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1. Introduction

Lebesgue and Sobolev spaces with variable exponent have attracted the interest
of many researchers during the last years (see, for instance, [40] for the basic
properties). In particular, there was an important progress concerning the study of
classical operators of Harmonic Analysis in these spaces. We refer to the surveying
papers [11], [29], [48] for details on the development of this theory and a more
recent paper [9], where the boundedness of various operators was obtained by
extrapolation techniques.

In this paper, we study fractional integrals of variable order in variable ex-
ponent Lebesgue spaces on doubling and non-doubling measure metric spaces. We
prove two versions of Sobolev-type theorems with variable exponents. Various ver-
sions of such theorems for constant p were proved in [18], [15], [16], [17], [30], [31].
We also give boundedness statements for corresponding fractional maximal oper-
ators. Potential operators on variable Lebesgue spaces were firstly studied in [45].
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We also mention the papers [32], [33], [34], [10], [42], [12] where these operators
were considered within the frameworks of variable exponent spaces on Euclidean
domains, and paper [23] where the non-weighted boundedness of operators of form

Iαf(x) =
∫

Ω

[d(x, y)]α

µB(x, d(x, y))
f(y) dµ(y), α > 0. (1.1)

was proved on metric spaces, paper [37] where it was proved for potentials on
Carleson curves, and papers [38], [39], where weighted boundedness was obtained
on doubling metric measure spaces for potentials of the form

Iα
Xf(x) =

∫

X

f(y) dµ(y)
µB(x, d(x, y))1−γ

. (1.2)

In this paper we deal with potential operators of form (1.1), where we admit
variable exponent α(x), and also potentials of a different form, see (3.1). We also
consider hypersingular integrals of variable order of Sobolev functions with vari-
able exponent on metric measure spaces. We refer to the books [49] and [47] for
hypersingular integrals in general. Hypersingular operators in the variable expo-
nent setting were firstly studied by the authors in [1], [2], [46] in related to the
problem of inversion and characterization of the Riesz potentials in the Euclidean
case, and in [3] there where studied some mapping properties of hypersingular
integrals in the context of variable exponent Sobolev spaces on metric measure
spaces.

In the case of constant exponents, hypersingular integrals on metric spaces,
jointly with potential operators, were considered in [16], [17].

This paper is structured as follows. Notation and basic definitions on variable
exponent spaces on metric measure spaces are given in Section 2. Fractional inte-
grals are studied in Section 3. The main results are the Sobolev-type Theorems 3.6
and 3.2 given for doubling and non-doubling metric spaces, respectively. Section
4 deals with fractional maximal functions. Hypersingular integrals are studied in
Section 5. In this section sufficient conditions are given for the boundedness and
pointwise convergence of hypersingular integrals of variable HajÃlasz-Sobolev func-
tions.

2. Preliminaries

In the sequel, we use the notation

ϕ+ := ess sup
x∈X

ϕ(x) and ϕ− := ess inf
x∈X

ϕ(x), (2.1)

where ϕ is non-negative function defined on a quasi-metric measure space X =
(X , d, µ).

By c (or C) we denote generic positive constants which may take different
values at different occurrences. Sometimes we add subscripts to the constant (e.g.
c0, c1, . . .) or emphasize its dependence on certain parameters (c(α) or cα means
that c depends on α, etc).
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2.1. Metric measure spaces

By a (quasi-)metric measure space we mean a triple (X , d, µ), where X is a non-
empty set, d : X ×X → R is a (quasi-)metric on X and µ is a non-negative Borel
measure. The quasi-metric d is assumed to satisfy the standard conditions:

d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x),

d(x, y) ≤ a0[d(x, z) + d(z, y)], a0 ≥ 1. (2.2)
(X , d, µ) is said a space of homogeneous type if, in addition, the doubling condition

µB(x, 2r) ≤ Cµ µB(x, r), Cµ > 1, (2.3)

holds for all x ∈ X and 0 < r < diam(X ), where B(x, r) = {y ∈ X : d(x, y) < r}
denotes the open ball centered at x and of radius r. For simplicity, we shall write
X instead of (X , d, µ) if no ambiguity arises.

As is known (see for instance [21], Lemma 14.6), from (2.3) there follows the
property

µB(x, %)
µB(y, r)

≤ C
(%

r

)N

, N = log2 Cµ, (2.4)

for all the balls B(x, %) and B(y, r) with 0 < r ≤ % and y ∈ B(x, r), where C > 0
does not depend on r, % and x. From (2.4) we have

µB(x, r) ≥ c0 rN , x ∈ Ω, 0 < r ≤ `, (2.5)

for any ` < ∞ and any open set Ω ⊆ X on which inf
x∈Ω

µB(x, `) > 0. Condition

(2.5) is also known as the lower Ahlfors regularity condition. We will sometimes
suppose that the upper Ahlfors regularity condition (also called the non-doubling
condition) holds on Ω: there exists n > 0 such that

µB(x, r) ≤ c1r
n, (2.6)

where c1 > 0 does not depend on x ∈ Ω and r ∈ (0,diam(Ω)), and n need not to
be an integer.

We refer to [7], [8],[13], [18], [21], [26] for general properties of metric measure
spaces.

2.2. Variable exponent spaces

Let p : X → [1,∞) be a µ-measurable function. Everywhere below we assume
that

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ X , (2.7)
according to the notation in (2.1). By Lp(·)(X ) we denote the space of all µ-
measurable functions f on X such that the modular

Ip(·)(f) = Ip(·),X (f) :=
∫

X
|f(x)|p(x)dµ(x)

is finite. This is a Banach space with respect to the norm

‖f‖p(·) = ‖f‖p(·),X := inf
{

λ > 0 : Ip(·)

(
f

λ

)
≤ 1

}
. (2.8)
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Observe that
‖f‖p(·) = ‖fa‖

1
a
p(·)

a

(2.9)

for any 0 < a ≤ p−. As usual, p′(·) denotes the conjugate exponent of p(·) and it
is defined pointwise by p′(x) = p(x)

p(x)−1 , x ∈ X .

For completeness, we recall here some basic properties for the spaces Lp(·)(X ).
The Hölder inequality is valid in the form

∫

X
|f(x)g(x)| dµ(x) ≤

(
1

p−
+

1
p′−

)
‖f‖p(·) ‖g‖p′(·). (2.10)

The embedding
Lq(·)(X ) ↪→ Lp(·)(X ) (2.11)

holds for 1 ≤ p(x) ≤ q(x) ≤ q+ < ∞, when µ(X ) < ∞.
Often the exponent p(·) is supposed to satisfy the local logarithmic condition

|p(x)− p(y)| ≤ A0
1

ln d(x,y)

, d(x, y) ≤ 1/2, x, y ∈ X , (2.12)

from which we derive

|p(x)− p(y)| ≤ 2RA0

2R
ln d(x,y)

, d(x, y) ≤ R, x, y ∈ X . (2.13)

Assumption (2.12) is known in the literature as Dini-Lipschitz condition or log-
Hölder continuity.

Variable exponent Lebesgue spaces on general metric measure spaces have
been considered in [14], [23], [24], [27], [41] and more recently in [35], [36], where
the maximal operator was studied in the weighted case. Recall that the maximal
operator of a locally integrable function in X is defined by

Mf(x) = sup
r>0

1
µB(x, r)

∫

B(x,r)

|f(y)| dµ(y).

The non-weighted Lp(·)-boundedness of M on bounded homogeneous spaces was
proved in [24] and [27] under the logarithmic condition (2.12) on the exponent.

2.3. HajÃlasz-Sobolev spaces with variable exponent

Let 1 < p− ≤ p+ < ∞. We say that a function f ∈ Lp(·)(X ) belongs to the HajÃlasz-
Sobolev space M1,p(·)(X ), if there exists a non-negative function g ∈ Lp(·)(X ) such
that the inequality

|f(x)− f(y)| ≤ d(x, y) [g(x) + g(y)] (2.14)

holds µ-almost everywhere in X . In this case, g is called a generalized gradient of
f . M1,p(·)(X ) is a Banach space with respect to the norm

‖f‖1,p(·) = ‖f‖M1,p(·)(X ) := ‖f‖p(·) + inf ‖g‖p(·), (2.15)

where the infimum is taken over all generalized gradients of f .
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The spaces M1,p were first introduced by P. HajÃlasz [19] in the case of con-
stant exponents p(x) ≡ p, as a generalization of the classical Sobolev spaces W 1,p

to the general setting of the metric measure spaces. If X = Ω is a bounded do-
main with Lipschitz boundary (or Ω = Rn), endowed with the Euclidean distance
and the Lebesgue measure, then M1,p(Ω) coincides with W 1,p(Ω). Recall that the
oscillation of a Sobolev function may be estimated by the maximal function of its
gradient. In other words, every function f ∈ W 1,p(Ω) satisfies (2.14) by taking
M(|∇f |) as a generalized gradient (see, for instance, [6], [22], [28], for details and
applications, and [3] where this property was also discussed for variable exponents).

HajÃlasz-Sobolev spaces with variable exponent have been considered in [25],
[23] and, more recently, in [5], where embeddings of such a spaces into Hölder
classes of variable order were obtained. In [25] it was proved that M1,p(·)(Rn) =
W 1,p(·)(Rn) if the maximal operator is bounded in Lp(·)(Rn), which generalizes a
result from [19] for constant p. Here W 1,p(·)(Rn) denotes the usual Sobolev space
equipped with the norm

‖f‖1,p(·) := ‖f‖p(·) + ‖|∇f |‖p(·),

where ∇f denotes the (weak) gradient of f .

3. Fractional operators

Let Ω be an open set in X . In the sequel, B(x, r) will stand for B(x, r) ∩ Ω for
simplicity.

Fractional integrals over quasi-metric measure spaces are known to be con-
sidered in different forms. Let α(·) be a µ-measurable positive function on Ω. We
find it convenient to introduce the following notation

Iα(·)
m f(x) =

∫

Ω

f(y) dµ(y)
[d(x, y)]m−α(x)

, m > 0, (3.1)

and

Iα(·)f(x) =
∫

Ω

[d(x, y)]α(x)

µB(x, d(x, y))
f(y) dµ(y). (3.2)

We will be mainly interested in the case where m = n is the “upper dimension”
from (2.6). Obviously,

Iα(·)f(x) ≤ 1
c0

I
α(·)
N f(x), f ≥ 0, (3.3)

in case the measure µ satisfies the lower Ahlfors condition (2.5). Similarly,

Iα(·)
n f(x) ≤ c1I

α(·)f(x), f ≥ 0,

when (2.6) holds. In the case X has constant dimension, in the sense that C1r
N ≤

µB(x, r) ≤ C2r
N , the integrals Iα(·)f(x) and I

α(·)
N f(x) are equivalent. In the

general case, where n ≤ N , the operator Iα(·) is better suited for spaces X with



6 A. Almeida and S. Samko Mediterr. j. math.

lower Ahlfors bound, and I
α(·)
n is better adjusted for spaces with upper Ahlfors

bound.
In the case of constant exponents, the fractional operators Iα and Iα

n were
widely studied, see e.g. the book [18] for Iα, and the book [13] and papers [15],
[16], [17] for Iα

n .
In the next theorem, for functions on doubling measure spaces with upper

bound (2.6), we deal with the “quasi-Sobolev” exponent q̃ = q̃(n,N) defined by
1

q̃(x)
=

1
q(x)

· 1
1− α(x)p(x)

(
1
n − 1

N

) , (3.4)

where 1
q(x) = 1

p(x) − α(x)
n . Observe that the denominator 1− α(x)p(x)

(
1
n − 1

N

)
=

α(x)p(x)
N + 1− α(x)p(x)

n in (3.4) is bounded from below under the conditions

α− > 0, α+ <
n

p+
, (3.5)

which will be assumed to be satisfied.
The inequalities

p(x) < q̃(x) ≤ q(x)
are valid, where the right-hand side inequality is obvious, while the left-hand side
one is easily checked by direct verification. Observe that in Theorem 3.2 we im-
pose neither the log-condition, nor any condition of continuity on α(·), so that
α(·) may be any bounded function satisfying conditions (3.5); hence q̃(·) may be
discontinuous everywhere, where α(·) is.

Below we need the following auxiliary result which was given in [23] (see also
[4] for an alternative proof).

Lemma 3.1. Let X be bounded, the measure µ satisfy condition (2.5) and p(·)
satisfy condition (2.12). Then

∥∥χB(x,r)

∥∥
p(·) ≤ c [µB(x, r)]

1
p(x) (3.6)

with c > 0 not depending on x ∈ X and r > 0.

Theorem 3.2. Let Ω be a bounded open set in X , on which the measure is dou-
bling, and let the upper Ahlfors condition (2.6) be satisfied, and p(·) be log-Hölder
continuous on Ω. Let also conditions (3.5) be satisfied. Then

‖Iα(·)
n f‖eq(·),Ω ≤ C ‖f‖p(·),Ω, (3.7)

where q̃(·) is defined by (3.4) with the exponent N from (2.4), 0 < n ≤ N < ∞.

Proof. We have to show that∫

Ω

∣∣∣Iα(·)
n f(x)

∣∣∣
eq(x)

dµ(x) ≤ C < ∞ (3.8)

when ‖f‖p(·),Ω ≤ 1. We will make use of the Hedberg approach to show that
[
Iα(·)
n f(x)

]eq(x)

≤ C[Mf(x)]p(x). (3.9)
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To this end, we make use of the standard splitting

Iα(·)
n f(x) =

∫

B(x,r)

f(y) dµ(y)
[d(x, y)]n−α(x)

+
∫

Ω\B(x,r)

f(y) dµ(y)
[d(x, y)]n−α(x)

=: Ar(x) + Br(x)

(3.10)
where 0 < r < diam(Ω). For Ar(x), via the standard binary decomposition

Ar(x) =
∞∑

k=0

∫

B(x,2−kr)\B(x,2−k−1r)

f(y) dµ(y)
[d(x, y)]n−α(x)

,

we obtain

Ar(x) ≤ c1
2nrα(x)

2α(x) − 1
Mf(x), (3.11)

where c1 is the constant from (2.6). By (3.5), from (3.11) we get

Ar(x) ≤ c rα(x)Mf(x), (3.12)

with some absolute constant c > 0 not depending on x and r.
For the term Br(x) we make use of the Hölder inequality and obtain

Br(x) ≤ ‖f‖p(·)‖χΩ\B(x,r)(y)d(x, y)α(x)−n‖p′(·) ≤ ‖χΩ\B(x,r)(y)d(x, y)α(x)−n‖p′(·),

the norm being taken with respect to y. In the following estimation of the last norm,
we adjust the arguments in the proof of Theorem C from [37], where potential
operators were studied on Carleson curves, to our general case. By (2.9) we have

Br(x) ≤
∥∥∥∥

χΩ\B(x,r)(·)
[d(x, ·)]n

∥∥∥∥
n−α(x)

n

n−α(x)
n p′(·)

. (3.13)

The following pointwise estimate

χΩ\B(x,r)(y)
[d(x, y)]n

≤ CM
[

χB(x,r)

µB(x, r)

]
(y), (3.14)

is valid, with C > 0 not depending on x, y and r. Inequality (3.14) should be
checked for y ∈ Ω\B(x, r). We have

M
[

χB(x,r)

µB(x, r)

]
(y) ≥ sup

δ>0

µ{B(x, r) ∩B(y, δ)}
[µB(x, r)][µB(y, δ)]

≥ µ{B(x, r) ∩B(y, δ0)}
[µB(x, r)][µB(y, δ0)]

with an arbitrary δ0 > 0. We choose it so that 2a0d(x, y) ≤ δ0 ≤ 3a0d(x, y),
where a0 is the constant from (2.2). Then B(x, r) ⊂ B(y, δ0) and consequently
µ{B(x, r) ∩B(y, δ)} = µB(x, r). Therefore,

M
[

χB(x,r)

µB(x, r)

]
(y) ≥ 1

µB(y, δ0)
≥ 1

c1δn
0

≥ C

[d(x, y)]n
, y ∈ Ω\B(x, r),

where C = 1
c1(3a0)n , which proves (3.14).
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From (3.13) and (3.14) we obtain

Br(x) ≤ C

[µB(x, r)]
n−α(x)

n

∥∥M [
χB(x,r)

]∥∥n−α(x)
n

n−α(x)
n p′(·) .

By (3.5) we have inf
y∈Ω

n−α(x)
n p′(y) > 1. Therefore, by the boundedness of the max-

imal operator, valid under the assumptions of our theorem, see [24], Theorem 4.3,
we get

Br(x) ≤ C

[µB(x, r)]
n−α(x)

n

∥∥χB(x,r)

∥∥n−α(x)
n

n−α(x)
n p′(·) =

C
∥∥χB(x,r)

∥∥
p′(·)

[µB(x, r)]
n−α(x)

n

.

By means of Lemma 3.1 and condition (2.5) we conclude that

Br(x) ≤ C

[µB(x, r)]
1

p(x)−
α(x)

n

≤ C

rN[ 1
p(x)−

α(x)
n ]

. (3.15)

Therefore, from (3.10), (3.12) and (3.15) we obtain

Iα(·)
n f(x) ≤ C

{
rα(x)Mf(x) + rN[α(x)

n − 1
p(x) ]

}
. (3.16)

Optimizing the right-hand side with r = [Mf(x)]
− 1

α(x)+ N
q(x) , after easy cal-

culations we arrive at (3.9). The proof is complete. ¤

Remark 3.3. In the case of constant exponents p and α, the statement of The-
orem 3.2 is known to be valid without the doubling condition and with optimal
Sobolev exponent q instead of the “quasi-Sobolev” exponent q̃, see Theorem 3.2
and Corollary 3.3 in [15]. The progress in [15] was based on the weak estimate for
the potential Iα

n and the Marcinkiewicz interpolation theorem. The latter tool is
still absent in the theory of variable exponent Lebesgue spaces Lp(·): the validity
of the Marcinkiewicz theorem remains an open question. The direct estimation of
the potential via the maximal function by means of the Hedberg approach, used
in the proof of Theorem 3.2, led us to the “quasi-Sobolev” exponent q̃(·).
Corollary 3.4. Under conditions of Theorem 3.2, the operator I

α(·)
n is bounded in

the space Lp(·)(Ω).

Proof. It suffices to refer to the fact that p(x) < q̃(x) and Ω is bounded. ¤

As regards the operator Iα, the following statement was proved in [23] for
constant orders α.

Theorem 3.5. Let Ω be a bounded open set in X and (X , µ, d) satisfy one of the
following conditions:
i) X ⊂ Rm (m natural) and the measure µ satisfy the lower Alhfors condition
(2.5);
ii) the measure µ is doubling.
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Then the operator Iα, 0 < α < N , is bounded from Lp(·)(Ω) to Lq(·)(Ω), 1
q(x) =

1
p(x)− α

N , under the assumptions that 1 < p− ≤ p+ < N
α and p(·) is log-continuous.

Note that a somewhat more general statement was obtained in [23]: the “di-
mension” N was allowed to be variable and a certain modification Jα of the
operator Iα was considered, |Iαf | ≤ Jα(|f |), see Theorem 4.8 and Remark 4.9 in
[23].

Statement ii) of Theorem 3.5 can be generalized to the case of variable α(·)
as follows.

Theorem 3.6. Let Ω be a bounded open set in X and µ be doubling. Let also p(·)
satisfy the logarithmic condition (2.12) and α(·) satisfy the assumptions

α− > 0 and sup
x∈Ω

α(x)p(x) < N (3.17)

(with N from (2.4)). Then Iα(·) is bounded from Lp(·)(Ω) into Lq(·)(Ω), where
1

q(x) = 1
p(x) − α(x)

N .

Proof. Let ‖f‖p(·),Ω ≤ 1. As in the proof of Theorem 3.2, we follow the Hedberg
approach and write

∣∣∣Iα(·)f(x)
∣∣∣ ≤ Ar(x) + Br(x),

where

Ar(x) :=
∫

B(x,r)

[d(x, y)]α(x)

µB(x, d(x, y))
|f(y)| dµ(y)

and

Br(x) =
∫

Ω\B(x,r)

[d(x, y)]α(x)

µB(x, d(x, y))
|f(y)| dµ(y),

0 < r < diam(Ω) being arbitrary. The standard decomposition technique gives

Ar(x) ≤ c rα(x)Mf(x) (3.18)

taking into account that α− > 0 and µ is doubling on Ω.
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As regards the term Br(x), we have

Br(x) =
∞∑

k=0

∫

2kr≤d(x,y)<2k+1r

[d(x, y)]α(x)

µB(x, d(x, y))
|f(y)| dµ(y)

≤ c

∞∑

k=0

(2k+1r)α(x)

µB(x, 2kr)

∥∥χB(x,2k+1r)

∥∥
p′(·),Ω

≤ c

∞∑

k=0

(2k+1r)α(x)

µB(x, 2kr)
[µB(x, 2k+1r)]

1
p′(x)

≤ c

∞∑

k=0

(2k+1r)α(x)

[µB(x, 2kr)]
1

p(x)

where we used the Hölder inequality, Lemma 3.1 and the doubling property of
µ, successively. Since α(·) is bounded and µ satisfies the lower Ahlfors condition
(2.5), we get

Br(x) ≤ c

∞∑

k=0

(2kr)α(x)− N
p(x) .

By the second assumption in (3.17), inf
x∈Ω

(N − α(x)p(x)) > 0 so that

Br(x) ≤ c rα(x)− N
p(x) (3.19)

with c > 0 independent of x and r. Combining estimates (3.18) and (3.19), we
choose r = [Mf(x)]−

p(x)
N and obtain

∣∣∣Iα(·)f(x)
∣∣∣ ≤ c [Mf(x)]

p(x)
q(x) ,

from which we complete the proof by making use of the boundedness of the max-
imal operator on Lp(·)(Ω). ¤

Corollary 3.7. Under conditions of Theorem 3.6, the operator Iα(·) is bounded in
the space Lp(·)(Ω).

4. On fractional maximal operators

Let α : X → (0,∞) be a µ-measurable function. The fractional maximal function
Mα(·)f of a locally integrable function f is defined by

Mα(·)f(x) = sup
r>0

rα(x)

µB(x, r)

∫

B(x,r)

|f(y)| dµ(y),

where the order α is admitted to be variable, with 0 ≤ α(x) ≤ α+ < ∞, x ∈ X .
In the limiting case α(x) ≡ 0, we have the Hardy-Littlewood maximal operator
M = M0.
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In the following lemma we make use of the condition
µB(x, %)
µB(x, r)

≤ C
(%

r

)α(x)

for all % < r, α(x) ≥ 0, (4.1)

where the constant C > 0 is assumed to be not dependent on %, r and x. Note that
in the cases where µ is doubling, from (2.4) it follows that (4.1) is only possible if

α(x) ≤ N.

We find it convenient to say that the measure µ has order α of growth, if condition
(4.1) is fulfilled. Note that measures µ satisfying the halving condition

µB
(
x,

r

2

)
≤ cµ(x)µB(x, r), 0 < cµ(x) < 1, (4.2)

have the order of growth α(x) with α(x) = log2
1

cµ(x) . Inequality (4.1) follows from
(4.2) by repetition similarly as (2.4) is derived from (2.3).

Lemma 4.1. Let X be an arbitrary metric measure space satisfying condition (4.1).
Then the pointwise estimate

Mα(·)f(x) ≤ C Iα(·)f(x), f ≥ 0, (4.3)

holds, with the same constant C from (4.1).

Proof. The proof is obvious: by condition (4.1) we have

rα(x)

µB(x, r)

∫

B(x,r)

|f(y)| dµ(y) ≤ C

∫

B(x,r)

[d(x, y)]α(x)

µB(x, d(x, y))
|f(y)| dµ(y),

from which (4.3) follows. ¤

Theorem 4.2. Let the measure µ be doubling and have order of growth α(x). If p(·)
is log-Hölder continuous, α− > 0 and sup

x∈Ω
α(x)p(x) < N , then

‖Mα(·)f‖q(·) ≤ c ‖f‖p(·),
1

q(x)
=

1
p(x)

− α(x)
N

. (4.4)

Proof. In view of the inequality (4.3), it suffices to have the boundedness of the
fractional operator Iα(·), which follows from Theorem 3.6. ¤

5. Hypersingular operators on spaces M1,p(·)(Ω)

Let Ω be a bounded open set in X . Similarly to (3.1) and (3.2) we can consider
two forms of hypersingular integrals:

Dα(·)f(x) =
∫

Ω

f(x)− f(y)
[d(x, y)]n+α(x)

dµ(y), x ∈ Ω, (5.1)

where n > 0 is from (2.6), and

Dα(·)f(x) =
∫

Ω

f(x)− f(y)
µB(x, d(x, y))[d(x, y)]α(x)

dµ(y), x ∈ Ω. (5.2)
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We admit variable order α = α(x), 0 < α(x) < 1, x ∈ Ω. A detailed information
about hypersingular integrals (of constant order) of functions defined in Rm can be
found in [47] and [49]; variable order hypersingular integrals were studied in [46].
Hypersingular integrals of constant order on metric measure spaces were considered
in [16], [17] within the frameworks of Lipschitz (Hölder) function spaces.

5.1. Preliminaries

The following two lemmas on the estimation of the oscillation of Sobolev functions
were proved in [5] and generalize former results from [20] given for constant α = β
and p.

Lemma 5.1. Let X satisfy the doubling condition (2.3) and let f ∈ M1,p(·)(X ) and
g ∈ Lp(·)(X ) be a generalized gradient of f . If 0 ≤ α+ < 1, 0 ≤ β+ < 1, then

|f(x)− f(y)| ≤ C(µ, α, β)
[
d(x, y)1−α(x)Mα(·)g(x) + d(x, y)1−β(y)Mβ(·)g(y)

]

(5.3)
µ-almost everywhere.

Lemma 5.2. Let X be bounded and let µ be doubling. Suppose also that p(·) satisfies
(2.12) with p− > N . If f ∈ M1,p(·)(X ) and g is a generalized gradient of f , then
there exists C > 0 such that

|f(x)− f(y)| ≤ C ‖g‖p(·) d(x, y)1−
N

max{p(x),p(y)} (5.4)

for every x, y ∈ X with d(x, y) ≤ 1.

5.2. The case of the operator Dα(·)

The next theorem is an extension of a result in [3], from the Euclidean case to
the case of metric measure spaces. Recall that assumption that the measure µ has
order of growth 1−α(x), used in Theorem 5.3, is fulfilled if the measure µ satisfies
the halving condition (4.2) with cµ(x) = 2α(x)−1.

Theorem 5.3. Let the measure µ be doubling and satisfying the upper Ahlfors con-
dition (2.6). Let 0 < α− ≤ α(x) ≤ α+ < 1 and let p(·) satisfy condition (2.12)
and the assumption

sup
x∈Ω

p(x)[1− α(x)] < n. (5.5)

If the measure µ has the order of growth 1 − α(x), then the operator Dα(·) is
bounded from M1,p(·)(Ω) into Lq(·)(Ω) with

1
q(x)

=
1

p(x)
− λ(x)

n
(5.6)

where λ(·) is any log-Hölder continuous function such that

λ− > 0 and sup
x∈Ω

[λ(x) + α(x)] < 1. (5.7)
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Proof. By Lemma 5.1 and the log-Hölder continuity of λ(·), we have
∣∣∣Dα(·)f(x)

∣∣∣ ≤
∫

Ω

|f(x)− f(y)|
[d(x, y)]n+α(x)

dµ(y)

≤ c

∫

Ω

Mλ(·)g(x) +Mλ(·)g(y)
[d(x, y)]n+α(x)+λ(x)−1

dµ(y)

for µ-almost all x ∈ Ω, with c > 0 not depending on x and f . Note that λ+ < 1 in
view of (5.7) and condition α− > 0.

Put β(x) = 1 − α(x) − λ(x). Then 0 < 1 − (α + λ)+ ≤ β(x) < 1 − α−. We
have

∣∣∣Dα(·)f(x)
∣∣∣ ≤ c

∫

Ω

Mλ(·)g(x)
[d(x, y)]n−β(x)

dµ(y) + c

∫

Ω

Mλ(·)g(y)
[d(x, y)]n−β(x)

dµ(y).

Since Ω is bounded and β− > 0, the fractional integral
∫
Ω

dµ(y)
[d(x,y)]n−β(x) of a constant

is a bounded function, which is known, see for instance [15], Lemma 2.1, and is
easily verified via the standard decomposition

B(x, 1) =
∞⋃

k=0

{y : 2−k−1 ≤ d(x, y) < 2−k}. (5.8)

Therefore, ∣∣∣Dα(·)f(x)
∣∣∣ ≤ cMλ(·)g(x) + c Iβ(·)

n

[Mλ(·)g
]
(x),

where I
β(·)
n is the fractional operator of type (3.1). Hence

∥∥∥Dα(·)f
∥∥∥

q(·),Ω
≤ c

∥∥Mλ(·)g
∥∥

q(·),Ω + c
∥∥∥Iβ(·)

n

[Mλ(·)g
]∥∥∥

q(·),Ω
. (5.9)

In view of the conditions β− > 0 and β+ < n
q+

, the operator I
β(·)
n is bounded

in the space Lq(·)(Ω) by Corollary 3.4. Therefore,
∥∥∥Dα(·)f

∥∥∥
q(·),Ω

≤ c
∥∥Mλ(·)g

∥∥
q(·),Ω . (5.10)

By Theorem 4.2 we then have∥∥∥Dα(·)f
∥∥∥

q(·),Ω
≤ c ‖g‖p(·),Ω ≤ c ‖f‖1,p(·),Ω,

that theorem being applicable since λ− > 0 and

sup
x∈Ω

λ(x)p(x) ≤ sup
x∈Ω

[1− α(x)]p(x) < n,

according to (5.7) and (5.5). Note also that from condition (5.7) it follows that
growth of order 1− α(x) implies that of order λ(x).

Thus the boundedness of Dα(·) from M1,p(·)(Ω) into Lq(·)(Ω) has been proved
for q(·) of form (5.6). ¤

For constant exponents the following statement holds.
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Corollary 5.4. Let α and µ be as in Theorem 5.3 and suppose that 1 < p < n
1−α .

Then there exists c > 0 such that

‖Dαf‖q,Ω ≤ c ‖f‖1,p,Ω, f ∈ M1,p(Ω),

for any exponent q fulfilling

p < q <
np

n− (1− α)p
. (5.11)

Lemma 5.2 allows us to derive the following conclusion on the pointwise
convergence of the hypersingular integral.

Theorem 5.5. Let α and µ be as in Theorem 5.3. Under condition (2.12), the
hypersingular integral Dα(·), with 0 < α− ≤ α(x) < 1, x ∈ Ω, of functions in
M1,p(·)(Ω) converges at all those points x ∈ Ω where p(x)(1− α(x)) > n.

Proof. The pointwise convergence of the hypersingular integral is an immediate
consequence of (5.4). We only observe that the assumption p(x)(1 − α(x)) > n
implies p− > n. ¤
5.3. The case of the operator Dα(·)

We continue the study of hypersingular integrals of HajÃlasz-Sobolev functions but
now of form (5.2). We are able to get the corresponding results for the hypersin-
gular integrals of this form in the case when the difference N − n between the
dimensions N and n is small.

Theorem 5.6. Let the measure µ be doubling and satisfying the upper Ahlfors con-
dition (2.6). Let also 0 < α− ≤ α(x) ≤ α+ < 1 and suppose that N − n < 1−α+.
Let also p(·) satisfy condition (2.12) and the assumption

sup
x∈Ω

p(x)[1− α(x)] < N. (5.12)

If the measure µ has the order of growth 1 − α(x), then the operator Dα(·) is
bounded from M1,p(·)(Ω) into Lq(·)(Ω) with

1
q(x)

=
1

p(x)
− λ(x)

N
, (5.13)

where λ(·) is any log-Hölder continuous function such that

λ− > 0 and sup
x∈Ω

[λ(x) + α(x)] < 1− (N − n). (5.14)

Proof. We make use of (5.3) and the logarithmic condition on λ(·) and arrive at
∣∣∣Dα(·)f(x)

∣∣∣ ≤ cMλ(·)g(x)
∫

Ω

[d(x, y)]β(x)

µB(x, d(x, y))
dµ(y) + c Iβ(·) [Mλ(·)g

]
(x),

where β(x) = 1 − α(x) − λ(x) and Iβ(·) is the fractional operator of type (3.2).
Since µ is doubling, one gets

∫

Ω

[d(x, y)]β(x)

µB(x, d(x, y))
dµ(y) ≤ C

∫

Ω

dµ(y)
[d(x, y)]N−β(x)
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But the latter fractional integral is a bounded function. This can be checked
through the standard decomposition (5.8), where we take into account the up-
per Ahlfors bound (2.6) and the condition β− > N − n, in view of (5.14) and
β(x) ≥ 1− (α + λ)+.

The proof can now be completed following similar steps of the proof of The-
orem 5.3. ¤

In the case of constant exponents α and p, we have the following result.

Corollary 5.7. Let α and µ be as in Theorem 5.6 and 1 − α < N < n + 1 − α. If
1 < p < N

1−α , then there exists c > 0 such that

‖Dαf‖q,Ω ≤ c ‖f‖1,p,Ω, f ∈ M1,p(Ω),

for any exponent q fulfilling

p < q <
Np

N − (1− α)p + (N − n)p
. (5.15)

As in the case of operator Dα, we can also derive conditions on the conver-
gence of hypersingular integrals of the form (5.2).

Theorem 5.8. Let α and µ be as in Theorem 5.6. Under condition (2.12), the
hypersingular integral Dα(·), with 0 < α− ≤ α(x) < 1, x ∈ Ω, of functions in
M1,p(·)(Ω) converges at all those points where

1− α(x)− N

p(x)
> N − n.
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[11] L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue
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