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Abstract

We prove that in variable exponent spaces LP()(Q), where p(-) satisfies the log-
condition and © is a bounded domain in R™ with the property that R™\Q has the

cone property, the validity of the Hardy type inequality

H 5(:1)0‘ /Q |z f(yyla dy

where §(z) = dist(x, d92), is equivalent to a certain property of the domain Q ex-

< Cllgly 0<a < min <1, ”)

() P+

pressed in terms of a and xq.
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1 Introduction

We consider the Hardy inequality of the form

1 ©(y)
Hama Jyje e

within the frameworks of Lebesgue spaces with variable exponents p(x), p; =

P+

< Cllellpy, 0 < a < min <1, n) . (D)
p()

supp(z), where d(z) = dist(x,002). We refer to [8,9,18] for Hardy type in-
e

equalities. The multidimensional Hardy inequality of the form
[ lu@Ps@)yede < € [ Vu@Ps)de, we i@, ()
Q Q

appeared in [23] for bounded domains @ C R™ with Lipschitz boundary and
1 <p< ooand a > p— 1. This inequality was generalized by Kufner [17,
Theo. 8.4] to domains with Hélder boundary, and after that by Wannebo [40]
to domains with generalized Holder condition. Hajlasz [10] and Kinnunen and

Martio [12] obtained a pointwise inequality
u(@)| < 6(x) M|Vu|(z),

where M is a kind of maximal function depending on the distance of x to the
boundary. This pointwise inequality combined with the knowledge of bound-
edness of Hardy-Littlewood maximal operator implies a “local version near
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the boundary” of Hardy’s inequality. This approach was used in the paper of

Hajtasz [10] in the case of classical Lebesgue spaces.

Within the frameworks of variable exponent Lebesgue spaces, the Hardy in-
equality in one variable was first obtained in [15], and later generalized in [7],
where the necessary and sufficient conditions for the validity of the Hardy in-
equality on (0, 00) were obtained under the assumption that the log-condition

on p(x) is satisfied only at the points x = 0 and = = oo, see also [19,20].

For the multidimensional versions of Hardy inequality of form (1) with 6(x)®
replaced by |v — zo|% o € , we refer to [33,34]. Harjulehto, Histo and

Koskenoja in [11] obtained the estimate

) a Lp()
Haw—“ L, S CIvu@ o, v € Wo™ (D)

making use of the approach of [10], under the assumption that a is sufficiently

small, 0 < a < ay.

Basing on some ideas and results of fractional calculus, in Theorem 12 we
show that the problem of the validity of inequality (1) is equivalent to a
certain property of € expressed in terms of a and xq, see Definition 9 and
Theorem 12. We did not find mentioning such an equivalence in the literature

even in the case of constant p.

Note that the continuing interest to the variable exponent Lebesgue spaces
LP0) observed last years was caused by possible applications (elasticity theory,
fluid mechanics, differential equations, see for example [29]). We refer to papers
[16,35] for basics on the Lebesgue spaces with variable exponents and to the

surveys [5,13,32] on harmonic analysis in such spaces. One of the breakthrough



results obtained for variable p(x) was the statement on the boundedness of the
Hardy-Littlewood maximal operator in the generalized Lebesgue space LP()
under certain conditions on p(z), see [3] and the further development in the
above survey papers. The importance of the boundedness of the maximal op-
erator is known in particular due to the fact that many convolution operators
occurred in applications may be dominated by the maximal operator, which

is also used in this paper.

Note also that the study of pointwise multipliers in the spaces of Riesz po-
tentials is in fact an open question in case of variable p(x). Meanwhile, the
topic of pointwise multipliers (in particular, in the case of characteristic func-
tions xq) in spaces of differentiable functions, is of importance in the theory

of partial differential equations and other applications, see for instance [28|.

The study of pointwise multipliers of spaces of Riesz or Bessel potentials in the
case of constant p may be found in [21,22,36], see also [28] for the pointwise
multipliers in the case of more general spaces. We refer also, in the case of
constant p as well, to recent papers [37,38] on the study of characteristic

functions yq(z) as pointwise multipliers.

2 Preliminaries

2.1 On Lebesgue spaces with variable exponent

The basics on variable Lebesgue spaces may be found in [16,30], but we recall

here some necessary definitions. Let {2 C R™ be an open set. For a measurable



function p : Q@ — [1,00), we put

pT=pT(Q) :=esssupp(zr) and p =p (Q):= esseigrllfp(x).
xeQ) z

In the sequel we use the notation
P(Q) = {pe L¥(Q) : 1< p~ < pla) p* < oo}, (3)

The generalised Lebesgue space LP()(Q) with variable exponent is introduced

as the set of all functions ¢ on 2 for which

0y (¢) 1= | li(@) "z < oo.

Equipped with the norm

; ¥
”SOHLPU(Q) ;= inf {)\ >0 0p0) ()\> < 1} ,

this is a Banach space. The modular g,.y(f) and the norm || f||,.) are related

to each other by

17190 < L) S 1FI19 (4)
essinfp(z), [ fllp) 21 essinfp(z), [|fllp) = 1
where o0 = and 0 =
esssup p(z), || fllpo) =1 esssupp(z), || flly) = 1.
z€Q e

By w-Lip (2) we denote the class of all exponents p € L>(f2) satisfying the

(local) logarithmic condition

C
_ Q. 5

Ip(z) = p(y)| < IRES

1
By p/(-) we denote the conjugate exponent, given by —— +

p(x)  p'(z)



2.2 Hardy-Littlewood maximal operator

As usual, the Hardy-Littlewood maximal operator of a function ¢ on {2 C R"

is defined as

Mop(z) = sup |B o) Js / - Y|dy, B(x,r)=B(z,r)NQ  (6)

r>0

We use the notation

P(Q2) == {p r1<p-=py S o0, HMfHLP(')(Q) = CHf”LP(‘)(Q)}' (7)

Proposition 1 ([3, Theo. 3.5]) If Q2 is bounded, p € P(Q2) Nw-Lip(QQ), then
p € P(Q).

2.3 Potential and hypersingular integral operators

Definition 2 For a function ¢ on R", the Riesz potential operator 1 is de-

fined by

0 /|$ |n = o ka(a), (8)

ozﬂ.n/2 o
where the normalizing constant factor has the form ~,(a) = ZF(,L_FQ()Q) The
2

kernel kqo(x) = 'jﬂ;; is referred to as the Riesz kernel.

Definition 3 The space I¢ (Lp(')> = I (Lp(')(R”)) 0 < a < 2, called the
P+
space of Riesz potentials, is the space of functions f representable as f = [%¢

with ¢ € LPY) | equipped with the norm I Nl ooy = 1ol Loe -

Definition 4 The hypersingular integral operator D of order o, known also



as the Riesz derivative, is defined by

1 (ALf) (@)
D*f = lim D f = lim / dy, 9
/ &0 / 5_’0dn,ﬁ(a)\y|>€ ly["+e Y ©)

where o« > 0 and ¢ > « (see [31, p.60], for the value of the normalizing

constant d,, o() ).

It is known that given «, one may choose an arbitrary order ¢ > « of the finite

difference; the hypersingular integral does not depend on ¢ under this choice,

see [31, Ch. 3.

In [1], the following statement was proved.

Proposition 5 Let p € P(R") NP(R") and 0 < v < .- Then
D% =, € LPI(R")

where the hypersingular operator D% is taken in the sense of convergence of

LPO-norm.

The characterization of the space I%(LP*)(R™)) is given by the following propo-

sition.

Proposition 6 ([2, Theo. 3.2]) Let 0 < a < n,p € P(R") NP(R"), p* <

QI3

and let f be a locally integrable function. Then f € I (Lp(')) if and only

~

f

f e LIO) with ﬁ = % — % and there exists the Riesz deriwative D* f in the

~

sense of convergence in LPC).

Remark 7 Theorem 3.2 in [2] was stated under the assumption that p(z)
satisfies the local log-condition and the decay condition at infinity. The analysis
of the proof of Theorem 3.2 shows that it is valid under the general assumption

p € P(R") NP(R™) (if one takes into account that p € P NP(R") < p' €



PNPR"), see [6, Theo. 8.1]).

By Propositions 5 and 6, for the norm || f||a(zs1) = [|#l[z»¢) in the space of

Riesz potentials ¢ (Lp(')(R")> we have the following equivalence

cr ([ llzaer + I fll o) S 1l o o0y = €2 (f Moo + 1D fllzoer) - (10)

where ﬁ = ﬁ) — 2 and ¢; > 0,¢y > 0 do not depend on f.

2.4 (a,p(:))-property of a domain €

Definition 8 A measurable function g(z) is called a pointwise multiplier in

the space I* (L"O(R™)), if [91°ll o o) < Cligll -

By equivalence (10), in the case 1 < py < 2 the characteristic function xq(7)

is a pointwise multiplier in /¢ (Lp(‘)(R”)> if and only if

ID* (X2 I *@)l| ooy S Cllelloermny for all o € LAI(R?). (11)

We introduce now the following notion related to the property of the character-

istic function yq to be a pointwise multiplier, but weaker than that property.

B f(x), x € Q
Let Eaf(x) = f(x) = be the zero extension of a function f
0, x¢Q
defined on €.

Definition 9 We say that the domain Q has the (a, p(+))-property, if the func-



tion xq(x) has the following multiplier property

HDQ(XQ[agﬁSD)HLPM(Q) = C”SOHLP(-)(Q) forall ¢ € Lp(')(Q)- (12)

Definition 10 Let p € P(2) N w-Lip(2). For brevity we call an extension
p*(x) of p(x) to R™ regular, if p* € P(R™) NP(R"), and p™(R™) = pT(Q).

Such an extension is always possible, see [4, Th. 4.2]; [26, Lemma 2.2].

Lemma 11 Let p € P(2) Nw-Lip(Q). If xq is a pointwise multiplier in the
space I (Lp*(')(R")> under any reqular extension p*(z) of p(x) to R", then

the domain Q has the («, p(-))-property.

PROOF. We have to check condition (12), given that ||XQf||Ia(Lp*<.)(Rn)) S

Cl f]l 1o (190 (R)) under some regular extension of the exponent. We have

ID*(xl“Eap)l v @) = 1D (Xl “Eap)|| Lo ) mm)-
Since the extension p*(x) is regular, equivalence (10) is applicable so that

ID*(xal*Eap)llro @) = Clixal*Eapll o (Lo @n)
< CHgQ(PHLP*O(Rn) = C||80HLP<~>(Q)7

which completes the proof.

3 The main result

Theorem 12 Let Q2 be a bounded domain in R", p € P(Q) Nw-Lip() and
0 < a < min (1,&). If the domain Q has the (o, p(-))-property, then the

Hardy inequality

< Cllgly (13)
(")

H5<i>a /Q B f(;/,la dy



holds. If the exterior R™\Q has the cone property, then the (a, p(-))-property

is equivalent to the validity of the Hardy inequality (13).

4 Proof of Theorem 12
4.1 The principal idea of the proof

The proof of Theorem 12 is based on the observation that the weight ﬁ in

fact is equivalent to the integral

dy
= —7 gz eq.
aa(z) /Rn\Q o — yfrre

Namely, the following statement is valid, see [25, Prop. 3.1].

Proposition 13 For an arbitrary domain ) there exists a constant ¢; > 0

(not depending on Q,¢; = £[S"7Y|) such that ag(z) < waya - If the exterior
R™\Q has the cone property, then there exists a constant cy = c3(§2) such that

m < caq(T).
We will prove the following version of Theorem 12.

Theorem 14 Let §2 be a bounded domain in R", p € P(2) Nw-Lip(Y) and

0 < a < min (1, ﬁ) Then the Hardy type inequality

< Cllellpe (14)
p(*)

o)

holds if and only if the domain Q has the («, p(-))-property.

Theorem 12 will immediately follow from Theorem 14 in view of Proposition

13.

10



4.2 On a hypersingular integral related to €.

As in [25], we define the hypersingular integral (fractional derivative) of order
0 < a < 1, related to the domain 2, as the hypersingular integral over R" of

the extension &, f:

1 f(x) = f(y)

dy, x €€,
doa(0) . o=yl

DQf(I) = T’Q]Daggf<$> =

where rq stands for the restriction on (2. Splitting the integration in the last

integral to that over Q and R™\), we can easily see that

f(z) = f(y)

_ n+o
2 =yl

aq(z) f(z) = dy1(a)D*Eq f(x) — dy, x €. (15)
The proof of Theorem 14 will be based on representation (15) and certain

known facts from the theory of hypersingular integrals [31].

4.8  Auxiliary functions

Although we will use the auxiliary functions defined below only in the case

¢ =1, we give them for an arbitrary integer ¢ as they are presented in [31]. By

(Afl f) (x) := Zizo(—l)k(@ f(z — kh) we denote the non-centered difference

of a function f defined on R". We need the non-centered difference
Agola,h) = (Afka) () (16)

of the Riesz kernel k,(x) and single out the case of the step h = e; =

(1,0,...,0):




We will also use the function

1
W Keo(y)dy. (18)

lyl<|z|

Keallz]) =

The following lemmata can be found in [31, §3.2.1]

Lemma 15 The function Ay, (x, h), may be represented via its particular case

koo(z) in terms of rotations:

Ava(z,h) = |h[*"ka (le rot;! h) (19)

where rot, n, n € R™ denotes any rotation in R™ which transforms R™ onto

itself so that rot, e; = \%I
Lemma 16 The function ke (x) satisfies the condition

kpo(2)] £ c(1+ |z[)*™ ¢ when |z| =+ 1. (20)
Lemma 17 Let { > Ra > 0. Then

/ koo(y)dy = 0. (21)

Moreover, in the case when £ is odd and the difference defining koo (x) is non-

centered,
kea(y)dy =0 (22)
|y—%el|<N
for any N > 0.

Lemma 18 The function K o(|x]), 0 < o < 1 has the bound

[Keallz)] = Cla]*™  as [z < 1. (23)

12



4.4 Proof of Theorem 1/

Let ¢ € LPO(Q) and @ = Eqip(x). Substituting

_ 1 o(t)
=1 = d "
fy) =TI Tu(@) J |t =yl bovel

into (15), we have

ag(z)I§p(z) = Dol *Eqp(z) — Ap(x), z € Q, (24)
where
1)~ 1)
o [Ty
and
I*p(x) — I*p(y
Acp(z) = / () ,m( )dy-
|z =yl
yeEN
lz—y|>e

The (a, p(-))-property of €2, by the definition of this property and equiva-
lence in (10), is nothing else but the boundedness in LP()(Q) of the operator
D*xql*Eq. Thus, in the case of bonded domains §2, the required equivalence
of the Hardy inequality to the (a,p(-))-property will follow from (24), if the

operator A is bounded.

Lemma 19 Let 0 < a <1 and ) be a bounded domain. The operators A, are

uniformly dominated by the maximal operator:
|Acp(z)] = CMp(z), =z €9, (25)

for any ¢ € LY(Q), where C > 0 does not depend on x and . Consequently,

the operator A is bounded in the space LP)(Q) whenever p € P(€2).

13



PROOF. We make use of the known representation
19p(x) = I%p(x /Alafy Pz —&)d¢

for the differences of the Riesz potential, see [31, formula (3.64)], and get

d
heple)= [ (i [ 6 - OALE we
e
Ava
_ / v —£)de / fy’gay)dy (26)
it

where Q, = {y € R": © — y € Q}, the interchange of the order of integration
being easily justified by Fubini’s theorem whenever £ > 0. By (19) we then

have

R™ z€Q(x,e8) R™

where
z
Qxz, &) = {z eR™: |§|rot§W € Qx}
and we denoted

Vi, €) = |§1’n o o(2)d

2€Q(z,e€)
2| <[€]

for brevity. We split A.p(z) in the following way

</§|<2 /§|>2> z —e§)Ve(z,§)dE = Jic0(x) + Jacp(x). (28)

14



For J; cp(z) we have

hep(a)lE |/ Bl — <€) @M </|§| by a(2)ld2
<C de
AN
=C @] x e () (29)
gl gl < 2,
where ¥(§) = and Y. () = e " (z/e).
0, €l = 2,

When [£| > 2, the key moment in the estimation is the usage of property (22)

of the Riesz kernel:

Ve(z,€) = o1 / — / by o(2)dz
BOJEDNAcE)  |omh

1
== W / kl,a(2>dz
O(z,e)

<[¢l-1

where

€1
Z_i

O(z,e) = {z: 2 € B0, |€]) N Qx, 6)}\ {z :

<l¢| - 1} .
Since ©(z,¢) is embedded in the annulus || — 2 < |z| £ |¢], we have

1
VeOlSem [ )l
€15 Sl=1I¢]

and by (20)

15



C 3\ ! C
Vo(z, 6)| < a—1—< —> < . 30
| ( 5) = |€‘n |§| |§’ 2 = ‘€’n+27a ( )
The estimation of J;.¢(x) is then given by
[T20(2)|%9C |8 e(2) (31)
2a—n—2’ ‘€| < 27
where ¢(§) = and ¢.(z) = e "¢(x/e).
§le2 1€ 2 2,

Since the kernels 1, ¢ are radially decreasing and integrable, we can use the
well known estimation of convolutions with such kernels via the maximal func-

tion, which yields

Jicp(x) £ CM(|p]),i =1,2,Ve >0 (32)

and implies (25) after gathering (28), (29), (31) and (32). This completes the

proof.

4.5  Corollaries

As a corollary of Theorem 12 we obtain an estimate in classical LP()) spaces,

but first we need the following definition.

Definition 20 Let €2 be an open set in R"™. We say that €2 satisfies the
Strichartz condition if there exist a coordinate system in R™ and an inte-
ger N > 0 such that almost every line parallel to the axes intersects € in at

most N components.

16



Lemma 21 ([24,36];[27, p. 244]). The characteristic function xq of a domain
Q satisfying the Strichartz condition is a pointwise multiplier in the space

I*(LP(R")) when 1 <p < 1/a.
Corollary 22 The Hardy inequality

1 At
S | ey

holds for any bounded open set £ C R™ satisfying the Strichartz condition.

<Cllell,, 1<p<1fa

p

PROOF. By Lemma 11 and Lemma 21 we have that 2 has the (a,p(-))-

property and then the results follows from Theorem 12.
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