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BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND
SINGULAR OPERATORS IN THE GENERALIZED
VARIABLE EXPONENT MORREY SPACES

VAGIF S. GULIYEYV, JAVANSHIR J. HASANOV and STEFAN G. SAMKO

Abstract

We consider generalized Morrey spaces #(P(»“(Q2) with variable exponent p(x) and a gen-
eral function w(x, r) defining the Morrey-type norm. In case of bounded sets 2 C R" we
prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund sin-
gular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams type
MPOC(Q) > MIO@ (R)-theorem for the potential operators 144, also of variable order. The
conditions for the boundedness are given it terms of Zygmund-type integral inequalities on w (x, r),
which do not assume any assumption on monotonicity of w(x,r) inr.

1. Introduction

In the study of local properties of solutions to partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces £7*(2) play an
important role, see [14], [25]. Introduced by C. Morrey [27] in 1938, they are
defined by the norm

A
I fllgpr = Supor_; I flLrBx,ry)s
where0 <A <n,1 < p < ox.

As is known, last two decades there is an increasing interest to the study
of variable exponent spaces and operators with variable parameters in such
spaces, we refer for instance to the surveying papers [12], [20], [22], [38], on
the progress in this field, including topics of Harmonic Analysis and Operator
Theory, see also references therein.

Variable exponent Morrey spaces #7020 (Q), were introduced and stud-
ied in [2] and [29] in the Euclidean setting and in [21] in the setting of met-
ric measure spaces, in case of bounded sets. In [2] there was proved the
boundedness of the maximal operator in variable exponent Morrey spaces
LPO2(Q) under the log-condition on p(-) and A(:) and for potential op-
erators, under the same log-condition and the assumptions inf,co @(x) > 0,
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sup, q[A(x) + a(x) p(x)] < n, there was proved a Sobolev type FPO*0) —
F40)-20)_theorem. In the case of constant &, there was also proved a bounded-
ness theorem in the limiting case p(x) = "—‘%, when the potential operator
I acts from #70*0) into BMO. In [29] the maximal operator and potential
operators were considered in a somewhat more general space, but under more
restrictive conditions on p(x). P. Histo in [18] used his new “local-to-global”
approach to extend the result of [2] on the maximal operator to the case of the
whole space R”. )

In [21] there was proved the boundedness of the maximal operator and the
singular integral operator in variable exponent Morrey spaces -#7"):*") in the
general setting of metric measure spaces. In the case of constant p and A,
the results on the boundedness of potential operators and classical Calderon-
Zygmund singular operators go back to [1] and [32], respectively, while the
boundedness of the maximal operator in the Euclidean setting was proved in
[9]; for further results in the case of constant p and A see for instance [S]-[8].

We introduce the generalized variable exponent Morrey spaces .#7)*(Q)
over an open set & C R”. Generalized Morrey spaces of such a kind in the
case of constant p were studied in [4], [13], [26], [28], [30], [31]. Within the
frameworks of the spaces #P)-?(2), over bounded sets 2 C R" we consider
the Hardy-Littlewood maximal operator

Mf (x) = sup | BCx, )|~ fB 1oy

r>0

potential type operators

10 £ (x) = / = YO f () dy, 0 <a(x) <n,
Q

the fractional maximal operator

M) £ (x) = sup | B(x, r)| 5~ / fO)dy,  0<a@) <n
B(x,r)

r>0

of variable order «(x) and Calderon-Zygmund type singular operator

Tf(x) = fQ K. y) fO)dy,

where K (x, ¥) is a “standard singular kernel”, that is, a continuous function
defined on {(x, y) € @ x € : x # y} and satisfying the estimates

K@, W <Clx —yl™" forall x #y,
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V —zl° )
K y) - K@) < 2= o o0, i x—yl > 2ly -2,
lx — yi**o
I — £ .
KGy) — KE <228 o0 i =yl > 2lx — ).
lx — yir*e

We find the condition on the function w (x, r) for the boundedness of the
maximal operator M and the singular integral operators 7 in generalized Mor-
rey space #P")*(Q2) with variable p(x) under the log-condition on p(-). For
potential operators, under the same log-condition and the assumptions

inf a(x) > 0, supa(x)p(x) <n

xXER xeQ
we also find the condition on w(x,r) for the validity of a Sobolev-Adams
type P2 (Q) — M1 (Q)-theorem, which recovers the known result
for the case of the classical Morrey spaces with variable exponents, when

w(x,r)y= %" and then ﬁ = ﬁ - ni(xx()x)'

The paper is organized as follows. In Section 2 we provide necessary pre-
liminaries on variable exponent Lebesgue and Morrey spaces. In Section 3 we
introduce the generalized Morrey spaces with variable exponents and recall
some facts known for generalized Morrey spaces with constant p. In Section 4
we deal with the maximal operator, while potential operators are studied in
Section 5. In Section 6 we treat Calderon-Zygmund singular operators.

The main results are given in Theorems 4.2, 5.2, 5.5, 6.2. We emphasize
that the results we obtain for generalized Morrey spaces are new even in the
case when p(x) is constant, because we do not impose any monotonicity type
condition on w(x, r). The advance in this paper is based on the usage of the
approach developed in [15], [16] for constant p, and presented for variable
p(x) in Theorems 4.1, 5.4, 6.1, and on the estimate of Lemma 2.5.

NortaTION. R” is the n-dimensional Euclidean space, 2 € R” is an open
set, £ = diam £2;

XEe(x) is the characteristic function of a set E C R”;

Bx,r)={yeR':|x—-y|<r},Bx,r)=Bx,r)NQ;

by ¢, C, ¢y, ¢, etc., we denote various absolute positive constants, which
may have different values even in the same line.

2. Preliminaries on variable exponent Lebesgue and Morrey spaces

Let p(-) be a measurable function on 2 with values in [1, 00). An open set 2
is assumed to be bounded throughout the whole paper. We suppose that

2.1 l < p-<pkx)=py <oo,
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where p_ :=essinf,cq p(x) > 1, p; :=esssup,.q p(x) < 00.
By LPY(Q2) we denote the space of all measurable functions f(x) on
such that

() = /Q | £ (x)]P®dx < oo.

Equipped with the norm
_ ) f

this is a Banach function space. By p'(:) = ;%1—1-, x € 2, we denote the

conjugate exponent. The Holder inequality is valid in the form

1 1
d —+ . ()
[irwieeias = (= + =) isbotetyo

For the basics on variable exponent Lebesgue spaces we refer to [39], [24].

DEFINITION 2.1. By W L(£2) (weak Lipschitz) we denote the class of func-
tions defined on €2 satisfying the log-condition

(2.2) |p(x) — P()’)l‘f ——1n|7——y|’

where A = A(p) > 0 does not depend on x, y.

THEOREM 2.2 ([10]). Let Q C R”" be an open bounded set and p € W L(S2)
satisfy condition (2.1). Then the maximal operator M is bounded in LP")(Q).

The following theorem for bounded sets €2, but for variable a(x), was
proved in [37] under the condition that the maximal operator is bounded in
LPO(Q), which became an unconditional result after the result of Diening [10]
on maximal operators.

THEOREM 2.3. Let Q@ C R" be bounded, p, a € W L(2) satisfy assumption
(2.1) and the conditions

(2.3) insf_za(x) > 0, supa(x)p(x) < n.

xeQ
Then the operator 1*V) is bounded from LPO () to L1 (Q) with

1 1 a(x)

2.4 — _
@9 qg(x) px) n
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Singular operators within the framework of the spaces with variable expo-
nents were studied in [11]. From Theorem 4.8 and Remark 4.6 of [11] and
the known results on the boundedness of the maximal operator, we have the
following statement, which is formulated below for our goals for a bounded
€2, but valid for an arbitrary open set 2 under the corresponding condition in
p(x) at infinity.

THEOREM 2.4 ([11]). Let Q@ C R" be a bounded open set and p € W L(S2)
satisfy condition (2.1). Then the singular integral operator T is bounded in
LP(')(Q).

We will also make use of the estimate provided by the following lemma
(see [36], Corollary to Lemma 3.22).

LEMMA 2.5. Let Q be a bounded domain and p satisfy the assumption
1 < p_ < p(x) < py < oo and condition (2.2). Let also supv(x) < oo and
inf[n + v(x)p(x)] > 0. Then

Q25 x =" x86n Doy < Crr@Fem,
xeQ, 0<r <{f=diamg,

where C does not depend on x and r.

REMARK 2.6. It may be shown that the constant C in (2.5) may be estimated
L
as C = COE"(P- P+), where Cy does not depend on .
Let A(x) be a measurable function on 2 with values in [0, n]. The variable
Morrey space .#7*)(Q) is defined as the set of integrable functions f on
2 with the finite norm

A
”f”jp(-)‘k(d(g) = Ssup { @ ”fXE(x,t) ”Lp(-)(g).
x€2, >0

The following statements are known.
THEOREM 2.7 ([2]). Let Q be bounded and p € W L(Q) satisfy condition

(2.1) and let a measurable function ) satisfy the conditions

0 < A(x), sup A(x) < n.

xeR

Then the maximal operator M is bounded in £7*O(Q).

Theorem 2.7 was extended to unbounded domains in [18].

Note that the boundedness of the maximal operator in Morrey spaces with
variable p(x) was studied in [21] in the more general setting of quasimetric
measure spaces.
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THEOREM 2.8 ([2]). Let 2 be bounded, p,a, > € WL(Q) and p satisfy
condition (2.1). Let also A(x) > 0 and

2.6) ilelga(x) > 0, sup[A(x) + a(x)p(x)] < n.

xeQ
Then the operator 1*© is bounded from LPO*O(Q) to LI1+O(Q), where

1 1 a(x) w(x)  Alx)
= — and = —,
gx) px) n qgx)  px)

(2.7)

THEOREM 2.9 (I2]). Let Q be bounded, p,a, . € WL(Q2) and p satisfy
condition (2.1). Let also L(x) > 0 and conditions (2.6) hold. Then the operator
1% is bounded from £PO*)(Q) to F10*O(Q), where

1 1 a(x)

2.8 = — .
@9 q(x) p(x) n—2ix)

THEOREM 2.10 ([2]). Let 2 be bounded and p,«, ). €¢ WL(QQ) satisfy
conditions (2.1) and the conditions

inf a(x) > 0, AX) +ax)px)=n
xeQ2
hold. Then the operator M®®) is bounded from £P)*0(Q) to L™® ().

3. Variable exponent generalized Morrey spaces

Everywhere in the sequel the functions w(x, r), w; (x, r) and w2 (x, r) used in
the body of the paper, are non-negative measurable function on Q x (0, £),
{ = diam .

We find it convenient to define the generalized Morrey spaces in the form
as follows.

DerFINITION 3.1. Let 1 < p < oco. The generalized Morrey space
MPO°(Q) is defined by the norm

——n_
p(x)

| flgrrc = sup

“f”L O (B .
xef, r>0 w(x’ r) OB

According to this definition, we recover the space ¥ ?"-*0)(Q) under the
Alx)—n
choice w(x,r) =r »®

FrOI(Q) = HPOCO(Q) s

w(x,r)=r P®
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Everywhere in the sequel we assume that

3.1 inf w(x,r)>0

x€Q,r>0

which makes the space #P“(Q) nontrivial. Note that when p is constant,
in the case of w(x, r) = const > 0, we have the space L*°().

3.1. Preliminaries on Morrey spaces with constant exponents p

In [15], [16], [28] and [30] there were obtained sufficient conditions on func-
tions w and w, for the boundedness of the singular operator T' from .#?-“' (R")
to 7“2 (R"). In [30] the following condition was imposed on w(x, r):

(3.2) clo@,r) <ok, <colx,r)

whenever r < t < 2r, where c¢(> 1) does not depend on ¢, r and x € R”,
jointly with the condition:

* dt
(3.3) a)(x,t)P—t— < Cw(x,r)?
for the maximal or singular operator and the condition
i dt
(3.4) / o (x, t)”T < Cr%w(x,r)’.
r .

for potential and fractional maximal operators, where C (> 0) does not depend
onr and x € R".

REMARK 3.2. Note that the right-hand side inequality in (3.2) may be
omitted: it follows from the left-hand-side one and (3.3), which we show in
Section 7.

REMARK 3.3. The left-hand side inequality in (3.2) is satisfied for any non-
negative function w(x, r) such that there exists a number a € R! such that the
function r¢w(x, r) is almost increasing in r uniformly in x:

Pwx,t) <crfw(x,r) forall O<t<r <oo

where ¢ > 1 does not depend on x, 7, t.

Note that integral conditions of type (3.3) after the paper [3] of 1956 are
often referred to as Bary-Stechkin or Zygmund-Bary-Stechkin conditions, see
also [17]. The classes of almost monotonic functions satisfying such integ-
ral conditions were later studied in a number of papers, see [19], [33], [34]
and references therein, where the characterization of integral inequalities of
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such a kind was given in terms of certain lower and upper indices known as
Matuszewska-Orlicz indices. Note that in the cited papers the integral inequal-
ities were studied as r — 0. Such inequalities are also of interest when they
allow to impose different conditions as r — 0 and r — 00; such a case was
dealt with in [35], [23].

In [30] the following statements were proved.

THEOREM 3.4 ([30]). Let 1 < p < oo and w(x,r) satisfy conditions
(3.2)—(3.3). Then the operators M and T are bounded in #7*(R").

THEOREM 3.5 ([30]). Letl < p < 00,0 < & < &, and w(x, t) satisfy
conditions (3.2) and (3.4). Then the operators M® and I® are bounded from
MPCR) 10 MPC R with ¢ = & — %,

The following statement, containing the results in [28], [30] was proved in
{15] (see also [16]). Note that Theorems 3.6 and 3.7 do not impose condition
(3.2).

THEOREM 3.6 ([15]). Let 1 < p < oo and wy(x,r), wy(x,r) be positive
measurable functions satisfying the condition

oo dt
f wl(x,t)T < crwy(x,r).

with ¢; > 0 not depending on x € R" and t > 0. Then the operators M and T
are bounded from MP 'O (R") to MP20) (R).

THEOREM 3.7 ([15)). LetO < a <n, 1 < p < o0, + =1 — 2 gpnqg

w1 (x, ), wa(x, r) be positive measurable functions satisfying the condition
* o dt o
“w(x, t)T <cirfwyx,r).
r

Then the operators M® and 1* are bounded from MP***) (R") to MT*2O) (R™).

4. The maximal operator in the spaces .#/?")>*()(Q)

THEOREM 4.1. Let 2 be bounded and p € W L(Q) satisfy condition (2.1).
Then
4.1

¢ ¢
n_ .
IMFll Lo By < CtPO f ro 7S oo (Bee,ry) 4T 0<r< 3
t

for every f € LPO(Q), where C does not depend on f,x € Q and t.
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PROOF. We represent f as

42 f=hfi+rf [HO)=FWXEa200),
L) = FO)xa\Be,an ) t>0,

and have
”Mf”Lp(A)(E(x,;)) < IMfi ”Lp(»)(ﬁ(x‘t)) + ”MfZHLp(-)(E(x,,))-

By Theorem 2.2 we obtain
4.3)
IMfill Lro B,y < IMfillro@) < Clfillro@ = ClLflleo @G e,2e)

where C does not depend on f. From (4.3) we obtain

£
o 1
| M fi "LP<')(§(x,t)) =< Ct”(’)/ rore ”f”Lpo)('Bv(x,r)) dr
4.4 x

¢
o _.n__1

< Cr [ rope ”f”u(-)(ﬁ(x,r)) dr

easily obtained from the fact that || f|| ;5 (5,21 1S nOn-decreasing in ¢, so that

Il | Lo (Bx, 21y On the right-hand side of (4.3) is dominated by the right-hand

side of (4.4). Note that this “complication” of estimate in comparison with

(4.3) is done because the term M f, will be estimated below in a similar form,

see (4.6). .
To estimate M f,, we first prove the following auxiliary inequality

@.5) / =TI dy
Q\B(x,t) ¢
< C/ ST Y Fllso@asyds,  0<t <4
t
To this end, we choose 8 > p”—_ and proceed as follows
/ =IO dy
Q\B(x,1) .
<p lx — I F )l ( / s‘ﬂ—lds) dy

DN\B(x,1) Ix—yl

£
=B / s~P1 ( / lx — y|™"+# If(y)ldy) ds
t {yeQ:2t<|x—y|<s}
£

—B8—1 - ~
<c / S oy I1% = Y Bl iwogces ds-
t
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We then make use of Lemma 2.5 and obtain (4.5).
For z € B(x,t) we get

Mf>(2) = sup | B(z, )| fB By

r>0

< C sup

f~ _ly =TI W)y
r>2t J(@\B(x,20))NB(z.r)

< Csup / B B
r>2t J (Q\B(x,2t))NB(z,r)

< cf =IO dy.
\B(x,20)

lx —y|7"I fNdy

Then by (4.5)

4

1
Mfz(Z) = Cf § P ”f”LpO(E(x,s)) ds,
2t

b4
- __1
< C/ s @ ||f”LP<')(§(x,S)) ds,
t

where C does not depend on x, r. Thus, the function M f5(z), with fixed x and
t, is dominated by the expression not depending on z. Then

¢
(4-6) ”MfZHLp(-)(E(x,;)) < Cf S_W_lllflluo(g(x,s)) ds ”1”L”(')(§(x,t))'
t
Since |1 1s0 By < Ct?o by Lemma 2.5, we then obtain (4.1) from (4.4)

and (4.6).

The following theorem extends Theorem 2.7 to the case of generalized
Morrey spaces P (Q).

THEOREM 4.2. Let 2 C R" be an open bounded set and p € W L(Q2) satisfy
assumption (2.1) and the function wi(x, r) and w,(x, r) satisfy the condition

)
@.7 / w(x, t)? < Cwy(x,r),

where C does not depend on x and t. Then the maximal operator M is bounded
from the space MP - (Q) to the space MP ().

PROOF. Let f € P01 (). We have

1 __n_
IMfllgroo@ = sup @y (x, 0 PO Ml L0 G n)-
xe, te(0,£)
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The estimation is obvious for % <t < £ in view of (3.1). For

~ -1 —_n
||Mf”,ﬂp<-),wz(g) = sup @, (x, O PO IMFll L0 By
xeQ, 1e(0,4)

by Theorem 4.1 we obtain

£
~ - —n_g
”Mf”‘/ﬂp('),a&(s‘z) <C sup o, (x, t)/ ror® ”f”LP(')(E(x,r)) dr.
t

x€Q,0<t<l

Hence

- 1 ¢ wi(x,r)
IMFA yooron iy < CUf Lagporory — SUp / dr
MPO (D) ( )xeﬂ,te(O,l) wy(x, 1) J; r

< Cllf lLaroron
by (4.7), which completes the proof.

In the following corollary we recover, from Theorem 4.2, a result obtained
Ax)—n
in [2] in the case wi(x,7) = wa(x,r) =r 7o,

COROLLARY 4.3. Let Q C R be bounded,).(x) > 0 and sup, .o A(x) < n
and p € WL(Q) satisfy condition (2.1). Then the maximal operator M is
bounded in the space £P?O*0(Q).

. Ax)—n
Proor. Itsuffices to observe thatthe functionw; (x,r) = wy(x,r) =r»

defining the space #?0)*()(Q), satisfies condition (4.7) under the assumption
Sup, .o A(x) < n.

5. Riesz potential operator in the spaces /7)) (Q)

In this section we extend Theorem 3.7 to the variable exponent setting. We
give two versions of such an extension, one being a generalization of Spanne’s
result for potential operators, another extending the corresponding Adams’
result. Note that Theorems 5.1 and 5.2 in the case of constant exponents p and .
A were proved in [15] (see also [16]).

5.1. Spanne type result
THEOREM 5.1. Let p, ¢ € W L(2) satisfy condition (2.1) and let a(x), q(x)
satisfy the conditions in (2.3) and (2.4). Then
;.1
Y £
”Ia(.)f“L‘?(')(E(x,t)) < Ct» / r_ﬁ_l ”}f“LP(‘)(E(x,r)) dr, O<t < 5,

t
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where t is an arbitrary number in (0, £) and C does not depend on f, x and 1.

PROOF. As in the proof of Theorem 4.1, we represent function f in form
(4.2) and have
IO f(0) = IO fi(x0) + 1 fo(0).
By Theorem 2.3 we obtain

171°9 £ lL,Ban) < 171°C fill L, @ < CllfillL,o@ = ClA L, Bix,2e-

Then )
I fillz, By < CHF L, @G220

where the constant C is independent of f.
Taking into account that

l
n_ —n N
||f||Lp(_)(§(x’2,)) < Cteaw / ra® "f”LP(.)(B(x,r)) dr,

2t
we get

I
. _n —n_q
(5.2) | 7¢O FillL, By < Ctio f rm O il By ar-

2t
When |x —z] < ¢, |z — y| > 2t, wehave ]z — y| < |x — y| < 3|z — y|,
and therefore

||1a(')f2||L,,(.)(§(x,r)) =

f =y dy
\B@,20

Loy (B(x,1)

<c f = YO O Y X .
\Bx,20)

We choose 8 > ﬁ and obtain
[ =iy
Q\B(x,21)

!
=p e = YO () ( f|

B s~A1 ds) dy
Q\B(x,2r) x—yi

1

=g s ( f lx = y[*@7 ) £ () dy) ds
2t {yeQ:2t<|x—y|<s}

!
—p-1 - ()-n+ -
=< C/; s7# ||f||1,p(,)(3(x,s))”|x - y|* o= ﬂ”LP,(A)(B(x,s)) ds
t

n

1
-1
<cC / O FllL ey d5-
2t
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Therefore

!
Sl e L T
||1a()f2”Lq(.)(B(x,t)) < Creo ./2t s N F L, (Bex.sy) 95

which together with (5.2) yields (5.1).

THEOREM 5.2. Let Q C R" be an open bounded set and p,q € WL(Q)
satisfy assumption (2.1), a(x), g(x) satisfy the conditions in (2.3), (2.4) and
the functions w1(x, r) and wy(x, r) fulfill the condition

t dt
(5.3) [ (5,05 < Cantar),

where C does not depend on x and r. Then the operators M®© and 1*") are
bounded from J;(P(~),w1(-)(Q) to MIO220(Q).

PROOF. Let f € #P")“(Q). As usual, when estimating the norm

_n
t 1

(5.4 I7%C )| gaorwr () = sup
xeQ, t>0 wy(x, 1)

14O £ X5 Lo @

it suffices to consider only the values ¢ € (0, £), thanks to condition (3.1). We
estimate [|[1) f x5, |l Le0 (@) in (5.4) by means of Theorem 5.1 and obtain

I1%C f L gsorony < € sup r M o G A1

xeQ, >0 (1)2()6, t) t

1 ¢ r*®ao, (x,r)
< C fllgrrn @y sup / dr.
xeQ, 10 @2(x, ) J; r

It remains to make use of condition (5.3).
In the following corollary we recover the result obtained in [2].

COROLLARY 5.3. Let 2 be bounded, p,a, > € WL(2) and p satisfy con-
dition (2.1). Let also A(x) > 0 and the conditions (2.3), 2.4), (2.6), (2.7) be
fulfilled. Then the operator [*© is bounded from £ P> (Q) to FI1+0O(Q).

. Ax)—n
Proor. Itsufficesto observe thatthe functionw;(x, r) =r »® ,wy(x,r) =

plx)—n
r ¢ defining the spaces £+ (Q) and .£90-#0(Q), satisfies conditions

(4.7) and (5.3) under assumption (2.3) and the choice in (2.4), (2.7) for g(x).
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5.2. Adams type result

THEOREM 5.4. Let p € W L(2) satisfy condition (2.1) and let a(x) satisfy the
conditions in (2.3). Then

(5.5) 11°0f(x)] < C1*® Mf(x)

n

!
+C / PO fl poGamdn 0<t <
t

’

B &

where t is an arbitrary number in (0, g) and C does not depend on f, x and t.

PROOF. As in the proof of Theorem 4.1, we represent the function f in form
(4.2) and have
10 fx) = 1"V fitx) + 1°0 fo(x).

For 1%V fi(x), following Hedberg’s trick (see for instance [37], p. 278, for
the case of variable exponents), we obtain |I%0 f(x)| < C1t*® M (x). For
1%0) £,(x) we have

10 ()] < / = O F ) dy

NB(x.20)

xX
= C/ - If(y)ldy/ pe@-n—1 g
Q\B(x,21) |

Since f|:o—y| re—n=1l g, < Cflj‘q_y| re®-n=1 g4r we obtain

2¢

ropwi=c ( / If(y)ldy) Pl gy
2t 2t<|x—yl<r
£ -
S C/ ”fllLP(*)(g(x’r))ra(x)_m_ dr’
t

which proves (5.5).

THEOREM 5.5. Let p, a € W L(2) satisfy assumption (2.1), c(x) fulfill the
conditions in (2.3) and let w(x, t) satisfy condition (4.7) and the condition

¢
. ax)px)
(5.6) f POV o(x, ) dr < Cr™ o,
r

where g(x) > p(x) and C does not depend on x € Q andr € (0, £]. Then the
403
operators M*© and I*© are bounded from MPO*O(Q) to M1V (Q).

PrOOF. In view of the well known pointwise estimate M%) f(x) <
C(I%O] f)(x), it suffices to treat only the case of the operator 1%¢),
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Let f € 4PV (S). As in the proof of Theorem 4.2, when estimating
the norm

”Ia()f”./ﬂq('),w = Sup ”Ia( fXB ”Lq() o
x€Q, 0<r<t a)(x ) (1) (@)

we may restrict ourselves to the case of ¢ near the origin, 0 < ¢ < % By
Theorem 5.4 we get

£
12O £ (x)| < Cr*® Mf (x) + C|l fll rorocey / O~ g (x, 1) dt.

Making use of condition (5.6), we obtain

_ a(px)
10 £ ()] < Cr) MF(x) + Cr i85 | Lo

—p(x)

g{x)—p
We then choose r = (%{%) “"® " assuming that f is not identical 0.

Hence, for every x € €2, we have

1% £ (x)] < CMF(x)) 0

x}
'f”/ﬂpgm(sz)
Hence the statement of the theorem follows in view of the boundedness of

the maximal operator M in .4?"* () provided by Theorem 4.2 in virtue of
condition (4.7).

REMARK 5.6. Let w(x,r) > 1 (which may be supposed by (3.1)). For the
exponent g (x), from (5.6) there follows the following bound
1 - 1 o(x)

q(x) ~ p(x) mx)’

Inr

a(x)—1
m(x) = p(x) [a(x)_hm n ;%O wr, t)dt]

The corresponding exponent g (x) given by

1 . 1 _a(x)
gx)  px) mx)’

might be called the Sobolev-Adams-type exponent corresponding to the space

ﬂp( )@ (Q). In particular, for the Morrey space .#7)* () (the case w(x, r) =

r i _ 1 a(x)
e ), from (5.7) we recover Adams’ exponent defined by 700 = 700 noat”

In the following corollary we recover the result obtained in [2].

(5.7)
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COROLLARY 5.7. Let Q C R" be bounded, 0 < A(x) < n, p € WL(Q)
satisfy condition (2.1), and let (2.6), (2.8) be fulfilled. Then the operators M**)
and I*© are bounded from PO (Q) to L1000 (Q).

ProoF. It suffices to observe that the functions w; (x, r) = r ox ,wa(x, 1)
= %" defining the space £P"*0(Q), satisfy conditions (4.7) and (5.6)
under assumption (2.6) and the choice of g(x) given in (2.8).

6. Singular operators in the spaces /7)>*0)(Q)

Theorems 6.1 and 6.2 proved below, in the case of the constant exponent p
were proved in [15] (see also [16]). The boundedness of singular operators
in Morrey spaces with variable p(x) was studied in [21] in the case where

w(x,r) = r*® , but in the more general setting of quasimetric measure
spaces.

THEOREM 6.1. Let Q C R" be an open bounded set, p € W L(S2) satisfy
condition (2.1) and f € LPVO(Q). Then

N s

£
n_ _n
(6.1) ”Tf"Lpt)(E(x,;)) < Ctr f r r® ”f“LP(')(E(x,r)) dr, 0<t<
t

where C does not depend on f and t.

PrOOF. We represent function f as in (4.2) and have

”Tf“u(o(ﬁ(x,t)) <|ITh ”LI’(')(E(x,t)) + "TfZHLp(-)(ig'(x,t))-

By Theorem 2.4 we obtain ||7T f ||Lp<'>(§(x,t)) < NTfillLroy < Cllfillro),
so that
”Tflan(»)(E(x’,)) =< C"f"Lp(-)(E(x,zt)y

Taking into account the inequality

IA

N &

£

n_ o

Whm%mfamfrpmﬂﬂm®mﬂn 0<t
2t

we get

£

o .
©62) Hﬁmmmmsﬂmfrm>whm%mﬂ
2t

To estimate || T 21|, »0 (Bx.ny)» W€ observe that

ITH@)| < c/ 1f )l dy

aBu2n ly—zI"’
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where z € B(x,t) and the inequalities |[x — z| < ¢, |z — y| = 2¢ imply
%|Z -yl <Ix—y|l < %IZ — |, and therefore

1T fall oo ey < C / = YOG o,
\Bx,20)

Hence by estimate (2.5) (with v(x) = 0) and inequality (4.5), we get

£
o -
(6.3) I sz”LP(‘)(E(x,t)) < Ct?® / rorw ”f”LP(')(E(x,r)) dr.

2t
From (6.2) and (6.3) we arrive at (6.1).

THEOREM 6.2. Let Q C R" be an open bounded set, p € W L(Q) satisfy
condition (2.1) and w (x, t) and w>(x, r) fulfill condition (4.7). Then the sin-
gular integral operator T is bounded from the space MP“1 () to the space
MPO)e2 ().

PrROOF. Let f € MPO)®1(Q). As usual, when estimating the norm

n

T m

(6.4) 0T £l gro. = sup ———ITfx50.0lLr0@,
e xeQ, >0 (X, 1) Bl ILPEE)

it suffices to consider only the values ¢ € (0, %), thanks to condition (3.1). We
estimate |7 f X5.r |l Lro(q) in (6.4) by means of Theorem 6.1 and obtain

. -
1Tl o2y < C  sup r P fll oo Bx,ry) A7

xeQ, 1>0 w2(x, 1) J;

1 Cwor(x,r)
< CI flaroency sup / dr.
! )xeﬂ,t>0 w2(x’t) t r

It remains to make use of condition (4.7).

7. Appendix

LEmMMa 7.1. If c lw(x,r) < w(x,t) whenever0 < r <t < 2r, then from
(3.3) it follows that the function w(r",,”) is almost decreasing uniformly in x:

w(x,r)> 1 w,t)
r" — 2¢Cn t*

forall 0<r <t < oo,

where ¢ and C are the constant from (3.2) and (3.3) (and consequently the
right-hand side inequality in (3.2) holds).
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PrOOF. From (3.3) we have

2¢ 2t
w(x,r) - l/ w(x,r)d - w(x,t) dt
m T CJ ntl - cC J, rt!

(7.1)

from which (7.1) follows.
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