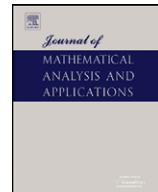


Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

11 Embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of 12 variable order[☆]

15 Alexandre Almeida^{a,*}, Stefan Samko^b17 ^a Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal18 ^b Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

20 ARTICLE INFO

22 Article history:

23 Received 27 October 2008

24 Available online xxxx

25 Submitted by P. Koskela

26 Keywords:

27 Hajłasz–Sobolev space

28 Hölder space

29 Sobolev embeddings

30 Variable exponent

31 Space of homogeneous type

32 Maximal functions

20 ABSTRACT

22 Pointwise estimates in variable exponent Sobolev spaces on quasi-metric measure spaces
23 are investigated. Based on such estimates, Sobolev embeddings into Hölder spaces with
24 variable order are obtained. This extends some known results to the variable exponent
25 setting.

26 © 2008 Elsevier Inc. All rights reserved.

35 1. Introduction

37 Lebesgue and Sobolev spaces with variable exponent have been intensively studied during the last decade. We only
38 mention the surveying papers [9,31,38], where many references may be found. In particular, embeddings of Sobolev spaces
39 started to be investigated since the beginning of the theory of these spaces, mainly those into Lebesgue spaces over Eu-
40 clidean domains (cf. [8,11,12]). In [13,22] corresponding generalizations were investigated within the frameworks of the
41 measure metric spaces. We also refer to [35], where the continuity of Sobolev functions was proved in the limiting case.

42 The case when the exponent is greater than the dimension of the Euclidean space \mathbb{R}^n was less studied. The first attempt
43 to get Sobolev embeddings into Hölder classes of variable order was done in [10]. Later a capacity approach was used
44 in [21] to obtain embeddings into the space of continuous functions. Based on certain pointwise inequalities involving the
45 oscillation of Sobolev functions, the authors [2] proved embeddings into variable Hölder spaces on bounded domains with
46 Lipschitz boundary. More recently, Hölder quasicontinuity of Sobolev functions was studied in [25], including estimates for
47 the exceptional set in terms of capacities.

48 In this paper we derive more general results, namely we obtain embeddings of variable exponent Hajłasz–Sobolev spaces
49 into Hölder classes of variable order on a bounded (quasi-)metric measure space (\mathcal{X}, d, μ) with doubling condition. Our
50 approach is based on the estimation of Sobolev functions through maximal functions. We refer to papers [4,7,19,20,30],
51 where this way was used in the case of constant exponents.

52 The paper is organized as follows. After some preliminaries in Section 2 on variable spaces defined on spaces of homo-
53 geneous type, in Section 3 we extend some known estimates of the oscillation of Sobolev functions to the variable exponent

56 [☆] Research supported by INTAS Grant No. 06-1000017-8792 through the project *Variable Exponent Analysis*.

57 ^{*} Corresponding author.

58 E-mail addresses: jaralmeida@ua.pt (A. Almeida), ssamko@ualg.pt (S. Samko).

59 ¹ The author was also supported by *Unidade de Investigação “Matemática e Aplicações” (UIMA)* of University of Aveiro.

1 setting. The embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of variable order on metric measure spaces
 2 are proved in Section 4. Sobolev embeddings of higher smoothness are also proved in the Euclidean case.
 3

4 2. Preliminaries

5 Everywhere below $\mathcal{X} = (\mathcal{X}, d, \mu)$ is a quasi-metric measure space. For any positive μ -measurable function φ defined on
 6 \mathcal{X} , φ_- and φ_+ denote the quantities
 7

$$8 \quad \varphi_+ := \operatorname{ess\,sup}_{x \in \mathcal{X}} \varphi(x) \quad \text{and} \quad \varphi_- := \operatorname{ess\,inf}_{x \in \mathcal{X}} \varphi(x). \quad (1)$$

9 By C (or c) we denote generic positive constants which may have different values at different occurrences. Sometimes
 10 we emphasize their dependence on certain parameters (e.g. $C(\alpha)$ or C_α means that C depends on α , *etc.*)
 11

12 2.1. Spaces of homogeneous type

13 By a *space of homogeneous type* we mean a triple (\mathcal{X}, d, μ) , where \mathcal{X} is a non-empty set, $d : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a quasi-metric
 14 on \mathcal{X} and μ is a non-negative Borel measure such that the *doubling condition*
 15

$$16 \quad \mu B(x, 2r) \leq C_\mu \mu B(x, r), \quad C_\mu > 1, \quad (2)$$

17 holds for all $x \in \mathcal{X}$ and $0 < r < \operatorname{diam}(\mathcal{X})$, where $B(x, r) = \{y \in \mathcal{X} : d(x, y) < r\}$ denotes the open ball centered at x and of
 18 radius r . For simplicity, we shall write \mathcal{X} instead of (\mathcal{X}, d, μ) if no ambiguity arises.
 19

20 As is well known, by iteration of condition (2) it can be shown that there exists a positive constant C such that
 21

$$22 \quad \frac{\mu B(x, \varrho)}{\mu B(y, r)} \leq C \left(\frac{\varrho}{r} \right)^N, \quad N = \log_2 C_\mu, \quad (3)$$

23 for all the balls $B(x, \varrho)$ and $B(y, r)$ with $0 < r \leq \varrho$ and $y \in B(x, r)$. From (3) it follows that
 24

$$25 \quad \mu B(x, r) \geq c_0 r^N, \quad x \in \mathcal{X}, \quad 0 < r \leq \operatorname{diam} \mathcal{X}, \quad (4)$$

26 in the case \mathcal{X} is bounded. Condition (4) is sometimes called the *lower Ahlfors regularity condition*.
 27

28 The *quasi-metric* d is assumed to satisfy the standard conditions:
 29

$$30 \quad d(x, y) \geq 0, \quad d(x, y) = 0 \iff x = y, \quad d(x, y) = d(y, x),$$

$$31 \quad d(x, y) \leq a_0 [d(x, z) + d(z, y)], \quad a_0 \geq 1.$$

32 We refer to [5,6,16,26] for general properties of spaces of homogeneous type.
 33

34 2.2. On variable exponent spaces

35 Let $p : \mathcal{X} \rightarrow [1, \infty)$ be a μ -measurable function. Everywhere below we assume that
 36

$$37 \quad 1 < p_- \leq p(x) \leq p_+ < \infty, \quad x \in \mathcal{X},$$

38 according to the notation in (1).
 39

40 By $L^{p(\cdot)}(\mathcal{X})$ we denote the space of all μ -measurable functions f on \mathcal{X} such that the modular
 41

$$42 \quad I_{p(\cdot)}(f) = I_{p(\cdot), \mathcal{X}}(f) := \int_{\mathcal{X}} |f(x)|^{p(x)} d\mu(x)$$

43 is finite. This is a Banach space with respect to the norm
 44

$$45 \quad \|f\|_{p(\cdot)} = \|f\|_{p(\cdot), \mathcal{X}} := \inf \left\{ \lambda > 0 : I_{p(\cdot)} \left(\frac{f}{\lambda} \right) \leq 1 \right\}.$$

46 Variable exponent Lebesgue spaces over quasi-metric measure spaces have been considered in [13,22,23,29,35] and more
 47 recently in [32,33], where the maximal operator was studied on weighted spaces. For completeness, we recall here some
 48 basic properties of the spaces $L^{p(\cdot)}(\mathcal{X})$. It is known that the norm $\|\cdot\|_{p(\cdot)}$ and the modular $I_{p(\cdot)}$ are simultaneously greater
 49 or simultaneously less than one, from which there follows that
 50

$$51 \quad c_1 \leq \|f\|_{p(\cdot)} \leq c_2 \implies c_3 \leq I_{p(\cdot)}(f) \leq c_4$$

52 and
 53

$$54 \quad c_1 \leq I_{p(\cdot)}(f) \leq c_2 \implies c_3 \leq \|f\|_{p(\cdot)} \leq c_4,$$

55 with $c_3 = \min(c_1^{p_-}, c_2^{p_+})$, $c_4 = \max(c_2^{p_-}, c_2^{p_+})$, $C_3 = \min(C_1^{1/p_-}, C_1^{1/p_+})$ and $C_4 = \max(C_2^{1/p_-}, C_2^{1/p_+})$.
 56

1 As usual, $p'(\cdot)$ denotes the conjugate exponent of $p(\cdot)$ and it is defined pointwise by $p'(x) = \frac{p(x)}{p(x)-1}$, $x \in \mathcal{X}$. The Hölder
 2 inequality is valid in the form
 3

$$4 \int_{\mathcal{X}} |f(x)g(x)| d\mu(x) \leq \left(\frac{1}{p_-} + \frac{1}{p'_-} \right) \|f\|_{p(\cdot)} \|g\|_{p'(\cdot)}. \\ 5$$

6 We also note that the embedding
 7

$$8 L^{q(\cdot)}(\mathcal{X}) \hookrightarrow L^{p(\cdot)}(\mathcal{X}) \\ 9$$

10 holds for $1 \leq p(x) \leq q(x) \leq q^+ < \infty$, when $\mu(\mathcal{X}) < \infty$.
 11

Often the exponent $p(\cdot)$ is supposed to satisfy the local logarithmic condition

$$13 |p(x) - p(y)| \leq \frac{A_0}{\ln \frac{1}{d(x,y)}}, \quad d(x, y) \leq 1/2, \quad x, y \in \mathcal{X}, \\ 14 \quad 15$$

from which we derive
 16

$$17 |p(x) - p(y)| \leq \frac{2RA_0}{\ln \frac{2R}{d(x,y)}}, \quad d(x, y) \leq R, \quad x, y \in \mathcal{X}. \\ 18 \quad 19$$

20 Assumption (5) is known in the literature as *Dini-Lipschitz condition* or *log-Hölder continuity*.
 21

22 We will also deal with *Hölder spaces* $H^{\lambda(\cdot)}$ of variable order. Hölder functions on metric measure spaces were considered,
 23 for instance, in [14,15,34,36] for constant orders λ . Hölder spaces of variable order $\lambda(x)$ were considered in [17,27,28,37] in
 24 the one-dimensional Euclidean case and in [39–42] on the unit sphere S^{n-1} in \mathbb{R}^n . In the case of variable order we follow a
 25 symmetric approach, which was suggested in [37] in the one-dimensional Euclidean case. We say that a bounded function f
 26 belongs to $H^{\lambda(\cdot)}(\mathcal{X})$ if there exists $c > 0$ such that
 27

$$28 |f(x) - f(y)| \leq cd(x, y)^{\max\{\lambda(x), \lambda(y)\}} \\ 29$$

30 for every $x, y \in \mathcal{X}$, where λ is a μ -measurable function on \mathcal{X} taking values in $(0, 1]$. $H^{\lambda(\cdot)}(\mathcal{X})$ is a Banach space with
 31 respect to the norm
 32

$$33 \|f\|_{H^{\lambda(\cdot)}(\mathcal{X})} = \|f\|_{\infty} + [f]_{\lambda(\cdot)}, \\ 34$$

35 where
 36

$$37 [f]_{\lambda(\cdot)} := \sup_{\substack{x, y \in \mathcal{X} \\ 0 < d(x, y) \leq 1}} \frac{|f(x) - f(y)|}{d(x, y)^{\max\{\lambda(x), \lambda(y)\}}}. \\ 38$$

39 We observe that for $0 < \beta(x) \leq \lambda(x) \leq 1$, there holds
 40

$$41 H^{\lambda(\cdot)}(\mathcal{X}) \hookrightarrow H^{\beta(\cdot)}(\mathcal{X}), \\ 42$$

43 where “ \hookrightarrow ” means continuous embedding.
 44

2.3. Hajłasz–Sobolev spaces with variable exponent

45 Let $1 < p_- \leq p_+ < \infty$. We say that a function $f \in L^{p(\cdot)}(\mathcal{X})$ belongs to the *Hajłasz–Sobolev space* $M^{1,p(\cdot)}(\mathcal{X})$, if there exists
 46 a non-negative function $g \in L^{p(\cdot)}(\mathcal{X})$ such that the inequality
 47

$$48 |f(x) - f(y)| \leq d(x, y)[g(x) + g(y)] \\ 49$$

50 holds μ -almost everywhere in \mathcal{X} . In this case, g is called a *generalized gradient* of f . $M^{1,p(\cdot)}(\mathcal{X})$ is a Banach space with
 51 respect to the norm
 52

$$53 \|f\|_{1,p(\cdot)} = \|f\|_{M^{1,p(\cdot)}(\mathcal{X})} := \|f\|_{p(\cdot)} + \inf \|g\|_{p(\cdot)}, \\ 54$$

55 where the infimum is taken over all generalized gradients of f .
 56

57 For constant exponents $p(x) \equiv p$, the spaces $M^{1,p}$ were first introduced by P. Hajłasz [18] as a generalization of the
 58 classical Sobolev spaces $W^{1,p}$ to the general setting of the quasi-metric measure spaces. If $\mathcal{X} = \Omega$ is a bounded domain
 59 with Lipschitz boundary (or $\Omega = \mathbb{R}^n$), endowed with the Euclidean distance and the Lebesgue measure, then $M^{1,p}(\Omega)$
 60 coincides with $W^{1,p}(\Omega)$. Recall that the oscillation of a Sobolev function may be estimated by the maximal function of its
 61 gradient. In other words, every function $f \in W^{1,p}(\Omega)$ satisfies (6) by taking $\mathcal{M}(|\nabla f|)$ as a generalized gradient (see, for
 62 instance, [4,20,30], for details and applications, and [2] where this property was also discussed for variable exponents).
 63

64 Hajłasz–Sobolev spaces with variable exponent have been considered in [22,24]. In [24] it was shown that $M^{1,p(\cdot)}(\mathbb{R}^n) =$
 65 $W^{1,p(\cdot)}(\mathbb{R}^n)$ if the maximal operator is bounded in $L^{p(\cdot)}(\mathbb{R}^n)$, which generalizes the result from [18] for constant p .
 66

1 **3. Some pointwise estimates** 12 Let $\alpha : \mathcal{X} \rightarrow (0, \infty)$ be a μ -measurable function. We define the fractional sharp maximal function of order $\alpha(\cdot)$ as 2

3
$$\mathcal{M}_{\alpha(\cdot)}^{\sharp} f(x) = \sup_{r>0} \frac{r^{-\alpha(x)}}{\mu B(x, r)} \int_{B(x, r)} |f(y) - f_{B(x, r)}| d\mu(y),$$
 4

5 where $f_{B(x, r)}$ denotes the average of f over $B(x, r)$, with $f \in L^1_{\text{loc}}(\mathcal{X})$. In the limiting case $\alpha \equiv 0$, $\mathcal{M}_{\alpha(\cdot)}^{\sharp}$ is the well-known 6 Fefferman-Stein function. 7

8 According to the notation above we write 8

9
$$\alpha_- = \text{ess inf}_{x \in \mathcal{X}} \alpha(x) \quad \text{and} \quad \alpha_+ = \text{ess sup}_{x \in \mathcal{X}} \alpha(x).$$
 10

11 For constant $\alpha = \beta$ the following inequality was proved in [19, Lemma 3.6], which in turn generalizes Theorem 2.7 in [7], 12 given in the Euclidean setting. 1314 **Lemma 1.** Let \mathcal{X} satisfy the doubling condition (2) and f be a locally integrable function on \mathcal{X} . If 15

16
$$0 < \alpha_- \leq \alpha(x) \leq \alpha_+ < \infty \quad \text{and} \quad 0 < \beta_- \leq \beta(x) \leq \beta_+ < \infty,$$
 17

18 then 19

20
$$|f(x) - f(y)| \leq C(\mu, \alpha, \beta) [d(x, y)^{\alpha(x)} \mathcal{M}_{\alpha(\cdot)}^{\sharp} f(x) + d(x, y)^{\beta(y)} \mathcal{M}_{\beta(\cdot)}^{\sharp} f(y)] \quad (7)$$
 21

22 μ -almost everywhere. 2324 **Proof.** We skip some details since the proof follows similar arguments of [19]. For a Lebesgue point x we have 25

26
$$|f(x) - f_{B(x, r)}| \leq \sum_{j=0}^{\infty} |f_{B(x, 2^{-(j+1)}r)} - f_{B(x, 2^{-j}r)}| \leq \sum_{j=0}^{\infty} \frac{1}{\mu B(x, 2^{-(j+1)}r)} \int_{B(x, 2^{-j}r)} |f(z) - f_{B(x, 2^{-j}r)}| d\mu(z).$$
 27

28 Hence, by the doubling condition (2) we get 29

30
$$|f(x) - f_{B(x, r)}| \leq c_{\mu} \sum_{j=0}^{\infty} \frac{1}{\mu B(x, 2^{-j}r)} \int_{B(x, 2^{-j}r)} |f(z) - f_{B(x, 2^{-j}r)}| d\mu(z) \leq c_{\mu} c(\alpha) r^{\alpha(x)} \mathcal{M}_{\alpha(\cdot)}^{\sharp} f(x) \quad (8)$$
 31

32 where $c(\alpha) := \sum_{j=0}^{\infty} 2^{-j\alpha_-} = \frac{2^{\alpha_-}}{2^{\alpha_-} - 1}$. On the other hand, similar techniques also yield 33

34
$$|f(y) - f_{B(x, r)}| \leq |f(y) - f_{B(y, 2r)}| + |f_{B(x, r)} - f_{B(y, 2r)}| \leq c(\mu, \beta) r^{\beta(y)} \mathcal{M}_{\beta(\cdot)}^{\sharp} f(y) \quad (9)$$
 35

36 when $y \in B(x, r)$ and $\beta_+ < \infty$. Thus, if $x \neq y$ we take $r = 2d(x, y)$ and write 37

38
$$|f(x) - f(y)| \leq |f(x) - f_{B(x, 2d(x, y))}| + |f(y) - f_{B(x, 2d(x, y))}|. \quad (10)$$
 39

40 Now it remains to make use of (8) and (9), where we also observe that both $\alpha(\cdot)$ and $\beta(\cdot)$ are bounded. \square 4142 Having in mind some applications, it is of interest to estimate the oscillation of a Hajłasz-Sobolev function in terms of 43 the fractional maximal function of the (generalized) gradient. Recall that the fractional maximal function $\mathcal{M}_{\alpha(\cdot)} f$ of a locally 44 integrable function f is given by 45

46
$$\mathcal{M}_{\alpha(\cdot)} f(x) = \sup_{r>0} \frac{r^{\alpha(x)}}{\mu B(x, r)} \int_{B(x, r)} |f(y)| d\mu(y),$$
 47

48 where the order α is admitted to be variable, namely α is a μ -measurable function, with $0 \leq \alpha(x) \leq \alpha_+ < \infty$. In the 49 limiting case $\alpha(x) \equiv 0$ we obtain the well-known Hardy-Littlewood maximal function $\mathcal{M} = \mathcal{M}_0$. 50

51 The next lemma is an adaptation of Corollary 3.10 in [19] to variable exponents. We point out that the pointwise 52 inequality (10) has been discussed before for variable exponents in the Euclidean case, see [2, Proposition 3.3]. 53

54 **Lemma 2.** Let \mathcal{X} satisfy the doubling condition (2) and let $f \in M^{1, p(\cdot)}(\mathcal{X})$ and $g \in L^{p(\cdot)}(\mathcal{X})$ be a generalized gradient of f . If $0 \leq 55$ $\alpha_+ < 1$, $0 \leq \beta_+ < 1$, then 56

57
$$|f(x) - f(y)| \leq C(\mu, \alpha, \beta) [d(x, y)^{1-\alpha(x)} \mathcal{M}_{\alpha(\cdot)} g(x) + d(x, y)^{1-\beta(y)} \mathcal{M}_{\beta(\cdot)} g(y)] \quad (10)$$
 58

59 μ -almost everywhere. 60

1 **Proof.** Taking into account (7), it suffices to show the estimate

2
$$\mathcal{M}_{1-\lambda(\cdot)}^{\sharp} g(x) \leq c \mathcal{M}_{\lambda(\cdot)} g(x), \quad 0 \leq \lambda(x) < 1. \quad (11)$$

3 But (11) follows from the Poincaré type inequality

4
$$\int_{B(x,r)} |f(z) - f_{B(x,r)}| d\mu(z) \leq c r \int_{B(x,r)} g(z) d\mu(z), \quad x \in \mathcal{X}, \quad r > 0, \quad (12)$$

5 which is valid for every $f \in M^{1,p(\cdot)}(\mathcal{X})$, where $g \geq 0$ is a generalized gradient of f . Indeed, (12) can be obtained just by
6 integrating the both sides of
7

8
$$|f(y) - f(z)| \leq d(y, z)[g(y) + g(z)], \quad \mu - \text{a.e. } y, z \in B(x, r),$$

9 (see (6)) over the ball $B(x, r)$, first with respect to y and then to z . \square

10 **Remark 3.** In the previous proof we used partially the statement of Theorem 4.2 in [24]. However, the boundedness of the
11 maximal operator required there is not needed here.

12 4. Sobolev embeddings into variable exponent Hölder spaces

13 4.1. Embeddings of variable Hajłasz–Sobolev spaces

14 Estimate (10) suggests that a function $f \in M^{1,p(\cdot)}(\mathcal{X})$ is Hölder continuous (after a modification on a set of zero measure)
15 if the fractional maximal function of the gradient is bounded. As we will see below, this is the case when the exponent $p(\cdot)$
16 takes values greater than the “dimension”. First we need some auxiliary lemmas.

17 The following statement was given in [22] (see also [3] for an alternative proof).

18 **Lemma 4.** Let \mathcal{X} be bounded, the measure μ satisfy condition (4) and $p(\cdot)$ satisfy condition (5). Then

19
$$\|\chi_{B(x,r)}\|_{p(\cdot)} \leq c [\mu B(x, r)]^{\frac{1}{p(x)}} \quad (13)$$

20 with $c > 0$ not depending on $x \in \mathcal{X}$ and $r > 0$.

21 Below $N > 0$ denotes the constant from (4).

22 **Lemma 5.** Let \mathcal{X} be bounded and μ satisfy condition (4). Suppose that $p(\cdot)$ is log-Hölder continuous. If $f \in L^{p(\cdot)}(\mathcal{X})$, then

23
$$\mathcal{M}_{\frac{N}{p(\cdot)}} f(x) \leq c \|f\|_{p(\cdot)}, \quad (14)$$

24 where $c > 0$ is independent of x and f .

25 **Proof.** Let $x \in \mathcal{X}$ and $r > 0$. By the Hölder inequality we have

26
$$\frac{r^{\frac{N}{p(x)}}}{\mu B(x, r)} \int_{B(x,r)} |f(y)| d\mu(y) \leq \frac{2r^{\frac{N}{p(x)}}}{\mu B(x, r)} \|f\|_{p(\cdot)} \|\chi_{B(x,r)}\|_{p(\cdot)}.$$

27 From this, we easily arrive at (14) by using the inequality (13) and the assumption (4). \square

28 **Theorem 6.** Let \mathcal{X} be bounded and let μ be doubling. Suppose also that $p(\cdot)$ satisfies (5) with $p_- > N$. If $f \in M^{1,p(\cdot)}(\mathcal{X})$ and g is a
29 generalized gradient of f , then there exists $C > 0$ such that

30
$$|f(x) - f(y)| \leq C \|g\|_{p(\cdot)} d(x, y)^{1 - \frac{N}{\max\{p(x), p(y)\}}} \quad (15)$$

31 for every $x, y \in \mathcal{X}$ with $d(x, y) \leq 1$.

32 **Proof.** After redefining f on a set of zero measure, we make use of (10) with $\alpha(x) = \frac{N}{p(x)}$ and $\beta(y) = \frac{N}{p(y)}$, and get

33
$$|f(x) - f(y)| \leq C(\mu, N, p) d(x, y)^{1 - \frac{N}{\min\{p(x), p(y)\}}} [\mathcal{M}_{\frac{N}{p(\cdot)}} g(x) + \mathcal{M}_{\frac{N}{p(\cdot)}} g(y)]$$

34 for all $x, y \in \mathcal{X}$. Hence we arrive at (15) taking into account (14). \square

35 The statement of the next theorem was proved in [2] within the frameworks of the Euclidean domains with Lipschitz
36 boundary.

Theorem 7. Let the set \mathcal{X} be bounded and the measure μ be doubling. If $p(\cdot)$ is log-Hölder continuous and $p_- > N$, then

$$M^{1,p(\cdot)}(\mathcal{X}) \hookrightarrow H^{1-\frac{N}{p(\cdot)}}(\mathcal{X}). \quad (16)$$

Proof. Let $x \in \mathcal{X}$ and $r_0 > 0$ be arbitrary. Recovering the argument from (8), we make use of (11) and we get

$$\begin{aligned} |f(x) - f_{B(x,r_0)}| &\leq c r_0^{1-\frac{N}{p(x)}} \mathcal{M}_{1-\frac{N}{p(\cdot)}}^\sharp f(x) \\ &\leq c r_0^{1-\frac{N}{p(x)}} \mathcal{M}_{\frac{N}{p(\cdot)}} g(x) \\ &\leq c r_0^{1-\frac{N}{p(x)}} \|g\|_{p(\cdot)}, \end{aligned}$$

where in the last inequality we took estimate (14) into account, with $g \in L^{p(\cdot)}(\mathcal{X})$ denoting a gradient of $f \in M^{1,p(\cdot)}(\mathcal{X})$. On the other hand, the Hölder inequality (cf. proof of Lemma 5) yields

$$|f_{B(x,r_0)}| \leq c r_0^{-\frac{N}{p(x)}} \|f\|_{p(\cdot)}.$$

Hence, choosing $r_0 = \min\{1, \text{diam}(\mathcal{X})\}$ above, one obtains

$$\|f\|_\infty \leq c \|f\|_{1,p(\cdot)}. \quad (17)$$

It remains to show that f is Hölder continuous. To this end, we apply inequality (15) and we get

$$\frac{|f(x) - f(y)|}{d(x, y)^{\max\{1-\frac{N}{p(x)}, 1-\frac{N}{p(y)}\}}} \leq c \|g\|_{p(\cdot)} d(x, y)^{\frac{N}{\max\{p(x), p(y)\}} - \frac{N}{\min\{p(x), p(y)\}}}$$

for every $x, y \in \mathcal{X}$, $x \neq y$, with $d(x, y) \leq 1$. Since $p(\cdot)$ satisfies the log-condition, then

$$d(x, y)^{\frac{N}{\max\{p(x), p(y)\}}} \sim d(x, y)^{\frac{N}{\min\{p(x), p(y)\}}}.$$

Hence there holds $|f|_{1-\frac{N}{p(\cdot)}} \leq c \|g\|_{p(\cdot)}$, from which the embedding (16) follows, having also in mind (17). \square

4.2. Further results for the Euclidean case

In the particular case when \mathcal{X} is a bounded domain Ω (with Lipschitz boundary) in the Euclidean space \mathbb{R}^n , then

$$W^{1,p(\cdot)}(\Omega) \hookrightarrow H^{1-\frac{n}{p(\cdot)}}(\Omega) \quad (18)$$

where it is assumed that $p(\cdot)$ is log-Hölder continuous and $p_- > n$. In this section we are concerned with corresponding embeddings for higher smoothness. For constant exponents p such embeddings are well known and can be found, for instance, in [1].

Let $\Omega \subset \mathbb{R}^n$ be an open set and $k \in \mathbb{N}$. Recall that the usual Sobolev space $W^{k,p(\cdot)}(\Omega)$ consists of all functions f for which the (weak) derivatives $D^\beta f$ are in $L^{p(\cdot)}(\Omega)$, for any $0 \leq |\beta| \leq k$. This is a Banach space with respect to the norm

$$\|f\|_{k,p(\cdot),\Omega} = \sum_{|\beta| \leq k} \|D^\beta f\|_{p(\cdot),\Omega}.$$

The next statement was proved in [8].

Theorem 8. Let $k \in \mathbb{N}$ with $1 \leq k < n$. If $p(\cdot)$ is log-Hölder continuous and is constant outside some large ball, with $1 < p_- \leq p_+ < \frac{n}{k}$, then

$$W^{k,p(\cdot)}(\mathbb{R}^n) \hookrightarrow L^{q(\cdot)}(\mathbb{R}^n), \quad (19)$$

where $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{k}{n}$, $x \in \mathbb{R}^n$.

If $\Omega \subset \mathbb{R}^n$ is an open bounded set with Lipschitz boundary, then there exists a bounded linear extension operator $\mathcal{E} : W^{k,p(\cdot)}(\Omega) \rightarrow W^{k,\tilde{p}(\cdot)}(\mathbb{R}^n)$, such that $\mathcal{E}f(x) = f(x)$ almost everywhere in Ω , for all $f \in W^{k,p(\cdot)}(\Omega)$. The exponent $\tilde{p}(\cdot)$ is an extension of $p(\cdot)$ to the whole \mathbb{R}^n preserving the original bounds and the continuity modulus of $p(\cdot)$. All the details of this construction in the case $k=1$ can be found in [8, Theorem 4.2 and Corollary 4.3], and [10, Theorem 4.1]; constructions for $k \neq 1$ follow the same way, since the Hestenes method is known to work well with higher derivatives as well. As a consequence we conclude that embedding (19) holds also for bounded open sets Ω with Lipschitz boundary, namely if $p(\cdot)$ satisfies condition (5) in Ω with $1 < p_- \leq p_+ < \frac{n}{k}$, then

$$W^{k,p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega), \quad \frac{1}{q(x)} = \frac{1}{p(x)} - \frac{k}{n}, \quad x \in \Omega. \quad (20)$$

1 **Remark 9.** Embedding (20) was proved in [8, Corollary 5.3] in the case $k = 1$, which in turn generalizes a former result
 2 from [10] formulated for Lipschitz continuous exponents. We note that embedding (20) was also proved in [12] by assuming
 3 the Lipschitz continuity of $p(\cdot)$ and the cone condition in Ω .
 4

5 **Theorem 10.** Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with Lipschitz boundary. If $p(\cdot)$ is log-Hölder continuous and $(k-1)p_+ < n < kp_-$,
 6 then
 7

$$W^{k,p(\cdot)}(\Omega) \hookrightarrow H^{k-\frac{n}{p(\cdot)}}(\Omega). \quad (21)$$

10 **Proof.** As in the classical setting of constant exponents, the proof can be reduced to the case $k = 1$ as follows. By (20) we
 11 have
 12

$$W^{k,p(\cdot)}(\Omega) \hookrightarrow W^{k-1,p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega),$$

13 where $\frac{1}{q(x)} = \frac{1}{p(x)} - \frac{k-1}{n}$, $x \in \Omega$. Thus we also get $W^{k,p(\cdot)}(\Omega) \hookrightarrow W^{1,q(\cdot)}(\Omega)$. Hence it remains to observe that
 14

$$W^{1,q(\cdot)}(\Omega) \hookrightarrow H^{1-\frac{n}{q(\cdot)}}(\Omega),$$

15 which follows from (18). Indeed, we have $\frac{n}{q_-} = \frac{n}{p_-} - k + 1 < 1$ and $1 - \frac{n}{q(x)} = k - \frac{n}{p(x)}$. \square
 16

17 **Remark 11.** Since we consider Hölder spaces of orders less than 1, in Theorem 10 we in fact have a restriction $k < \frac{p_+}{p_+ - p_-}$.
 18 To avoid this restriction one should make use Hölder spaces of higher order which we do not touch here. Observe that
 19 the condition $(k-1)p_+ < n$ of Theorem 10 may be omitted, but then we should just assume that $(k-1)p_+ \neq n$ and
 20 embedding (21) written in the form $W^{k,p(\cdot)}(\Omega) \hookrightarrow H^{\{k-\frac{n}{p(\cdot)}\}}(\Omega)$, where $\{k - \frac{n}{p(x)}\}$ stands for the fractional part of $k - \frac{n}{p(x)}$.
 21

22 **Corollary 12.** Let $\Omega \subset \mathbb{R}^n$ be an open bounded set with Lipschitz boundary. Let also $p(\cdot)$ be log-Hölder continuous with $p_- > \frac{n}{k}$,
 23 $k > 1$. Then
 24

$$W^{k,p(\cdot)}(\Omega) \hookrightarrow H^{\lambda(\cdot)}(\Omega),$$

25 for any function $\lambda(\cdot) \in L^\infty(\Omega)$ such that $\lambda(x) \leq k - \frac{n}{p(x)}$ and $\lambda_- > 0$, $\lambda_+ < 1$.
 26

References

- [1] R.A. Adams, J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
- [2] A. Almeida, S. Samko, Pointwise inequalities in variable Sobolev spaces and applications, *Z. Anal. Anwend.* 26 (2) (2007) 179–193.
- [3] A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, *Georgian Math. J.* 15 (2) (2008) 1–14.
- [4] B. Bojarski, P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, *Studia Math.* 106 (1) (1993) 77–92.
- [5] R.R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certaines espaces homogènes, *Lecture Notes in Math.*, vol. 242, 1971.
- [6] R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, *Bull. Amer. Math. Soc.* 83 (4) (1977) 569–645.
- [7] R. DeVore, R.C. Sharpley, Maximal functions measuring smoothness, *Mem. Amer. Math. Soc.* 293 (1984).
- [8] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, *Math. Nachr.* 268 (2004) 31–43.
- [9] L. Diening, P. Hästö, A. Nečvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: *Proc. Int. Conference Function Spaces, Differential Operators and Nonlinear Analysis*, Milovy, Czech Rep., May 28–June 4, 2004, *Math. Inst. Acad. Sci. Czech Repub.*, Prague, 2005, pp. 38–58.
- [10] D.E. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, *Studia Math.* 143 (2000) 267–293.
- [11] D.E. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent II, *Math. Nachr.* 246/247 (2002) 53–67.
- [12] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, *J. Math. Anal. Appl.* 262 (2001) 749–760.
- [13] T. Futamura, Y. Mizuta, T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, *Ann. Acad. Sci. Fenn. Math.* 31 (2) (2006) 495–522.
- [14] A.E. Gatto, On fractional calculus associated to doubling and non-doubling measures, in: J.M. Ash, et al. (Eds.), *Harmonic Analysis. Calderon-Zygmund and Beyond, A Conference in Honor of Stephen Vagi's Retirement*, Chicago, IL, USA, December 6–8, 2002, in: *Contemp. Math.*, vol. 411, Amer. Math. Soc., Providence, RI, 2006, pp. 15–37.
- [15] A.E. Gatto, C. Segovia, S. Vagi, On fractional differentiation on spaces of homogeneous type, *Rev. Mat. Iberoamericana* 12 (1) (1996) 1–35.
- [16] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbc, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monogr. Surv. Pure Appl. Math., Longman Scientific and Technical, 1998.
- [17] A. Guinsburg, N. Karapetyants, Fractional integro-differentiation in Hölder classes of variable order, *Dokl. Akad. Nauk* 339 (4) (1994) 439–441 (in Russian); Engl. transl. in *Russian Acad. Dci. Dokl. Math.* 50 (3) (1995) 441–444.
- [18] P. Hajłasz, Sobolev spaces on arbitrary metric spaces, *Potential Anal.* 5 (1996) 403–415.
- [19] P. Hajłasz, J. Kinnunen, Hölder quasicontinuity of Sobolev functions on metric spaces, *Rev. Mat. Iberoamericana* 14 (3) (1998) 601–622.
- [20] P. Hajłasz, O. Martio, Traces of Sobolev functions on fractal type sets and characterization of extension domains, *J. Funct. Anal.* 143 (1997) 221–246.
- [21] P. Harjulehto, P. Hästö, A capacity approach to the Poincaré inequality and Sobolev embeddings in variable exponent Sobolev spaces, *Rev. Mat. Complut.* 17 (1) (2006) 129–146.
- [22] P. Harjulehto, P. Hästö, V. Latvala, Sobolev embeddings in metric measure spaces with variable dimension, *Math. Z.* 254 (3) (2006) 591–609.
- [23] P. Harjulehto, P. Hästö, M. Pere, Variable exponent Lebesgue spaces on metric spaces: The Hardy–Littlewood maximal operator, *Real Anal. Exchange* 30 (1) (2004) 87–104.
- [24] P. Harjulehto, P. Hästö, M. Pere, Variable exponent Sobolev spaces on metric measure spaces, *Funct. Approx.* 36 (2006) 79–94.
- [25] P. Harjulehto, J. Kinnunen, K. Tuhkanen, Hölder quasicontinuity in variable exponent Sobolev spaces, *J. Inequal. Appl.* 2007 (2007), 18 pp.

1 [26] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, [New York](#), 2001.

2 [27] N. Karapetyants, A. Guinsburg, Fractional integrals and singular integrals in the Hölder classes of variable order, Integral Transforms Spec. Funct. 2 (2) (1994) 91–106.

3 [28] N. Karapetyants, A. Guinsburg, Fractional integrodifferentiation in Hölder classes of arbitrary order, Georgian Math. J. 2 (1995) 141–150.

4 [29] M. Khabazi, The maximal operator in spaces of homogeneous type, Proc. A. Razmadze Math. Inst. 138 (2005) 17–25.

5 [30] J. Kinnunen, O. Martio, Hardy's inequalities for Sobolev functions, Math. Res. Lett. 4 (4) (1997) 489–500.

6 [31] V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces, in: Proc. Int. Conference Function Spaces, Differential Operators and Nonlinear Analysis, Milovy, Czech Rep., May 28–June 4, 2004, Math. Inst. Acad. Sci. Czech Repub., Prague, 2005, pp. 152–175.

7 [32] V. Kokilashvili, S. Samko, The maximal operator in weighted variable spaces on metric measure spaces, Proc. A. Razmadze Math. Inst. 144 (2007) 137–144.

8 [33] V. Kokilashvili, S. Samko, The maximal operator in weighted variable spaces on metric spaces, manuscript, 2007.

9 [34] R.A. Macías, C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979) 257–270.

10 [35] Y. Mizuta, T. Shimomura, Continuity of Sobolev functions of variable exponent on metric spaces, Proc. Japan Acad. 80 (A) (2004) 96–99.

11 [36] E. Nakai, Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (1) (2006) 1–19.

12 [37] B. Ross, S. Samko, Fractional integration operator of variable order in the spaces H^λ , Int. J. Math. Sci. 18 (4) (1995) 777–788.

13 [38] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators, Integral Transforms Spec. Funct. 16 (2005) 461–482.

14 [39] B.G. Vakulov, Spherical potentials in weighted Hölder spaces of variable order, Dokl. Akad. Nauk 400 (1) (2005) 7–10 (in Russian).

15 [40] B.G. Vakulov, Spherical potentials of complex order in the variable order Hölder spaces, Integral Transforms Spec. Funct. 16 (5–6) (2005) 489–497.

16 [41] B.G. Vakulov, Spherical convolution operators in Hölder spaces of variable order, Mat. Zametki 80 (5) (2006) 683–695 (in Russian).

17 [42] B.G. Vakulov, Spherical potentials of complex order in the spaces with generalized variable Hölder condition, Dokl. Akad. Nauk 407 (1) (2006) 12–15 (in Russian).

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61