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Abstract

We consider the problem of inversion of the Riesz potential operator on
variable exponent Lebesgue spaces Lp(·)(Rn). To this end, we extend the so
called method of approximative inverses known in the case of constant p, to
the case of variable exponents p(x). The main advantage of this approach
is the possibility to cover the case when p(x) may take values equal to 1.
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1. Introduction

It is well known that the operator inverse to the Riesz potential operator
f = Iαϕ called also Riesz fractional derivative, on “nice” functions has
the form ϕ = F−1|ξ|αFf , where F is the Fourier transform. On “not so
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nice” functions, for example for Lebesgue integrable functions, there are
known two ways to effectively realize the construction F−1|ξ|αFf as an
operator inverse to Iα in the space Lp(Rn). One is to realize the inverse
operator as a hypersingular integral (the direct approach), another one is
to construct the inverse operator as the limit of “nice” convolutions (the
method of approximative inverse operators), see [19, 21] for the former, and
[13, 17],[19, Ch. 11] for the latter. The development of the method of
approximative inverse operators in application to the inversion problem of
potential type operators was initiated by Zavolzhenskii and Nogin [23] in
the beginning of the 90’ies, see also the presentation of those results in [19,
Ch. 11, §7].

Last decade or so, the theory of the generalized Lebesgue spaces Lp(·)(Ω)
was intensively developed, inspired both by difficult open problems in this
theory, and possible applications shown in [15], we refer e.g. to papers
[2, 4, 7, 8, 10, 11, 12] and references therein, see also the surveying papers
[5, 9, 20] on the topic.

In the case of Lebesgue spaces Lp(·)(Rn) with variable exponent p(x),
the method of hypersingular integrals for the same goals was used in [1]
where it was proved that the hypersingular operator treated as convergent
in the norm of the space Lp(·)(Rn), provides a real left inverse operator to
the Riesz potential operator, under the log-condition on the exponent p(x).

In this paper, we extend the method of approximative inverse operators
to the case of variable Lebesgue spaces.

Note that the method of approximative inverse operators is applicable to
the Riesz potential operators of complex order α with <α > 0. This means
that in terms of approximation we in fact construct fractional powers of
complex order of the minus Laplace operator. In comparison, observe that
the direct inversion by means of hypersingular integrals works for complex
values of α only in the case 0 < <α < 2, see [19, Ch. 3].

However, within the frameworks of the variable exponent Lebesgue
spaces Lp(·)(Rn) the most important advantage of the approximation in-
version, in comparison with the direct inversion by hypersingular integrals,
is in a different scope. As is known, Young theorem for convolutions is
not valid for variable exponent spaces. One of the main tools to deal with
convolution operators in these spaces was to compare convolution operators
with maximal functions. This inevitably led to the restriction that p(x)
may not take values p(x) = 1. (We refer e.g. to special efforts in the paper
[6] devoted to Sobolev embeddings in variable exponent spaces in the cases
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where p(x) may approach 1).
In this paper, basing on a recent progress in the problem of identity ap-

proximation in variable Lebesgue spaces, see [3], we show that the approx-
imation methods works in the general case p(x) = 1, which was impossible
to realize via the method of hypersingular integrals.

The main results are given in Section 4. In Subsection 4.1 we prove a
general result on inversion in terms of an arbitrary sequence of convolutions,
admissible in a sense for the approximation of the inversion, while Subsec-
tions 4.2 and 4.3 are devoted to two important realizations of the general
Theorem 4.10. Sections 2 and 3 provide some necessary preliminaries.

2. Preliminaries

We refer to [11, 16] for details on variable Lebesgue spaces over domains
in Rn, but give some necessary definitions. For a measurable function p :
Ω → [1,∞), where Ω ⊆ Rn is an open set, we put

p+ = p+(Ω) := ess sup
x∈Ω

p(x) and p− = p−(Ω) := ess inf
x∈Ω

p(x).

The generalized Lebesgue space Lp(·)(Ω) with variable exponent is intro-
duced as the set of functions for which the following modular is finite

%p(f) :=
∫

Ω
|f(x)|p(x)dx.

Equipped with the norm

‖ϕ‖p(·) := inf
{

λ > 0 : %p

(ϕ

λ

)
5 1

}
,

this is a Banach space when p+ < ∞. By p′(x) we denote the conjugate
exponent: 1

p(x) + 1
p′(x) ≡ 1.

In the sequel, we use the following standard conditions on p(x):

1 5 p− 5 p(x) 5 p+ < ∞, x ∈ Ω, (1)

or sometimes
1 < p− 5 p(x) 5 p+ < ∞, x ∈ Ω, (2)

and
|p(x)− p(y)| 5 C

− ln (|x− y|) , |x− y| 5 1
2
, x, y ∈ Ω. (3)

In the case Ω = Rn we also make use of the following definition.
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Definition 2.1. Let Ω be an unbounded set. By P∞(Ω) we denote
the set of all bounded measurable functions p : Ω → [1,∞) which satisfy
assumption (1) and the condition that there exists p(∞) = lim

Ω3x→∞
p(x) and

|p(x)− p(∞)| 5 C

ln(2 + |x|) , x ∈ Ω. (4)

In the case Ω = R1
+, we will also use the following definition.

Definition 2.2. By P0,∞(R1
+) we denote the class of exponents p

satisfying assumption (1) and the condition that there exist p(0) = lim
x→0

p(x)

and p(∞) = lim
x→∞ p(x) and

|p(x)−p(0)| 5 C

|ln |x|| for |x| 5 1
2

and |p(x)−p(∞)| 5 C

ln |x| for |x| = 2.

(5)

2.1. Approximate identities

Let φ be an integrable function such that
∫
Rn φ(x)dx = 1. For each

t > 0, we put φt := t−nφ(xt−1). Following [3], we say that {φt} is a
potential-type approximate identity, if the radial majorant of φ, defined by

φ̃(x) = sup
|y|≥|x|

|φ(y)|

is integrable. In [3] the following proposition was proved.

Proposition 2.3. Given an open set Ω, let p ∈ P∞(Ω) and satisfy
log-condition (3). If {φt} is a potential-type approximate identity, then for
all t > 0, we have:

i) ‖φt ∗ f‖p(·) 5 C‖f‖p(·),

and {φt ∗ f} converges to f in Lp(·)(Ω) norm, i.e.

ii) lim
t→0

‖φt ∗ f − f‖p(·) = 0.

Remark 2.4. Convergence of potential-type approximate identities
in variable exponent Lebesgue spaces Lp(·) was known from [4] under the
assumption that the maximal operator is bounded. An extension of this
fact to weighted spaces was given in [14]. Proposition 2.3 does not use the
information about the maximal operator and allows to include the cases
where p(x) may be equal to 1.
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2.2. Riesz potential operator

Recall that the Riesz potential operator, also known as fractional integral
operator, is given by

Iαg(x) :=
1

γn(α)

∫

Rn

g(y)
|x− y|n−α

dy, (6)

with the normalizing constant γn(α) = 2απ
n
2

Γ(α
2 )

Γ(n−α
2 ) . We admit complex

values of α. Everywhere in the sequel we assume that

0 < <α < n.

In [1] it was proved in the case of real α that the operator

Dαf :=
1

dn,`(α)

∫

Rn

(∆`
yf)(x)
|y|n+α

dy, (7)

where (∆`
yf)(x) is a centered or non-centered finite difference of order ` >

2
[

α
2

]
and dn,`(α) is some normalizing constant, is left inverse to the operator

Iα also in the frameworks of variable Lebesgue spaces Lp(·)(Rn), see [19, 21]
for the case of constant p.

The integral in (7) is known as Riesz fractional derivative. When con-
sidered on functions in the range Iα(X) of the operator Iα over this or that
space X, it is always interpreted as the limit, in the norm of the space X,
of the truncated operators Dα

ε , i.e. Dαf := lim
ε→0
(X)

Dα
ε f , where

Dα
ε f =

1
dn,`(α)

∫

|y|>ε

(∆`
yf)(x)
|y|n+α

dy.

The following proposition was proved in [1, Theo. 5.5]

Proposition 2.5. Let 1 < p−(Rn) 5 p+(Rn) < n
α . If the maximal

operator is bounded in the space Lp(·)(Rn), then

DαIαϕ = ϕ, ϕ ∈ Lp(·)(Rn),

where the hypersingular operator Dα is understood as convergent in Lp(·)-
norm.
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Remark 2.6. As in the case of constant p (see [19, Ch. 3]), Proposition
2.5 remains valid for complex α in the region 0 < <α < 2 with the condition
p+(Rn) < n

α replaced by p+(Rn) < n
<α . The method of approximative

inverse operators presented in the sequel allows to consider all complex
values of α with 0 < <α < n.

3. The method of approximative inverse operators

We refer to [17], [19, Ch. 11] for more details on approximative inverse
operators, but recall some principal ideas. Given a convolution operator
Aϕ = a ∗ ϕ, we have

F(Aϕ)(ξ) = â(ξ) · ϕ̂(ξ), (8)

where
(Ff)(ξ) = f̂(ξ) =

∫

Rn

eix·ξf(x)dx

is the Fourier transform of f . In the formal inversion

A−1ϕ = F−1

(
1

â(ξ)
· ϕ̂(ξ)

)
(9)

we encounter the problem that the factor [â(ξ)]−1 usually increases at in-
finity. To overcome this problem, we may try to interpret (9) as

(A−1)ϕ = lim
ε→0

(A−1)εϕ = lim
ε→0

F−1

(
mε(ξ)
â(ξ)

· ϕ̂(ξ)
)

, (10)

where we may choose a “nice” factor mε(ξ) with compact support or rapidly
decaying at infinity, and such that mε(ξ) tends to 1 as ε → 0. Then one
needs to justify that under this or that choice of mε(ξ), the construction
defined in (10) will really generate the inverse operator in the space under
consideration.

In the case of the Riesz potential operator (6), in view of homogeneity of
the kernel, this idea leads to the following form of the the inverse operator

(Iα)−1f = lim
ε→0

1
εn+α

∫

Rn

kα

(y

ε

)
f(x− y)dy,

where the kernel kα(x) ∈ L1(Rn) is to be looked for, see details in [17], [19,
Ch. 11].
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3.1. General requirements to the kernel kα(y)

In Fourier transform we have

F [(Iα)−1f ] = lim
ε→0

1
εα

k̂α(εξ) · f̂(ξ).

According to the idea in (10), the kernel kα(x) should satisfy the condition
1
εα

k̂α(εξ) → |ξ|α as ε → 0,

which is equivalent to
k̂α(ξ) = |ξ|αK(ξ) (11)

where limξ→0K(ξ) = 1. If we take an arbitrary “nice” function K(ξ) rapidly
vanishing at infinity and K(0) = 1, then kα(x) ∈ L1(Rn). In Fourier pre-
images we have from (11)

k(x) = Iαkα, (12)
where k(x) =

(F−1K)
(x), and∫

Rn

k(x)dx = 1. (13)

In other words, the kernel kα(x) we are looking for, should be the Riesz
fractional derivative of an identity approximation kernel k(x).

Observe that under concrete choices of kα, the relation

kα(y) = O
(

1
|y|n+<α

)
as |y| → ∞ (14)

usually holds, see [19, p. 317].

The following two lemmas were proved in [17], see also their presentation
in [19, p. 317].

Lemma 3.7. Let

yjkα(y) ∈ L1(Rn), 0 5 |j| < <α. (15)
Then the condition ∫

Rn

yjkα(y)dy = 0, 0 5 |j| < <α, (16)

is necessary and sufficient for the existence of limit (11) on nice functions
f(∈ S, say).

Lemma 3.8. Let k(x) ∈ L1(Rn), let xjk(x) ∈ L1(Rn) for all j with
|j| < <α and let k(x) have the Riesz derivative Dαk(x) = lim

ε→0
(L1)

Dα
ε k(x). If

besides this, kα(x) = Dαk(x) itself satisfies the condition (15), then equation
(16) is satisfied.
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Definition 3.9. The identity approximation kernel k(x) is called
admissible for the inversion of the Riesz operator Iα, if

k(x) ∈ L1(Rn) ∩ Iα(L1). (17)

4. Inversion of the Riesz potential operator

4.1. Inversion with the usage of an arbitrary admissible
approximation kernel kα(x)

Theorem 4.10. Let f(x) = Iαϕ, where ϕ ∈ Lp(·)(Rn). Suppose that
the exponent p(·) ∈ P∞(Rn) satisfies the log-condition (3) and 1 5 p− 5
p+ < n

<α . Then

lim
ε→0

(Lp(·))

1
εn+α

∫

Rn

kα

(y

ε

)
f(x− y)dy = ϕ(x), (18)

where k(x) is any admissible identity approximation kernel.

P r o o f. Consider first ϕ ∈ S. The equality

1
εn+α

∫

Rn

kα

(y

ε

)
f(x− y)dy =

∫

Rn

k(y)ϕ(x− εy)dy (19)

is valid, see [19, p. 318], which can be verified by passing to Fourier trans-
forms.

We wish to extend this relation to functions in Lp(·)(Rn). To this end,
we may take ε = 1. Then (19) is

kα ∗ Iαϕ = (Iαkα) ∗ ϕ, (20)

where (12) was taken into account. Since

Lp(·)(Rn) ⊂ Lp−(Rn) + Lp+(Rn),

to verify that (20) is valid for ϕ ∈ Lp(·)(Rn), it suffices to know that it is
valid for functions ϕ ∈ Lp+(Rn) and ϕ ∈ Lp−(Rn), which is easy to check in
the case of constant exponents, we refer to the corresponding details in [17,
p. 235]. Relation (19) having been proved for ϕ ∈ Lp(·)(Rn), to derive the
statement of the theorem from (19), it suffices to make use of Proposition
2.3.
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4.2. Inversion with Poisson kernel as approximation identity

Since the Poisson kernel

P (x, t) =
cnt

(|x|2 + t2)
n+1

2

; cn =
Γ(n+1

2 )

π
n+1

2

, (21)

generates a well-known identity approximation, our first choice is kα(x) =
Dαk with k(x) = P (x, 1). As shown in [19, Ch.11], in this case

kα(x) =
Γ(n + α)

2n−1π
n
2 Γ(n

2 )
F

(
n + α

2
,
n + α + 1

2
;
n

2
;−|x|2

)
, (22)

where F (a, b; c; z) is the Gauss hypergeometric function, and

|kα(x)| 5 C

(1 + |x|)n+<α
. (23)

Observe that in the case of odd dimensions n− 2k + 1, the kernel kα(x) is
an elementary function, see [19, p. 320]. In [17], see also [19], it was proved
that k(x) = P (x, 1) is an admissible approximation kernel (see the proof of
Theorem 11.10). By (23), the kernel k(x) satisfies then the assumptions of
Theorem 4.10. We arrive at the following particular case of Theorem 4.10
(obtained in [22] in the case of constant p).

Theorem 4.11. Let p ∈ P∞(Rn) satisfy log-condition (3) and 1 5
p− 5 p+ < n

<α . Then inversion (18) of the Riesz potential operator holds
under the choice (22) of kα(x).

Remark 4.12. The same is valid if one takes k(x) = W (x, 1), making
use of another famous approximation, Gauss-Weierstraß kernel W (x, t). In
this case the kernel kα(x) is expressed in terms of confluent hypergeometric
function, see [19, p. 321].

4.3. Inversion with a direct choice of kα(x)

In [17], see also [19, p. 324], it was shown that the following construction

kα(x) =
1

γn(−α)

[
1

(1 + |x|2)n+α
2

−
m∑

k=1

(−1)k−1cm,k

(1 + |x|2)n+α
2

+k

]
, (24)

where m =
[<α

2

]
and

cm,k =
(

m

k

) (
n+1

2

)
k(

α
2 −m + 1

)
k

, (25)

satisfies the necessary condition that Iαkα is an admissible approximation
kernel. In particular, in the case 0 < <α < 2 we have
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kα(x) =
1

γn(−α)

[
1

(1 + |x|2)n+α
2

− n + α

α(1 + |x|2)n+α
2

+1

]
. (26)

Applying Theorem 4.10 with kα defined by (24), we arrive at the fol-
lowing statement.

Theorem 4.13. Let p(·) ∈ P∞(Rn) satisfy log-condition (3) and 1 5
p− 5 p+ < n

<α . Then for all α 6= 2, 4, 6, . . ., the inversion of the Riesz

potential operator f = Iαϕ with ϕ ∈ Lp(·)(Rn) can be written in the form

ϕ(x) =
1

γn(−α)
lim
ε→0

(Lp(·))

∫

Rn

[
1

(|y|2 + ε2)
n+α

2

− εA(y, ε)

]
f(x− y)dy, (27)

where
A(y, ε) =

m∑

k=1

(−1)k−1 cm,kε
k−1

(|y|2 + ε2)
n+α

2
+k

,

m =
[<α

2

]
and cm,k are given by (25). Formula (27) may be represented

also in a compact form as

ϕ(x) =
(−1)m

γn(2m− α)
lim
ε→0

(Lp(·))

∫

Rn

∆m

(
1

(|y|2 + ε2)
n+α

2
−m

)
f(x− y)dy. (28)

P r o o f. The statement of the theorem in form (27) follows immediately
from Theorem 4.10. For formula (28) we have only to refer to the coincidence

(−1)m

γn(2m− α)
∆m

(
1

(|y|2 + ε2)
n+α

2
−m

)
=

1
γn(−α)

[
1

(|y|2 + ε2)
n+α

2

− εA(y, ε)

]
,

proved in [18].

Remark 4.14. The cases α = 2, 4, ... excluded in Theorem 4.13, corre-
spond to the cases when the operator inverse to the Riesz potential operator,
is nothing else but the power (−∆)

α
2 of minus Laplacean.

Corollary 4.15. Let 0 < <α < 2 and p satisfy the assumptions of
Theorem 4.13. The inversion of the Riesz potential operator Iα may be
taken in the form

ϕ(x) =
1

γn(−α)
lim
ε→0

(Lp(·))

∫

Rn

[
1

(|y|2 + ε2)
n+α

2

− (n + α)α−1ε

(|y|2 + ε2)
n+α

2
+1

]
f(x− y)dy.

We use this opportunity to note that the above formula given first in
[17], contained a misprint there: the constant factor (n+1) in formula (7.21)
in [17] should be read as (n + α).
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