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Abstract

We prove that in variable exponent spaces Lp(·)(Ω), where p(·) satisfies the log-

condition and Ω is a bounded domain in Rn with the property that Rn\Ω has the

cone property, the validity of the Hardy type inequality

∥∥∥∥
1

δ(x)α
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Ω

ϕ(y)
|x− y|n−α
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p(·)

5 C‖ϕ‖p(·), 0 < α < min
(
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p+

)

where δ(x) = dist(x, ∂Ω), is equivalent to a certain property of the domain Ω ex-

pressed in terms of α and χΩ.
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1 Introduction

We consider the Hardy inequality of the form

∥∥∥∥∥
1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥∥
p(·)

5 C‖ϕ‖p(·), 0 < α < min

(
1,

n

p+

)
, (1)

within the frameworks of Lebesgue spaces with variable exponents p(x), p+ =

sup
x∈Ω

p(x), where δ(x) = dist(x, ∂Ω). We refer to [8,9,18] for Hardy type in-

equalities. The multidimensional Hardy inequality of the form

∫

Ω
|u(x)|pδ(x)−p+adx 5 C

∫

Ω
|∇u(x)|pδ(x)adx, u ∈ C1

0(Ω), (2)

appeared in [23] for bounded domains Ω ⊂ Rn with Lipschitz boundary and

1 < p < ∞ and a > p − 1. This inequality was generalized by Kufner [17,

Theo. 8.4] to domains with Hölder boundary, and after that by Wannebo [40]

to domains with generalized Hölder condition. HajÃlasz [10] and Kinnunen and

Martio [12] obtained a pointwise inequality

|u(x)| 5 δ(x)M|∇u|(x),

where M is a kind of maximal function depending on the distance of x to the

boundary. This pointwise inequality combined with the knowledge of bound-

edness of Hardy-Littlewood maximal operator implies a “local version near
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the boundary” of Hardy’s inequality. This approach was used in the paper of

HajÃlasz [10] in the case of classical Lebesgue spaces.

Within the frameworks of variable exponent Lebesgue spaces, the Hardy in-

equality in one variable was first obtained in [15], and later generalized in [7],

where the necessary and sufficient conditions for the validity of the Hardy in-

equality on (0,∞) were obtained under the assumption that the log-condition

on p(x) is satisfied only at the points x = 0 and x = ∞, see also [19,20].

For the multidimensional versions of Hardy inequality of form (1) with δ(x)α

replaced by |x − x0|α, x0 ∈ Ω, we refer to [33,34]. Harjulehto, Hästö and

Koskenoja in [11] obtained the estimate

∥∥∥∥∥
u(x)

δ(x)1−a

∥∥∥∥∥
p(·)

5 C‖∇u(x)δ(x)a‖p(·), u ∈ W
1,p(·)
0 (Ω)

making use of the approach of [10], under the assumption that a is sufficiently

small, 0 5 a < a0.

Basing on some ideas and results of fractional calculus, in Theorem 12 we

show that the problem of the validity of inequality (1) is equivalent to a

certain property of Ω expressed in terms of α and χΩ, see Definition 9 and

Theorem 12. We did not find mentioning such an equivalence in the literature

even in the case of constant p.

Note that the continuing interest to the variable exponent Lebesgue spaces

Lp(·) observed last years was caused by possible applications (elasticity theory,

fluid mechanics, differential equations, see for example [29]). We refer to papers

[16,35] for basics on the Lebesgue spaces with variable exponents and to the

surveys [5,13,32] on harmonic analysis in such spaces. One of the breakthrough
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results obtained for variable p(x) was the statement on the boundedness of the

Hardy-Littlewood maximal operator in the generalized Lebesgue space Lp(·)

under certain conditions on p(x), see [3] and the further development in the

above survey papers. The importance of the boundedness of the maximal op-

erator is known in particular due to the fact that many convolution operators

occurred in applications may be dominated by the maximal operator, which

is also used in this paper.

Note also that the study of pointwise multipliers in the spaces of Riesz po-

tentials is in fact an open question in case of variable p(x). Meanwhile, the

topic of pointwise multipliers (in particular, in the case of characteristic func-

tions χΩ) in spaces of differentiable functions, is of importance in the theory

of partial differential equations and other applications, see for instance [28].

The study of pointwise multipliers of spaces of Riesz or Bessel potentials in the

case of constant p may be found in [21,22,36], see also [28] for the pointwise

multipliers in the case of more general spaces. We refer also, in the case of

constant p as well, to recent papers [37,38] on the study of characteristic

functions χΩ(x) as pointwise multipliers.

2 Preliminaries

2.1 On Lebesgue spaces with variable exponent

The basics on variable Lebesgue spaces may be found in [16,30], but we recall

here some necessary definitions. Let Ω ⊂ Rn be an open set. For a measurable
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function p : Ω → [1,∞), we put

p+ = p+(Ω) := ess sup
x∈Ω

p(x) and p− = p−(Ω) := ess inf
x∈Ω

p(x).

In the sequel we use the notation

P(Ω) := {p ∈ L∞(Ω) : 1 < p− 5 p(x) 5 p+ < ∞}. (3)

The generalised Lebesgue space Lp(·)(Ω) with variable exponent is introduced

as the set of all functions ϕ on Ω for which

%p(·)(ϕ) :=
∫

Ω
|ϕ(x)|p(x)dx < ∞.

Equipped with the norm

‖ϕ‖Lp(·)(Ω) := inf
{
λ > 0 : %p(·)

(
ϕ

λ

)
5 1

}
,

this is a Banach space. The modular %p(·)(f) and the norm ‖f‖p(·) are related

to each other by

‖f‖σ
p(·) 5 Ip(f) 5 ‖f‖θ

p(·) (4)

where σ =





ess inf
x∈Ω

p(x), ‖f‖p(·) = 1;

ess sup
x∈Ω

p(x), ‖f‖p(·) 5 1

and θ =





ess inf
x∈Ω

p(x), ‖f‖p(·) 5 1;

ess sup
x∈Ω

p(x), ‖f‖p(·) = 1.

By w-Lip (Ω) we denote the class of all exponents p ∈ L∞(Ω) satisfying the

(local) logarithmic condition

|p(x)− p(y)| 5 C

− ln |x− y| , |x− y| 5 1

2
, x, y ∈ Ω. (5)

By p′(·) we denote the conjugate exponent, given by
1

p(x)
+

1

p′(x)
≡ 1.
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2.2 Hardy-Littlewood maximal operator

As usual, the Hardy-Littlewood maximal operator of a function ϕ on Ω ⊆ Rn

is defined as

Mϕ(x) = sup
r>0

1

|B̃(x, r)|
∫

B̃(x,r)
|ϕ(y)|dy, B̃(x, r) = B(x, r) ∩ Ω. (6)

We use the notation

P(Ω) :=
{
p : 1 < p− 5 p+ 5 ∞, ‖Mf‖Lp(·)(Ω) 5 C‖f‖Lp(·)(Ω)

}
. (7)

Proposition 1 ([3, Theo. 3.5]) If Ω is bounded, p ∈ P(Ω) ∩ w-Lip(Ω), then

p ∈ P(Ω).

2.3 Potential and hypersingular integral operators

Definition 2 For a function ϕ on Rn, the Riesz potential operator Iα is de-

fined by

Iαϕ(x) =
1

γn(α)

∫

Rn

ϕ(y) dy

|x− y|n−α
= ϕ ∗ kα(x), (8)

where the normalizing constant factor has the form γn(α) =
2απn/2Γ(α

2 )
Γ(n−α

2 )
. The

kernel kα(x) = |x|α−n

γn(α)
is referred to as the Riesz kernel.

Definition 3 The space Iα
(
Lp(·)

)
= Iα

(
Lp(·)(Rn)

)
, 0 < α < n

p+
, called the

space of Riesz potentials, is the space of functions f representable as f = Iαϕ

with ϕ ∈ Lp(·), equipped with the norm ‖f‖Iα(Lp(·)) = ‖ϕ‖Lp(·).

Definition 4 The hypersingular integral operator Dα of order α, known also
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as the Riesz derivative, is defined by

Dαf = lim
ε→0

Dα
ε f = lim

ε→0

1

dn,`(α)

∫

|y|>ε

(
∆`

yf
)

(x)

|y|n+α
dy, (9)

where α > 0 and ` > α (see [31, p.60], for the value of the normalizing

constant dn,`(α)).

It is known that given α, one may choose an arbitrary order ` > α of the finite

difference; the hypersingular integral does not depend on ` under this choice,

see [31, Ch. 3].

In [1], the following statement was proved.

Proposition 5 Let p ∈ P(Rn) ∩ P(Rn) and 0 < α < n
p+

. Then

DαIαϕ = ϕ, ϕ ∈ Lp(·)(Rn)

where the hypersingular operator Dα is taken in the sense of convergence of

Lp(·)-norm.

The characterization of the space Iα(Lp(·)(Rn)) is given by the following propo-

sition.

Proposition 6 ([2, Theo. 3.2]) Let 0 < α < n, p ∈ P(Rn) ∩ P(Rn), p+ < n
α

and let f be a locally integrable function. Then f ∈ Iα
(
Lp(·)

)
if and only if

f ∈ Lq(·) with 1
q(·) = 1

p(·) − α
n
, and there exists the Riesz derivative Dαf in the

sense of convergence in Lp(·).

Remark 7 Theorem 3.2 in [2] was stated under the assumption that p(x)

satisfies the local log-condition and the decay condition at infinity. The analysis

of the proof of Theorem 3.2 shows that it is valid under the general assumption

p ∈ P(Rn) ∩ P(Rn) (if one takes into account that p ∈ P ∩ P(Rn) ⇔ p′ ∈
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P ∩ P(Rn), see [6, Theo. 8.1]).

By Propositions 5 and 6, for the norm ‖f‖Iα(Lp(·)) = ‖ϕ‖Lp(·) in the space of

Riesz potentials Iα
(
Lp(·)(Rn)

)
we have the following equivalence

c1 (‖f‖Lq(·) + ‖Dαf‖Lp(·)) 5 ‖f‖Iα(Lp(·)) 5 c2 (‖f‖Lq(·) + ‖Dαf‖Lp(·)) , (10)

where 1
q(·) = 1

p(·) − α
n

and c1 > 0, c2 > 0 do not depend on f .

2.4 (α, p(·))-property of a domain Ω

Definition 8 A measurable function g(x) is called a pointwise multiplier in

the space Iα
(
Lp(·)(Rn)

)
, if ‖gIαϕ‖Iα(Lp(·)) 5 C‖ϕ‖Lp(·).

By equivalence (10), in the case 1 < p+ < n
α

the characteristic function χΩ(x)

is a pointwise multiplier in Iα
(
Lp(·)(Rn)

)
if and only if

‖Dα(χΩIαϕ)‖Lp(·)(Rn) 5 C‖ϕ‖Lp(·)(Rn) for all ϕ ∈ Lp(·)(Rn). (11)

We introduce now the following notion related to the property of the character-

istic function χΩ to be a pointwise multiplier, but weaker than that property.

Let EΩf(x) = f̃(x) =





f(x), x ∈ Ω

0, x /∈ Ω

be the zero extension of a function f

defined on Ω.

Definition 9 We say that the domain Ω has the (α, p(·))-property, if the func-
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tion χΩ(x) has the following multiplier property

‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 C‖ϕ‖Lp(·)(Ω) for all ϕ ∈ Lp(·)(Ω). (12)

Definition 10 Let p ∈ P(Ω) ∩ w-Lip(Ω). For brevity we call an extension

p∗(x) of p(x) to Rn regular, if p∗ ∈ P(Rn) ∩ P(Rn), and p+(Rn) = p+(Ω).

Such an extension is always possible, see [4, Th. 4.2]; [26, Lemma 2.2].

Lemma 11 Let p ∈ P(Ω) ∩ w-Lip(Ω). If χΩ is a pointwise multiplier in the

space Iα
(
Lp∗(·)(Rn)

)
under any regular extension p∗(x) of p(x) to Rn, then

the domain Ω has the (α, p(·))-property.

PROOF. We have to check condition (12), given that ‖χΩf‖Iα(Lp∗(·)(Rn)) 5

C‖f‖Iα(Lp∗(·)(Rn)) under some regular extension of the exponent. We have

‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 ‖Dα(χΩIαEΩϕ)‖Lp∗(·)(Rn).

Since the extension p∗(x) is regular, equivalence (10) is applicable so that

‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 C‖χΩIαEΩϕ‖Iα(Lp∗(·)(Rn))

5 C‖EΩϕ‖Lp∗(·)(Rn) = C‖ϕ‖Lp(·)(Ω),

which completes the proof.

3 The main result

Theorem 12 Let Ω be a bounded domain in Rn, p ∈ P(Ω) ∩ w-Lip(Ω) and

0 < α < min
(
1, n

p+

)
. If the domain Ω has the (α, p(·))-property, then the

Hardy inequality

∥∥∥∥∥
1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥∥
p(·)

5 C‖ϕ‖p(·) (13)
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holds. If the exterior Rn\Ω has the cone property, then the (α, p(·))-property
is equivalent to the validity of the Hardy inequality (13).

4 Proof of Theorem 12

4.1 The principal idea of the proof

The proof of Theorem 12 is based on the observation that the weight 1
δ(x)α in

fact is equivalent to the integral

aΩ(x) :=
∫

Rn\Ω
dy

|x− y|n+α
, x ∈ Ω.

Namely, the following statement is valid, see [25, Prop. 3.1].

Proposition 13 For an arbitrary domain Ω there exists a constant c1 > 0

(not depending on Ω, c1 = 1
α
|Sn−1|) such that aΩ(x) 5 c1

[δ(x)]α
. If the exterior

Rn\Ω has the cone property, then there exists a constant c2 = c2(Ω) such that

1
[δ(x)]α

5 c2aΩ(x).

We will prove the following version of Theorem 12.

Theorem 14 Let Ω be a bounded domain in Rn, p ∈ P(Ω) ∩ w-Lip(Ω) and

0 < α < min
(
1, n

p+

)
. Then the Hardy type inequality

∥∥∥∥∥aΩ(x)
∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥∥
p(·)

5 C‖ϕ‖p(·) (14)

holds if and only if the domain Ω has the (α, p(·))-property.

Theorem 12 will immediately follow from Theorem 14 in view of Proposition

13.
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4.2 On a hypersingular integral related to Ω.

As in [25], we define the hypersingular integral (fractional derivative) of order

0 < α < 1, related to the domain Ω, as the hypersingular integral over Rn of

the extension EΩf :

DΩf(x) := rΩDαEΩf(x) =
1

dn,1(α)

∫

Rn

f(x)− f̃(y)

|x− y|n+α
dy, x ∈ Ω,

where rΩ stands for the restriction on Ω. Splitting the integration in the last

integral to that over Ω and Rn\Ω, we can easily see that

aΩ(x)f(x) = dn,1(α)DαEΩf(x)−
∫

Ω

f(x)− f(y)

|x− y|n+α
dy, x ∈ Ω. (15)

The proof of Theorem 14 will be based on representation (15) and certain

known facts from the theory of hypersingular integrals [31].

4.3 Auxiliary functions

Although we will use the auxiliary functions defined below only in the case

` = 1, we give them for an arbitrary integer ` as they are presented in [31]. By
(
∆`

hf
)

(x) :=
∑`

k=0(−1)k
(

`
k

)
f(x − kh) we denote the non-centered difference

of a function f defined on Rn. We need the non-centered difference

∆`,α(x, h) :=
(
∆`

hkα

)
(x) (16)

of the Riesz kernel kα(x) and single out the case of the step h = e1 =

(1, 0, . . . , 0):

k`,α(x) := ∆`,α(x, e1) =
1

γn(α)

∑̀

k=0

(−1)k

(
`

k

)
|x− ke1|α−n. (17)
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We will also use the function

K`,α(|x|) =
1

dn,`(α)|x|n
∫

|y|<|x|
k`,α(y)dy. (18)

The following lemmata can be found in [31, §3.2.1]

Lemma 15 The function ∆`,α(x, h), may be represented via its particular case

k`,α(x) in terms of rotations:

∆`,α(x, h) = |h|α−nk`,α

( |x|
|h|2 rot−1

x h

)
(19)

where rotx η, η ∈ Rn denotes any rotation in Rn which transforms Rn onto

itself so that rotx e1 = x
|x| .

Lemma 16 The function k`,α(x) satisfies the condition

|k`,α(x)| 5 c(1 + |x|)α−n−` when |x| = ` + 1. (20)

Lemma 17 Let ` > <α > 0. Then

∫

Rn

k`,α(y)dy = 0. (21)

Moreover, in the case when ` is odd and the difference defining k`,α(x) is non-

centered,
∫

|y− `
2
e1|<N

k`,α(y)dy = 0 (22)

for any N > 0.

Lemma 18 The function K`,α(|x|), 0 < α < 1 has the bound

|K`,α(|x|)| 5 C|x|α−n as |x| 5 1. (23)

12



4.4 Proof of Theorem 14

Let ϕ ∈ Lp(·)(Ω) and ϕ̃ = EΩϕ(x). Substituting

f(y) := Iαϕ̃ =
1

γn(α)

∫

Ω

ϕ(t)

|t− y|n−α
dt, y ∈ Rn

into (15), we have

aΩ(x)Iα
Ωϕ(x) = DαχΩIαEΩϕ(x)− Aϕ(x), x ∈ Ω, (24)

where

Aϕ =
∫

Ω

Iαϕ̃(x)− Iαϕ̃(y)

|x− y|n+α
dy = lim

ε→0
Aεϕ(x)

and

Aεϕ(x) =
∫

y∈Ω
|x−y|>ε

Iαϕ̃(x)− Iαϕ̃(y)

|x− y|n+α
dy.

The (α, p(·))-property of Ω, by the definition of this property and equiva-

lence in (10), is nothing else but the boundedness in Lp(·)(Ω) of the operator

DαχΩIαEΩ. Thus, in the case of bonded domains Ω, the required equivalence

of the Hardy inequality to the (α, p(·))-property will follow from (24), if the

operator A is bounded.

Lemma 19 Let 0 < α < 1 and Ω be a bounded domain. The operators Aε are

uniformly dominated by the maximal operator:

|Aεϕ(x)| 5 CMϕ(x), x ∈ Ω, (25)

for any ϕ ∈ L1(Ω), where C > 0 does not depend on x and ε. Consequently,

the operator A is bounded in the space Lp(·)(Ω) whenever p ∈ P(Ω).
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PROOF. We make use of the known representation

Iαϕ̃(x)− Iαϕ̃(x− y) =
∫

Rn

∆1,α(ξ, y)ϕ̃(x− ξ)dξ

for the differences of the Riesz potential, see [31, formula (3.64)], and get

Aεϕ(x) =
∫

y∈Ωx

|y|>ε

dy

|y|n+α

∫

Rn

ϕ̃(x− ξ)∆1,α(ξ, y)dξ

=
∫

Rn

ϕ̃(x− ξ)dξ
∫

y∈Ωx

|y|>ε

∆1,α(ξ, y)

|y|n+α
dy (26)

where Ωx = {y ∈ Rn : x− y ∈ Ω}, the interchange of the order of integration

being easily justified by Fubini’s theorem whenever ε > 0. By (19) we then

have

Aεϕ(x) =
∫

Rn

ϕ̃(x− ξ)dξ
∫

y∈Ωx

|y|>ε

k1,α

( |ξ|
|y|2 rot−1

ξ y
)

|y|2n
dy

=
∫

Rn

ϕ̃(x− ξ)

|ξ|n dξ
∫

z∈Ω(x,ξ)

|z|< |ξ|
ε

k1,α(z)dz

=
∫

Rn

ϕ̃(x− εξ)

|ξ|n dξ
∫

z∈Ω(x,εξ)
|z|<|ξ|

k1,α(z)dz =
∫

Rn

ϕ̃(x− εξ)Vε(x, ξ)dξ, (27)

where

Ω(x, ξ) =

{
z ∈ Rn : |ξ| rotξ

z

|z|2 ∈ Ωx

}

and we denoted

Vε(x, ξ) =
1

|ξ|n
∫

z∈Ω(x,εξ)
|z|<|ξ|

k1,α(z)dz

for brevity. We split Aεϕ(x) in the following way

Aεϕ(x) =

(∫

|ξ|<2
+

∫

|ξ|>2

)
ϕ̃(x− εξ)Vε(x, ξ)dξ =: J1,εϕ(x) + J2,εϕ(x). (28)

14



For J1,εϕ(x) we have

|J1,εϕ(x)|5
∫

|ξ|<2

|ϕ̃(x− εξ)| dξ

|ξ|n
∫

|z|<|ξ|
|k1,α(z)|dz

5C
∫

|ξ|<2

|ϕ̃(x− εξ)|
|ξ|n−α

dξ

= C |ϕ̃| ∗ ψε(x) (29)

where ψ(ξ) =





|ξ|α−n, |ξ| < 2,

0, |ξ| = 2,

and ψε(x) = ε−nψ(x/ε).

When |ξ| > 2, the key moment in the estimation is the usage of property (22)

of the Riesz kernel:

Vε(x, ξ) =
1

|ξ|n




∫

B(0,|ξ|)∩Ω(x,εξ)

−
∫

|z− e1
2 |<|ξ|−1


 k1,α(z)dz

=
1

|ξ|n
∫

Θ(x,ε)

k1,α(z)dz

where

Θ(x, ε) = {z : z ∈ B(0, |ξ|) ∩ Ω(x, εξ)} \
{
z :

∣∣∣∣z −
e1

2

∣∣∣∣ < |ξ| − 1
}

.

Since Θ(x, ε) is embedded in the annulus |ξ| − 3
2

5 |z| 5 |ξ|, we have

|Vε(x, ξ)|5 1

|ξ|n
∫

|ξ|− 3
2
5|z|5|ξ|

|k1,α(z)|dz

and by (20)
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|Vε(x, ξ)|5 C

|ξ|n
∣∣∣∣∣|ξ|

α−1 −
(
|ξ| − 3

2

)α−1
∣∣∣∣∣ 5 C

|ξ|n+2−α
. (30)

The estimation of J2,εϕ(x) is then given by

|J2,εϕ(x)|(30)
5 C |ϕ̃| ∗ φε(x) (31)

where φ(ξ) =





2α−n−2, |ξ| < 2,

|ξ|α−n−2, |ξ| = 2,

and φε(x) = ε−nφ(x/ε).

Since the kernels ψ, φ are radially decreasing and integrable, we can use the

well known estimation of convolutions with such kernels via the maximal func-

tion, which yields

Ji,εϕ(x) 5 CM(|ϕ|), i = 1, 2,∀ε > 0 (32)

and implies (25) after gathering (28), (29), (31) and (32). This completes the

proof.

4.5 Corollaries

As a corollary of Theorem 12 we obtain an estimate in classical Lp(Ω) spaces,

but first we need the following definition.

Definition 20 Let Ω be an open set in Rn. We say that Ω satisfies the

Strichartz condition if there exist a coordinate system in Rn and an inte-

ger N > 0 such that almost every line parallel to the axes intersects Ω in at

most N components.
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Lemma 21 ([24,36];[27, p. 244]). The characteristic function χΩ of a domain

Ω satisfying the Strichartz condition is a pointwise multiplier in the space

Iα (Lp(Rn)) when 1 < p < 1/α.

Corollary 22 The Hardy inequality
∥∥∥∥∥∥

1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥∥∥
p

5 C‖ϕ‖p, 1 < p < 1/α

holds for any bounded open set Ω ⊂ Rn satisfying the Strichartz condition.

PROOF. By Lemma 11 and Lemma 21 we have that Ω has the (α, p(·))-
property and then the results follows from Theorem 12.
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[20] R.A. Mashiyev, B. Çekiç and S. Ogras. On Hardy’s inequality in Lp(x)(0,∞).

JIPAM. J. Inequal. Pure Appl. Math. 7(3), Article 106, 5 pp, 2006.

[21] V.G. Maz’ya and T.O. Shaposhnikova. Multipliers in spaces of differentiable

functions (Russian), Pitman, 1986.

[22] V.G. Maz’ya and T.O. Shaposhnikova Theory of Multipliers in spaces of

differentiable functions (In Russian), Leningrad. Univ., Leningrad, 404 pages,

1986 .
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