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Abstract

Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable
exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia’s
extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of
harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of
trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-
valued analogues.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

During last years a significant progress was made in the study of maximal and singular operators and potential type
operators in the generalized Lebesgue spaces Lp(·) with variable exponent, known also as the spaces with non-standard
growth. A number of mathematical problems leading to such spaces with variable exponent arise in applications to
partial differential equations, variational problems and continuum mechanics (in particular, in the theory of the so-
called electrorheological fluids), see E. Acerbi and G. Mingione [1,2], X. Fan and D. Zhao [20], M. Ružička [62],
V.V. Zhikov [75,76]. These applications stipulated a significant interest to such spaces in the last decade.

The most advance in the study of the classical operators of harmonic analysis in the case of variable exponent was
made in the Euclidean setting, including weighted estimates. We refer in particular to the surveying articles L. Di-
ening, P. Hästö and A. Nekvinda [16], V. Kokilashvili [33], S. Samko [73] and papers D. Cruz-Uribe, A. Fiorenza,
J.M. Martell and C. Perez [10], D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer [11], L. Diening [13–15], L. Dien-
ing and M. Ružička [17], V. Kokilashvili, N. Samko and S. Samko [38], V. Kokilashvili and S. Samko [41–43,45],
A. Nekvinda [58], S. Samko [70–72], S. Samko, E. Shargorodsky and B. Vakulov [74] and references therein.
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Recently there also started the investigation of these classical operators in the spaces with variable exponent in the
setting of metric measure spaces, the case of constant p in this setting having a long history, we refer, in particular
to the papers A.P. Calderón [6], R.R. Coifman and G. Weiss [7,8], R. Macías and C. Segovia [52], books D.E. Ed-
munds, V. Kokilashvili and A. Meskhi [18] and I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec [22],
J. Heinonen [26] and references therein. The non-weighted boundedness of the maximal operator on homogeneous
spaces was proved by P. Harjulehto, P. Hästö and M. Pere [25] and Sobolev embedding theorem with variable expo-
nents on homogeneous spaces with variable dimension was proved in P. Harjulehto, P. Hästö and V. Latvala [24].

In the present paper we give a development of weighted estimations of various operators of harmonic analysis in
Lebesgue spaces with variable exponent p(x). We first give theorems on the weighted boundedness of the maximal
operator on homogeneous spaces (Theorems 2.11 and 2.12). Next, in Section 3 we give a certain p(·) → q(·)-version
of Rubio de Francia’s extrapolation theorem [61] within the frameworks of weighted spaces L

p(·)
� on metric measure

spaces. Proving this version we develop some ideas and approaches of papers [10,12].
By means of this extrapolation theorem and known theorems on the boundedness with Muckenhoupt weights in the

case of constant p, we obtain results on weighted p(·) → q(·)- or p(·) → p(·)-boundedness—in the case of variable
exponent p(x)—of the following operators: potential type operators, Fourier multipliers (weighted Mikhlin, Hörman-
der and Lizorkin-type theorems, Section 4.2), multipliers of trigonometric Fourier series (Section 4.3), majorants of
partial sums of Fourier series (Section 4.4), Zygmund and Cesaro summability for trigonometric series (Section 4.5),
singular integral operators on Carleson curves and in Euclidean setting (Sections 4.6 and 4.7), Fefferman–Stein func-
tion and some vector-valued operators (Section 4.8).

2. Definitions and preliminaries

2.1. On variable dimensions in metric measure spaces

In the sequel, (X,d,μ) denotes a metric space with the (quasi)metric d and non-negative measure μ. We refer to
[18,22,26] for the basics on metric measure spaces. By B(x, r) = {y ∈ X: d(x, y) < r} we denote a ball in X. The
following standard conditions will be assumed to be satisfied:

(1) all the balls B(x, r) = {y ∈ X: d(x, y) < r} are measurable,
(2) the space C(X) of uniformly continuous functions on X is dense in L1(μ).

In most of the statements we also suppose that

(3) the measure μ satisfies the doubling condition:

μB(x,2r) � CμB(x, r),

where C > 0 does not depend on r > 0 and x ∈ X.

A measure satisfying this condition will be called doubling measure.
For a locally μ-integrable function f : X → R

1 we consider the Hardy–Littlewood maximal function

Mf (x) = sup
r>0

1

μ(B(x, r))

∫
B(x,r)

∣∣f (y)
∣∣dμ(y).

By As = As(X), where 1 � s < ∞, we denote the class of weights (locally almost everywhere positive μ-integrable
functions) w : X → R

1 which satisfy the Muckenhoupt condition

sup
B

(
1

μB

∫
B

w(y)dμ(y)

)(
1

μB

∫
B

w− 1
s−1 (y) dμ(y)

)s−1

< ∞

in the case 1 < s < ∞, and the condition

Mw(x) � Cw(x)
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for almost all x ∈ X, with a constant C > 0, not depending on x ∈ X, in the case s = 1. Obviously, A1 ⊂ As ,
1 < s < ∞.

As is known, see [6,52], the weighted boundedness∫
X

(
Mf (x)

)s
w(x)dμ(x) � C

∫
X

∣∣f (x)
∣∣sw(x)dμ(x), 1 < s < ∞,

holds, if and only if w ∈ As .

Definition 2.1. By P(Ω), where Ω is an open set in X, we denote the class of μ-measurable functions on Ω , such
that

1 < p− � p+ < ∞, (2.1)

where p− = p−(Ω) = ess infx∈Ω p(x) and p+ = p+(Ω) = ess supx∈Ω p(x).

Definition 2.2. By L
p(·)
� (Ω) we denote the weighted Banach function space of μ-measurable functions f : Ω → R

1,
such that

‖f ‖
L

p(·)
�

:= ‖�f ‖p(·) = inf

{
λ > 0:

∫
Ω

∣∣∣∣�(x)f (x)

λ

∣∣∣∣p(x)

dμ(x) � 1

}
< ∞. (2.2)

Definition 2.3. We say that a weight � belongs to the class Ap(·)(Ω), if the maximal operator M is bounded in the

space L
p(·)
� (Ω).

Definition 2.4. A function p : Ω → R
1 is said to belong to the class WL(Ω) (weak Lipshitz), if∣∣p(x) − p(y)

∣∣ � A

ln 1
d(x,y)

, d(x, y) � 1

2
, x, y ∈ Ω, (2.3)

where A > 0 does not depend on x and y.

The notion of lower and upper local dimension of X at a point x introduced as

dimX(x) = lim
r→0

lnμB(x, r)

ln r
, dimX(x) = limr→0

lnμB(x, r)

ln r

is known, see e.g. [19]. We will use different notions of local lower and upper dimensions, inspired by the notion of
the index numbers m(w),M(w) of almost monotonic functions w, see their definition in (2.17). These indices studied
in [63–65], are versions of Matuzewska–Orlicz index numbers used in the theory of Orlicz spaces, see [53,54]. The
idea to introduce local dimensions in terms of these indices by the following definition was borrowed from the papers
[66,67].

Definition 2.5. The numbers

dim(X;x) = sup
r>1

ln
(
limh→0

μB(x,rh)
μB(x,h)

)
ln r

, dim(X;x) = inf
r>1

ln
(
limh→0

μB(x,rh)
μB(x,h)

)
ln r

(2.4)

will be referred to as local lower and upper dimensions.

Observe that the “dimension” dim(X;x) may be also rewritten in terms of the upper limit as well:

dim(X;x) = sup
0<r<1

ln
(
limh→0

μB(x,rh)
μB(x,h)

)
ln r

. (2.5)

Since the function

μ0(x, r) = lim
μB(x, rh)

(2.6)
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is semimultiplicative in r , that is, μ0(x, r1r2) � μ0(x, r1)μ0(x, r2), by properties of such functions ([47, p. 75]; [48])
we obtain that dim(X;x) � dim(X;x) and we may rewrite the dimensions dim(X;x) and dim(X;x) also in the form

dim(X;x) = lim
r→0

lnμ0(x, r)

ln r
, dim(X;x) = lim

r→∞
lnμ0(x, r)

ln r
. (2.7)

Remark 2.6. Introduction of dimensions dim(X;x) and dim(X;x) just in form (2.5)–(2.7) is caused by the fact that
they arise naturally when dealing with Muckenhoupt condition for radial type weights on metric measure spaces. They
seem may not coincide with dimensions dimX(x),dimX(x). There is an impression that probably for different goals
different notions of dimensions may be useful.

We will mainly work with the lower bound

dim(Ω) := ess inf
x∈X

dim(Ω;x)

of lower dimensions dim(X;x) on an open set Ω ⊆ X.
In case where Ω is unbounded, we will also need similar dimensions connected in a sense with the influence of

infinity. Let

μ∞(x, r) = lim
h→∞

μB(x, rh)

μB(x,h)
. (2.8)

We introduce the numbers

dim∞(X;x) = lim
r→0

lnμ∞(x, r)

ln r
, dim∞(X;x) = lim

r→∞
lnμ∞(x, r)

ln r
(2.9)

and their bounds

dim∞(Ω) = ess inf
x∈Ω

dim∞(X;x), dim∞(Ω) = ess sup
x∈Ω

dim∞(X;x). (2.10)

It is not hard to see that dim(Ω),dim∞(Ω), and dim∞(Ω) are non-negative. In the sequel, when considering these
bounds of dimensions we always assume that dim(Ω),dim∞(Ω),dim∞(Ω) ∈ (0,∞).

2.2. Classes of the weight functions

We consider, in particular, the weights

�(x) = [
1 + d(x0, x)

]β∞
N∏

k=1

[
d(x, xk)

]βk , xk ∈ X, k = 0,1, . . . ,N, (2.11)

where β∞ = 0 in the case where X is bounded. Let Π = {x0, x1, . . . , xN } be a given finite set of points in X. We take
d(x, y) = |x − y| in all the cases where X = R

n.

Definition 2.7. A weight function of form (2.11) is said to belong to the class Vp(·)(Ω,Π), where p(·) ∈ C(Ω), if

−dim(Ω)

p(xk)
< βk <

dim(Ω)

p′(xk)
(2.12)

and, in the case Ω is infinite,

−dim∞(Ω)

p∞
< β∞ +

N∑
k=1

βk < dim∞(Ω) − dim∞(Ω)

p∞
. (2.13)

Note that when the metric space X has a constant dimension s in the sense that c1r
s � μB(x, r) � c2r

s with the
constants c1 > 0, c2 > 0, not depending on x ∈ X and r > 0, the inequalities in (2.12), (2.13) and (2.19) turn into

− s

p(xk)
< βk <

s

p′(xk)
, − s

p∞
< β∞ +

N∑
βk <

s

p′∞
(2.14)
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and

− s

p(xk)
< m(w) � M(w) <

s

p′(xk)
, k = 1,2, . . . ,N. (2.15)

In fact, we may admit a more general class of weights

�(x) = w0
[
1 + d(x0, x)

] N∏
k=1

wk

[
d(x, xk)

]
(2.16)

with “radial” weights, where the functions w0 and wk, k = 1, . . . ,N , belong to a class of Zygmund–Bary–Stechkin
type, which admits an oscillation between two power functions with different exponents.

By U = U([0, �]) we denote the class of functions u ∈ C([0, �]), 0 < � � ∞, such that u(0) = 0, u(t) > 0 for
t > 0 and u is an almost increasing function on [0, �]. (We recall that a function u is called almost increasing on
[0, �], if there exists a constant C(� 1) such that u(t1) � Cu(t2) for all 0 � t1 � t2 � �.) By Ũ we denote the class of
function u, such that tau(t) ∈ U for some a ∈ R

1.

Definition 2.8. (See [4].) A function v is said to belong to the Zygmund–Bary–Stechkin class Φ0
δ , if

h∫
0

v(t)

t
dt � cv(h) and

�∫
h

v(t)

t1+δ
dt � c

v(h)

hδ
,

where c = c(v) > 0 does not depend on h ∈ (0, �].

It is known that v ∈ Φ0
δ , if and only if 0 < m(v) � M(v) < δ, where

m(w) = sup
t>1

ln
(
limh→0

w(ht)
w(h)

)
ln t

and M(w) = sup
t>1

ln
(
limh→0

w(ht)
w(h)

)
ln t

(2.17)

(see [29,63,65]).
For functions w defined in the neighborhood of infinity and such that w( 1

r
) ∈ Ũ ([0, δ]) for some δ > 0, we intro-

duce also

m∞(w) = sup
x>1

ln
[
limh→∞ w(xh)

w(h)

]
lnx

, M∞(w) = inf
x>1

ln
[
limh→∞ w(xh)

w(h)

]
lnx

. (2.18)

Generalizing Definition 2.7, we introduce also the following notion.

Definition 2.9. A weight function � of form (2.16) is said to belong to the class V osc
p(·)(Ω,Π), where p(·) ∈ C(Ω), if

wk(r) ∈ Ũ
([0, �]), � = diamΩ and −dim(Ω)

p(xk)
< m(wk) � M(wk) <

dim(Ω)

p′(xk)
, (2.19)

k = 1,2, . . . ,N, and (in the case Ω is infinite)

w0

(
�2

r

)
∈ Ũ

([0, �])
and

−dim∞(Ω)

p∞
<

N∑
k=0

m∞(wk) �
N∑

k=0

M∞(wk) <
dim∞(Ω)

p′∞
− Δp∞ , (2.20)

where Δp∞ = dim∞(Ω)−dim∞(Ω)

p∞ .

Observe that in the case Ω = X = R
n conditions (2.19) and (2.20) take the form

wk(r) ∈ Ũ
(
R1+

) :=
{
w: w(r),w

(
1
)

∈ Ũ
([0,1])} (2.21)
Please cite this article in press as: V.M. Kokilashvili, S.G. Samko, Operators of harmonic analysis in weighted spaces with non-standard growth,
J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2008.06.056

r



ARTICLE IN PRESS YJMAA:13527
JID:YJMAA AID:13527 /FLA [m3SC+; v 1.95; Prn:25/07/2008; 14:32] P.6 (1-20)

6 V.M. Kokilashvili, S.G. Samko / J. Math. Anal. Appl. ••• (••••) •••–•••
and

− n

p(xk)
< m(wk) � M(wk) <

n

p′(xk)
, − n

p∞
<

N∑
k=0

m∞(wk) �
N∑

k=0

M∞(wk) <
n

p′∞
. (2.22)

Remark 2.10. For every p0 ∈ (1,p−) there hold the implications

� ∈ Vp(·)(Ω,Π) 
⇒ �−p0 ∈ V(p̃ )′(·)(Ω,Π)

and

� ∈ V osc
p(·)(Ω,Π) 
⇒ �−p0 ∈ V osc

(p̃ )′(·)(Ω,Π),

where p̃(x) = p(x)
p0

.

2.3. The boundedness of the Hardy–Littlewood maximal operator on metric spaces with doubling measure, in
weighted Lebesgue spaces with variable exponent

The following statements are valid.

Theorem 2.11. Let X be a metric space with doubling measure and let Ω be bounded. If p ∈ P(Ω) ∩ WL(Ω) and
� ∈ V osc

p(·)(Ω,Π), then M is bounded in L
p(·)
� (Ω).

Theorem 2.12. Let X be a metric space with doubling measure and let Ω be unbounded. Let p ∈ P(Ω) ∩ WL(Ω)

and let there exist R > 0 such that p(x) ≡ p∞ = const for x ∈ Ω \ B(x0,R). If � ∈ V osc
p(·)(Ω,Π), then M is bounded

in L
p(·)
� (Ω).

The Euclidean version of Theorems 2.11 and 2.12 was proved in [13] in the non-weighted case and in [38,40]
in the weighted case; in [40] there were also proved the corresponding versions of Theorems 2.11 and 2.12 for the
maximal operator on Carleson curves (a typical example of metric measure spaces with constant dimension). The
proof of Theorems 2.11 and 2.12 in the general case in main is similar, being based on the approaches used in the
proofs for the case of Carleson curves.

Theorem 2.13. Let Ω be a bounded open set in a doubling measure metric space X, let the exponent p(x) satisfy
conditions (2.1), (2.3). Then the operator M is bounded in L

p(·)
� (Ω), if[

�(x)
]p(x) ∈ Ap−(Ω).

We refer to [44] for Theorem 2.13, its detailed proof for the case where X is a Carleson curve is given in [40], the
proof for a doubling measure metric space being in fact the same.

3. Extrapolation theorem on metric measure spaces

In the sequel F = F(Ω) denotes a family of ordered pairs (f, g) of non-negative μ-measurable functions f,g,
defined on an open set Ω ⊂ X. When saying that there holds an inequality of type (3.3) for all pairs (f, g) ∈ F and
weights w ∈ A1, we always mean that it is valid for all the pairs, for which the left-hand side is finite, and that the
constant c depends only on p0, q0 and the A1-constant of the weight.

In what follows, by p0 and q0 we denote positive numbers such that

0 < p0 � q0 < ∞, p0 < p− and
1

p0
− 1

p+
<

1

q0
(3.1)

and use the notation

p̃(x) = p(x)

p0
, q̃(x) = q(x)

q0
. (3.2)
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Remark 3.1. The extrapolation Theorem 3.2 with variable exponents in the non-weighted case �(x) ≡ 1 and in the
Euclidean setting was proved in [10]. For extrapolation theorems in the case of constant exponents we refer to [23,61].

Observe that the measure μ in Theorem 3.2 is not assumed to be doubling.

Theorem 3.2. Let X be a metric measure space and Ω an open set in X. Assume that for some p0 and q0, satisfying
conditions (3.1) and every weight w ∈ A1(Ω) there holds the inequality( ∫

Ω

f q0(x)w(x)dμ(x)

) 1
q0 � c0

( ∫
Ω

gp0(x)
[
w(x)

] p0
q0 dμ(x)

) 1
p0

(3.3)

for all f,g in a given family F . Let the variable exponent q(x) be defined by

1

q(x)
= 1

p(x)
−

(
1

p0
− 1

q0

)
, (3.4)

let the exponent p(x) and the weight �(x) satisfy the conditions

p ∈P(Ω) and �−q0 ∈ A( q̃ )′(Ω). (3.5)

Then for all (f, g) ∈F with f ∈ L
p(·)
� (Ω) the inequality

‖f ‖
L

q(·)
�

� C‖g‖
L

p(·)
�

(3.6)

is valid with a constant C > 0, not depending on f and g.

Proof. By the Riesz theorem, valid for the spaces with variable exponent in the case 1 < p− � p+ < ∞ (see [46,69]),
we have

‖f ‖q0

L
q(·)
�

= ∥∥f q0�q0
∥∥

Lq̃(·) � sup
∫
Ω

f p0(x)h(x) dμ(x),

where we assume that f is non-negative and sup is taken with respect to all non-negative h such that
‖h�−q0‖

L( q̃ )′(·) � 1. We fix any such a function h. Let us show that∫
Ω

f q0(x)h(x) dμ(x) � C‖g�‖q0

Lq(·) (3.7)

for an arbitrary pair (f, g) from the given family F with a constant C > 0, not depending on h,f and g. By the
assumption �−q0 ∈ A( q̃ )′(Ω) we have∥∥�−q0Mϕ

∥∥
Lq̃′(·)(Ω)

� C0
∥∥�−q0ϕ

∥∥
Lp̃′(·)(Ω)

(3.8)

where the constant C0 > 0 does not depend on ϕ.
We make use of the following construction which is due to Rubio de Francia [61]

Sϕ(x) =
∞∑

k=0

(2C0)
−kMkϕ(x), (3.9)

where Mk is the k-iterated maximal operator and C0 is the constant from (3.8) (one may take C0 � 1). The following
statements are obvious:

(1) ϕ(x) � Sϕ(x), x ∈ Ω for any non-negative function ϕ,

(2)
∥∥�−q0Sϕ

∥∥
L( q̃ )′ (Ω)

� 2
∥∥�−q0ϕ

∥∥
L( q̃ )′ (Ω)

, (3.10)

(3) M(Sϕ)(x) � 2C0Sϕ(x), x ∈ Ω,

so that Sϕ ∈ A1(Ω) with the A1-constant not depending on ϕ. Therefore Sϕ ∈ Aq0(Ω).
Please cite this article in press as: V.M. Kokilashvili, S.G. Samko, Operators of harmonic analysis in weighted spaces with non-standard growth,
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By (1), for ϕ = h we have∫
Ω

f q0(x)h(x) dμ(x) �
∫
Ω

f q0(x)Sh(x)dμ(x). (3.11)

By the Hölder inequality for variable exponent, property (2) and the condition f ∈ L
q(·)
� , we have∫

Ω

f q0(x)Sh(x)dμ(x) � k
∥∥f q0�q0

∥∥
Lq̃(·) · ∥∥�−q0Sh

∥∥
L( q̃ )′(·)

� C‖f �‖q0

Lq(·) · ∥∥h�−q0
∥∥

L( q̃ )′(·) � C‖f �‖q0

Lq(·) < ∞.

Consequently, the integral
∫
Ω

f q0(x)Sh(x)dμ(x) is finite, which enables us to make use of condition (3.3) with
respect to the right-hand side of (3.11). Condition (3.3) being assumed to be valid with an arbitrary weight w ∈ A1, is
in particular valid for w = Sh. Therefore,∫

Ω

f q0(x)Sh(x)dμ(x) � C

( ∫
Ω

gp0(x)
[
Sh(x)

] p0
q0 dμ(x)

) q0
p0

.

Applying the Hölder inequality on the right-hand side, we get∫
Ω

f q0(x)Sh(x)dμ(x) � C
(∥∥gp0�p0

∥∥
L

p(·)
p0

∥∥(Sh)
p0
q0 �−p0

∥∥
L(p̃ )′(·)

) q0
p0 .

Thus ∫
Ω

f q0(x)Sh(x)dμ(x) � C‖�g‖q0

Lp(·)
∥∥�−p0(Sh)

p0
q0

∥∥ q0
p0

L(p̃ )′(·) . (3.12)

From (3.4) we easily obtain that (p̃ )′(x) = q0
p0

( q̃ )′(x) and then

∥∥�−p0(Sh)
p0
q0

∥∥ q0
p0

L(p̃ )′(·) = ∥∥�−q0Sh
∥∥

Lq̃′(·) .

Consequently,∫
Ω

f q0(x)Sh(x)dμ(x) � C‖�g‖q0

Lp(·)
∥∥�−q0Sh

∥∥
Lq̃′(·) . (3.13)

To prove (3.7), in view of (3.13) it suffices to show that ‖�−q0Sh‖
Lq̃′

(·) may be estimated by a constant not depending
on h. This follows from (3.10) and the condition ‖h�−q0‖

L( q̃ )′(·) � 1 and proves the theorem. �
Remark 3.3. It is easy to check that in view of Theorem 2.13 the condition[

�(y)
]q1(y) ∈ As, where q1(y) = q(y)(q+ − q0)

q(y) − q0
and s = q+

q0
, (3.14)

is sufficient for the validity of the condition �−q0 ∈ A( q̃ )′(Ω) of Theorem 3.2.

By means of Theorems 2.11 and 2.12, we obtain the following statement as an immediate consequence of Theo-
rem 3.2 in which we denote

γ = 1

p0
− 1

q0
.
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Theorem 3.4. Let X be a metric space with doubling measure and Ω an open set in X. Let also the following be
satisfied

(1) p ∈ P(Ω) ∩ WL(Ω), and in the case Ω is an unbounded set, let p(x) ≡ p∞ = const for x ∈ Ω \ B(x0,R) with
some x0 ∈ Ω and R > 0;

(2) there holds inequality (3.3) for some p0 and q0 satisfying the assumptions in (3.1) and all (f, g) ∈ F from some
family F and every weight w ∈ A1(Ω).

Then

(I) there holds inequality (3.6) for all pairs (f, g) from the same family F , such that f ∈ L
p(·)
� (Ω) and weights � of

form (2.16) where(
γ − 1

p(xk)

)
dim(Ω) < m(wk) � M(wk) <

(
1

p′(xk)
− 1

p′
0

)
dim(Ω) (3.15)

and, in case Ω is unbounded,

δ +
(

γ − 1

p∞

)
dim(Ω) <

N∑
k=0

m(wk) �
N∑

k=0

M(wk) <

(
1

p′∞
− 1

p′
0

)
dim(Ω), (3.16)

where

δ = [
dim∞(Ω) − dim∞(Ω)

]( 1

p0
− 1

p∞

)
;

(II) in case inequality (3.3) holds for all p0 ∈ (1,p−), the term 1
p′

0
in (3.15) and (3.16) may be omitted and δ may be

taken in the form δ = [dim∞(Ω) − dim∞(Ω)]( 1
p− − 1

p∞ ).

4. Application to problems of the boundedness in L
p(·)
� of classical operators of harmonic analysis

4.1. Potential operators and fractional maximal function

We first apply Theorem 3.2 to potential operators

I
γ

Xf (x) =
∫
X

f (y)dμ(y)

μB(x, d(x, y))1−γ
(4.1)

where 0 < γ < 1. We assume that μX = ∞ and the measure μ satisfies the doubling condition. We also additionally
suppose the following conditions to be fulfilled:

there exists a point x0 ∈ X such that μ(x0) = 0 (4.2)

and

μ
(
B(x0,R) \ B(x0, r)

)
> 0 for all 0 < r < R < ∞. (4.3)

The following statement is valid, see for instance [18, p. 412].

Theorem 4.1. Let X be a metric measure space with doubling measure satisfying conditions (4.2)–(4.3), μX = ∞,
let 0 < γ < 1, 1 < p0 < 1

γ
and 1

q0
= 1

p0
− γ . The operator I

γ

X admits the estimate( ∫
X

∣∣v(x)I
γ

Xf (x)
∣∣q0 dμ

) 1
q0 �

( ∫
X

∣∣v(x)f (x)
∣∣p0 dμ

) 1
p0

, (4.4)

if the weight v(x) satisfies the condition

sup
B

(
1

μB

∫
B

vq0(x) dμ

) 1
q0

(
1

μB

∫
B

v−p′
0(x) dμ

) 1
p′

0
< ∞ (4.5)

where B stands for a ball in X.
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By means of Theorem 4.1 and extrapolation Theorem 3.2 we arrive at the following statement.

Theorem 4.2. Let X satisfy the assumptions of Theorem 4.1, let p ∈P , 0 < γ < 1 and p+ < 1
γ

. The weighted estimate∥∥I
γ

Xf
∥∥

L
q(·)
�

� C‖f ‖
L

p(·)
�

(4.6)

with the limiting exponent q(·) defined by 1
q(x)

= 1
p(x)

− γ , holds if

�−q0 ∈ A
(

q(·)
q0

)′(X) (4.7)

under any choice of q0 >
p−

1−γp− .

Proof. By Theorem 4.1, inequality (4.4) holds under condition (4.5). As is known, inequality (3.3) with f = Iαg

holds for every weight w satisfying the 1 < p0 < ∞ and 1
q0

= 1
p0

− γ . Condition (4.5) is satisfied if vq0 ∈ A1.
Consequently, inequality (3.3) with f = Iαg holds for every w ∈ A1. Then (4.6) follows from Theorem 3.2. �

Let

Iαf (x) =
∫
Rn

f (y) dy

|x − y|n−α
. (4.8)

Corollary 4.3. Let p ∈ P , let 0 < α < n and p+ < n
α

. The weighted Sobolev theorem∥∥Iαf
∥∥

L
q(·)
�

� C‖f ‖
L

p(·)
�

(4.9)

with the limiting exponent q(·) defined by 1
q(x)

= 1
p(x)

− α
n

, holds if

�−q0 ∈ A
(

q(·)
q0

)′
(
R

n
)

(4.10)

under any choice of q0 >
np−

n−αp− .

Remark 4.4. Since Theorems 2.11 and 2.12 provide sufficient conditions for the weight � to satisfy assumption (4.10),
we could write down the corresponding statements on the validity of (4.9) in terms of the weights used in Theo-
rems 2.11 and 2.12. In the sequel we give results of such a kind for other operators. For potential operators in the
case Ω = R

n we refer to [74] and [68], where for power weights of the class Vp(·)(Rn,Π) and for radial oscillating
weights of the class V osc

p(·)(Rn,Π), respectively, there were obtained estimates (4.9) under assumptions more general
than should be imposed by the usage of Theorem 2.12.

4.2. Fourier multipliers

A measurable function R
n → R

1 is said to be a Fourier multiplier in the space L
p(·)
� (Rn), if the operator Tm,

defined on the Schwartz space S(Rn) by

T̂mf = mf̂ ,

admits an extension to the bounded operator in L
p(·)
� (Rn).

We give below a generalization of the classical Mikhlin theorem ([55], see also [56]) on Fourier multipliers to the
case of Lebesgue spaces with variable exponent.

Theorem 4.5. Let a function m(x) be continuous everywhere in R
n, except for probably the origin, have the

mixed distributional derivative ∂nm
∂x1x2···xn

and the derivatives Dαm = ∂ |α|m
∂x

α1
1 x

α2
2 ···xαn

n

, α = (α1, . . . , αn) of orders |α| =
α1 + · · · + αn � n − 1 continuous beyond the origin and

|x||α|∣∣Dαm(x)
∣∣ � C, |α| � n,

where the constant C > 0 does not depend on x. Then under conditions (3.5) and (3.1) with Ω = R
n, m is a Fourier

multiplier in L
p(·)
� (Rn).
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Proof. Theorem 4.5 follows from Theorem 3.2 under the choice Ω = X = R
n and F = {Tmg,g} with g ∈ S(Rn),

if we take into account that in the case of constant p0 > 1 and weight � ∈ Ap0 (⊃ A1), a function m, satisfying the
assumptions of Theorem 4.5, is a Fourier multiplier in L

p0
� (Rn). The latter was proved in [49], see also [34]. �

Corollary 4.6. Let m satisfy the assumptions of Theorem 4.5 and let the exponent p and the weight � satisfy the
assumptions

(i) p ∈ P(Rn) ∩ WL(Rn) and p(x) = p∞ = const for |x| � R with some R > 0,

(ii) � ∈ V osc
p(·)(Rn,Π), Π = {x1, . . . , xN } ⊂ R

n.

Then m is a Fourier multiplier in L
p(·)
� (Rn). In particular, assumption (ii) holds for weights � of form

�(x) = (
1 + |x|)β∞

N∏
k=1

|x − xk|βk , xk ∈ R
n, (4.11)

where

− n

p(xk)
< βk <

n

p′(xk)
, k = 1,2, . . . ,N, (4.12)

− n

p∞
< β∞ +

N∑
k=1

βk <
n

p′∞
. (4.13)

Proof. It suffices to observe that conditions on the weight � imposed in Theorem 4.5, are fulfilled for � ∈ V osc
p(·)(Rn,Π)

which follows from Remark 2.10 and Theorem 2.12. In the case of power weights, conditions defining the class
V osc

p(·)(Rn,Π) turn into (4.12)–(4.13). �
Theorem 4.7. Let a function m : R

n → R
1 have distributional derivatives up to order � > n

p− satisfying the condition

sup
R>0

(
Rs|α|−n

∫
R<|x|<2R

∣∣Dαm(x)
∣∣s dx

) 1
s

< ∞

for some s,1 < s � 2 and all α with |α| � �. If conditions (3.5), (3.1) with Ω = X = R
n on p and � are satisfied, then

m is a Fourier multiplier in L
p(·)
� (Rn).

Proof. Theorem 4.7 is similarly derived from Theorem 3.2, if we take into account that in the case of constant p0 the
statement of the theorem for Muckenhoupt weights was proved in [50]. �
Corollary 4.8. Let a function m : R

n → R
1 satisfy the assumptions of Theorem 4.7 and let p and � satisfy condi-

tions (i) and (ii) of Corollary 4.6. Then m is a Fourier multiplier in L
p(·)
� (Rn).

Proof. Follows from Theorem 4.7 since conditions on the weight � imposed in Theorem 4.5, are fulfilled for
� ∈ V osc

p(·)(Rn,Π) by Theorem 2.12 and Remark 2.10. �
In the next theorem by Δj we denote the interval of the form Δj = [2j ,2j+1] or Δj = [−2j+1,−2j ], j ∈ Z.

Theorem 4.9. Let a function m : R
1 → R

1 be representable in each interval Δj as

m(λ) =
λ∫

dμΔj
, λ ∈ Δj ,
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where μΔj
are finite measures such that supj varμΔj

< ∞. If conditions (3.5), (3.1) with Ω = X = R
n on p and �

are satisfied, then m is a Fourier multiplier in L
p(·)
� (R1).

Proof. To derive Theorem 4.9 from Theorem 3.4, it suffices to refer to the boundedness of the maximal operator in
the space L

p(·)
� (R1) by Theorem 2.12 and the fact that in the case of constant p the theorem was proved in [51] (for

� ≡ 1) and [34,35] (for � ∈ Ap). �
Corollary 4.10. Let m satisfy the assumptions of Theorem 4.9 and the exponent p and weight � fulfill conditions (i)

and (ii) of Corollary 4.6 with n = 1. Then m is a Fourier multiplier in L
p(·)
� (R1).

The “off-diagonal” L
p(·)
� → L

q(·)
� -version of Theorem 4.9 in the case q(x) > p(x) is covered by the following

theorem.

Theorem 4.11. Let p ∈P(R1) ∩ WL(R1) and p(x) ≡ p∞ = const for large |x| > R, and let a function m : R
1 → R

1

be representable in each interval Δj as

m(λ) =
λ∫

−∞

dμΔj
(t)

(λ − t)α
, λ ∈ Δj ,

where 0 < α < 1
p+ and μΔj

are the same as in Theorem 4.9. Then Tm is a bounded operator from L
p(·)
� (R1) to

L
q(·)
� (R1), where 1

q(x)
= 1

p(x)
− α and � is a weight of form (4.11) whose exponents satisfy the conditions

α − 1

p(xk)
< βk <

1

p′(xk)
, k = 1,2, . . . ,N, and α − 1

p∞
< β∞ +

N∑
k=1

βk <
1

p′∞
. (4.14)

Proof. In [36] there was proved that the operator Tm is bounded from L
p0
v (R1) into L

q0
v (R1) for every p0 ∈ (1,∞),

0 < α < 1
p0

, 1
q0

= 1
p0

− α, and an arbitrary weight v satisfying the condition

sup
I

(
1

|I |
∫
I

vq0(x) dx

) 1
q0

(
1

|I |
∫
I

v−p′
0(x) dx

) 1
p0

, (4.15)

where the supremum is taken with respect to all one-dimensional intervals. Condition (4.15) is satisfied if vq0 ∈ A1.
Then inequality (3.3) with f = Tmg holds for every w ∈ A1. Then the statement of the theorem follows immediately
from part (II) of Theorem 3.4, conditions (3.15)–(3.16) turning into (4.14) since dim(Ω) = dim∞(Ω) = 1, m(wk) =
M(wk) = βk , k = 1, . . . ,N , and m(w0) = M(w0) = β∞. �

All the statements in the following subsections are also similar direct consequences of the general statement of
Theorem 3.4 and Theorems 2.11 and 2.12 on the maximal operator in the spaces L

p(·)
� , so that in the sequel for the

proofs we only make references to where these statements were proved in the case of constant p and Muckenhoupt
weights.

4.3. Multipliers of trigonometric Fourier series

With the help of Theorem 3.4 and known results for constant exponents, we are now able to give a generalization
of theorems on Marcinkiewicz multipliers and Littlewood–Paley decompositions for trigonometric Fourier series to
the case of weighted spaces with variable exponent.

Let T = [π,π] and let f be a 2π -periodic function and

f (x) ∼ a0

2
+

∞∑
k=0

(ak coskx + bk sin kx). (4.16)
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Theorem 4.12. Let a sequence λk satisfy the conditions

|λk| � A and
2j −1∑

k=2j−1

|λk − λk+1| � A, (4.17)

where A > 0 does not depend on k and j . Suppose that

p ∈P(T) and �−p0 ∈ A(p̃ )′(T), where p̃(·) = p(·)
p0

(4.18)

with some p0 ∈ (1,p−(T)). Given f ∈ L
p(·)
� , there exists a function F(x) ∈ L

p(·)
� (T) such that the series

λ0a0
2 + ∑∞

k=0 λk(ak coskx + bk sinkx) is Fourier series for F and

‖F‖
L

p(·)
�

� cA‖f ‖
L

p(·)
�

where c > 0 does not depend on f ∈ L
p(·)
� (T).

Corollary 4.13. Theorem 4.12 remains valid if condition (4.18) is replaced by the assumption, sufficient for (4.18),
that p ∈P(T) ∩ WL(T) and � has form

�(x) =
N∏

k=1

wk

(|x − xk|
)
, xk ∈ T, (4.19)

where

wk ∈ Ũ
([0,2π]) and − 1

p(xk)
< m(wk) � M(wk) <

1

p′(xk)
. (4.20)

Theorem 4.14. Let

Ak(x) = ak coskx + bk sin kx, k = 0,1,2, . . . , A2−1 = 0. (4.21)

Under conditions (4.18) there exist constants c1 > 0 and c2 > 0 such that

c1‖f ‖
L

p(·)
�

�
∥∥∥∥∥
( ∞∑

j=0

∣∣∣∣∣
2j −1∑

k=2j−1

Ak(x)

∣∣∣∣∣
2) 1

2
∥∥∥∥∥

L
p(·)
�

� c2‖f ‖
L

p(·)
�

(4.22)

for all f ∈ L
p(·)
� (T).

In the case of constant p and � ∈ Ap this theorem was proved in [49].

Corollary 4.15. Inequalities (4.22) hold for p ∈P(T) ∩ WL(T) and weights � of form (4.19)–(4.20).

4.4. Majorants of partial sums of Fourier series

Let

S∗(f ) = S∗(f, x) = sup
k�0

∣∣Sk(f, x)
∣∣,

where Sk(f, x) = ∑k
j=0 Aj(x) is a partial sum of Fourier series (4.16).

Theorem 4.16. Under conditions (4.18)∥∥S∗(f )
∥∥

L
p(·)
�

� c‖f ‖
L

p(·)
�

, (4.23)

for all f ∈ L
p(·)
� (T), where the constant c > 0 does not depend on f .

In the case of constant p and � ∈ Ap , Theorem 4.16 was proved in [27].

Corollary 4.17. Inequality (4.23) is valid for p ∈P(T) ∩ WL(T) and weights � of form (4.19)–(4.20).
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4.5. Zygmund and Cesaro summability for trigonometric series in L
p(·)
� (T)

Under notation (4.16) and (4.21) we introduce the Zygmund and Cesaro means of summability

Z(2)
n (f, x) =

n∑
k=0

[
1 −

(
k

n + 1

)2]
Ak(x)

and

σn(f, x) = 1

n + 1

n∑
k=0

Sk(f, x),

respectively. By

Ωp,�(f, δ) = sup
0<h<δ

∥∥(I − τh)f
∥∥

L
p(·)
�

we denote the continuity modulus of a function f in L
p(·)
� (T) with respect to the generalized shift (Steklov mean)

τhf (x) = 1

2h

x+h∫
x−h

f (t) dt.

Theorem 4.18. Under conditions (4.18) there hold the estimates∥∥f (·) − Z(2)
n (f, ·)∥∥

L
p(·)
�

� CΩp,�

(
f,

1

n

)
(4.24)

and ∥∥f (·) − σn(f, ·)∥∥
L

p(·)
�

� CnΩp,�

(
f,

1

n

)
. (4.25)

Proof. We make use of the estimate∥∥f (·) − Sn(f, ·)∥∥
L

p(·)
�

� CΩp,�

(
f,

1

n

)
(4.26)

proved in [28] under assumptions (4.18). For the difference Sn(f, x) − Z
(2)
n (f, x) we have

∥∥Sn(f, ·) − Z(2)
n (f, ·)∥∥

L
p(·)
�

=
∥∥∥∥∥

n∑
k=1

(
k

n + 1

)2

Ak(·)
∥∥∥∥∥

L
p(·)
�

. (4.27)

Keeping in mind that

f (x) − τhf (x) ∼
∞∑

k=1

(
1 − sin kh

kh

)
Ak(x), (4.28)

we transform (4.27) to∥∥Sn(f, ·) − Z(2)
n (f, ·)∥∥

L
p(·)
�

=
∥∥∥∥∥

n∑
k=1

λk,n

(
1 − sin k

n
k
n

)
Ak(·)

∥∥∥∥∥
L

p(·)
�

where

λk,n =

⎧⎪⎨⎪⎩
( k

n+1 )2

1− sin k
n

k
n

, k � n,
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It is easy to check that λk,n satisfies assumptions (4.17) of Theorem 4.12 with the constant A in (4.17) not depending
on n. Therefore, by Theorem 4.12 we get

∥∥Sn(f, ·) − Z(2)
n (f, ·)∥∥

L
p(·)
�

� C

∥∥∥∥∥
∞∑

k=1

(
1 − sin k

n
k
n

)
Ak(·)

∥∥∥∥∥
L

p(·)
�

= C‖f − τhf ‖
L

p(·)
�

by (4.28). Then in view of (4.26) estimate (4.24) follows.
Estimate (4.25) is similarly obtained, with the multiplier λk,n of the form⎧⎪⎨⎪⎩

k
n+1

n(1− sin k
n

k
n

)

, k � n,

0, k > n.

�

Corollary 4.19. Estimates (4.24), (4.25) are valid for p ∈ P(T) ∩ WL(T) and weights � of form (4.19)–(4.20).

Remark 4.20. When p > 1 is constant, estimates (4.24), (4.25) in the non-weighted case were obtained in [32].

4.6. Cauchy singular integral

We consider the singular integral operator

SΓ f (t) = 1

πi

∫
Γ

f (τ) dν(τ )

τ − t
,

where Γ is a simple finite Carleson curve and ν is an arc length.

Theorem 4.21. Let

p ∈P(Γ ) and �−p0 ∈ A(p̃ )′(Γ ) (4.29)

for some p0 ∈ (1,p−), where p̃(·) = p(·)
p0

. Then SΓ is bounded in L
p(·)
� (Γ ).

For constant p and �p ∈ Ap(Γ ), Theorem 4.21 by different methods was proved in [31] and [5]. (As is known,
�−p0 ∈ A(p̃ )′(Γ ) ⇐⇒ �p ∈ A p

p0
(Γ ) for an arbitrary Carleson curve in the case of constant p, see [31] and [5], so that

the conditions �−p0 ∈ A(p̃ )′(Γ ) and �p ∈ Ap(Γ ) are equivalent in the sense that the former always yields the latter
for every p0 > 1 and the latter yields the former for some p0 > 1.)

Corollary 4.22. The operator SΓ is bounded in the space L
p(·)
� (Γ ), if p ∈ P(Γ ) ∩ WL(Γ ) and the weight � has the

form

�(t) =
N∏

k=1

wk

(|t − tk|
)
, tk ∈ Γ, (4.30)

where

wk ∈ Ũ
([

0, ν(Γ )
])

and − 1

p(tk)
< m(wk) � M(wk) <

1

p′(tk)
. (4.31)

In the case of power weights, the statement of Corollary 4.22 was proved in [37], where the case of an infinite
Carleson curve was also dealt with.
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4.7. Multidimensional singular type operators

We consider a multidimensional singular operator

Tf (x) = lim
ε→0

∫
y∈Ω: |x−y|>ε

K(x, y)f (y) dy, x ∈ Ω ⊆ R
n, (4.32)

where we assume that the singular kernel K(x,y) satisfies the assumptions:∣∣K(x,y)
∣∣ � C|x − y|−n, (4.33)∣∣K(x′, y) − K(x,y)

∣∣ � C
|x′ − x|α

|x − y|n+α
, |x′ − x| < 1

2
|x − y|, (4.34)

∣∣K(x,y′) − K(x,y)
∣∣ � C

|y′ − y|α
|x − y|n+α

, |y′ − y| < 1

2
|x − y|, (4.35)

where α is an arbitrary positive exponent,

there exists lim
ε→0

∫
y∈Ω:|x−y|>ε

K(x, y) dy, (4.36)

operator (4.32) is bounded in L2(Ω). (4.37)

Theorem 4.23. Let the kernel K(x,y) fulfill conditions (4.33)–(4.37). Then under the conditions

p ∈P(Ω) and �−p0 ∈ A(p̃ )′(Ω) with p̃(·) = p(·)
p0

(4.38)

the operator T is bounded in the space L
p(·)
� (Ω).

In the case of constant p and � ∈ Ap(Rn), Theorem 4.23 was proved in [9].

Corollary 4.24. Let p ∈ P(Ω) ∩ WL(Ω) and let p(x) ≡ p∞ = const outside some ball |x| < R in case Ω is un-
bounded. The operator T with the kernel satisfying conditions (4.33)–(4.37) is bounded in the space L

p(·)
� (Ω) with a

weight � of the form

�(x) =
N∏

k=1

wk

(|x − xk|
)
, xk ∈ Ω, (4.39)

where wk ∈ Ũ (R1+) and

− 1

p(xk)
< m(wk) � M(wk) <

1

p′(xk)
and − n

p∞
<

N∑
k=1

m∞(wk) �
N∑

k=1

M∞(wk) <
n

p′∞
.

In the case of variable p(·), the statement of Corollary 4.24 was proved in [17] in the non-weighted case, and
in [39] in weighted case (4.41) for bounded sets Ω .

Let

[b,T ]f (x) = b(x)Tf (x) − T (bf )(x), x ∈ R
n,

be a commutator generated by operator (4.32) with Ω = R
n and a function b ∈ BMO(Rn).

Theorem 4.25. Let the kernel K(x,y) fulfill assumptions (4.33)–(4.37) and let b ∈ BMO(Rn). Then under the condi-
tions

p ∈P
(
R

n
)

and �−p0 ∈ A(p̃ )′
(
R

n
)

with p̃(·) = p(·)
p0

(4.40)

the commutator [b,T ] is bounded in the space L
p(·)
� (Rn).
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In the case of constant p and � ∈ Ap(Rn), 1 < p < ∞, Theorem 4.25 was proved in [59]. In the case of vari-
able p(·), the non-weighted case of Theorem 4.25 was proved in [30] under the assumption that 1 ∈ Ap(·)(Rn).

Corollary 4.26. Let the kernel K(x,y) fulfill conditions (4.33)–(4.37) and let b ∈ BMO(Rn). Then the commutator
[b,T ] is bounded in the space L

p(·)
� (Rn) if

(i) p ∈ P(Rn) ∩ WL(Rn) and p(x) ≡ p∞ = const outside some ball |x| < R,
(ii) the weight � has the form

�(x) = w0
(
1 + |x|) N∏

k=1

wk

(|x − xk|
)
, xk ∈ R

n, (4.41)

with the factors wk , k = 0,1, . . . ,N, satisfying conditions (2.21)–(2.22).

For a pseudo-differential operator σ(x,D) defined by

σ(x,D)f (x) =
∫
Rn

σ (x, ξ)e2πi(x,ξ)f̂ (ξ) dξ

we arrive at the following result.

Theorem 4.27. Let the symbol σ(x, ξ) satisfy the condition∣∣∂α
ξ ∂β

x σ (x, ξ)
∣∣ � cαβ

(
1 + |ξ |)−|α|

for all the multiindices α and β . Then under condition (4.40) the operator σ(x,D) admits a continuous extension to
the space L

p(·)
� (Rn).

In the case of constant p and � ∈ Ap Theorem 4.27 was proved in [57].

Corollary 4.28. Let p ∈ P(Rn) ∩ WL(Rn) and p(x) ≡ p∞ = const outside some ball |x| < R and let
� ∈ V osc

p(·)(Rn,Π).

For variable p(·) the statement of Corollary 4.28 by a different method was proved in the non-weighted case in [60].

4.8. Fefferman–Stein function and vector-valued operators

Let f be a measurable locally integrable function on R
n, B an arbitrary ball in R

n, fB = 1
|B|

∫
B

f (x)dx and let

M#f (x) = sup
B∈X

1

|B|
∫
B

∣∣f (x) − fB

∣∣dx

be the Fefferman–Stein maximal function.

Theorem 4.29. Under condition (4.40), the inequality

‖Mf ‖
L

p(·)
� (Rn)

� C
∥∥M#f

∥∥
L

p(·)
� (Rn)

(4.42)

is valid, where C > 0 does not depend on f .

In the case of constant p and � ∈ Ap inequality (4.42) was proved in [21].
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Corollary 4.30. Inequality (4.42) is valid under the conditions:

(i) p ∈P(Rn) ∩ WL(Rn) and p(x) ≡ p∞ = const outside some ball |x| < R,
(ii) � ∈ V osc

p(·)(Rn,Π).

Let f = (f1, . . . , fk, . . .), where fi : R
n → R

1 are locally integrable functions.

Theorem 4.31. Let 0 < θ < ∞. Under conditions (4.40), the inequality∥∥∥∥∥
( ∞∑

j=1

(Mfj )
θ

) 1
θ
∥∥∥∥∥

L
p(·)
� (Rn)

� C

∥∥∥∥∥
( ∞∑

j=1

|fj |θ
) 1

θ
∥∥∥∥∥

L
p(·)
� (Rn)

(4.43)

is valid, where c > 0 does not depend on f .

In the case of constant p and � ∈ Ap weighted inequalities for vector-valued functions were proved in [34–36], see
also [3].

Corollary 4.32. Inequality (4.43) is valid under the conditions

(i) p ∈P(Rn) ∩ WL(Rn) and p(x) ≡ p∞ = const outside some ball |x| < R,
(ii) � ∈ V osc

p(·)(Ω,Π).

Remark 4.33. The corresponding statements for vector-valued operators are also similarly derived from Theorem 3.4
in the case of singular integrals, commutators, Fefferman–Stein maximal function, Fourier-multipliers, etc.
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