(x, z)®) du(z) < ma[v(x) — N] @) dt+ KCra TN (2.19)

Q\B(z,r) T

where 0 < r < d, the second term on the right-hand side being absent in the case d = oo.

When d < oo, estimate (2.19) may be also given in the form

d
Lz, o(z, 2)] UL, 1) 4
/ Wdu(z) < QCa(JJ)DL(CL)/tVTdt, O<r<—, (220

where C,(z) is the same as in (2.15). In the cases where Dy (a) has a power growth, i.e.
Dy(a) = Dpa®® Dy = const, B(z) > 0, and v(x) > N, estimate (2.20) may be optimized

as follows

d
Llz, o(z, 2)] /tN‘lL(:c,t) N

ofw, 2)Y @) =2 o) 2.21
/ o(z, 27 @ dp(z) < 20(x) ) dt, 0<r<e ~d, (2.21)
Q\B(I,’I‘) r

where C(x) is the same as in (2.16).

Proof. Note that estimate (2.20) with a = 2 was proved in [9] for functions L(z,t) of

p(z)
the form L(z,t) = [9 (t)} with an almost increasing g(t), without explicit evaluation of
the factor C,(z). We have
Lz, o(x, 2 Lix, o(x, z
[ e [ Hededl

Q(;p’ z) v(z)
X\B(z,r) r<o(z,z)<d



[loga %]

Liz, o(z, 2)] Llz, o(x, 2)]
; / o, 2y W) T / o, 2y M)

ak—1lr<o(x,z)<akr a—"d<o(z,z)<d

= F1($,7“> + F2($7r)7

where Fy(z,7) =0 in the case d = oo and 7 € [0, 1) is the same as in (2.13). For Fy(z,r)

by the almost monotonicity of L(z,r) we obtain

d

[loga %] [loga 7] k
L(z,afr) , , \~ vz L (z,a"r)
Fi(z,r) < CLK Z L@ (a 7") = CpKa'™ Z (aFr)@-N"
= (k1) —
Then .
KC2Dp(a)z"X) [N L(z,1)
F, < —L L dt
S ToE e

r

by (2.12) with y(z) = v(z) — N. For Fy(z,r) we observe that ¢ < a™"d, so that

qv(@)—N

Fy(z,r) < / Wdﬂ(Z) < KCpa"

L<o(z,z)<d

ol

and we arrive at (2.19). To obtain (2.20) from (2.19), we observe that for r < ¢

d d d
L(x,t) L(z,t) 1 d 1
/tu(m)N+ldt = / tu(a:)fNJrldt = C_LL .T,a /tu(w)NJrldt
d

1 d\ mf{(v(z) = N)4] _ L(z,d) my(z) - N]
=—VL|z - >
a dv(@)—-N CLDL((I> dv@) =N
by formula (2.10) with ¥ = 0,7 = d and y(z) = v(z) — N, and assumption (2.8), which
yields (2.20).
Finally, to arrive at (2.21), we minimize C,(z)Dy(a) as in the end of the proof of

Lemma 2.5 and observe that for the minimizing value a = <%) Y97 one has

d > e=wd. O
P

ol

Lemma 2.9. Let z,y,z € X, o(z,2) > 20(z,y) and Ry > —1.
I) If o(z,y) is a metric, then

_ _ o\r,y
of:5)7 = el 7| < 2l (@,9) (2.22)

(I, z)?R’y—‘rl :
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II) If o(x,y) is a regular quasimetric of order 0 € (0,1], then

o (z,y)

_e ) 2.2
o(w, z)Rr+0” (2.23)

lo(z,2)7" = oly,2) 77| < C,

where C., = M|~|2®13'=% and M is the constant from (2.3).

Proof. Inequalities of the lemma are in fact well known, see for instance [7], but we
dwell on some details of the proof since we admit complex-valued exponents v and are
interested in evaluation of the arising constant C,. Inequality (2.22) is an immediate

consequence of the numerical inequality
b =7 < |y| - |b— ¢|(min{b,c})™™ 1, b>0,¢>0, yeC. (2.24)
(see its proof in Appendix). In the case b > 2|a — b|, from (2.24) we easily obtain
677 — ] < 2Py b — b (2.25)

Hence with a = g(x, z) and b = o(y, 2), inequality (2.22) follows when p is a metric.
In the case where p is a regular quasimetric of order 6 € (0, 1], inequality (2.23) follows
from (2.25) in view of (2.3). O

2.3 Holder and generalized Holder spaces with variable charac-

teristics on a quasimetric measure space

For fixed = € €2 we consider the local continuity modulus

W(f,l', h) = wQ(fvl'a h) = Sup |f(l‘) - f(2)| (226)

z€Q:
o(z,z)<h

of a function f at the point z. Everywhere below we assume that |h| < 1. The function
w(f,x,h) is non-decreasing in h and tends to zero as h — 40 for any continuous function
on €2 and fixed x.

Lemma 2.10. For all z,y € Q) such that o(x,y) < h, the inequality
1
—w
C
holds, where C' = [2k] + 2 and k is the constant from (2.2). If a(x) € WL(QY), then

(f,2,h) Sw(f,y,h) < Cw(f,z,h) (2.27)

%t“@) < W < Cp@) (2.28)
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for all x,y such that o(x,y) < h, where C' > 1 depends on the function a, but does not
depend on x,y and h.

Proof. We have

w(fy,h) = sup [f(z) = fly)l < sup [f(2) = f(@)] +w(f, 2, 0(z,9)).

2€B(y,h) 2€B(y,h)

It is easily seen that the condition o(z,y) < h implies the embedding B(y, h) C B(z, 2kh).
Therefore,
w(f,y,h) < w(f,z,2kh) +w(f,z, h).

By the property w(f,z,A\h) < ([A\] + Dw(f,z,h) of continuity moduli we arrive at the
right-hand side of (2.27). Changing the roles of x and y, we obtain the left-hand-side one.

To prove(2.28), it suffices to observe that (2.28) is nothing else but |a(x)—a(y)|-| Int| <
In C' which follows from the WL-condition when o(z,y) < t. O

Remark 2.11. Note that the moduli of continuity w(f, z,t) satisfy the inequalities

[
w(f,z,h) < 2(1 - 6) (ﬁ) Wbl o< (2.29)

t t

O\:

(2.30)

2
g 7 w(f,z.t)
h

N R

under any choice of § < 1 and 8 > 0. Inequality (2.30) is easily obtained by the estimation
of the right-hand side from below by making use the monotonicity of the continuity

modulus. Inequality (2.29) is similarly obtained by making use of the property

w(f,z,t) >1w(f,x,h)
-2

t<h 2.31
; T < (2:31)

of continuity moduli.
In the sequel, the notation A(z) will always stand for a function A(x) on €2 satisfying

the assumptions

A_ = inf A(z) >0 and A :=supA(z) < L.
zeX zeX

Definition 2.12. By H*)(Q) we denote the space of functions f € C(Q) such that

w(f,xz, h) < CrN@) (2.32)
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where C' > 0 does not depend on x,y € ). Equipped with the norm

w(f,x,h)
Q) = +sup su )
Iy = I flleqey +sup sup =53

this s a Banach space.

We will also deal with the generalized Hélder spaces H™)(Q) of functions whose
continuity modulus is dominated by a given function w(z, h), the case w(z,h) = b @
being a particular case.

We denote T = Q x[0,d]. For a function w(x,t) defined on T we introduce the bounds

w_(t) = inf w(x t), and wy (t) = supw(x,t).
zeQ zeN

Definition 2.13. A function w : T — RL is said to belong to the class W = W(T),
of
1) w(z,t) is continuous in t € [0,d] for every x € Q,
2) w_(t) >0 whent >0 and tllrfow(x,t) =0 for every x € €,

3) w(x,t) is almost increasing in t for every x € €.

Definition 2.14. Let w(x,h) € W. By H*O(Q) we denote the space of functions
f e C(Q) such that w(f,x,h) < cw(z, h), v € Q where ¢ > 0 does not depend on x and
h. Equipped with the norm

h
1 f1l ety @) = 1 fllo@) +  sup %7

zeQ,h>0 W

this s a Banach space.

2.4 On Zygmund-Bary-Stechkin classes CIDZ((:))

Definition 2.15. We say that w(z,t) belongs to a generalized Zygmund-Bary-Stechkin

class CIDZ((',)) = CIDZ(('.))(T), where 0 < §(x) < B(x),x € Q, if w(z,t) € W, and

h §(x) d
/(%) w%’t)dt < cw(z,h) and / ( ) )dt < cw(z, h), (2.33)
0 h

where 0 < h < § 2 gnd ¢ > 0 does not depend on h € (O } and x € Q. By ®°0) we also

denote the correspondmg class with only the first of the conditions in (2.33) satisfied, and

by @y the class with only the second one, so that ® (() GLONe Dgy.
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From the definitions of the classes ®g.) and W it easily follows that a function w(x,t) €
Pg(.) satisfies the property
w(zx,t) > ctP® (2.34)

with a constant ¢ > 0 not depending on x and .

Such classes (D‘Sﬁ in the case of functions w = w(t) and exponents 3, 4, not depending on
the parameter x, were introduced in the paper Bary-Stechkin [1] with d = 0,5 =1,2,3, ...;
the classes (ID‘; with constant 0 < § < /8 appeared in [25]. We refer also to [8] for some
properties of functions in these classes, see also their detailed study in [10].

We make use of the Matuszewska-Orlicz indices known in the theory of Orlicz spaces,
see [14] and [13], of a function w(x,t) with respect to the variable ¢ € [0, d]:

In |lim, <@t In |Timy, o2&t
mlw,z) = ?5211) In ¢ = In ¢ (2.
I [Ty o 2240 In [Ty o224
M (w, z) = inf = lim (2.36)
t>1 In ¢t t—o00 In t

depending on the parameter x € Q, m(w,z) < M(w,z) . These indices in application
to generalized Holder spaces were studied in [15], [16], [18], [17], [20], [19], where in
particular was shown that the belongness of a function w(t) to CD% with constant § and
may be characterized in terms of the index numbers m(w), M (w). In case of the class @6/8(("))
depending on a parameter, a similar investigation was made in [21], including study of the
uniformness of Zygmund type conditions (2.33), see Lemma 2.18. (In [21] the parameter
x was a point of an arbitrary set).

We will also need the following numbers

In (lim ess inf w(‘v’rh)) In (M ess sup L&)
o0 zeQ  w@h) h—0 w(z,h)
m(w) = sup —70 . M(w) = inf — 120 ze0

r>1 In r r>1 In r

) . (2.37)

Note that m(w) < igf  m(w,z) and M(w) = sup M(w, z).
TES™T e

Definition 2.16. By 20(T) we denote the subclass in W(T) of functions of the form
w(z,t) = [p(t)]}®) where ¢ € W([0,d]) and A € L>®(Q), essinf A(x) > 0.

Lemma 2.17. ([21], Lemma 2.4) Let w(z,t) = [p(O)M® € W. Then m(w,r) =
Az)m(p), M(w,z) = Az)M(p), and

m(w) = inf m(w,z) and M(w)=sup M(w,x).
€2 e
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For the case () = 8 = const and §(z) = § = const, in [21] (Theorems 3.1 and 3.2)

the following statement was proved.

Lemma 2.18. Let w(z,t) € W(T). Then w(z,t) € ®° <= m(w) > 6, and w(z,t) €
Oy —= M(w) < p.
For the case of variable f(x) and d(x), the corresponding statement may be given in

the following form obtained from Lemmas 2.18 and 2.17.

Corollary 2.19. Let ws = %fg and wg = jgf;? Then

w(z,t) € B0 = m(ws) >0, (2.38)

w(x,t) € Pgy = M(wg) <0. (2.39)

In case of functions w(z,t) € W(T), the equivalencies (2.38), (2.39) take the form

w(z,t) € PV = esseglf[m(w, z) —d(x)] >0, (2.40)
w(x,t) € Pgy <= esssup[M(w,z)— f(z)] <O0. (2.41)
e

We will make use of the following property of the bounds for functions w(z,t) € W (T)

in terms of their indices:
e tMre <z, t) < ept™@) e, 0<t<d (2.42)

where € > 0 and the constants ¢, c; may depend on €, but do not depend on x and ¢ (see
[21], Theorem 3.5).

3 Potentials and hypersingular integrals of variable

order in the space H*)(().

Everywhere in the sequel we suppose that o(z,y) is either a metric or a regular quasidis-

tance of order 6 € (0, 1].

3.1 Zygmund type estimates of potentials.

We assume that a € C(Q2) and Ra € WL(Q).

15



Remark 3.1. If Ra € WL(Q2), then
1
e ApRal@) < yRely) < ApRal®) g o(z,y) < min (t, 5) , (3.1)

where A = A(Ra) is the constant from (2.5) for the function a(z) = Ra(x).
It is clear that in Holder norm estimations of functions I*f, the case f = const plays

an important role, in the case where

Jo(z) = 1(1)(z) = /#(NZ)Q(@ (3.2)

Q

is well defined. Observe that in the Euclidean case 2 = X = R, this integral although
not well directly defined, may be treated as a constant in the case a(z) = a = const in

the sense that the cancellation property

1 1
— dz=0, 0<Ra<l1 RY 3.3
[ =] =0 o<ma<t awe )
RN

holds. For constant a, the function J,(x) is also constant in the case Q = X = SN-1

which fails when o = a(z) and the cancellation property of the type

1 1
/ |:|Z _ I|N—o¢(:v) B |Z _ y|N—a(y)1 dM(Z> = Oa (34)
Q

no more holds even for Q = RY or 2 = SV~ (see for instance [5] on the importance of the

cancellation property I%(1) = const for the validity of mapping properties of potentials
within Hélder spaces on quasimetric measure spaces)

When considering Hélder type spaces H*()(Q) which contain constants, the condition
3, € HA(-)Jra(-)(Q)
is necessary for the mapping
I HAO(Q) — HAOT0(Q)
to hold.

Remark 3.2. Let in?2 Ra(zr) > 0 and z,y ¢ II,. Then
e

loa(x) — a(y)] o AOEN _ o @] gu(
Cnlin(m(;c),érea(y))+/[@( 2) oy, 2) | du(2)| (3.5)

Ta(2) = Taly)] <
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and
la(2)Ta(z) — a(y)Ta(y)| < Cla(z) — a(y)] (3.6)

+min(Ra(a), Ra(w) | [ oo, )" = ol 2] du(2)

where C' > 0 does not depend on x,y € ().

Proof. We have

sa@ﬁ—mxy>=y/[mywaM“—N—-Myﬂaﬂw—N]mwzrﬁ/[g@aaa@%N-myﬂaM@—N]mmzy
Q Q
(3.7)

By (4.33) with f(t) = o, after easy estimations we obtain
|Qa(a:)fN o Qa(y)fN} < |Oé<£ll'> ( )lQmm Ra(z),Ra(y N‘ In Ql 0 < o< d < oo

which yields (3.5) after easy calculations with estimate (2.14) taken into account. Estimate
(3.6) easily follows from (3.5). O

Remark 3.3. The meaning of estimates (3.5)-(3.6) is in the fact that the second
term on the right-hand sides may be subject to the cancellation property: at the least it
disappears when Q = X =R" or Q = X =SV1.

The estimate (3.9) provided by the following theorem clearly shows the worsening of
the behaviour of the local continuity modulus w(I®f, z, h) when x approaches the points
where a(x) vanishes. We also give a weighted estimate exactly with the weight a(z). For

the latter we exclude purely imaginary orders a(x) = () by the following condition
arg a(a)| < 3 >0 (3.8)
max | arg a(z 5~ >0 :

We use the notation

ap(z) = min Ra(y).
o(z.y)<h

Theorem 3.4. Let Q be a bounded open set in X, a € C(Q) and Ra € WL(Q) and
0< ingf2 Ra(z) < supRa(x) < 1, and let 0 < h < Ad, A = min (%,e*%> . Then for all
z€ €N
the points © € Q\Il,, such that ap(x) # 0, the following Zygmund type estimate is valid

d
hR@ oy (f, 2, h) + Ch?

h

w(f,xz,t)d

1+9 Ra(x)

w(I“f,x,h) < (3.9)

ap(x)

17



d
w(f,x, t)dt ~
+Cufaat) [ AL L o wlSlow

h
where the constant C' > 0 does not depend on f,x and h.

If additionally o(z) satisfies condition (3.8), then for all the points x € Q\Il, the
weighted estimate holds

d
N ol w(f,z, t)dt
w(al®f,z,h) < ChA*@y(f, 2, h) +Ch9/m (3.10)
h

d d
w(f,x,t)dt

L Cw(a, . h) / f%(z 4 Co(adas 2, )| £l

h

Proof. Given z,y € Q, we represent the difference (1 f)(x)—(1®f)(y) in the following

form (compare with similar representations in [26], [27], [35] in the case of X = SV~1)

(1)) - (1) = (3.11)
= [ U - r@ew )~ [ 1) = f@lely ) du()+
o(z,2)<2h o(z,2)<2h

b 1) - S e ol 20 du(a) ¢

o(x,z)>2h

+ [ = 5@ ol 2 ol due)

x,2)>2h

of
) / {Q(xv Z)a(x)_N —o(y, Z)a(y)_N} du(z) =L+ L+ I3+ 1, + Is.

For I, we have

du(z
‘Ill Sw(fvxvzh) / Wﬁl—)&éa(m)‘

o(x,z)<2h
By Corollary 2.7 and the property w(f,z,2h) < 2w(f,z, h) of the continuity modulus, we

get
Ry (f, 2, h)

L| <4C(K,N 3.12
’ 1’ = ( ) ) %O&(l’) ( )

where C(K,N) = eK(N + 1) The term I, is similarly estimated, since
{z:0(x,2) < 2h} C{z: 0(y, z) < 3kh}, (3.13)
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where k is the constant from (2.2) and we obtain

h%a(w) h h%a(m) h
| < 12k0(K, N) L2 ook N wif,zh), (3.14)
Ra(y) an ()
To estimate I3, we make use of Lemma 2.9 and obtain
0 CU(f,l‘,Q(CC,Z))
Bl <Waran [ L), (315)

o(x,z)>2h

where 6 = 1 when p is a metric and 0 < # < 1 when (X g, i) is regular of order 0 € (0, 1],
Ci(N, M, o) = 12M sup,cq [N — a(y)| does not depend on, z,y, h and M is the constant
from (2.3). The integral on the right-hand sides of (3.15) is estimated by means of
inequality (2.21) of Lemma 2.8:

d
) [ w(f.o.1)
|13‘ §02<K’N7M,Oé)h /mdt

h

with Co(K, N, M,a) = 4eK (N + 1)Cy (N, M, o).

For I, we have

s [ SEREEE g sy 1)

o(z, z)N—Ral)

o(x,z)>2h

By (2.24) with a = 0 = o(z, 2) and b = 1 we have

a(z)—aly) _ 1} <(d+1) () — a(y)l < Colalz) — aly)] (3.16)

‘Q [min{l’g}]%a(y)—%a(a‘)—i—l — Q%a(y)—%a(x)-H ;

for all 0 < p < d < oo, where Cj depends only on d and max, ycq |Ra(y) — Ra(z)|, but
do not depend on z,y € Q and ¢ € (0, d]. Therefore,

1l < Colato) ~at)l [ PSS e

o(x,z)>2h

and then ]
x, t
|14 < Cyw(a,x, h) / 2f§Ra x)
h

by inequality (2.21) of Lemma 2.8, where Cy = 4CyC (K, N) does not depend on z, y, h.
Gathering the estimates for I,k = 1,2,3,4, and taking into account that |I5| <
|f(2)|w(Ta, z, h), we get at (3.9).
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To get at (3.10), we make use of the representation

a(z)(If)(z) — a(y)I*f)(y) = (3.17)
—a@) [ FE-f@lew ) O ) ) [ - f@ely, 9 du(z)+
o(z,2)<2h o(z,2)<2h
+a(y) / [f(2) = f(@)] {o(z, 2)*@™N — oy, 2)*@ N} du(2)+
o(z,2)>2h
ole) / [7) — F@) {ela. 2" = ol 2"} dy(2)
‘/{a ,2)" 7N —a(y)oe(y, 2)*@ N} dp(z)
Haw) =) [ U6 - f@llele, 0 due) = I+ I8 4 I+ I IS I
o(x,z)>2h
Estimations of the terms I,k = 1,..,5, follow the same line as those for the terms

I,k =1,..,5, above, while |I¢] < Cw(ag, h) :; J;i(?) by Lemma 2.8 and Remark 3.1.

After collecting the estimates we arrive at (3. 10) with (3.8) taken into account. O

3.2 Zygmund type estimates of hypersingular integrals

Remark 3.5. Note that the second term on the right-hand side of estimate (3.18) proved
in the following theorem is taken in the form not symmetric with respect to z,y (compare
with the first term), because all the second term calculated at the point x is equivalent

to that calculated at the point y according to Lemma 2.28, due to the integration over
{t > h}.

Theorem 3.6. Let o € C(Q),Ra € WL(Q) and 0 < mig Ra(x) < maécﬂ%a(x) < 1.
Te €
If f € C(Q), then for all x,y € Q with o(x,y) < h such that Ra(x) # 0 and Ra(y) # 0,

the following estimate is valid

(D)) = (D" 1)) € ot et T e

j[ fxt U0 D1 (318)

w(f,z, t)dt

$2tRa(z)

2
—i—C’/ [w(a, z, h) + Kt
h
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where C' > 0 does not depend on x,y and h.

Proof. We represent the difference (D*f)(z) — (D*f)(y) as
(D*f)(x) = (D*f)(y) = A1 + Az + A3 + Ag + A5,
where

A= / @)= F@)le(, 2) V@ dp(z), Ay = / F@)—F(2)]e(y, 2) 2O dp(z),

o(z,2)<2h o(z,2)<2h

A= [ 1) = F@) el )0 = ol )

o(z,z)>2h
A A "I
A= [fy) - f >]( )/ N
A= [ ) = £@) ole, )V — ofa, )V} duz) (3.19)

o(z,2)>2h
Estimation of the terms Ay, k = 1, ..., 5, follows more or less the same lines as in the proof

of estimate (3.9). Thus for A; by Lemma 2.5 we obtain

14,] < / wolfsw0@,2)) )y o C’/Mdt. (3.20)

Q(l’, Z)N+§Ra(ac) tl+Ra(z)
o(xz,z)<2h 0

For Ay, by (3.13) and the same Lemma 2.5 we have

o(y, z)N+Ra)

o(y,2)<3kh

3kh 0 h 0
w(f,y,t w(f,y,t
< C/ H1+Ra(y) / A Ra(y)
0 0
where we have used the property (2.31). In the case of Az, we make use of (2.22) and

(2.23) and get

0 W(f,.ilﬁ,g(l’,Z))
|A3| < Ch / Q(l', Z)N+§}Ea(y)+0 dlLL(Z)7

o(z,z)>2h

where C' = M2V 23179 . max,cq |N — al(y)|. Then by (2.20), we obtain

d
|As| < C’h(’/wdt

t+1+0+Ra(y)
h
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For Ay we observe that {z € Q : o(z,2) > 2h} C {z € Q: o(y,2) > % and use (2.20)
again, which yields

d
l<utran [ < culrann)

oly,z)>%

tl+Ra(y) — %a(y) hRa(y)

d
[P )
h

Then by (2.29) we arrive at the estimate

h
fy,
A< s [ i
0

Finally, for As, by (3.16) we obtain

w(f,z,o0(z,2))

|A5| < W(Oé, x, h‘) Q(l’, Z)N+1+§Ra(z) (Z)
o(z,y)>2h

and then by (2.20)
d
wl(f,x,t
45| < CW(a,x,h)/%dt. (3.21)
h

Observe that the bounds for |A3| and |A4| are dominated by the bounds for |As|, because

h < Cw(a,z,h) with the constant C' > 0 not depending on z, if «(z) is not an identical

w(a,z,h) w(a,z,d)
h Z 2 d

and the fact that insf2 w(a,z,d) > 0 for any continuous function a(x) different from a
e

constant. The latter follows from the almost monotonicity property

constant.

Gathering all the estimates for Ay, ..., A5, we arrive at (3.18). O

Remark 3.7. Similarly to Theorem 3.4, it is possible to obtain weighted estimates
for D f with the weight a(z). We do not dwell on such estimations in this paper.

3.3 Theorems on mapping properties for potentials and hyper-

singular operators of variable order in the spaces H"()((Q).

Recall that for the potential operator I* we allow the variable order «(z) to have a

degenerate Ra(x) on a set 11, (of measure zero). We consider the weighted space
H*(Q,a) = {f : a(z) f(x) € H+D(Q},

where
wa(z, 1) = R @y(z, 1),
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Theorem 3.8. Let

a(x) € Lip(Q) and 0 < Ra(z), maxRa(z) <0, (3.22)

€

let u{x : Ra(z) = 0} = 0 and let condition (3.8) be satisfied, and
w(x,t) € (I)g_g)cga(x). (323)
If
aJ, € H), (3.24)
then the operator I* is bounded from the space Hw(’)(Q) into the weighted space
HY0)(Q, o).
Proof. It suffices to show that

w(al®f, h,x)

w(-)
h%a(m)w<x,h) <c|[fllgue for fe H"(Q) (3.25)

for small A > 0. Under the assumptions of the theorem, from (3.10) we have

d
" . M\’ k| w(z, t)dt
w (&I ()f7$,h) S C h% ( )w(x’ h) —|—/ (?) + ?] t1—§R—a(x) HfHHw<) (326)
h

d
ol w(z, t)dt
<c héR ( )w(a:, h) + he / m Hf”Hw(-)
h
By condition (3.23), the integral term on the right-hand side is dominated by Ch**@w(z, h).
Therefore, (3.26) yields (3.25). O

A "non-degeneracy” version of Theorem 3.8, obtained similarly from (3.9), runs as

follows.

Theorem 3.9. Let

a € Lip(©2), 0 < minRa(x) < maxRa(z) < 6. (3.27)

e e

Under conditions (3.23) and (3.24), the operator I* is bounded from the space H"")(Q)
into the space H">)().

We also reformulate Theorems 3.8 and 3.9, replacing the information about the be-

longness of w(z, h) to the Zygmund-Bary-Stechkin class ®g_gaq(.) by the direct inequalities
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imposed on the index numbers m(w,z) and M(w,x) of w(x,h), which is possible by

Corollary 2.19. To this end, we will use the condition
M(wy) <0 (3.28)

which takes the form
sup[M (w, z) + Ra(z)] < 6. (3.29)

xeQ
in the case where w(z,t) € 20.

Theorem 3.10. Let w € W(T) and conditions (3.24) and (3.28) be satisfied.
L. Under conditions (3.8) and (3.22) the operator I* is bounded from the space H*()(€2)
into the weighted space H*>")(Q, a).
II.  Under condition (3.27), the operator I* is bounded from the space H*)(Q) into the
space H*>0)(Q)

Proof. The statements of the theorem follow as a direct reformulation of Theorems
3.8 and 3.9 via Corollary 2.19. a

Remark 3.11. In the case of ”variable order Holder space”, that is, w(z,t) = t*@),
condition (3.28)-(3.29) reduces to
sup[A(z) + Ra(z)] < 6.
e
In the following theorem we use the notation

Wog(z,t) =t %@ y(2,t) and T_o(z,h) = sup w_a(y, h).
y:ly—z|<h

Theorem 3.12. Let conditions

a € Lip(2), 0 < minRa(zr) <maxRao(z) <1 (3.30)

z€ z€eQ)
be fulfilled. The operator D*U) is bounded from the space H“U)(Q) into the space
H2-=0(Q), if
~ Ra(z
W(Ivt) S (I)G—f—étoz(a:)’
or equivalently
m(W—_q) >0 and M(©_,) <¥6; (3.31)

in particular, when w(z,t) € W(T), conditions (3.31) take the form

0 < essinf{m(w,x) — Ra(x)}, esssup[M(w,z)— Ra(x)] < 6. (3.32)

€ e
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In the case of “wvariable order Holder space” with w(z,t) = t*®  one should take
m(w,x) = M(w,x) = \Nx).

Proof. The proof of Theorem 3.12 is obtained similarly to that of Theorem 3.8, by
means of the Zygmund type estimate (3.18). O

4 Appendix. Proof of inequality (2.24)

Since « is complex, one may not use the mean value theorem in the Lagrange form, but

its integral form
f() — f(a) = (b—a) /f'(a + s(b—a))ds (4.33)

serves well for complex-valued functions f(t). For f(t) =¢~7 we arrive at
1
a7 =57 < e =8 [la-+ s(b - @) s,
0

from which (2.24) easily follows.
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