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Vekua’s Generalized Singular Integral
on Carleson Curves in Weighted
Variable Lebesgue Spaces
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Abstract. For a Carleson curve I we establish the boundedness, in weighted
Lebesgue spaces Lp(‘)(l",g) with variable exponent p(-), of the generalized
singular integral operator which arises in the theory of I.N.Vekua generalized
analytic functions. The obtained result is an extension of the known results
even in the case of constant p. We also show that Vekua’s generalized singular
integral exists a.e. for f € L*(T') on an arbitrary rectifiable curve.
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1. Introduction

We prove the weighted boundedness of the I.N. Vekua generalized singular operator
known in the theory of generalized analytic functions, within the frameworks of
Lebesgue spaces with variable exponent p(t). We also show that the I.N. Vekua
generalized singular integral exists a.e. for every integrable function f even in the
case of an arbitrary rectifiable curve, thus proving that the existence properties of
the I.N. Vekua generalized singular operator are the same as of the usual singular
operator. The obtained results are new even in the case of constant p.

The paper is organized as follows. In Section 2 we give a certain background
related to the problem and introduce necessary definitions and auxiliary state-
ments. In Section 3 we prove the main result of the paper.
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2. Preliminaries

Let G be a simply connected domain bounded by a simple finite rectifiable curve
F'={teC:t=1(s),0 <s <! < oo} with arc-length measure v(t) = s. In the
sequel we use the notation

L(t,r) =T N B(t,r), B(t,r)={reC:|r—t|<e}, tel, r>0.
Recall that a curve I is called Carleson if
v[I'(t,r)] < Cor

with Cy > 0 not depending on t and r.

2.1. Vekua’s generalized singular operator

As is known, the theory of generalized analytic functions was developed by L.
Bers and I.N. Vekua, we refer to their books [2], [26]-[27]. Generalized analytic
functions of the class U, 2(A, B;G), r > 2, in the sense of I.N. Vekua, are regular
solutions of the equation

0:®(2) + A(2)®(2) + B(2)®(2) = 0 (2.1)
where 9. = 1 (2 +i2),A(2), B(z) € L"(G),r > 2.
Let f € LY(T). It is known that the integral
1

" 2mi

B(2) / O (2, 7) f(7) dr — Qo(z, 7)F () dF, (2.2)

r

where Q; and Q are the so-called basic normalized kernels of the class
Ur2(A, B; G), is a regular solution of (2.1), see details in [26], [27]. The integral in
(2.2) is called the generalized Cauchy type integral. The corresponding generalized
singular integral is introduced as

~ 1 _

Srf(t) = lim 9 Qi (t,7)f(r)dr — Qa(t,7) f(7) dT. (2.3)

e—0 2mM1
FE

In [17] there was proved the following conventional statement:

Proposition 2.1. If the singular integral g{‘f(t) exists for almost all t € T, then
the function ®(z) admits angular boundary values almost everywhere when z — t
non-tangentially and for these boundary values the formula holds

(1) = S f (1) + 3 /(1) (2.4)

almost everywhere. Conversely, the almost everywhere ezistence of the boundary
values ®*(t) yields that of the singular integral (2.3).

In [18] for the case of constant p the following statement was proved.
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Proposition 2.2. Let T be a Carleson curve. The operator g{‘ is bounded in the
space LP(T) if

D> (2.5)

r—2

We prove a more general result for variable exponents p(t), which is even
in the case of constant p is stronger than the existing result of Proposition 2.2,
because we admit all the range 1 < p < oo, avoiding the restriction in (2.5).
Moreover, based on our earlier results on classical integral operators in weighted
variable spaces, we are also able to prove the boundedness of the operator Sr
in weighted spaces LP()(T', g) with a certain class of general weights, see (2.10),
including power type weights with a natural range for their exponents. All the
results are obtained under the natural assumption on the variable exponent p(t),
see (2.6), (2.7) below.

2.1.1. On singular integrals. It is known that the Cauchy singular integral

1 [f(n)
Srf(t) = 2mi Tfth
r

converges almost everywhere for any f € L*(T') on every rectifiable curve, see for
instance, [3], p.137, Theorem 14.4). G.David [4] proved that the singular operator
Sr is bounded in the space LP(T") with constant p,1 < p < oo, if and only if T" is
a Carleson curve. An extension of David’s result for the case of variable p(t) was
made in [7], [12], [13].

2.1.2. On convergence of g{‘f(t). In Theorem 3.1 we show that the the integral
gp f converges almost everywhere in case of an arbitrary rectifiable curve and
f € LY(T"). Then in view of Proposition 2.1 we arrive at the following conclusion.
Conclusion. Relation (2.4) holds almost everywhere for an arbitrary f € L*(T') and
a rectifiable curve T.

2.2. On variable exponent Lebesgue spaces.

We refer to [5], [15], [23], [25] for details on Lebesgue spaces LP() with variable
exponent, but recall some basic definitions with respect to curves on the complex
plane. Let a function p(t) be defined on I' and satisfy the conditions

1<p.<p(t)<p"<oo, tel (2.6)
and
A 1
|p(t) 7p(7—)| S 1 1 ) |t7 7—| S 5; tv Tel. (27)
=

By LPU)(T, 0), where o(t) > 0, we denote the weighted Banach space of
measurable functions f : I' — C such that

p(t)
dv(t) <13 <oo. (2.8)

: Bf(t
1f oo r.0) = ll0fllpy = inf § A >0 / ‘%
r
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We write
LPO(T) .= LPO(T, 1).
The Holder inequality holds

1 1
ftgtdut‘gsz O 7076 — + =1, 2.9
[ #0500 < FI o low: o+ 2o (29)
where the constant k = p% + (p})* < 2 does not depend on f and g.
We deal with weights of the form
m
o(t) = [] wi(lt — txl), tx €T, (2.10)

k=1
where wyg(r) may oscillate as  — 0+ between two power functions (radial Zyg-
mund-Bary-Stechkin type weights). The Zygmund-Bary-Stechkin class of admis-
sible weights is defined in Subsection 2.3. In particular, the power weights

m

o) =] It -t tx €T, (2.11)
k=1
with the condition
L Br < : (2.12)
—— < —0, .
p(tk) P'(tr)

are admitted.

2.3. On Zygmund-Bary-Stechkin-type weights
We use the abbreviation a.i = almost increasing, a.d. = almost decreasing. Let
W ={weC([0,]) : w(0) =0, w(z) >0 for x>0, wx) isai}. (2.13)

The numbers

oy inf W) ; w(hx)
In (h%n_{(r)lf “w(hx) ) In (llr}?jgp “w(hx) )
My = SUP and M, = sup

z>1 Inz z>1 Inx

(see [20], [22], [21]), are known as as the lower and upper indices of the function
w(x) (compare these indices with the Matuszewska-Orlicz indices, see [16], p. 20).
We have 0 < my,, < M, < oo for weW.

Definition 2.3. ([1]) The Zygmund-Bary-Stechkin type class ®%, 0 < § < oo, is
defined as ® := Z9N Z;, where Z° is the class of functions w € W satisfying the
condition

/0 @dm < cw(h) (Z)

and Zs is the class of functions w € W satisfying the condition

4
/h wi) ,_ wh) .

R B

where ¢ = c¢(w) > 0 does not depend on h € (0, £].
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The following statement is valid, see [20],[22] for § = 1 and [6] for an arbitrary
0>0.

Theorem 2.4. Let w € W. Then w € Z° if and only if my > 0, and w € Z5, § > 0,
if and only if My, < 6, so that

w € BY =0 < my < M, <0. (2.14)

Besides this, for w € <I>g and any € > 0 there exist constants ¢; = c1(e) > 0 and
ca = c2(g) > 0 such that

cprMete < w(z) < cox™wTE 0<z<U{. (2.15)

The following properties are also valid
My = sup{p € R . 27 w(z) s a.i.}, (2.16)
M, =inf{v e R : z7%w(x) isa.d.}. (2.17)

Note that the indices m,, and M, may be also well defined for functions w(x)
positive for z > 0 which do not necessarily belong to W, for example, for functions
in the class

W = {w: 3a € R" such that w,(z) := z%w(z) € W}.

Obviously,
My, = A+ My, Mwa =a+ M,.

Observe that various non-trivial examples of functions in Zygmund-Bary-
Stechkin type classes with coinciding indices may be found in [20], Section IT; [19],
Section 2.1, and with non-coinciding indices in [22].

In the sequel we shall also need the following technical lemma (its Euclidean
version was proved in [9], for the Carleson context the proof is the same).

Lemma 2.5. Let ' be a bounded Carleson curve, the exponent p satisfy condition
(2.7) and let w be any function such that there exist exponents a,b € R and the
constants c¢; > 0 and c3 > 0 such that c;7® < w(r) < cor™?, 0 <r < £ = diam ().
Then

é[w(lt — to)IP") < (|t — o)™ < Cluw(|t — to] )P, (2.18)

where C > 1 does not depend on t,ty € T.

3. The main result
We prove the following theorem.

Theorem 3.1. I. Let I be a closed simple rectifiable curve. The singular integral
gpf exists for almost all t € T' for any f € LY(T).

II. LetT be a Carleson curve and let p(t) satisfy conditions (2.6) and (2.7). Then
the operator Sr is bounded in the space LPO) (T, o) with weight (2.10), where wy(r)
are such functions that

PP wy(r) € B (3.1)
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or equivalently wy, € W and

1
<My, <My, < —— , k=1,2,...,m. 3.2
plegy <= Mo S 32

In particular, the weights (2.11)~(2.12) are admitted.

3.1. The required tools

Everywhere in the sequel I' is a bounded Carleson curve. Let

My (t) = i“pm / () dv(r) (3.3)

>0
L(r,t)

be the maximal operator along I'. In [8] the following statement was proved (see
also [9] for a similar statement for bounded domains in R™; observe also that

Theorem 3.2 for Carleson curves in the case of power weights was proved in [13],
see also [10]).

Theorem 3.2. Let p(t) satisfy conditions (2.6), (2.7). The operator M is bounded
in LPC)(T, o) with the weight (2.10), where wy(r) satisfy (3.1)~(3.2).

The following theorem was proved in [13], [10] in the case of power weights
and is similarly extended to the case of Zygmund-Bary-Stechkin-type weights,
taking into account Theorem 3.2.

Theorem 3.3. Let p(t) satisfy conditions (2.6), (2.7) on T'. The singular operator
Sr is bounded in LPC)(T, o) with the weight (2.10), where wy,(r) satisfy (3.1)~(3.2).

3.2. Potentials over rectifiable curves
Let

I°f(t) = / f(?'a dv(r), O0<a<l. (3.4)
T

T —

Observe that the behavior of the potential I, f(t) along an arbitrary rectifiable
curve I' is not quite trivial. Thus the potential I, f(¢) of a bounded function may
prove to be an unbounded function. W.E. Sewell [24] in his investigations on
approximation in the complex plane specially singled out the class V,, of rectifiable
curves I' along which the integral in (3.4) converges uniformly in ¢, so that

dv(T)
su < 00 3.5
telE/ |7 — | (3.5)
T
for I € V,,. Observe that the condition
supv[[(t,7)] < CrP with 3>« (3.6)
tel’

is sufficient for (3.5) to be satisfied. Thus (3.5) is in particular valid on Carleson
curves.
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Lemma 3.4. Let 0 < o < 1 and let T’ be a bounded rectifiable curve and f € L1(T).
The integral in (3.4) exists for almost allt € T'. When T" is a Carleson curve, the
operator I, is bounded in the space L*(T') on every Carleson curve, and on any
rectifiable curve with property (3.5).

Proof. First we prove the almost everywhere convergence. Let s be an arc length
of a point ¢, t = t(s), 7 = t(o). We have

4
[l

where ¢ is the length of the curve. Let now II(I") be the set of all points t = ¢(s) € T’
such that for ¢ € II(I") simultaneously two conditions are fulfilled:

* flr(o)ldo

s —ol*

(3.7)

¢
/% exists and [t'(s)| = 1.
0

As is known, in case of a rectifiable curve I', almost all points of the curve
belong to II(T"). For a fixed t = t(s) € II(T") from the condition |t'(s)| = 1 and the
fact that I' is assumed to have no intersections it follows that

s—0o
7(s) — 7(0)
Then from (3.7) we derive the almost everywhere convergence of the integral on
the left-hand side.

The L'-boundedness in the case of Carleson curve is a matter of direct veri-
fication. We have

[ s <e @i [ 25
r r i

and by the help of the standard binary decomposition of I'(¢,1) into the portions
Tp(t) ={reTl:27%1 < |t — 7| <27} it is easy to check that condition (3.5)
holds for an arbitrary Carleson curve. O

<C=C(s). (3.8)

Theorem 3.5. Let p(t) satisfy conditions (2.6), (2.7) on I'. The operator

1) /fr—tla

is bounded in the space LPC)(T, o) with any weight o(t) for which the following
conditions are fulfilled:

du(r)
f B < and

2) the mazimal operator M is bounded in the space LPC)(T, p),
in particular for weights (2.10) with wy(r) satisfying conditions (3.1)—(3.2).
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Proof. The proof follows the standard lines; we refer in particular to [10], where
a weighted Sobolev-type theorem was proved for I, on Carleson curves in the
case of power weights, see for instance the domination of I, f(t) by the maximal
operator in formulas (8.6) and (9.33) in paper [10], however we give the proof for
the completeness of presentation.

Without loss of generality we may assume that diam I' > 1. By Holder
inequality (2.9) we obtain

dv Nt
710'(7_)_ t|( 7) Kl £l Loy (r,0) ‘ [|Q( )]t| /
) L' O(D\T'(t,1))
< Kkl fll ey (r,0) HQAHL;]'(»(F) <Ol fllecrr,o) (3.9)
since
_ )
e o <0 = /—p o <o

the existence of the last integral in the case of Welghts (2.10) with wg(r) satisfying
conditions (3.1)—(3.2), follows from Lemma 2.5, inequalities (2.15) and condition
(3.2).

As regards the integral over I'(¢,1), it may be dominated by the maximal
function in the usual way. Indeed, let v4(t) = T'(t,27%)\I'(t,27%~1). Then

|f()ldv(r) _ |f(m)dv(r) a(k+1) A du(r
| R - /t) BT Sz} w0 [ el

I(t,1) I(t,27F)

oo
<O 27 ORMf(t) = CLMf(1).
k=0
Then the application of Theorem 3.2 completes the proof of Theorem 3.5. O

Note that in [14] it was proved that in the case of an infinite curve and
constant p, the Sobolev theorem for the potential type operator holds if and only
if I' is a Carleson curve. For the extension of the Sobolev theorem on Carleson
curves to the case of weighted spaces with variable p(t) we refer to papers [11],

[10], [12].

3.3. Proof of Theorem 3.1: reduction to the classical singular operator

The proof is based on the observation that the functions ©;(z,t) and Q4(z,t) have
the following structure
1 m1(z,t)

Q1(z,t):—t_z+ TEE

ma(z,t)
|t = z|*

and Qo(z,t) =

(3.10)

where o = 2 € (0,1) and the functions my(z,t) and ma(z,t) are continuous and
bounded when ¢ runs I" and z runs a bounded domain, see [26], [27]. Consequently,
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for the generalized singular integral Sr f(t) we have

Sef(t) = Sef() + L/ (t), (3.11)
where
o L mi (th)f(T) . L m2(t77—)7(7—) =
Laf(t) = 27 |7 — | dr 2 |7 — | a7 (3.12)
r T

Therefore, the question of convergence or boundedness of Sr f(t) is reduced to that
of the singular integral St f(¢) and the integral with a weak singularity. The almost
everywhere convergence of the first term on the right-hand side of (3.11) is known,
see Subsection 2.1.1, while that of the second term was proved in Theorem 3.5.

Similarly the boundedness of these terms in the space Lp(')(F, o) under the
assumptions of Theorem 3.1 follows from Theorems 3.3 and 3.5, which completes
the proof of Theorem 3.1.
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