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Vekua’s Generalized Singular Integral
on Carleson Curves in Weighted
Variable Lebesgue Spaces
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Abstract. For a Carleson curve Γ we establish the boundedness, in weighted
Lebesgue spaces Lp(·)(Γ, �) with variable exponent p(·), of the generalized
singular integral operator which arises in the theory of I.N.Vekua generalized
analytic functions. The obtained result is an extension of the known results
even in the case of constant p. We also show that Vekua’s generalized singular
integral exists a.e. for f ∈ L1(Γ) on an arbitrary rectifiable curve.
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1. Introduction

We prove the weighted boundedness of the I.N. Vekua generalized singular operator
known in the theory of generalized analytic functions, within the frameworks of
Lebesgue spaces with variable exponent p(t). We also show that the I.N. Vekua
generalized singular integral exists a.e. for every integrable function f even in the
case of an arbitrary rectifiable curve, thus proving that the existence properties of
the I.N. Vekua generalized singular operator are the same as of the usual singular
operator. The obtained results are new even in the case of constant p.

The paper is organized as follows. In Section 2 we give a certain background
related to the problem and introduce necessary definitions and auxiliary state-
ments. In Section 3 we prove the main result of the paper.
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2. Preliminaries

Let G be a simply connected domain bounded by a simple finite rectifiable curve
Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ � < ∞} with arc-length measure ν(t) = s. In the
sequel we use the notation

Γ(t, r) = Γ ∩B(t, r), B(t, r) = {τ ∈ C : |τ − t| < ε}, t ∈ Γ, r > 0.

Recall that a curve Γ is called Carleson if

ν[Γ(t, r)] ≤ C0r

with C0 > 0 not depending on t and r.

2.1. Vekua’s generalized singular operator

As is known, the theory of generalized analytic functions was developed by L.
Bers and I.N. Vekua, we refer to their books [2], [26]–[27]. Generalized analytic
functions of the class Ur,2(A,B;G), r > 2, in the sense of I.N. Vekua, are regular
solutions of the equation

∂z̄Φ(z) + A(z)Φ(z) +B(z)Φ(z) = 0 (2.1)

where ∂z̄ = 1
2

(
∂
∂x + i ∂

∂y

)
, A(z), B(z) ∈ Lr(G), r > 2.

Let f ∈ L1(Γ). It is known that the integral

Φ(z) =
1

2πi

∫
Γ

Ω1(z, τ)f(τ) dτ − Ω2(z, τ)f(τ) dτ , (2.2)

where Ω1 and Ω2 are the so-called basic normalized kernels of the class
Ur,2(A,B;G), is a regular solution of (2.1), see details in [26], [27]. The integral in
(2.2) is called the generalized Cauchy type integral. The corresponding generalized
singular integral is introduced as

S̃Γf(t) = lim
ε→0

1
2πi

∫
Γε

Ω1(t, τ)f(τ) dτ − Ω2(t, τ)f (τ) dτ . (2.3)

In [17] there was proved the following conventional statement:

Proposition 2.1. If the singular integral S̃Γf(t) exists for almost all t ∈ Γ, then
the function Φ(z) admits angular boundary values almost everywhere when z → t
non-tangentially and for these boundary values the formula holds

Φ±(t) = S̃Γf(t)±
1
2
f(t) (2.4)

almost everywhere. Conversely, the almost everywhere existence of the boundary
values Φ±(t) yields that of the singular integral (2.3).

In [18] for the case of constant p the following statement was proved.
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Proposition 2.2. Let Γ be a Carleson curve. The operator S̃Γ is bounded in the
space Lp(Γ) if

p >
r

r − 2
. (2.5)

We prove a more general result for variable exponents p(t), which is even
in the case of constant p is stronger than the existing result of Proposition 2.2,
because we admit all the range 1 < p < ∞, avoiding the restriction in (2.5).
Moreover, based on our earlier results on classical integral operators in weighted
variable spaces, we are also able to prove the boundedness of the operator S̃Γ

in weighted spaces Lp(·)(Γ, �) with a certain class of general weights, see (2.10),
including power type weights with a natural range for their exponents. All the
results are obtained under the natural assumption on the variable exponent p(t),
see (2.6), (2.7) below.

2.1.1. On singular integrals. It is known that the Cauchy singular integral

SΓf(t) =
1

2πi

∫
Γ

f(τ)
τ − t dτ

converges almost everywhere for any f ∈ L1(Γ) on every rectifiable curve, see for
instance, [3], p.137, Theorem 14.4). G.David [4] proved that the singular operator
SΓ is bounded in the space Lp(Γ) with constant p, 1 < p < ∞, if and only if Γ is
a Carleson curve. An extension of David’s result for the case of variable p(t) was
made in [7], [12], [13].

2.1.2. On convergence of S̃Γf(t). In Theorem 3.1 we show that the the integral
S̃Γf converges almost everywhere in case of an arbitrary rectifiable curve and
f ∈ L1(Γ). Then in view of Proposition 2.1 we arrive at the following conclusion.
Conclusion. Relation (2.4) holds almost everywhere for an arbitrary f ∈ L1(Γ) and
a rectifiable curve Γ.

2.2. On variable exponent Lebesgue spaces.

We refer to [5], [15], [23], [25] for details on Lebesgue spaces Lp(·) with variable
exponent, but recall some basic definitions with respect to curves on the complex
plane. Let a function p(t) be defined on Γ and satisfy the conditions

1 < p∗ ≤ p(t) ≤ p∗ <∞, t ∈ Γ (2.6)

and
|p(t)− p(τ)| ≤ A

ln 1
|t−τ |

, |t− τ | ≤ 1
2
, t, τ ∈ Γ. (2.7)

By Lp(·)(Γ, �), where �(t) ≥ 0, we denote the weighted Banach space of
measurable functions f : Γ→ C such that

‖f‖Lp(·)(Γ,�) := ‖�f‖p(·) = inf

⎧⎨⎩λ > 0 :
∫
Γ

∣∣∣∣�(t)f(t)λ

∣∣∣∣p(t)

dν(t) ≤ 1

⎫⎬⎭ <∞. (2.8)
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We write
Lp(·)(Γ) := Lp(·)(Γ, 1).

The Hölder inequality holds∣∣∣∣∫
Γ

f(t)g(t)dν(t)
∣∣∣∣ ≤ k‖f‖Lp(·)(Γ)‖f‖Lp′(·)(Γ),

1
p(t)

+
1
p′(t)

≡ 1, (2.9)

where the constant k = 1
p∗

+ 1
(p′)∗

< 2 does not depend on f and g.
We deal with weights of the form

�(t) =
m∏

k=1

wk(|t− tk|), tk ∈ Γ, (2.10)

where wk(r) may oscillate as r → 0+ between two power functions (radial Zyg-
mund-Bary-Stechkin type weights). The Zygmund-Bary-Stechkin class of admis-
sible weights is defined in Subsection 2.3. In particular, the power weights

�(t) =
m∏

k=1

|t− tk|βk , tk ∈ Γ, (2.11)

with the condition
− 1
p(tk)

< βk <
1

p′(tk)
, (2.12)

are admitted.

2.3. On Zygmund-Bary-Stechkin-type weights

We use the abbreviation a.i = almost increasing, a.d. = almost decreasing. Let

W = {w ∈ C([0, �]) : w(0) = 0, w(x) > 0 for x > 0, w(x) is a.i.}. (2.13)

The numbers

mw = sup
x>1

ln
(

lim inf
h→0

w(hx)
w(h)

)
lnx

and Mw = sup
x>1

ln
(

lim sup
h→0

w(hx)
w(h)

)
lnx

(see [20], [22], [21]), are known as as the lower and upper indices of the function
w(x) (compare these indices with the Matuszewska-Orlicz indices, see [16], p. 20).
We have 0 ≤ mw ≤Mw ≤ ∞ for w ∈W .

Definition 2.3. ([1]) The Zygmund-Bary-Stechkin type class Φ0
δ, 0 < δ < ∞, is

defined as Φ0
δ := Z0 ∩Zδ, where Z0 is the class of functions w ∈ W satisfying the

condition ∫ h

0

w(x)
x
dx ≤ cw(h) (Z0)

and Zδ is the class of functions w ∈W satisfying the condition∫ �

h

w(x)
x1+δ

dx ≤ cw(h)
hδ

, (Zδ)

where c = c(w) > 0 does not depend on h ∈ (0, �].
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The following statement is valid, see [20],[22] for δ = 1 and [6] for an arbitrary
δ > 0.

Theorem 2.4. Let w ∈W . Then w ∈ Z0 if and only if mw > 0, and w ∈ Zδ, δ > 0,
if and only if Mw < δ, so that

w ∈ Φ0
δ ⇐⇒ 0 < mw ≤Mw < δ. (2.14)

Besides this, for w ∈ Φ0
δ and any ε > 0 there exist constants c1 = c1(ε) > 0 and

c2 = c2(ε) > 0 such that

c1x
Mw+ε ≤ w(x) ≤ c2xmw−ε, 0 ≤ x ≤ �. (2.15)

The following properties are also valid

mw = sup{µ ∈ R1 : x−µw(x) is a.i.}, (2.16)

Mw = inf{ν ∈ R1 : x−νw(x) is a.d.}. (2.17)

Note that the indices mω andMω may be also well defined for functions w(x)
positive for x > 0 which do not necessarily belong toW , for example, for functions
in the class

W̃ = {w : ∃a ∈ R1 such that wa(x) := xaw(x) ∈W}.
Obviously,

mwa = a+mw, Mwa = a+Mw.

Observe that various non-trivial examples of functions in Zygmund-Bary-
Stechkin type classes with coinciding indices may be found in [20], Section II; [19],
Section 2.1, and with non-coinciding indices in [22].

In the sequel we shall also need the following technical lemma (its Euclidean
version was proved in [9], for the Carleson context the proof is the same).

Lemma 2.5. Let Γ be a bounded Carleson curve, the exponent p satisfy condition
(2.7) and let w be any function such that there exist exponents a, b ∈ R1 and the
constants c1 > 0 and c2 > 0 such that c1ra ≤ w(r) ≤ c2r−b, 0 ≤ r ≤ � = diam (Γ).
Then

1
C

[w(|t− t0|)]p(t0) ≤ [w(|t− t0|)]p(t) ≤ C[w(|t − t0|)]p(t0), (2.18)

where C > 1 does not depend on t, t0 ∈ Γ.

3. The main result

We prove the following theorem.

Theorem 3.1. I. Let Γ be a closed simple rectifiable curve. The singular integral
S̃Γf exists for almost all t ∈ Γ for any f ∈ L1(Γ).
II. Let Γ be a Carleson curve and let p(t) satisfy conditions (2.6) and (2.7). Then
the operator S̃Γ is bounded in the space Lp(·)(Γ, �) with weight (2.10), where wk(r)
are such functions that

r
1

p(tk)wk(r) ∈ Φ0
1 (3.1)
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or equivalently wk ∈ W̃ and

− 1
p(tk)

< mwk
≤Mwk

<
1

p′(tk)
, k = 1, 2, . . . ,m. (3.2)

In particular, the weights (2.11)–(2.12) are admitted.

3.1. The required tools

Everywhere in the sequel Γ is a bounded Carleson curve. Let

Mf(t) = sup
r>0

1
ν[Γ(r, t)]

∫
Γ(r,t)

|f(τ)| dν(τ) (3.3)

be the maximal operator along Γ. In [8] the following statement was proved (see
also [9] for a similar statement for bounded domains in Rn; observe also that
Theorem 3.2 for Carleson curves in the case of power weights was proved in [13],
see also [10]).

Theorem 3.2. Let p(t) satisfy conditions (2.6), (2.7). The operator M is bounded
in Lp(·)(Γ, �) with the weight (2.10), where wk(r) satisfy (3.1)–(3.2).

The following theorem was proved in [13], [10] in the case of power weights
and is similarly extended to the case of Zygmund-Bary-Stechkin-type weights,
taking into account Theorem 3.2.

Theorem 3.3. Let p(t) satisfy conditions (2.6), (2.7) on Γ. The singular operator
SΓ is bounded in Lp(·)(Γ, �) with the weight (2.10), where wk(r) satisfy (3.1)–(3.2).

3.2. Potentials over rectifiable curves

Let

Iαf(t) =
∫
Γ

f(τ)
|τ − t|α dν(τ), 0 < α < 1. (3.4)

Observe that the behavior of the potential Iαf(t) along an arbitrary rectifiable
curve Γ is not quite trivial. Thus the potential Iαf(t) of a bounded function may
prove to be an unbounded function. W.E. Sewell [24] in his investigations on
approximation in the complex plane specially singled out the class Vα of rectifiable
curves Γ along which the integral in (3.4) converges uniformly in t, so that

sup
t∈Γ

∫
Γ

dν(τ)
|τ − t|α <∞; (3.5)

for Γ ∈ Vα. Observe that the condition

sup
t∈Γ
ν[Γ(t, r)] ≤ Crβ with β > α (3.6)

is sufficient for (3.5) to be satisfied. Thus (3.5) is in particular valid on Carleson
curves.



Vekua’s Generalized Singular Integral on Carleson Curves 289

Lemma 3.4. Let 0 < α < 1 and let Γ be a bounded rectifiable curve and f ∈ L1(Γ).
The integral in (3.4) exists for almost all t ∈ Γ. When Γ is a Carleson curve, the
operator Iα is bounded in the space L1(Γ) on every Carleson curve, and on any
rectifiable curve with property (3.5).

Proof. First we prove the almost everywhere convergence. Let s be an arc length
of a point t, t = t(s), τ = t(σ). We have∫

Γ

f(τ)dν(τ)
|t− τ |α =

�∫
0

∣∣∣∣ s− σ
t(s)− t(σ)

∣∣∣∣α f [τ(σ)]dσ|s− σ|α , (3.7)

where � is the length of the curve. Let now Π(Γ) be the set of all points t = t(s) ∈ Γ
such that for t ∈ Π(Γ) simultaneously two conditions are fulfilled:

�∫
0

f [τ(σ)]dσ
|s− σ|α exists and |t′(s)| = 1.

As is known, in case of a rectifiable curve Γ, almost all points of the curve
belong to Π(Γ). For a fixed t = t(s) ∈ Π(Γ) from the condition |t′(s)| = 1 and the
fact that Γ is assumed to have no intersections it follows that∣∣∣∣ s− σ

τ(s) − τ(σ)

∣∣∣∣ ≤ C = C(s). (3.8)

Then from (3.7) we derive the almost everywhere convergence of the integral on
the left-hand side.

The L1-boundedness in the case of Carleson curve is a matter of direct veri-
fication. We have ∫

Γ

|Iαf(t)|dν(t) ≤ C
∫
Γ

|f(τ)|dν(τ)
∫
Γ

dν(t)
|τ − t|α

and by the help of the standard binary decomposition of Γ(t, 1) into the portions
Γk(t) = {τ ∈ Γ : 2−k−1 < |t − τ | < 2−k} it is easy to check that condition (3.5)
holds for an arbitrary Carleson curve. �

Theorem 3.5. Let p(t) satisfy conditions (2.6), (2.7) on Γ. The operator

Iαf(t) =
∫
Γ

f(τ) dν(τ)
|τ − t|α

is bounded in the space Lp(·)(Γ, �) with any weight �(t) for which the following
conditions are fulfilled:

1)
∫
Γ

dν(τ)

[�(τ)]p′(τ) <∞, and

2) the maximal operator M is bounded in the space Lp(·)(Γ, �),
in particular for weights (2.10) with wk(r) satisfying conditions (3.1)–(3.2).
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Proof. The proof follows the standard lines; we refer in particular to [10], where
a weighted Sobolev-type theorem was proved for Iα on Carleson curves in the
case of power weights, see for instance the domination of Iαf(t) by the maximal
operator in formulas (8.6) and (9.33) in paper [10], however we give the proof for
the completeness of presentation.

Without loss of generality we may assume that diam Γ > 1. By Hölder
inequality (2.9) we obtain∫

Γ\Γ(t,1)

f(τ) dν(τ)
|τ − t|α ≤ k‖f‖Lp(·)(Γ,�)

∥∥∥∥ [�(·)]−1

| · −t|α

∥∥∥∥
Lp′(·)(Γ\Γ(t,1))

≤ k‖f‖Lp(·)(Γ,�)

∥∥�−1
∥∥

Lp′(·)(Γ)
≤ C‖f‖Lp(·)(Γ,�) (3.9)

since ∥∥�−1
∥∥

Lp′(·)(Γ)
<∞ ⇐⇒

∫
Γ

dν(τ)
[�(τ)]p′(τ)

<∞;

the existence of the last integral in the case of weights (2.10) with wk(r) satisfying
conditions (3.1)–(3.2), follows from Lemma 2.5, inequalities (2.15) and condition
(3.2).

As regards the integral over Γ(t, 1), it may be dominated by the maximal
function in the usual way. Indeed, let γk(t) = Γ(t, 2−k)\Γ(t, 2−k−1). Then∫

Γ(t,1)

|f(τ)| dν(τ)
|τ − t|α =

∞∑
k=0

∫
γk(t)

|f(τ)| dν(τ)
|t− τ |α ≤

∞∑
k=0

2α(k+1)

∫
Γ(t,2−k)

|f(τ)| dν(τ)

≤ C
∞∑

k=0

2−(1−α)kMf(t) = C1Mf(t).

Then the application of Theorem 3.2 completes the proof of Theorem 3.5. �

Note that in [14] it was proved that in the case of an infinite curve and
constant p, the Sobolev theorem for the potential type operator holds if and only
if Γ is a Carleson curve. For the extension of the Sobolev theorem on Carleson
curves to the case of weighted spaces with variable p(t) we refer to papers [11],
[10], [12].

3.3. Proof of Theorem 3.1: reduction to the classical singular operator

The proof is based on the observation that the functions Ω1(z, t) and Ω2(z, t) have
the following structure

Ω1(z, t) =
1
t− z +

m1(z, t)
|t− z|α and Ω2(z, t) =

m2(z, t)
|t− z|α (3.10)

where α = 2
r ∈ (0, 1) and the functions m1(z, t) and m2(z, t) are continuous and

bounded when t runs Γ and z runs a bounded domain, see [26], [27]. Consequently,
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for the generalized singular integral S̃Γf(t) we have

S̃Γf(t) = SΓf(t) + Iαf(t), (3.11)

where

Iαf(t) =
1

2πi

∫
Γ

m1(t, τ)f(τ)
|τ − t|α dτ − 1

2πi

∫
Γ

m2(t, τ)f (τ)
|τ − t|α dτ . (3.12)

Therefore, the question of convergence or boundedness of S̃Γf(t) is reduced to that
of the singular integral SΓf(t) and the integral with a weak singularity. The almost
everywhere convergence of the first term on the right-hand side of (3.11) is known,
see Subsection 2.1.1, while that of the second term was proved in Theorem 3.5.

Similarly the boundedness of these terms in the space Lp(·)(Γ, �) under the
assumptions of Theorem 3.1 follows from Theorems 3.3 and 3.5, which completes
the proof of Theorem 3.1.
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