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Abstract
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1. Introduction

Nowadays the so called variable exponent analysis is a popular topic
which continues to attract many researchers, both in view of possible ap-
plications and also because of difficulties in investigation and existing chal-
lenging problems. This topic is mainly focused on the Lebesgue and Sobolev
spaces with variable order of integrability and operator theory in these
spaces. In particular, various results on non-weighted and weighted bound-
edness in Lebesgue spaces with variable exponents p(x) have been proved
for maximal, singular and fractional type operators, we refer to surveying
papers [4, 11, 16]. As is well known, these boundedness results in the case
of a bounded open set in Rn hold under the assumption that the exponent
satisfies everywhere the local log-condition

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, (1)

for all x, y ∈ Ω with |x− y| ≤ 1
2 . In the case of unbounded sets in Rn, it is

also supposed that there exists the limit p(∞) = lim
Ω3x→∞

p(x) and the decay

condition of log-type
|p(x)− p(∞)| ≤ C

ln(e + |x|) (2)

is satisfied. Conditions (1)-(2) are known to be necessary, in terms of con-
tinuity moduli, for the boundedness of the maximal operator in the spaces
Lp(·)(Ω) with variable exponent p(x), see [3, 15]. Since the known means
to study singular and fractional operators in variable exponent spaces are
somehow related to the maximal operator, assumptions (1)-(2) are always
inherited, when one deals with those operators.

The goal of this note is to show that in the case of the Lorentz spaces
Lp(·),q(·)(Rn), when p(t), q(t) are functions of t ∈ R1

+, the local log-condition
(1) is no more needed for the boundedness of the maximal operator in
Lp(·),q(·)(Rn), we may use only decay conditions at two points, at t = 0 and
t = ∞:
|p(t)− p(0)| ≤ C

ln |t| for |t| ≤ 1
2
, and |p(t)− p(∞)| ≤ C

ln(e + |t|) . (3)

We base ourselves on a recent result [5] on the validity of the one-dimensional
Hardy inequalities under assumptions of type (3).

The spaces Lp(·)(Ω) = Lp(·),p(·)(Ω) have already been introduced, see
[12], where the boundedness of singular and fractional type operators was
obtained under the assumption that the local log-condition (1) holds. Mak-
ing use of the progress for the Hardy inequalities in [5], we now are able to
avoid that condition and admit Lorentz spaces Lp(·),q(·)(Ω).
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2. Definitions

2.1. On variable exponent Lebesgue spaces and Hardy operators

Let Ω be an open set in Rn and µ a Borel measure on Ω. Let p(x) be
a µ-measurable function on Ω such that 1 ≤ p− := ess inf p(x) ≤ p+ :=
ess sup p(x) < ∞. By Lp(·)(Ω) we denote the space of measurable functions
f(x) on Ω such that

Ip(f) =
∫

Ω
|f(x)|p(x)dµ(x) < ∞.

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf
{

λ > 0 : Ip

(
f

λ

)
≤ 1

}

(see e.g. [6]). We refer to [2] for definition and fundamental properties of
Banach function spaces.

We denote 1
p′(x) = 1− 1

p(x) .
In the one-dimensional case n = 1 we deal with the interval [0, `], 0 <

` ≤ ∞ and the standard Lebesgue measure. Let

p− = inf
t∈[0,`]

p(t), p+ = sup
t∈[0,`]

p(t).

We will use the notation
Pa = {p : a < p− ≤ p+ < ∞}, a ∈ R1 (4)

and will be interested in the special cases of the classes Pa with a = 0 or
a = 1.

Definition 2.1. By P([0, `]) we denote the class of functions p ∈
L∞([0, `]) such that there exist the limits

p(0) = lim
t→0

p(t) and p(∞) = lim
t→∞ p(t),

and conditions (3) are satisfied, the conditions at infinity being only needed
in the case ` = ∞. We also denote

Pa([0, `]) = P([0, `]) ∩ Pa([0, `]).

We recall that for p ∈ P1([0, `]) the Hölder inequality∣∣∣∣∣∣

`∫

0

u(t)v(t)dt

∣∣∣∣∣∣
≤ k‖u‖Lp(·)‖v‖Lp′(·) (5)

holds with k = 1
p− + 1

p′−
.



4 L. Ephremidze, V. Kokilashvili and S. Samko

In [5] the following statement was proved.

Theorem 2.2. Let p ∈ P1([0, `]) and α, β, ν ∈ P([0, `]) and

0 ≤ ν(0) <
1

p(0)
and 0 ≤ ν(∞) <

1
p(∞)

. (6)

Let also q(x) be any function in P1([0, `]) such that

1
q(0)

=
1

p(0)
− ν(0) and

1
q(∞)

=
1

p(∞)
− ν(∞). (7)

Then the Hardy-type inequalities∥∥∥∥∥∥
tα(t)+ν(t)−1

t∫

0

f(s) ds

sα(s)

∥∥∥∥∥∥
Lq(·)([0,`])

≤ C ‖f‖Lp(·)([0,`]) (8)

∥∥∥∥∥∥
tβ(t)+ν(t)

`∫

t

f(s) ds

sβ(s)+1

∥∥∥∥∥∥
Lq(·)([0,`])

≤ C ‖f‖Lp(·)([0,`]) , (9)

are valid, if and only if

α(0) <
1

p′(0)
, α(∞) <

1
p′(∞)

(10)

and

β(0) > − 1
p(0)

, β(∞) > − 1
p(∞)

, (11)

respectively (conditions at the point ∞ in (6)-(7) and (10)-(11) being only
required in the case ` = ∞).

2.2. Variable exponent Lorentz spaces

In the sequel we denote ` = µΩ for brevity. On the base of the Lebesgue
Lp(·)([0, `]) we introduce now some new Banach function spaces, variable
exponent Lorentz spaces. By

f∗(t) = sup{s ≥ 0 : µ({x ∈ Ω : |f(x)| > s}) > t}
we denote the non-increasing rearrangement of a function f . Obviously
f∗(t) ≡ 0 for t > ` in case ` < ∞.

Definition 2.3. Let p, q ∈ P0([0, `]). By Lp(·),q(·)(Ω) we denote the

space of functions f on Ω such that t
1

p(t)
− 1

q(t) f∗(t) ∈ Lq(·)([0, `]), i.e.

Ip,q(f) :=

`∫

0

t
q(t)
p(t)

−1 |f∗(t)|q(t) dt < ∞, (12)
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and we use the notation

‖f‖Lp,q(Ω)
= inf

{
λ > 0 : Ip,q

(
f

λ

)
≤ 1

}
=

∥∥∥t
1

p(t)
− 1

q(t) f∗(t)
∥∥∥

Lq(·)([0,`])
. (13)

It is easy to see that in the case p ∈ P0([0, `]), q ∈ P1([0, `]), condition
(12) is equivalent to the condition

1∫

0

t
q(0)
p(0)

−1 |f∗(t)|q(t) dt +

∞∫

1

t
q(∞)
p(∞)

−1 |f∗(t)|q(t) dt < ∞, (14)

the latter being written for the case ` = ∞. In the case ` < ∞, only the

term
∫̀
0

t
q(0)
p(0)

−1 |f∗(t)|q(t) dt should be considered.

Let

f∗∗(t) =
1
t

∫ t

0
f∗(s)ds, f∗(t) ≤ f∗∗(t).

We can introduce the norm

‖f‖1
Lp,q(Ω)

=
∥∥∥t

1
p(t)

− 1
q(t) f∗∗(t)

∥∥∥
Lq(·)([0,`])

, (15)

so that

‖f‖Lp,q(Ω)
≤ ‖f‖1

Lp,q(Ω)
.

The equivalence of (13) and (15) is characterized in the following theorem.

Theorem 2.4. Let p ∈ P0([0, `]), q ∈ P1([0, `]). Then the inequality
‖f‖1

Lp,q(Ω)
≤ C‖f‖Lp,q(Ω)

with a constant C > 0 not depending on f , holds

if and only if p(0) > 1 and, in case the ` = |Ω| = ∞, also p(∞) > 1.

P r o o f. Indeed, the inequality ‖f‖1
Lp,q(Ω)

≤ C‖f‖Lp,q(Ω)
is nothing else

but the boundedness in Lq(·)([0, `]) of the Hardy operator

t
1

p(t)
− 1

q(t)
−1

t∫

0

f(s)ds

s
1

p(s)
− 1

q(s)

.

By Theorem 2.2, this boundedness is valid if and only if the values of 1
p(t) −

1
q(t) at the points t = 0 and t = ∞ are less than those of 1

q′(t) at these points,
respectively. This gives conditions p(0) > 1, p(∞) > 1.
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Note that in all the statements in the sequel, all the conditions imposed
on p(t), q(t) at the point t = ∞ should be omitted in the case where |Ω| < ∞.

In accordance with Theorem 2.4, in the sequel we consider the space
Lp(·),q(·)(Ω) under the following assumptions on p(·) and q(·):

p, q ∈ P1([0, `]) and p(0) > 1, p(∞) > 1. (16)

2.3. Basic properties of the spaces Lp,q(Ω)

We refer to [2] for the notion of Banach function space (BFS) and rear-
rangement invariant norms, but recall the following basic definition, where
M(Ω, µ) denotes the set of all µ-measurable functions on Ω.

Definition 2.5. A normed linear space X = (X(Ω, µ), ‖ ‖X) is called
a Banach function space, if the following conditions are satisfied:

i) the norm ‖f‖X is defined for all f ∈ M(Ω, µ);

ii) ‖f‖X = 0 if and only if f(x) = 0µ-a.e. on Ω;

iii) ‖f‖X =
∥∥|f |∥∥

X
for all f ∈ X;

iv) for every Q ⊂ Ω with µQ < ∞ we have ‖χQ‖X < ∞;

v) if fn ∈ M(Ω, µ), n = 1, 2, . . . and fn ↗ f µ-a.e. on Ω, then ‖fn‖X ↗
‖f‖X ;

vi) if f , g ∈ M(Ω, µ) and 0 ≤ f(x) ≤ g(x) µ-a.e. on Ω, then ‖f‖X ≤
‖g‖X ;

vii) given Q ⊂ Ω with µQ < ∞, there exists a constant cQ such that for
all f ∈ X,

∫
Q |f(x)|dµ ≤ cQ‖f‖X .

In particular, the following statement is known [1, p.61].

Proposition 2.6. Let (X, µ) be an arbitrary totally σ-finite measure
space and λ(g) a rearrangement-invariant norm over (R1, m). Then the
functional ρ(f) defined on functions f in (X, µ) by ρ(f) = λ(f∗) is a
rearrangement-invariant norm on (X, µ).

Lemma 2.7. Let p, q ∈ P1(Ω). Then the dual space
(Lp(·),q(·)(Ω)

)∗
is

Lp′(·),q′(·)(Ω).
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Theorem 2.8. Under conditions (16), the space Lp,q(Ω) is a Banach
function space.

P r o o f. To state that both ‖f‖Lp,q(Ω)
and ‖f‖1

Lp,q(Ω)
are norms, it

suffices to refer to Proposition 2.6. (The triangle inequality for the norm
‖f‖1

Lp,q(Ω)
follows from the inequality (f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t), see e.g.

[10, Section 2] or [1, p. 54]). The other requirements to the definition of
BFS easily follow from properties of non-increasing rearrangements f∗ and
properties of the spaces Lp(·). For example, iv) is valid since for 0 ≤ fn ↗ f
we have f∗n ↗ f∗ (see e.g. [18], Lemma 3.5, Chapter 5). Then

‖fn‖Lp,q(Ω)
=

∥∥∥t
1

p(t)
− 1

q(t) f∗n
∥∥∥

Lq(·)([0,`])
↗ ‖f‖Lp,q(Ω)

by the property of the space Lq(·). To check vii), we make use of the Hölder
inequality (5) for Lq(·) with u(t) = t

1
q(t)

− 1
p(t) and v(t) = t

1
p(t)

− 1
q(t) f∗(t) and

get
∫

Q
|f(x)|dx =

∫ µQ

0
f∗(t)dt ≤ ‖u‖Lq′(·)([0,`])‖f‖Lp(·),q(·)(Ω) ≤ cQ‖f‖Lp(·),q(·)(Ω)

with cQ = ‖u‖Lq′(·)([0,`]) < ∞ because ‖u‖Lq′(·)([0,`]) < ∞ ⇐⇒ Iq(u) < ∞,
the latter being valid under the condition p(0) > 1, which was assumed.

Let w(t) be a nonnegative weight function defined on [0, `].

Definition 2.9. We define the weighted Lorentz space Lp(·),q(·)
w (Ω)

with the weight w defined on [0, `], as the subset of functions in M(Ω, µ)
such that

‖f‖Lp(·),q(·)
w (Ω)

=
∥∥∥w(t)t

1
p(t)

− 1
q(t) f∗(t)

∥∥∥
Lq(·)(Ω)

< ∞. (17)

Let also

‖f‖1

Lp(·),q(·)
w (Ω)

=
∥∥∥w(t)t

1
p(t)

− 1
q(t) f∗∗(t)

∥∥∥
Lq(·)(Ω)

. (18)

In the next lemma we suppose that γ(t) is a measurable bounded func-
tion on [0, `] having the limit γ(0) = lim

t→0+
γ(t), and, in the case ` = ∞, also

having the limit γ(∞) = lim
t→+∞ γ(t) and satisfying the conditions

|γ(t)− γ(0)| ≤ C

ln 1
t

, 0 < t <
1
2

and |γ(t)− γ(∞)| ≤ C

ln(e + t)
. (19)
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Lemma 2.10. Let the conditions in (16) be satisfied and let w(t) = tγ(t),
where γ(t) satisfies conditions (19) and

γ(0) <
1

p′(0)
and γ(∞) <

1
p′(∞)

.

Then ‖f‖Lp(·),q(·)
w (Ω)

≤ ‖f‖1

Lp(·),q(·)
w (Ω)

≤ C‖f‖Lp(·),q(·)
w (Ω)

, where C > 0 does

not depend on f .

P r o o f. The left hand side inequality is trivial, the right-hand side one
follows from Theorem 2.2.

In the next theorem we use the notation

Lp(·)
loc ([0, `]) =

{
f : f ∈ Lp(·)([0, `1]) for all `1 < `

}
.

Theorem 2.11. Under the condition

t
1

q(0)
− 1

p(0)

w(t)
∈ Lq′(·)

loc ([0, `]), (20)

the space Lp(·),q(·)
w (Ω) is a Banach function space with respect to the norm

‖f‖1

Lp(·),q(·)
w (Ω)

.

The proof is similar to that of Theorem 2.8.

3. On classical operators in the space Lp(·),q(·)
w (Ω)

Let

Mf(x) = sup
r>0

1
µB(x, r)

∫

Ω∩B(x,r)

|f(y)|dµ(y), x ∈ Ω, (21)

be the Hardy-Littlewood maximal function.

Theorem 3.12. Let p and q satisfy assumptions (16). Then the maxi-

mal operator is bounded in the space Lp(·),q(·)
w (Ω) with the weight

w(t) = tγ(t), γ ∈ P([0, `]), (22)

if

γ(0) <
1

p′(0)
and γ(∞) <

1
p′(∞)

(the latter in the case µ(Ω) = ∞).

(23)
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P r o o f. As is known,

(Mf)∗(t) ≤ Cf∗∗(t), (24)

see for instance [2, p.122]. Therefore,

‖Mf‖Lp(·),q(·)
w (Ω)

=
∥∥∥t

γ(t)+ 1
p(t)

− 1
q(t) (Mf)∗

∥∥∥
Lq(·)([0,`])

≤C
∥∥∥t

γ(t)+ 1
p(t)

− 1
q(t) f∗∗

∥∥∥
Lq(·)([0,`])

(25)

and then the result follows by Theorem 2.2.

As is known, the identity approximations

Aεf(x) =
1
εn

∫

Rn

a

(
x− y

ε

)
f(y),

where
∫
Rn a(y) dy = 1 and a(x) has a radial decreasing integrable majorant,

are dominated by the maximal operator:

|Aεf(x)| ≤ CMf(x), f ∈ Lp(Rn), 1 ≤ p ≤ ∞, (26)

with an absolute constant C > 0 not depending on x and ε, see [17]. In
particular, the Poisson integral

Pyf(x) =
∫

Rn

P (x− ξ, y) f(ξ)dξ, P (x, y) =
cny

(|x|2 + y2)
n+1

2

, y > 0

is uniformly in y dominated by the maximal function. Under assumptions
of Theorem 3.12 we have

Lp(·),q(·)
w (Ω) ⊂ L1(Ω) + L∞(Ω). (27)

So we make use of (26) and arrive at the following corollary.

Corollary 3.13. Under the assumptions of Theorem 3.12, the sub-
linear operator

sup
ε>0

|Aεf(x)| ,

where Aεf is an identity approximation with kernel admitting radial de-

creasing integrable majorant, is bounded in the space Lp(·),q(·)
w (Ω); in par-

ticular the operator sup
y>0

|Pyf(x)| is bounded in this space.
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Next we consider in Lp(·),q(·)
w (Ω) convolution operators

k ∗ f(x) =
∫

Rn

k(x− y)f(y)dµ(y).

We will also treat their particular cases, the Riesz potential operator and
Calderon-Zygmund singular operators, which for generality we will consider
over an open set Ω ⊆ Rn:

Iαf(x) =
∫

Ω

f(y)
|x− y|n−α

dµ(y), x ∈ Ω, 0 < α < n.

and

Kf(x) =
∫

Ω

A(x− y)
|x− y|n f(y) dµ(y), x ∈ Ω,

where A is an odd function on Rn, homogeneous of degree 0 and satisfying
the Dini condition on the unit sphere Sn−1:

∫ 2

0

ω(A, δ)
δ

dδ < ∞, where ω(k, δ) = sup
x,y∈Sn−1

|x−y|≤δ

|A(x)−A(y)|.

The operators K include as particular cases, the Hilbert transform (n =
1, k(x) = x

|x|) and the Riesz transforms (n ≥ 2, k(x) = xj

|x| , j = 1, . . . , n).

There are known the following pointwise estimates of those classical
operators via decreasing rearrangements:

(k ∗ f)∗(t) ≤ k∗∗(t)

t∫

0

f(s)ds +

∞∫

t

k∗(s)f∗(s)ds, (28)

see [13], and its particular case

(Iαf)∗(t)≤c

(
t−1+α/n

∫ t

0
f∗(s)ds+

∫ `

t
f∗(s)s−1+α/nds

)
, ` = µ(Ω). (29)

A similar estimate holds for the singular operator K

(Kf)∗(t) ≤ c

(
1
t

∫ t

0
f∗(s)ds +

∫ `

t

f∗(s)
s

ds

)
, ` = µΩ, (30)

see [1].
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Theorem 3.14. Let p and q satisfy assumptions (16). Then the op-

erator K is bounded in the space Lp(·),q(·)
w (Ω) with the weight (22) under

conditions (23).

P r o o f. The proof is obtained similarly to (25) from the pointwise
estimate (30) and Theorem 2.2.

Theorem 3.15. Let 0 < α < n, p and q satisfy assumptions (16) and

p+ < n
α . Then the operator Iα is bounded from the space Lp(·),q(·)

w (Ω) with

the weight (22) into the space Lpα(·),q(·)
w (Ω) where 1

pα(t) = 1
p(t) − α

n , if

α

n
− 1

p(0)
< γ(0) <

1
p′(0)

and
α

n
− 1

p(∞)
< γ(∞) <

1
p′(∞)

, (31)

the condition at infinity being needed in the case µ(Ω) = ∞.

P r o o f. We have

‖Iαf‖Lpα(·),q(·)
w (Ω)

=
∥∥∥t

γ(t)+ 1
pα(t)

− 1
q(t) (Iαf)∗ (t)

∥∥∥
Lq(·)([0,`])

.

Then by (29)
‖Iαf‖Lpα(·),q(·)

w (Ω)
≤ c(A + B),

where

A =

∥∥∥∥∥∥
tλ(t)−1

t∫

0

ϕ(s)ds

sλ(s)

∥∥∥∥∥∥
Lq(·)([0,`])

, B =

∥∥∥∥∥∥
tλ(t)−α

n

t∫

0

ϕ(s)ds

sλ(s)−α
n + 1

∥∥∥∥∥∥
Lq(·)([0,`])

and λ(t) = γ(t) + 1
p(t) − 1

q(t) and ϕ(t) = tλ(t)f∗(t) ∈ Lq(·)([0, `]). It remains
to make use of Theorem 2.2.

Since the fractional maximal function

Mαf(x) = sup
r>0

1
|B(x, r)|1−α

n

∫

B(x,r)∩Ω

|f(y)|dy, 0 < α < n,

is dominated by fractional integral: Mαf(x) ≤ c Iα(|f |)(x), from Theorem
3.15 we get the following corollary.

Corollary 3.16. Under the assumptions of Theorem 3.15, the opera-

tor Mα is bounded from the space Lp(·),q(·)
w (Ω) into the space Lpα(·),q(·)

w (Ω).
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4. On the ergodic maximal function and the ergodic Hilbert
transform in variable exponent Lorentz spaces

Let (Tτ )τ∈R be an ergodic flow of measure-preserving transformations
on a σ-finite measure space (X, µ), and let Mf and Hf , f ∈ L(X), be the
ergodic maximal function and the ergodic Hilbert transform, respectively,
(see [14])

Mf(x) = sup
a>0

1
a

∫ a

0
|f(Tτx)| dτ and Hf(x) = lim

δ→0+

∫

{δ≤|t|≤1/δ}

f(Tτx)
τ

dτ.

The estimations (24) and (30) hold for operators M and H, respectively,
as well. Namely,

(Mf)∗(t) ≤ f∗∗(t) (32)

can be obtained as in the discrete case (see [7]; Ineq. (2)) since only the
weak (1, 1) type inequality, µ{Mf)∗ > λ} ≤ 1

λ

∫
{Mf)∗>λ} f dµ, is used to

prove (32) in the discrete case which holds for the continuous case too with
equation sign (see [14, p. 76]), and the inequality

(Hf)∗(t) ≤ c

(
1
t

∫ t

0
f∗(s)ds +

∫ `

t

f∗(s)
s

ds

)
, ` = µ(X), (33)

can be proved using the generalization of the Stein-Weiss theorem for the
ergodic Hilbert transform (see [8, 9]):

µ{|H(1E)| > λ =

{
Ψµ(E)(λ) when µ(X) = ∞
Φµ(E)(λ) when µ(X) < ∞ ,

(34)

where E ⊂ X is any measurable subset, and

Ψξ(λ) =
2ξ

sinhλ
and Φξ(λ) =

2µ(X)
π

arctan
(

sin(πξ/µ(X))
sinhλ

)
.

Indeed, if h is a measurable function with strictly decreasing continuous
distribution function Dh, then h∗(t) = D−1

h (t). Hence it follows from (34)
that

(
H(1E)

)∗(t) =





Ψ−1
µ(E)(t) when µ(X) = ∞ and 0 < t < ∞

Φ−1
µ(E)(t) when µ(X) < ∞ and 0 < t < µ(X)

0 when µ(X) < ∞ and t ≥ µ(X)
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Observe that

Ψ−1
µ(E)(t) = sinh−1

(
ξ

t

)
and Φ−1

µ(E)(t) = sinh−1

(
sin(πξ/µ(X))
tan(πt/2µ(X))

)
.

The function sinh−1 is increasing, and if we use simple relations between
the trigonometric functions sinx < x, 0 < x < π and tan t > t, 0 < t < π

2 ,
then we get for each µ(E) < µ(X) and t > 0,

(H(1E))∗(t) ≤ 1
π

sinh−1

(
2µ(E)

t

)
. (35)

The rest of the proof of (33) is the same as for the usual Hilbert trans-
form case (see [14, pp.134-137]).

As in previous sections, depending on estimations (32) and (33), one
can prove the following

Theorem 4.17. Let p and q satisfy assumptions (16). Then the ergodic
maximal operator and the ergodic Hilbert transform are bounded in the

space Lp(·),q(·)
w (Ω) with the weight (22) under conditions (23).
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