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Abstract

We show that Riesz-type potential operators of order α over uniform do-
mains Ω in Rn map the subspace Hλ

0 (Ω) of functions in Hölder space Hλ(Ω)
vanishing on ∂Ω, into the space Hλ+α(Ω), if λ + α ≤ 1. This is proved in a
more general setting of generalized Hölder spaces with a given dominant of
continuity modulus. Statements of such a kind are known for instance for the
whole space Rn or more generally for metric measure spaces with cancellation
property. In the case of domains in Rn when the cancellation property fails,
our proofs are based on a special treatment of potential of a constant function.
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1 Introduction

Mapping properties of potential operators within the frameworks of Hölder spaces
are well studied in the case of the whole space Rn, see for instance [15], Theorem
25.5, in the case of spherical potentials, see [13], Theorems 6.37 and 6.38, for more
general setting of generalized Hölder spaces on sphere we refer to [17], [18], [19], [20].
Such mapping properties are also known in the general setting of metric measure
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spaces X, see [2], [3], [4], [5] under the assumptions that X satisfies the so called
”cancellation” property. In cases where the potential of a constant function on X
is well defined, this cancellation property means that the potential of a constant is
constant. This property was also used in the recent paper [12], where there were
admitted potentials of variable order α(x) with possible degeneration: α(x) = 0 on
a set of measure zero.

The cancellation property holds in the cases X = Rn and X = Sn−1, but it is
very restrictive in applications, never being valid for domains Ω in Rn. As shown
in [9], the Riesz potential of order α ∈ (2, n) of a constant on a convex bounded
domain Ω is constant even only on the boundary ∂Ω if and only if Ω is a ball; the
same being also valid for α = 2 without the assumption on convexity, see [1]. To
this we have to add that the potential of a constant on a ball is constant on the
boundary, but is not constant in the ball, see Subsection 2.1.

In general, statements of the type

IαΩ : Hλ(Ω) → Hλ+α(Ω)

for the potential operator

IαΩf(x) :=

∫
Ω

f(y) dy

|x− y|n−α

may not be valid for domains, since potential of a constant behaves like [δ(x)]α near
the boundary, where δ(x) is the distance to the boundary, and consequently is a
Hölderian function only of order α. However, one should expect that there should
be valid a statement

IαΩ : Hλ
0 (Ω) → Hλ+α(Ω) (1.1)

for the space Hλ
0 (Ω) of functions vanishing at the boundary. Such mapping is known

in the one-dimensional case and goes back to Hardy and Littlewood, see for instance
[15], Corollary 1 on p. 56.

To our surprise, we did not find any multi-dimensional result of such a kind in
the literature. The goal of this paper is to fill in the gap. We show that a mapping
of type (1.1) (and more generally, for spaces of the type Hω(Ω)) holds at the least
for the so called uniform domains (known also as satisfying the banana condition).
The obtained results are based on the properties, near the boundary ∂Ω of Ω, of the
potential of a constant function, that is,

JΩ,α(x) =

∫
Ω

dy

|x− y|n−α
, x ∈ Ω. (1.2)

To show a typical behaviour of JΩ,α(x) near the boundary, in Section 2 we start with
the study of JΩ,α(x) for balls, half-space and a quarter-plane.

2



2 Potentials of constant functions for special do-

mains

For a bounded, measurable set Ω ⊂ Rn and α > 0 we define the potential JΩ,α by

JΩ,α(x) =

∫
Rn

χΩ(y)

|x− y|n−α
dy =

∫
Ω

dy

|x− y|n−α
, x ∈ Rn. (2.1)

Since Ω is bounded and | · |n−α ∈ L1
loc(Rn) for α > 0, this is well defined.

Further, for a measurable set Ω ⊂ Rn with α ∈ (0, 1) (or α > 0 if Ω is bounded)
we define the difference of the potential by

JΩ,α(x, y) :=

∫
Ω

(
1

|x− z|n−α
− 1

|y − z|n−α

)
dz, x ∈ Rn. (2.2)

If Ω is bounded, then JΩ,α(x, y) = JΩ,α(x)− JΩ,α(y). However, if Ω is not bounded,
then JΩ,α(x) may be not well defined. Nevertheless, JΩ,α(x, y) is well defined (as
an L1-integral) also for unbounded Ω, since z 7→ 1

|x−z|n−α − 1
|y−z|n−α is in L1(Rn) for

α ∈ (0, 1) due to the estimate∣∣∣∣ 1

|x− z|n−α
− 1

|y − z|n−α

∣∣∣∣ ≤ c
|x− y|

|x− z|n+1−α for |x− y| ≤ 1

2
|x− z|. (2.3)

If α ∈ (0, 1), then JΩ,α(x, x) = 0, JΩ,α(x, y) = −JΩ,α(y, x), JRn,α(x, y) = 0, and
JΩ,α(x, y) = −JRn\Ω,α(x, y), where the first two equalities also hold for α > 0 if Ω is
bounded. Moreover, JΩ,α(x, y) = JΩ,α(x, a) + JΩ,α(a, y) for all a, x, y ∈ Rn.

If Ω is bounded and α > 0, then JΩ,α(x) is continuous with respect to x ∈ Rn and
in general JΩ,α(x, y) is continuous with respect to x, y ∈ Rn when 0 < α < 1, which
may be easily shown by splitting JΩ,α(x+h)−JΩ,α(x) into the integrals

∫
Ω\B(x,r)

with

small r > 0 and
∫
Ω∩B(x,r)

. As a consequence y 7→ JΩ,α(x, y) is continuous at y = x.

A simple modification of the argument shows that this continuity also holds for Ω
unbounded if α ∈ (0, 1). Using JΩ,α(x, y + h) − JΩ,α(x, y) = JΩ,α(y, y + h) and the
antisymmetry JΩ,α(x, y) = −JΩ,α(y, x) it follows easily that JΩ,α(x, y) is continuous
with respect to x, y ∈ Rn. However, JΩ,α(x, y) is better than just continuous, see
Lemma 3.1 in Section 3.

2.1 The case of balls

In the lemma below, we give an explicit formula for JΩ,α in the case of the ball
Ω = B(0, a) := {y : |y| < a} in terms of the Gauss hypergeometric function F , by
means of which we show that

JB(0,a),α(x) = c0 + c1(a− |x|)α +O
(
(a− |x|)α+1

)
for x ∈ B(0, a) (2.4)

near the boundary ∂B(0, a).
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Lemma 2.1. Let 0 < α < n. Then

JB(0,a),α(x) =
2π

n
2 aα

αΓ
(
n
2

)F (−α

2
,
n− α

2
;
n

2
;
|x|2

a2

)
for x ∈ B(0, a), (2.5)

and (2.4) holds with c0 =
2α−1Γ(n

2 )√
πΓ(n+α

2 )
and c1 =

2α−1Γ(n
2 )

aα
√
πΓ(n−α

2 )
. Moreover,

JB(0,a),α(x) = c1(a− |x|)α + g(x) for x ∈ B(0, a) (2.6)

where g ∈ Lip(B(0, a)).

Proof. There is known a general formula for the calculation of potentials over
balls for radial functions ([10]; it may be found in [15], p. 589), which gives

JB(0,a),α(x) =
2π

n
2

Γ
(
n
2

)[rα−n

r∫
0

tn−1F

(
n− α

2
, 1− α

2
;
n

2
;
t2

r2

)
dt

+

a∫
r

tα−1F

(
n− α

2
, 1− α

2
;
n

2
;
r2

t2

)
dt

]
,

where r = |x|, but instead of calculating the integrals arising in this formula, it
is easier to make use of another representation of the potential of radial functions,
namely,

1

γn(α)

∫
|y|<a

f(|y|)dy
|x− y|n−α

= 2−αr2−n
(
I

α
2
0+

[
s

n−α
2

−1
(
I

α
2

a2−f
∗
)
(s)
])

(r2), (2.7)

where I
α
2
0+ and Iα

2

a2− are left-hand sided and right-hand sided Riemann-Liouville frac-
tional integration operators of order α

2
(see [15], formulas (2.17) and (2.18)) and

f ∗(t) = f(
√
t) ([10], see also [15], p. 590). Thus for f(r) ≡ 1 we have

JB(0,a),α(x) =
π

n
2 r2−n

Γ
(
α
2

)
Γ
(
n−α
2

) r2∫
0

s
n−α
2

−1

(r2 − s)1−
α
2

ds

a2∫
s

dt

(t− s)1−
α
2

=
π

n
2 r2−n

Γ
(
1 + α

2

)
Γ
(
n−α
2

) r2∫
0

s
n−α
2

−1(a2 − s)
α
2

(r2 − s)1−
α
2

ds.

With the change of variables s = r2σ we have

JB(0,a),α(x) =
π

n
2 aα

Γ
(
1 + α

2

)
Γ
(
n−α
2

) 1∫
0

σ
n−α
2

−1(1− σ)
α
2
−1

(
1− r2

a2
σ

)α
2

dσ,

4



which yields (2.5). To single out the behaviour of JB(0,a),α(x) as |x| → a, we make
use of one of the transformation formulas for the Gauss function, see [6], formula
9.134.2, and obtain

JB(0,a),α(x) =
Γ
(
n
2

)
2
√
π

{
2α

Γ
(
n+α
2

)F (−α

2
,
n− α

2
; 1− α; 1− |x|2

a2

)

+
2−α

Γ
(
n−α
2

) (1− |x|2

a2

)α

F

(
α

2
,
n+ α

2
; 1 + α; 1− |x|2

a2

)}
.

(2.8)

Hence

JB(0,a),α(x) =
2α−1Γ

(
n
2

)
√
π

{
1

Γ
(
n+α
2

) + 1

Γ
(
n−α
2

) (a2 − |x|2)α

(2a2)α

}
+O

(
(a− |x|)α+1

)
which proves (2.4). Relation (2.8) also provides (2.6) by analyticity of the Gauss
function. 2

Observe that when α is variable, we can write

JB(0,a),α(x) =
2π

n
2 aα(x)

α(x)Γ
(
n
2

)F (−α(x)

2
,
n− α(x)

2
;
n

2
;
|x|2

a2

)
, 0 ≤ |x| ≤ a,

so that

JB(0,a),α(x) ∼
|Sn−1|
α(x)

as x → Πα := {x ∈ B(0, a) : α(x) = 0}.

2.2 The case of the half-space

Let Ω = Rn
+ = {x ∈ Rn : xn > 0} be the half space. In this case the potential JRn

+,α

is not well defined, since Rn
+ is unbounded, but the difference JRn

+,α(x, y), see (2.2)
is well defined for α ∈ (0, 1).

Lemma 2.2. In the case of the half space Rn
+ = {x ∈ Rn : xn > 0} with

0 < α < 1 the formula

JRn
+,α(x, y) = cn(α)(x

α
n − yαn) for all x, y ∈ Rn

+ (2.9)

is valid, where cn(α) =
π

n
2 Γ(n

2 )
αΓ(n−α

2 )
.

Proof. Let x = (x′, xn). We have

JRn
+,α(x, y) =

∞∫
0

[A(x, t)− A(y, t)] dt, (2.10)
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where

A(x, t) =

∫
Rn−1

dξ

(|x′ − ξ|2 + (xn − t)2)
n−α
2

.

We have

A(x, t) =

∫
Rn−1

dξ

(|ξ|2 + (xn − t)2)
n−α
2

= C|xn − t|α−1,

where

C =

∫
Rn−1

dξ

(|ξ|2 + 1)
n−α
2

= |Sn−2|
∞∫
0

rn−2dr

(r2 + 1)
n−α
2

.

The last integral converges for α < 1 and is easily calculated:

∞∫
0

rn−2dr

(r2 + 1)
n−α
2

=
1

2

∞∫
0

s
n−3
2 ds

(s+ 1)
n−α
2

=
1

2

1∫
0

t−
1+α
2 (1− t)

n−3
2 dt =

Γ
(
n−1
2

)
Γ
(
1−α
2

)
2Γ
(
n−α
2

) .

(2.11)

Hence

C =
π

n−1
2 Γ

(
1−α
2

)
Γ
(
n−α
2

) .

By (2.10) we obtain

JRn
+,α(x, y) = C lim

N→∞

N∫
0

(|xn − t|α − |yn − t|α)dt

and an easy calculation yields (2.9). 2

Remark 2.3. It follows from (2.9), JRn
+,α(x, y) = JRn

+,α(x, 0) + JRn
+,α(0, y) and

JRn
+,α(x, y) = −JRn

−,α(x, y) = −JRn
+,α(x̂, ŷ), where Rn

− = {x ∈ Rn : xn < 0} and
x̂ = (x1, . . . , xn−1,−xn) that

JRn
+,α(x, y) = cn(α)(sgn(xn)|xn|α − sgn(yn)|yn|α), 0 < α < 1 (2.12)

for all x, y ∈ Rn.

2.3 The case of the quarter-plane

Let now Ω = R2
++ = {(x, y) ∈ R2

+ : x > 0, y > 0} be the quarter-plane. Again
R2

++ is unbounded, so we have to study the difference JR2
++,α(x, y) for α ∈ (0, 1),
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see (2.2). We use the notation

Gα(x) = Gα(x1, x2) :=

x1∫
0

x2∫
0

dξdη

(ξ2 + η2)
2−α
2

=

x1∫
0

x2∫
0

dξdη

|(ξ, η)|2−α ,

Hα(t) := Gα((t,∞)) = Gα((∞, t)) =

t∫
0

∞∫
0

dξdη

|(ξ, η)|2−α .

Then

Hα(t) = tα
1∫

0

∞∫
0

dξdη

(ξ2 + η2)
2−α
2

= tα
1∫

0

ξα−1dξ

∞∫
0

dη

(1 + η2)
2−α
2

=

√
πΓ
(
1−α
2

)
2αΓ

(
2−α
2

) tα.
(2.13)

by (2.11).

Lemma 2.4. Let Ω = R2
++ and 0 < α < 1. The following representation holds

JR2
++,α(x, y) = Gα(x)− Gα(y) +

√
πΓ
(
1−α
2

)
2αΓ

(
2−α
2

) (xα
1 + xα

2 − yα1 − yα2 ) (2.14)

for x, y ∈ R2
++.

Proof. We have for x ∈ R2
++

JR2
++,α(x, (0, 0)) =

0∫
−x1

0∫
−x2

dξdη

|(ξ, η)|2−α +

∞∫
0

0∫
−x2

dξdη

|(ξ, η)|2−α +

0∫
−x1

∞∫
0

dξdη

|(ξ, η)|2−α

= Gα(x) +Hα(x1) +Hα(x2).

and as a consequence

JR2
++

(x, y) = JR2
++

(x, (0, 0)) + JR2
++

((0, 0), y)

= Gα(x)− Gα(y) +Hα(x1) +Hα(x2)−Hα(y1)−Hα(y2).

The claim follows with (2.13). 2

To see the behaviour of Gα(x) near the boundary, we will use an explicit ex-
pression for the Gα(x, x2) calculated in [14] in terms of the Gauss hypergeometric
function. It has the form

Gα(x) =
|x|α

α

[
x2

x1

F

(
1 + α

2
, 1;

3

2
;−x2

2

x2
1

)
+

x1

x2

F

(
1 + α

2
, 1;

3

2
;−x2

1

x2
2

)]
, (2.15)

valid for 0 < α < 2, see [14], formulas (4.60) and (4.63). Note that in the case α = 1
we have ([14], formula (4.64))

G1(x) = |x|
{
x1 ln

(
1 +

|x|
x1

)
+ x2 ln

(
1 +

|x|
x2

)}
. (2.16)
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In the case 0 < α < 1, formula (2.15) is also reduced to

Gα(x)=
|x|α

α

(√
πΓ
(
1−α
2

)
2Γ
(
2−α
2

) xα
1

|x|α
+
x1

x2

[
F
(

1+α
2
, 1; 3

2
;−x2

1

x2
2

)
+ α

α−1
F
(
1, 1

2
; 3−α

2
;−x2

1

x2
2

)])
,

(2.17)

see [14], formula (4.66).

Lemma 2.5. The function Gα(x) has the following structure

Gα(x) =
c

α
[δ(x)]α + U(x), (2.18)

where δ(x) = min(x1, x2) is the distance to the boundary of the quarter-plane,

U(x) = |x|αtA(t), (2.19)

where

t =
δ(x)

max {x1, x2}
=

δ(x)√
|x|2 − δ2(x)

(so that t =
x1

x2

in the sector 0 < x1 < x2)

and

A(t) =
1

α
F

(
1 + α

2
, 1;

3

2
;−t2

)
+

1

α− 1
F

(
1,

1

2
;
3− α

2
;−t2

)
(2.20)

is an analytic function (for all t).

Proof. The function Gα(x) is symmetric: Gα(x1, x2) = Gα(x2, x1). Therefore, it
suffices to prove (2.18) for x1 ≤ x2. For x with x1 ≤ x2, formula (2.18) takes the
form

Gα(x) =
c

α
xα
1 + U(x), U(x) = |x|αx1

x2

A
(
x1

x2

)
, (2.21)

which is nothing else but (2.17). 2

Lemma 2.6. Let 0 < α < 1. Then U ∈ Hα(R2
++), but U /∈ Hα+ε(R2

++) for
every ε > 0.

Proof. Since U(x) is continuous in R2
++ and U(x1, x2) = U(x2, x1), it suffices to

check that the function U(x) = |x|α x1

x2
A
(

x1

x2

)
satisfies the α-Hölder condition in the

sector {(x1, x2) : 0 < x1 ≤ x2 < ∞}. We have

|U(x)− U(y)| ≤
∣∣|x|α − |y|α

∣∣ ∣∣∣∣A(x1

x2

)∣∣∣∣+ |y|α
∣∣∣∣x1

x2

A
(x1

x

)
− y1

y2
A
(
y1
y2

)∣∣∣∣ .
Since the function tA(t), 0 < t ≤ 1, is bounded and differentiable, we obtain

|U(x)− U(y)| ≤ C
∣∣|x|α − |y|α

∣∣+ C|y|α
∣∣∣∣x1

x2

− y1
y2

∣∣∣∣ . (2.22)
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If |y| ≤ |x − y|, the statement U ∈ Hα follows. Let |y| ≥ |x − y|. From (2.22) we
obtain

|U(x)− U(y)| ≤ C|x− y|α + C|y|α
∣∣∣∣y2(x1 − y1)− y1(x2 − y2)

x2y2

∣∣∣∣
≤ C|x− y|α + C|y|α |x− y| |y|

x2y2
.

Since y2 ≥ |y|√
2
, we obtain

|U(x)− U(y)| ≤ C|x− y|α + C
|x− y|
|y|1−α

≤ C|x− y|α.

It remains to note that the inclusion U ∈ Hα+ε(R2
++) with ε > 0, that is |U(x)−

U(y)| ≤ C|x − y|α+ε is easily checked to be impossible by taking x and y on the
same line: x2 = kx1 and y2 = ky1. 2

Corollary 2.7. In the case of quarter-plane with α ∈ (0, 1) instead of (2.9) we
have

JR2
++,α(x, y) =

c

α
([δ(x)]α − [δ(y)]α + xα

1 − yα1 + xα
2 − yα2 ) + U(x)− U(y) (2.23)

for all x, y ∈ R2
++, where U ∈ Hα(R2

++).

Proof. Equality (2.23) follows immediately from (2.14), (2.18) and Lemma 2.5.
2

3 On the α-property of domains

It is known that the potential of a bounded function on a bounded domain is α-
Hölder continuous in Ω (which is a particular case of a Sobolev theorem stating that
IαΩ : Lp(Ω) → Hα−n

p (Ω), 1 < p ≤ ∞ when n
p
< α < n

p
+ 1, see [16], p. 256; in the

case p = ∞ this is Lemma 1.41 in Mikhlin’s book [8], Section 41), thus JΩ,α ∈ Hα(Ω)
when Ω is bounded. For completeness of presentation, in the following lemma we
give the proof for the general case, where Ω may be unbounded and include all
x, y ∈ Rn into the Hölder condition, not only x, y ∈ Ω.

Lemma 3.1. Let Ω ⊂ Rn be measurable and α ∈ (0, 1). Then

|JΩ,α(x, y)| ≤ c |x− y|α, (3.1)

where c depends on n and α.
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Proof. Let x, y ∈ Rn, a := 1
2
(x+ y), and r := 2|x− y|. Then

JΩ,α(x, y) =

∫
Ω\B(a,r)

|x− z|α−n − |y − z|α−n dz

+

∫
Ω∩B(a,r)

|x− z|α−n dz −
∫

Ω∩B(a,r)

|y − z|α−n dz

=: (I) + (II)− (III).

We estimate

|(II)| ≤
∫

B(x,2r)

|x− z|α−n dz =

∫
B(0,2r)

|w|α−n dw ≤ c

α
rα ≤ 2c

α
|x− y|α.

where c depends on n. By symmetry we conclude

|(II)|+ |(III)| ≤ 4c

α
|x− y|α.

If z ∈ Rn \B(a, r), then |x− y| = 1
2
r ≤ 1

2
|z − a|. So it follows with (2.3).

|(I)| ≤
∫

Rn\(B(x,r)∪B(y,r))

c |x− y||x− z|α−n−1 dz ≤ c

1− α
|x− y|rα−1.

We combine the above estimates to conclude the claim of the lemma. 2

Remark 3.2. When Ω is bounded, it is also known that in the case α = 1
estimate (3.1) holds at the least in the form

|JΩ,1(x, y)| ≤ c |x− y| ln D

|x− y|
, D > diamΩ, (3.2)

see [16], p. 256.
So the difference of the potential JΩ,α(x, y) is always Hölder continuous on Rn ×

Rn. However, in the case of the ball, the half-space and the quarter-plane, it follows
from our calculations above that JΩ,α(x, y) is Lipschitz off the diagonal {(x, x)}. We
explain this below in more detail after the following definition.

Definition 3.3. Let Ω ⊂ Rn be a measurable set and α ∈ (0, 1) (for bounded Ω
we can take α ∈ (0, 1]). We say that Ω has the α-property, if there exists c > 0 such
that difference of the potential satisfies

|JΩ,α(x, y)| ≤ c
|x− y|

(max{δ(x), δ(y)})1−α
if |x− y| ≤ 1

2
max{δ(x), δ(y)}, (3.3)

for all x, y ∈ Ω, where δ(x) denotes the distance of x to the boundary ∂Ω.
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Remark 3.4. In the case Ω = Rn use the convention δ(x) = ∞ and |x−y|
∞ = 0.

Since JRn,α(x, y) = 0, the set Rn has the α-property.

The following lemma provides a sufficient condition for a domain Ω to possess
the α-property, this condition being inspired by calculation of JΩ,α(x) for balls, see
(2.6), so that balls satisfy this property.

Lemma 3.5. Let Ω ⊂ Rn be measurable and bounded, and let α ∈ (0, 1]. If
JΩ,α(x) has the structure

JΩ,α(x) = c[δ(x)]α + g(x), x ∈ Ω, (3.4)

where c is a constant and g ∈ Lip(Ω), then the domain Ω possesses the α-property.

Proof. Since g is Lipschitz, we have

|g(x)− g(y)| ≤ c |x− y| ≤ c |x− y|
(

diamΩ

max {δ(x), δ(y)}

)1−α

.

If α = 1, then |δ(x)− δ(y)| ≤ |x− y|. On the other hand if α ∈ (0, 1), then

|aα − bα| ≤
b∫

a

αtα−1 dt ≤ α|b− a| [min {a, b}]α−1.

If |x−y| ≤ 1
2
max {δ(x), δ(y)}, then min {δ(x), δ(y)} ≥ 1

2
max {δ(x), δ(y)}. Therefore

with the previous estimate∣∣[δ(x)]α − [δ(y)]α
∣∣ ≤ α21−α |δ(x)− δ(y)|

[max {δ(x), δ(y)}]1−α
≤ 2

|δ(x)− δ(y)|
[max {δ(x), δ(y)}]1−α

for all x, y ∈ Ω. 2

In Lemma 3.8 we show that any bounded uniform domain in Rn satisfies the
α-property, but first in Lemma 3.6 below we show the same for the case of some
simple unbounded domains.

Lemma 3.6. The half-space Rn
+ and the quarter-plane R2

++ satisfy the α-
property, 0 < α < 1.

Proof. The statement for the half-space is seen from Lemma 2.2 proceeding
similarly as in the proof of Lemma 3.5. In the case of a quarter-plane the term
U(x)−U(y) needs a more careful treating, since it is not Lipschitz, see Lemma 2.6.

By symmetry it suffices to check (3.3) in the case

|x− y| ≤ 1

2
max{x2, y2}. (3.5)

11



After easy evaluations, in the sector 0 < x1 < x2 we have∣∣∣∣ ∂U∂xj

∣∣∣∣ ≤ C
|x|α

x2

≤ C
√
2

|x|1−α
, j = 1, 2. (3.6)

Then by the mean value theorem

U(x)− U(y) = (x1 − y1)

1∫
0

(D1U)(tx+ (1− t)y) dt

+ (x2 − y2)

1∫
0

(D2U)(tx+ (1− t)y) dt

where D1 and D2 stand for the first order partial derivatives, we get

|U(x)− U(y)| ≤ C|x− y|
1∫

0

dt

|y + t(x− y)|1−α
.

Let x2 ≤ y2 for definiteness. Then by means of (3.5) we obtain |y + t(x − y)| ≥
|y| − |x− y| ≥ |y| − 1

2
max{x2, y2} = |y| − y2

2
≥ y2

2
, so that

|U(x)− U(y)| ≤ C
|x− y|
y1−α
2

which completes the proof. 2

Definition 3.7. (see [7]) A domain D is called a uniform domain or Jones
domain, if there exists a constant c > 0 such that each pair of points x1, x2 ∈ D
can be connected by a rectifiable curve Γ in D for which ℓ(Γ) ≤ c|x1 − x2| and
min{ℓ(Γx1,y), ℓ(Γx2,y)} ≤ cδ(y) for all y ∈ Γ, where ℓ(Γ) and ℓ(Γxj ,y) denote the
length of Γ and the length of the subarc Γxj ,y of Γ connecting xj and y, respectively.
The smallest constant is called the Jones constant of Ω.

The notion of uniform domains was introduced by Jones in [7] in the context
of extensions of Sobolev functions from a domain D to Rn. Jones showed, that
for every uniform domain there exists a continuous, linear extension operator from
W k,p(Ω) to W k,p(Rn). The operator is independent of k ∈ N and p ∈ [1,∞] as long
k is bounded by some k0.

A ball, the half space Rn
+ and the quarter plane R2

++ are uniform domains, where
the Jones constant does not depend on the radius of the ball. Also any bounded
Lipschitz domain is uniform. However, uniform domains do not need to have smooth
boundary. In fact the interior of the Koch’s snow flake is a uniform domain. Note
that the boundary of a uniform domain always has measure zero by [7, Lemma 2.3].

Lemma 3.8. Any uniform domain Ω ⊂ Rn has the α-property.

12



Proof. Let x, y ∈ Ω. Then exists a rectifiable path γ from x to y with

l(γ) ≤ c1 |x− y|,
min {l(γx,z), l(γy,z)} ≤ c2 δ(z) for all z ∈ γ,

(3.7)

where l(γ) and l(γx,z) denotes the length of the path γ and the subpath γx,z con-
necting x and z.

Let γ be parametrized by its arc length with γ(0) = x and γ(l(γ)) = y. Let
β ∈ (0, 1) such that (1− β)c2 ≤ 1

2
. We define

wj :=

{
γ
(
1
2
β|j|l(γ)

)
for j ≤ 0,

γ
(
(1− 1

2
β|j|)l(γ)

)
for j ≥ 0.

Certainly, we have x = limj→−∞wj and z = limj→−∞wj. Moreover, we claim that
for suitable β (close to 1) we have

|wj − wj+1| ≤
1

2
max{δ(wj), δ(wj+1)} (3.8)

for all j ∈ Z. By symmetry j ↔ −j it suffices to consider the case j ≥ 0. By (3.7)
(for z = wj) and the definition of wj we get

l(γ) ≤ c1|x− y|,
1

2
l(γ)β|j| ≤ c2δ(wj),

|wj+1 − wj| ≤
1

2
l(γ)(1− β)β|j|

(3.9)

for all j ≥ 0. Therefore, with (1− β)c2 ≤ 1
2
we obtain

|wj+1 − wj| ≤ (1− β)c2δ(wj) ≤
1

2
max {δ(wj), δ(wj+1)}.

So we can apply (3.1) from Lemma 3.1 to the points wj+1 and wj. Since JΩ,α is
continuous on Rn, we have for every x, y ∈ Ω by telescoping sum∣∣JΩ,α(x, y)

∣∣ = ∣∣∣∣∑
j∈Z

JΩ,α(wj+1, wj)

∣∣∣∣ ≤∑
j∈Z

|JΩ,α(wj+1, wj)|.

So with (3.1) and (3.9) we have∣∣JΩ,α(x, y)
∣∣ ≤ c

∑
j∈Z

|wj+1 − wj|
[max{δ(wj−1), δ(wj)}]1−α

≤ c
∑
j∈Z

1
2
l(γ)β|j|

( 1
2c2

l(γ)β|j|)1−α

≤ c c1−α
2 2−αl(γ)α

∑
j∈Z

β|j|

≤ c c1−α
2 21−αcα1
1− β

|x− y|α
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for all x, y ∈ Ω. 2

Remark 3.9. We already mentioned that a ball B, the half space Rn
+ and

the quarter plane R2
++ are uniform domains. In fact also the complements of those

domains (removing the boundary) Rn\B, Rn\Rn
+ and R2\R2

++ are uniform domains,
where the Jones constant does not depend on the radius of the ball. Therefore,
also the complements satisfy the α-property. As a consequence (3.3) holds for all
x, y ∈ Rn. At this we use that JΩ,α(x, y) = −JRn\Ω(x, y) = −JRn\Ω(x, y), since the

boundary of Ω has measure zero, where Ω is B, Rn
+, or R2

++. Note that condition
|x− y| ≤ 1

2
max{δ(x), δ(y)} ensures that either x, y ∈ Ω or x, y ∈ Rn \Ω. The same

conclusion holds for any uniform domain Ω if Rn \ Ω is also a uniform domain.

4 On mapping properties of the potential opera-

tor in Hölder type spaces

Definition 4.1. Let ω(f, h) = sup x,y∈Ω:
|x−y|<h

|f(x)− f(y)| be the modulus of continuity

of a function f ∈ C(Ω). Given a continuous semi-additive function ω on [0, diamΩ],
positive for h > 0, with ω(0) = 0, by Hω(Ω) we denote the space of functions
f ∈ C(Ω) with the finite norm

∥f∥Hω = ∥f∥C(Ω̄) + sup
0<h< diam Ω

ω(f, h)

ω(h)
.

By Hω
0 (Ω) we denote the subspace in Hω(Ω) of functions f which vanish on the

boundary ∂Ω of Ω.

Definition 4.2. A non-negative function ω(t) is called almost increasing (almost
decreasing) on [0, d], 0 < d ≤ ∞, if ω(t) ≤ Cω(τ) for all t ≤ τ (t ≥ τ , respectively).

Lemma 4.3. Let 0 < α < 1 and Ω ⊂ Rn have the α-property. Let f ∈ Hω
0 (Ω),

where the function ω(h) has the property that

ω(h)

h1−α
is almost decreasing. (4.1)

Then
sup

x,y∈Ω:|x−y|<h

∣∣f(x)[JΩ,α(x, y)]
∣∣ ≤ Cωα(h)∥f∥Hω(Ω), (4.2)

where ωα(h) = hαω(h). In particular,

sup
x,y∈Ω:|x−y|<h

∣∣f(x)[JΩ,α(x, y)]
∣∣ ≤ Chα+λ∥f∥Hλ(Ω), (4.3)

when f ∈ Hλ
0 (Ω) and λ+ α ≤ 1.
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Proof. Given x ∈ Ω, let x̃ be a point of the boundary, such that |x− x̃| = δ(x).
Then we have

|f(x)| = |f(x)− f(x̃)| ≤ Cω(δ(x))∥f∥Hω (4.4)

and ∣∣f(x)[JΩ,α(x, y)]
∣∣ ≤ Cω(δ(x))∥f∥Hω |JΩ,α(x, y)|. (4.5)

We distinguish the cases 1
2
max{δ(x), δ(y)} ≤ |x−y| and |x−y| ≤ 1

2
max{δ(x), δ(y)}.

In the first case we have by Lemma 3.1 |JΩ,α(x, y)| ≤ C|x− y|α and therefore∣∣f(x)[JΩ,α(x, y)]
∣∣ ≤ Cω(2|x− y|)|x− y|α∥f∥Hω ≤ Cωα(h)∥f∥Hω (4.6)

for all x, y such that |x− y| < h. In the second case we have |JΩ,α(x)− JΩ,α(y)| ≤
C |x−y|

(max{δ(x),δ(y)})1−α . Then (4.6), (4.5), and (4.1) yield

∣∣f(x)[JΩ,α(x, y)]
∣∣ ≤ C∥f∥Hω

ω(δ(x))

(max {δ(x), δ(y)})1−α
|x− y|

≤ C∥f∥Hω

ω(|x− y|)
|x− y|1−α

|x− y| ≤ C∥f∥Hωωα(h),

which completes the proof. 2

Theorem 4.5 stated below was obtained in [11], see also an electronic pre-
publication at [12]. In Theorem 3.9 in [11], [12] there was proved a statement
more general than given below: we give its version for the Euclidean setting and
constant α; note that Theorem 3.9 in [11], [12] was stated for bounded domains,
however this restriction was introduced there only because of variable order α(x)
and may be omitted when α is constant).

Definition 4.4. We say that a continuous non-negative function ω belongs to
a Zygmund class Φβ, β > 0, if it is almost increasing and

d∫
h

(
h

t

)β
w(t)

t
dt ≤ cw(h), (4.7)

where c > 0 does not depend on h ∈
(
0, d

2

]
.

Theorem 4.5. Let Ω be a domain in Rn, 0 < α < 1. If ω ∈ Φ1−α and

JΩ,α ∈ Hωα(·)(Ω), where ωα(h) = hαω(h); (4.8)

then the operator Iα is bounded from the space Hω(·)(Ω) into the space Hωα(·)(Ω).
In [12] this theorem was proved for an open set Ω in a metric measure space X

when the set Ω possesses the cancellation property or condition (4.8) is satisfied.
Domains in Rn do not satisfy this condition. As the above examples of simple do-
mains (balls, half-spaces and quarter-plane) show, condition (4.8) is too restrictive,
being satisfied in fact only under the cancellation property of Ω, that is, only when
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Ω = Rn. Making use of the above arguments, we may avoid condition (4.8) in the
case of domains with α-property.

Theorem 4.6. Let 0 < α < 1 and Ω be a domain in Rn with α-property. If
ω ∈ Φ1−α, then the potential operator IαΩ is bounded from Hω

0 (Ω) to Hωα(Ω), where
ωα(h) = hαω(h). In particular, it is bounded from Hλ

0 (Ω) to Hλ+α(Ω) if λ+ α < 1.

Proof. The proof in [12] was based on the direct estimation of the continuity
modulus of the potential, see Theorem 3.4 in [12], via the representation

(Iαf)(x)− (Iαf)(y) =

=

∫
ϱ(x,z)<2h

[f(z)− f(x)]ϱ(x, z)α−ndµ(z)−
∫

ϱ(x,z)<2h

[f(z)− f(x)]ϱ(y, z)α−ndµ(z)

+

∫
ϱ(x,z)>2h

[f(z)− f(x)]
{
ϱ(x, z)α−n − ϱ(y, z)α−n

}
dµ(z)

+ f(x)

∫
Ω

{
ϱ(x, z)α−n − ϱ(y, z)α−n

}
dµ(z)

=: I1 + I2 + I3 + I4.

As can be seen from the proof of Theorem 3.4 in [12], condition (4.8) was used only
in the term

I4 = f(x)[JΩ,α(x)− JΩ,α(y)],

where |x− y| < h. This term is now estimated by means of Lemma 4.3. Note that
condition (4.1) assumed in that lemma follows from the assumption ω ∈ Φ1−α. This
completes the proof. 2

Corollary 4.7. The statement of Theorem 4.6 holds, in particular, for uniform
domains.

Proof. Refer to Lemma 3.8. 2

Remark 4.8. For simplicity, we dealt with the case where ω(h) does not depend
on x. Since in [12] the general case of ω(x, h) was treated, Theorem 4.6 is extended
in the same way to this case. The only changes in the formulation of Theorem 4.6
are that the condition ω ∈ Φ1−α now should be interpreted as belongness of ω(x, h)
to Φ1−α in variable h uniformly in x, and we have to write ωα(x, h) = hαω(x, h).

References

[1] L.E. Fraenkel, Introduction to maximum principles and symmetry in elliptic
problems. Cambridge Tracts in Mathematics, vol. 128, Cambridge University
Press, London, 2000.

16
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