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Weighted estimates of generalized potentials
in variable exponent Lebesgue spaces
on homogeneous spaces
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Abstract. For generalized potential operators with the kernel a[%(x,y)]

[%(x,y)]N
on bounded

measure metric space (X, µ, %) with doubling measure µ satisfying the upper growth
condition µB(x, r) ≤ CrN , N ∈ (0,∞), we prove weighted estimates in the case of
radial type power weight w = [%(x, x0)]

ν . Under some natural assumptions on a(r) in
terms of almost monotonicity we prove that such potential operators are bounded from
the weighted variable exponent Lebesgue space Lp(·)(X, w, µ) into a certain weighted

Musielak-Orlicz space LΦ(X, w
1

p(x0) , µ) with the N-function Φ(x, r) defined by the
exponent p(x) and the function a(r).
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1. Introduction
The Lebesgue spaces Lp(·) with variable exponent were intensively investigated during
the last years, we refer to the papers [35], [23] for the basic properties of these spaces.
The growing interest to such spaces is caused by applications to various problems, for
instance, in image restoration, fluid dynamics, elasticity theory and differential equations
with non-standard growth conditions (see e.g. [2], [28], [36]). The spaces Lp(·) with vari-
able exponent are special cases of Orlicz-Musielak spaces, see [24] for these spaces. We
refer to [3], where the maximal operator was studied in the context of Orlicz-Musielak
spaces. A significant progress has already been made been made in the study of classical
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integral operators in the context of the Lp(·) spaces, see for instance the surveying papers
[4], [18] and[34].

The spaces Lp(·) on measure quasimetric spaces and maximal and potential opera-
tors in such spaces were studied in [1], [6], [15], [16], [14], [17], [21].

We study the generalized Riesz potential operators

Iaf (x) : =
∫

X

K(x, y)f(y)dµ(y), K(x, y) =
a (% (x, y))
[% (x, y)]N

(1.1)

over a bounded measure space X with quasimetric %, where N is the upper Ahlfors di-
mension of X . In [13], under some assumptions on the function a(%) there was proved a
Sobolev-type theorem on the boundedness of the operator Ia from Lp(·)(X) into a certain
Orlicz-Musielak space. In this paper we extend this result to the weighted case. We deal
with the case of power weights

w(x) = [%(x, x0)]ν , x0 ∈ X.

Note that the interest to the case of power weights is caused not only by the fact that
such weights are first of all important in various applications, but also because in the case
of variable exponents it is a problem to derive the result for concrete weights from the
existing forms of general conditions on weights. (Recall that even in the case of con-
stant exponents the belongness of these or other special weights to the Muckenhoupt type
classes was first not checked directly, but obtained from the necessity of the Muckenhoupt
condition).

An extension to the weighted case proved to be a non-easy task within the frame-
works of variable exponents even for power weights, the difficulties being caused both by
the variability of the exponent and non-homogeneity of the kernel. This extension is based
on the technique of weighted norm estimation of kernels of truncated potentials given and
applied in [29], [32], [31], [33], which is developed in this paper for non-homogeneous
kernels.

The generalized Riesz potential operators Ia attracted attention last years, we refer
in particular to [12], [25], where such potentials were studied in Orlicz spaces in the case
X = Rn and Euclidean metric, and to [26], where homogeneous spaces with constant
dimension were admitted. We refer also to [27] for the study of the similar generalized
potentials in the Euclidean setting in rearrangement invariant spaces. For ”standard” po-
tentials (that is, potentials with the kernel of the form 1

d(x,y)N−α or d(x,y)α

B(x,d(x,y)) ) on metric
measure spaces, we refer to [5], [7], [8], [9], [10], [11], [19], [20] and references therein.

The main results are formulated in Section 2 and proved in Section 5. The main
technical tool is provided by Lemma 4.1 in Section 3.

2. Formulation of the main result
In the sequel (X, %, µ) always stands for a bounded quasimetric space with quasidistance
%(x, y) = %(y, x):

%(x, y) ≤ k[%(x, z) + %(z, y)], k ≥ 1 (2.1)
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and Borel regular measure µ. We denote d = diamX . The measure µ is supposed to
satisfy the growth condition

µ (B (x, r)) < KrN . (2.2)

Definition 2.1. A function Φ : X × [0,∞) → [0, +∞) is said to be an N -function, if
1. for every x ∈ X the function Φ(x, t) is convex, nondecreasing and continuous in

t ∈ [0,∞),
2. Φ(x, 0) = 0, Φ(x, t) > 0 for every t > 0,
3. Φ(x, t) is a µ-measurable function of x for every t ≥ 0.

Definition 2.2. Let Φ be an N -function and w a weight. The weighted Orlicz-Musielak
space LΦ(X, w) is defined as the set of all real-valued µ-measurable functions f on X
such that ∫

X

Φ

(
x,

w(x)f(x)
λ

)
dµ(x) < ∞

for some λ > 0. We equip it with the norm

‖f‖Φ,w = inf



λ > 0 :

∫

X

Φ

(
x,

w(x)f(x)
λ

)
dµ(x) ≤ 1



 .

In particular, Φ(x, t) = tp(x), where 1 ≤ p(x) < ∞, is an N -function and the
corresponding space is the variable exponent Lebesgue space Lp(·)(X,w).

Everywhere in the sequel, when dealing with the space Lp(·)(X, w), we suppose
that

1 < p− ≤ p(x) ≤ p+ < +∞, (2.3)

|p(x)− p(y)| ≤ A

ln 1
%(x,y)

, %(x, y) <
1
2

(2.4)

and denote
wν = [%(x, x0)]ν , x0 ∈ X.

The function a : [0, d] → [0,∞) is assumed to satisfy the assumptions
1) a(r) is continuous, almost increasing, positive for r > 0 and a(0) = 0,

2)
d∫
0

a(r)
r dr < ∞.

We denote

A(r) =

r∫

0

a(t)
t

dt.

In the following theorem we make use of the notion of the lower dimension of X
defined by

dim(X) = sup
t>1

ln
(

lim inf
r→0

inf
x∈X

µB(x,rt)
µB(x,r)

)

ln t
.
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as introduced in [30]. It is clear that dim(X) = N in the cases where X has constant
dimension N , that is, c1r

N ≤ µB(x, r) ≤ c2r
N . In general, if X has the property that

0 < dim(X) < ∞,

then X satisfies the growth condition with every

0 < N < dim(X). (2.5)

This follows from the inequality

µB(x, r) ≤ Crdim(X)−ε, (2.6)

where ε > 0 is arbitrarily small and C = C(ε) > 0 does not depend on x, which is easily
derived from the results in [30], Subsection 2.1.

Theorem 2.3. Let (X, %, µ) be quasimetric space with doubling measure and positive
finite lower dimension dim(X), and let p fulfill assumptions (2.3)-(2.4) and

0 ≤ ν <
dim(X)
p′(x0)

.

Suppose that there exists a β ∈
(

0,
dim(X)

p+

)
such that

a(r)
rβ

is almost decreasing. (2.7)

Then the operator Ia is bounded from the space Lp(·) (X, wν) into the weighted Orlicz-
Musielak space LΦ(X, wν1), where ν1 = ν

p(x0)
and the N -function Φ is defined by its

inverse (for every fixed x ∈ X)

Φ−1 (x, r) =

r∫

0

A
(
t−

1
N

)
t
− 1

p′(x) dt. (2.8)

The proof of Theorem 2.3 will be based on Lemma 4.1 and the following statement
proved in [21], [22].

Theorem 2.4. Let X be a bounded doubling measure quasimetric space and p(x) satisfy
assumptions (2.3)-(2.4). The maximal operator

Mf(x) = sup
r>0

1
B(x, r)

∫

B(x,r)

|f(y)|dµ(y)

is bounded in Lp(·) (X, wν), if −dim(X)
p(x0)

< ν < dim(X)
p′(x0)

.

We will also use the following lemma proved in [13] (see Lemma 4.9 in [13]).

Lemma 2.5. Let p(x) satisfy condition (2.3) and a(r) be a non-negative almost increas-
ing continuous on [0, d], 0 < d < ∞ function such that the function a(t)

t
N

p+
−ε

is almost
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decreasing for some ε > 0. Then there exist constants C1 > 0, C2 > 0 not depending on
x and r such that

C1
A(r)

r
N

p(x)
≤ Φ−1

(
x,

1
rN

)
≤ C2

A(r)

r
N

p(x)
. (2.9)

3. Auxiliary estimates
To prove our weighted generalized Sobolev-type theorem for the potential Ia via Hedberg
approach, we need to estimate the integral

J (x, r) :=
∫

X\B(x,r)

(
a (% (x, y))

% (x, y)N

)p(x)

%(y, x0)bdµ (y) , x0 ∈ X.

Lemma 3.1. Let X satisfy the growth condition (2.2), let the function a(r) be non-
negative and almost decreasing on [0, d] and γ(x) be an arbitrary bounded function on
Ω. Then the estimate

∫

X\B(x,r)

(
a [%(x, y)]
%(x, y)γ(x)

)p(x)

dµ(y) ≤ C

d∫

r

tN−1

[
a(t)
tγ(x)

]p(x)

dt, 0 < r <
d

2
, (3.1)

holds, where C > 0 does not depend on x and r.

Lemma 3.1 was proved in [13] in the case γ(x) = N , the proof based on the binary
decomposition is the same for an arbitrary bounded γ(x) in view of the monotonicity of
the power function tγ(x).

Lemma 3.2. Let X satisfy the growth condition (2.2), Suppose that the function a(r) :

(0, d) → (0,+∞) is almost increasing and the function
a(r)
rN

is almost decreasing. Then

for 0 < r < d
2 the estimate

J (x, r) ≤ CG(x, r) := C





d∫
r

tN−1
[

a(t)
tN

]p(x)

tb dt, if %(x0, x) ≤ r

%(x0, x)b
d∫
r

tN−1
[

a(t)
tN

]p(x)

dt, if %(x0, x) > r

(3.2)
holds, where p : X → (1, +∞), 1 ≤ p(x) < p+ < +∞, b > −N amd C > 0 does not
depend on x and r.

Proof. Consider separately the cases %(x0, x) ≤ r
2k , r

2k ≤ %(x0, x) ≤ 2kr, %(x0, x) ≥
2kr, where k is the constant from the triangle inequality (2.1).

The case %(x0, x) ≤ r
2k .
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We have
%(x0, y)
%(x, y)

≤ k (%(x, y) + %(x0, x))
%(x, y)

≤ k

(
1 +

%(x0, x)
r

)
≤ 2k and

%(x0, y)
%(x, y)

≥
1
k
− %(x0, x)

r
≥ 1

2k
. Hence

1
2k

≤ %(x0, y)
%(x, y)

≤ 2k. Consequently,

J (x, r) ≤ C

∫

X\B(x,r)

(
a (% (x, y))

% (x, y)N− b
p(x)

)p(x)

dµ (y) .

Then by Lemma 3.1

J (x, r) ≤ C

d∫

r

tN−1

[
a(t)
tN

]p(x)

tb dt.

Therefore
J (x, r) ≤ CG(x, r), %(x0, x) ≤ r

2k
(3.3)

The case r
2k ≤ %(x0, x) ≤ 2kr.

We split the integration in J (x, r) as follows

J (x, r) :=
∫

r<%(x,y)<2k%(x0,x)

(
a (% (x, y))

% (x, y)N

)p(x)

%(x0, y)bdµ (y)

+
∫

%(x,y)>2k%(x0,x)

(
a (% (x, y))

% (x, y)N

)p(x)

%(x0, y)bdµ (y) := J1 + J2.

Since a(r)
rN is almost decreasing, we obtain

J1 ≤ C

(
a (r)
rN

)p(x) ∫

r<%(x,y)<2k%(x0,x)

%(x0, y)bdµ (y)

When %(x, y) > r and %(x0, x) < 2kr, then %(x0, y) ≤ k (%(x, y) + %(x0, x)) ≤
k (%(x, y) + 2kr) ≤ 3k2%(x, y). Consequently,

≤ C

(
a (r)
rN

)p(x) ∫

%(x,y)<2k%(x0,x)
%(x0,y)≤3k2%(x,y)

%(x0, y)bdµ (y)

≤ C

(
a (r)
rN

)p(x) ∫

%(x0,y)≤6k3%(x0,x)

%(x0, y)bdµ (y)

We make use of the known estimate∫

%(x,y)≤R

%(x, y)bdµ(y) ≤ CRb+N , b > −N (3.4)



Weighted estimates of generalized potentials 7

valid for quasimetric spaces with the growth condition (2.2), see for instance [8], Lemma
1 (actually C = K2N

2N+b−1
in (3.4), where K is the constant from (2.2)), which yields

J1 ≤ C

(
a (r)
rN

)p(x)

%(x0, x)b+N .

It is easily seen that then

J1 ≤ Ca (r)p(x)
%(x0, x)b+N

d∫

r

t−Np(x)−1dt ≤ C

d∫

r

tN−1

[
a(t)
tN

]p(x)

tb dt,

so that
J1 ≤ CG(x, r).

The estimate for J2 = J (x, 2k%(x0, x)) is contained in (3.3) with r = 2k%(x0, x).
Hence

J (x, r) ≤ CG(x, r),
r

2k
≤ %(x0, x) ≤ 2kr (3.5)

The case %(x0, x) ≥ 2kr.
We have

J (x, r) =
∫

r<%(x,y)<
%(x0,x)

2k

(
a (% (x, y))

% (x, y)N

)p(x)

%(x0, y)bdµ (y)

+
∫

%(x,y)>
%(x0,x)

2k

(
a (% (x, y))

% (x, y)N

)p(x)

%(x0, y)bdµ (y) = J3 + J4.

For the term J3 we have %(x0, y) ≥ 1
k

%(x0, x)−%(x, y) ≥ 1
k

%(x0, x)− 1
2k

%(x0, x) =
1
2k

%(x0, x) and %(x0, y) ≤ k(%(x0, x) + %(x, y)) < 2k%(x0, x). Then

J3 ≤ C%(x0, x)b

∫

r<%(x,y)< 1
2k %(x0,x)

(
a (% (x, y))

% (x, y)N

)p(x)

dµ (y) .

By Lemma 3.1 we then obtain

J3 ≤ C%(x0, x)b

d∫

r

tN−1

[
a(t)
tN

]p(x)

dt = CG(x, r).

The term J4, coincides with J
(
x, %(x0,x)

2k

)
and its estimate is contained in the

preceding case r
2k ≤ %(x0, x) ≤ 2kr. Therefore,

J (x, r) ≤ CG(x, r), %(x0, x) ≥ 2kr. (3.6)
Gathering estimates (3.3), (3.5), (3.6), we arrive at (3.2). ¤
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4. Main lemma
We need to estimate the norm

ηp,γ(x, r) =
∥∥∥∥

a (%(x, y))
%(x, y)N

∥∥∥∥
Lp(·)

(
X\B(x,r),w

γ−N
p(x0)

) , (4.1)

where w
γ−N
p(x0) (y) = %(x0, y)

γ−N
p(x0) and γ > 0.

Lemma 4.1. Let (X, %, µ) be a bounded quasimetric space with Borel regular measure
µ: satisfying the growth condition (2.2), d = diam X and let p satisfy assumptions (2.3)-
(2.4). Suppose that the function a(r) : (0, d) → (1,+∞) is almost increasing, there exists

0 < β < min
(

N

(p−)′
, N − γ

p−

)
such that

a(r)
rβ

is almost decreasing. (4.2)

Then

ηp,γ(x, r) ≤ C
a(r)

r
N

p′(x)

[max (r, %(x0, x))]
γ−N
p(x) for 0 < r <

d

2
. (4.3)

Proof. By definition of the norm
∫

y∈X
%(x,y)>r

(
a(%(x, y))

%(x, y)Nηp,γ

)p(y)

%(x0, y)γ−Ndµ(y) = 1. (4.4)

1st step. Values ηp,γ ≥ 1 are only of interest. This follows from the fact that the
right hand side of (4.3) is bounded from below.

a(r)

r
N

p′(x)

[max (r, %(x0, x))]
γ−N
p(x) ≥ a(r)

r
N

p′(x)

min
(
r

γ−N
p(x) , d

γ−N
p(x)

)

= min
(

a(r)

rN− γ
p(x)

, d
γ−N
p(x)

a(r)

r
N

p′(x)

)
≥ C

a(r)
rβ

≥ C > 0,

the last inequality following from the fact that a(r)
rβ is almost decreasing on [0, d].

2nd step. Small values of r, say 0 < r < 1
2 , are only of interest. To show that this

assumption is possible, we have to check that the right-hand side of (4.3) is bounded from
below and ηp,γ(x, r) is bounded from above when r ≥ 1

2 .
Let r ≥ 1

2 . From the fact that ηp,γ ≥ 1 it follows that

∫

y∈X:
%(x,y)>1

(
a(%(x, y))
%(x, y)N

)p(y) 1
ηp,γ

%(x0, y)γ−Ndµ(y) ≥ 1.
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Hence

ηp,γ ≤
∫

y∈X:
%(x,y)>1

(
a(%(x, y))
%(x, y)N

)p(y)

%(x0, y)γ−Ndµ(y) < C.

3rd step. Rough estimate. First we derive a weaker estimate

ηp,γ(x, r) ≤ Cr−Na(r) (4.5)

which will be used later to obtain the final estimate (4.3). From (4.4) we have

1 ≤
∫

y∈X
%(x,y)>r

[(
a(%(x, y))

%(x, y)Nηp,γ

)p−

+
(

a(%(x, y))
%(x, y)Nηp,γ

)p+
]

%(x0, y)γ−Ndµ(y)

Since %(x, y) > r, we obtain

1 ≤ C

[(
a(r)

rNηp,γ

)p−

+
(

a(r)
rNηp,γ

)p+
] ∫

X

%(x0, y)γ−Ndµ(y)

≤ C

[(
a(r)

rNηp,γ

)p−

+
(

a(r)
rNηp,γ

)p+
]

,

where the convergence of the integral
∫
X

%(x0, y)γ−Ndµ(y) with γ > 0 (see (3.4)) was

taken into account.

If
a(r)

rNηp,γ
≥ 1, there is nothing to prove. When

a(r)
rNηp,γ

< 1, we obtain 1 ≤

2C

(
a(r)

rNηp,γ

)p−

, which proves the estimate.

4th step. We split integration in (4.4) as follows

1 =
3∑

i=1

∫

Xi(x)

(
a(%(x, y))

%(x, y)Nηp,γ

)p(y)

%(x0, y)γ−Ndµ(y) := I1 + I2 + I3,

where

X1(x) =
{

y ∈ X : r < %(x, y) <
1
2
, K(x, y) > ηp,γ

}
,

X2(x) =
{

y ∈ X : r < %(x, y) <
1
2
, K(x, y) < ηp,γ

}
,

X3(x) =
{

y ∈ X : %(x, y) >
1
2

}
.

5th step. Estimation of I1. We have

I1 =
∫

X1(x)

(
a(%(x, y))

%(x, y)Nηp,γ

)p(x)

%(x0, y)γ−Nur(x, y)dµ(y),



10 M.G.Hajibayov and S.G.Samko

where

ur(x, y) =
(

a(%(x, y))
%(x, y)Nηp,γ

)p(y)−p(x)

.

We show that the function ur(x, y) is bounded from below and above uniformly in x, y
and r. To this end, we make use of (2.4) and following estimations in [33], p. 432, and
obtain

|ln ur(x, y)| ≤ C

ln
a(%(x, y))

%(x, y)Nηp,γ

ln
1

% (x, y)

= C

ln
a(%(x, y))
%(x, y)N

− ln ηp,γ

ln
1

% (x, y)

,

where we took into account that
a(%)

%Nηp,γ
≥ 1. Therefore,

|ln ur(x, y)| ≤ C

ln
a(%(x, y))
%(x, y)N

ln
1

% (x, y)

≤ C

| ln a(%(x, y)|+ N ln
1

%(x, y)

ln
1

% (x, y)

≤ C.

Then

I1 ≤ C

η
p(x)
p,γ

∫

X1(x)

(
a(%(x, y))
%(x, y)N

)p(x)

%(x0, y)γ−Ndµ(y).

By Lemma 3.2 we get

I1 ≤ CF(x, r, p(x)), (4.6)

where

F(x, r, q) =





d∫
r

tγ−1
[

a(t)
ηp,γtN

]q

dt, if %(x0, x) ≤ r

%(x0, x)γ−N
d∫
r

tN−1
[

a(t)
ηp,γtN

]q

dt, if %(x0, x) > r

6th step. Estimation of I2. For I2 we obtain

I2 ≤
∫

r<%<1

(
a(%(x, y))

%(x, y)Nηp,γ

)p−

%(x0, y)γ−Ndµ(y)

≤ 1
η

p−
p,γ

∫

r<%<1

(
a(%(x, y))
%(x, y)N

)p−

%(x0, y)γ−Ndµ(y)

and the application of Lemma 3.2 gives

I2 ≤ CF(x, r, p−). (4.7)
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7th step. Estimation of I3. For I3 we have

I3 ≤ C

η
p−
p,γ

∫

%> 1
2




a(%(x,y))
sup

t∈(0,d)
a(t)

(2%(x, y))N




p(y)

%(x0, y)γ−Ndµ(y)

≤ C

η
p−
p,γ

∫

%> 1
2




a(%(x,y))
sup

t∈(0,d)
a(t)

(2%(x, y))N




p−

dµ(y)
%(x0, y)N−γ

≤ C

η
p−
p,γ

∫

%> 1
2

(
a(%(x, y))
%(x, y)N

)p− dµ(y)
%(x0, y)N−γ

,

where the last integral is convergent and uniformly bounded with respect to x by Lemma
3.2. Hence

I3 ≤ C

η
p−
p,γ

. (4.8)

8th step. By (4.6), (4.7), (4.8) we have

1 ≤ C

[
F(x, r, p(x)) + F(x, r, p−) +

1
η

p−
p,γ

]
.

We may consider ηp,γ(x, r) only for those x, r for which ηp,γ(x, r) is sufficiently large:

ηp,γ(x, r) ≥ (2C)
1

p− , where C is the constant from the last inequality. For such x, r we
have C

ηp,γ
≤ 1

2 and we then obtain

1
2
≤ C [F(x, r, p(x)) + F(x, r, p−)] . (4.9)

Taking into account that
Ca(t)
tNηp,γ

≥ 1 by (4.5), we have

F(x, r, p−) ≤ CF(x, r, p(x))

Then (4.9) yields the inequality 1 ≤ CF(x, r, p(x)), that is,

ηp(x)
p,γ ≤ C





d∫
r

tγ−1
[

a(t)
tN

]p(x)

dt, if %(x0, x) ≤ r

%(x0, x)γ−N
d∫
r

tN−1
[

a(t)
tN

]p(x)

dt, if %(x0, x) > r

(4.10)

9th step. Final estimate of ηp,γ . Write (4.10) in the next form

ηp(x)
p,γ ≤ C





d∫
r

tβp(x)−Np(x)+γ−1
[

a(t)
tβ

]p(x)

dt, if %(x0, x) ≤ r

%(x0, x)γ−N
d∫
r

tβp(x)−Np(x)+N−1
[

a(t)
tβ

]p(x)

dt, if %(x0, x) > r

.
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By (4.2) we have

ηp(x)
p,γ ≤ C

[
a(r)
rβ

]p(x)





d∫
r

tβp(x)−Np(x)+γ−1 dt, if %(x0, x) ≤ r

%(x0, x)γ−N
d∫
r

tβp(x)−Np(x)+N−1 dt, if %(x0, x) > r

.

Since 0 < β < min
(

N

(p−)′
, N − γ

p−

)
we have βp(x)−Np(x)+m < 0, where m can

take two values: N or γ. Then
d∫

r

tβp(x)−Np(x)+m−1dt ≤ Crβp(x)−Np(x)+m.

Therefore

ηp(x)
p,γ ≤ C

[
a(r)
rN

]p(x) {
rγ , if %(x0, x) ≤ r
%(x0, x)γ−NrN , if %(x0, x) > r

= C

[
a(r)

r
N

p′(x)

]p(x)

[max(%(x0, x), r)]γ−N
,

which proves (4.3).
¤

5. Proof of the main result
Proof. As usual, we may suppose that f(x) ≥ 0 and ‖f‖Lp(·)(X,wν) ≤ 1 and show that

∫

X

Φ [x,w(x)Iaf(x)] dµ(x) ≤ C < ∞. (5.1)

In accordance with Hedberg’s trick, we split Iaf(x) as follows

Iaf(x) =
∫

B(x,r)

a[%(x, y)]
%(x, y)N

f(y)dµ(y) +
∫

X\B(x,r)

a (% (x, y))

% (x, y)N
f(y)dµ (y)

= Ar(x) + Br(x).

The estimation of the first term via the maximal function well known in the case a(r) =
rα, now holds in the form

Ar(x) ≤ CA(r)Mf(x), A(r) =

r∫

0

a(t)
t

dt, (5.2)

see [13], Subsection 4.4.
For Br(x), by Hölder inequality
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∣∣∣∣∣∣

∫

X

f(x)g(x)dµ(x)

∣∣∣∣∣∣
≤ k‖f‖Lp(·)(X,%)‖g‖Lp′(·)(X,%−1)

for variable exponents, we obtain

Br(x) ≤ C ‖f‖Lp(·)(X\B(x,r),wν)

∥∥∥∥∥
a (% (x, y))

% (x, y)N

∥∥∥∥∥
Lp′(·)(X\B(x,r),w−ν)

,

where we denote w = %(·, x0) for brevity. Under notation (4.1) we obtain

Br(x) ≤ Cηp′,γ(x, r) with γ = N − νp′x0),

with N from the growth condition (one may take N < dim(X) arbitrarily close to
dim(X) according to (2.5)-(2.6)).

We apply Lemma 4.1 and obtain

ηp′,γ(x, r) ≤ C
a(r)

r
N

p(x)
[max(r, %(x0, x))]−ν

≤ C
a(r)

r
N

p(x)
%(x0, x)−ν ∼ C

a(r)

r
N

p(x)
%(x0, x)−ν

Therefore

Br(x) ≤ C
a(r)

r
N

p(x)
%(x0, x)−ν

and

Iaf(x) ≤ C

[
A(r)Mf(x) +

a(r)

r
N

p(x)
%(x0, x)−ν

]

≤ CA(r)
[
Mf(x) +

1

r
N

p(x)
%(x0, x)−ν

]
,

where we used the fact that a(r ≤ CA(r)) which follows from (4.2). Consequently, by
Lemma 2.5 we get

Iaf(x) ≤ CΦ−1

(
x,

1
rN

) [
r

N
p(x) Mf(x) + %(x, x0)−ν

]

Now we choose r =
1

%(x0, x)
νp(x)

N Mf(x)
p(x)

N

and get

1
C

[%(x, x0)]νIaf(x) ≤ Φ−1
(
x, [%(x, x0)]νp(x)Mf(x)p(x)

)
.

Hence∫

X

Φ
(

x,
1
C

[%(x, x0)]νIaf(x)
)

dµ(x) ≤
∫

X

[%(x, x0)]νp(x)Mf(x)p(x)dµ(x).

Then the application of Theorem 2.4 completes the proof of (5.1), if we take into account
property (2.5) . ¤
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[14] P. Harjulehto, P. Hästö, and V. Latvala, Sobolev embeddings in metric measure spaces with
variable dimension. Math. Z. 254(3) (2006), 591–609.
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