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Abstract. Within the frameworks of weighted Lebesgue spaces with variable
exponent, we give a characterization of the range of the one-dimensional
Riemann-Liouville fractional integral operator in terms of convergence of the
corresponding hypersingular integrals. We also show that this range coincides
with the weighted Sobolev-type space Lα,p(·)[(a, b), %].
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1. Introduction

Recently the spaces Iα[Lp(·)(Rn)] and Bα[Lp(·)(Rn)] of Riesz and Bessel potential
spaces were studied within the frameworks of variable exponents p(·) in papers [1]
and [2] in the case of the whole space Rn. In particular, the following characteri-
zation of the space of Bessel potentials was obtained in [2]:

Bα[Lp(·)(Rn)] = Lp(·)(Rn)
⋂

Iα[Lp(·)(Rn)] = {f ∈ Lp(·)(Rn) : Dαf ∈ Lp(·)(Rn)},
(1.1)

where Dαf is the Riesz fractional derivative.
A similar characterization for potentials over a domain in Rn remains an open

question even in the case of constant p. For an analogue of the Riesz derivative
adjusted for domains in Rn we refer to [14].

In this paper we solve such a problem of characterization in the one-dimensional
case n = 1. We study the range of fractional integrals over the space Lp(·)(Ω, %)
with variable exponent p(·) and a power type weight %, where Ω = (a, b) is a
finite or infinite interval. We obtain a characterization of this range in terms of
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convergence of the corresponding Marchaud derivatives and show that this range
may be also obtained as the restriction on Ω of Bessel potentials with densities in
Lp(·)(Ω, %). We refer to [19], p. 229-232, for such results in the non-weighted case
and constant p.

Note that an increasing interest to the variable exponent Lebesgue spaces
Lp(·) observed last years was caused by possible applications (elasticity theory, fluid
mechanics, differential equations, see for example [15]). We refer to papers [20] and
[13] for basics on the Lebesgue spaces with variable exponents and to the surveys
[6], [10], [18] on harmonic analysis in such spaces. One of the breakthrough results
obtained for variable p(x) was the statement on the boundedness of the Hardy-
Littlewood maximal operator in the generalized Lebesgue space Lp(·) under certain
conditions on p(x), see [4] and the further development in the above survey papers.
The importance of the boundedness of the maximal operator is known due to the
fact that many convolution operators occurred in applications may be dominated
by the maximal operator. This tool is also used in this paper.

Let 0 < α < 1 and x ∈ (a, b). We study the ranges Iα
[
Lp(·)[(a, b), %]

]
of the

Riemann-Liouville fractional integration operators

(Iα
a+ϕ)(x) =

1
Γ(α)

∫ x

a

ϕ(t) dt

(x− t)1−α
, (Iα

b−ϕ)(x) =
1

Γ(α)

∫ b

x

ϕ(t) dt

(t− x)1−α
(1.2)

over weighted Lebesgue spaces Lp(·)[(a, b), %] with variable exponent p(x). We show
that the ranges of operators (1.2) coincide (Theorem (4.5)) under natural assump-
tions and obtain necessary and sufficient conditions for a function f to belong to
this range (Theorem (4.4)). Finally we show that this range coincides with the
Sobolev type space Lα,p(·)[(a, b), %] (Theorem (4.15)). When developing necessary
tools for the proof, we also obtain results of independent interest for Hardy-type
operators (Theorems (3.4), (3.8)) and for singular operators with fixed singularity
(Theorem (3.6)).

A non-weighted result of a type of Theorem (4.15) for variable exponents
was obtained in [1] and [2] for the Riesz potential operator in the case of the
whole space Ω = Rn. We deal not with the Riesz potential operator, but with the
fractional integration operator Iα

a+ which has the unilateral nature. However the
main novelty in comparison with [1] and [2] is not only in a different nature of the
operator or admission of the weight, but in the fact that the case of a domain in
Rn, when we may have an essential influence of the boundary, is more difficult.
We show how it is possible to characterize this range in the one-dimensional case
with Ω = (a, b), −∞ < a < b ≤ ∞. In comparison with [1] and [2], the results
obtained in this paper require different terms and methods.

N o t a t i o n

|Ω| is the Lebesgue measure of a set Ω ⊆ Rn, B(x, r) = {y ∈ Rn : |x− y| < r};
% is a weight, i.e., an a.e. finite and positive function;
P(Ω) and P1(Ω), see (2.1)-(2.2);
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w-Lip (Ω), see (2.3);
w-Lipx0 (Ω), see (3.2);
M is the maximal operator, see (2.7);
P%(Ω) is the set of exponents p ∈ P(Ω) such that M is bounded in Lp(·)(Ω, %).

2. Preliminaries

2.1. On spaces Lp(·) with variable exponents

Although our main results concern the one-dimensional case n = 1, some auxiliary
statements below are given for the multidimensional case. We refer to [13], [16] for
details on variable Lebesgue spaces over domains in Rn, but give some necessary
definitions. For a measurable function p : Ω → [1,∞), where Ω ⊂ Rn is an open
set, we put

p+ = p+(Ω) := ess sup
x∈Ω

p(x) and p− = p−(Ω) := ess inf
x∈Ω

p(x).

In the sequel we use the notation

P(Ω) := {p ∈ L∞(Ω) : 1 < p− ≤ p(x) ≤ p+ < ∞} (2.1)

and
P1(Ω) := {p ∈ L∞(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞} (2.2)

The generalized Lebesgue space Lp(·)(Ω) with variable exponent is introduced
as the set of functions f on Ω for which

Ip(f) :=
∫

Ω

|f(x)|p(x)dx < ∞.

By w-Lip (Ω), for bounded Ω, we denote the class of exponents p ∈ L∞(Ω) satis-
fying the log-condition

|p(x)− p(y)| ≤ C

− ln |x− y| , |x− y| ≤ 1
2
, x, y ∈ Ω. (2.3)

By p′(x) we denote the conjugate exponent: 1
p(x) + 1

p′(x) ≡ 1.

The weighted Lebesgue space Lp(·)(Ω, %) is defined as the set of all measurable
on Ω functions f for which

‖f‖Lp(·)(Ω,%) = ‖%f‖Lp(·)(Ω) = inf
{

λ > 0 : Ip

(
%f

λ

)
≤ 1

}
< ∞.

In [11] the following theorem was proved.

Theorem 2.1. Let p ∈ P1(Rn). The class C∞0 (Rn) is dense in the space Lp(·)(Rn, %)
with an a.e. positive weight % if

[%(x)]p(x) ∈ L1
loc(Rn). (2.4)

Observe that condition ((2.4)) implies that the indicator function of sets with
finite measure belong to Lp(·)(Rn, %).
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Lemma 2.2. Let Ω be a bounded domain in Rn and p ∈ P1(Ω)
⋂

w-Lip (Ω). There
exists an extension p̃(x) of p(x) to the whole space Rn such that p̃(x) ≡ p(x) for
x ∈ Ω, p̃ ∈ P(Rn)

⋂
w-Lip (Rn), p̃(x) is constant outside some large fixed ball and

p̃−(Rn) = p−(Ω); p̃+(Rn) = p+(Ω). (2.5)

Proof. It is known in general that any continuous function defined on an arbitrary
closed set in Rn may be extended to the whole space Rn with preservation of its
continuity modulus, see [21], Ch.6, section 2. This extension p̃ may be realized
in such a way that (2.5) is valid, see for example, [5], Theorem 4.2. To get an
extension constant outside some ball, it suffices to arrange a new extension in the
form

p̃∗(x) = η
( x

R

)
p̃(x) +

[
1− η

( x

R

)]
C

where C is any constant such that p−(Ω) ≤ C ≤ p+(Ω) and η(x) is any C∞0 -
function with support in the ball |x| < 2 and equal identically to 1 in the ball
|x| < 1, and R is sufficiently large so that Ω ⊆ {x ∈ Rn : |x| ≤ R}. (Then
p̃∗(x) ≡ p(x) for x ∈ Ω and p̃∗(x) ≡ C for |x| ≥ 2R).

¤

Everywhere in the sequel, when Ω is unbounded, we assume that there exists
the limit p(∞) : lim

x→∞
p(x). In the case p(x) ≡ const beyond some big ball, we use

the notation p(x) ≡ p∞(= p(∞)), |x| > R.
In case of unbounded domains we will also use the decay condition

|p(x)− p(∞)| ≤ C

ln(1 + |x|) , x ∈ Ω. (2.6)

2.2. On maximal and convolution operators in Lp(·)

Let

(Mϕ)(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)
T

Ω

|ϕ(y)|dy (2.7)

be the Hardy-Littlewood maximal operator. The following theorem for the weight

%(x) = (1 + |x|)γ
m∏

k=1

|x− xk|βk , xk ∈ Ω, k = 1, 2, . . . , m (2.8)

was in particular proved in [12] when Ω is bounded and in [9], when Ω is unbounded.

Theorem 2.3. Let p ∈ P(Ω)
⋂

w-Lip (Ω) and % be weight of form (2.8).
I) When Ω is bounded, the maximal operator is bounded in Lp(·)(Ω, %) if and only
if

− n

p(xk)
< βk <

n

p′(xk)
, k = 1, 2, ..., m. (2.9)

II) Let Ω be unbounded and p be constant outside some ball of large radius R > 0:
p(x) ≡ p∞, |x| > R. The maximal operator is bounded in Lp(·)(Ω, %) if and only
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if condition (2.9) and the condition

− n

p∞
< γ +

m∑

k=1

βk <
n

p′∞
(2.10)

are satisfied.

By P%(Ω) we denote the set os exponents p ∈ P(Ω) such that M is bounded
in Lp(·)(Ω, %).

Let Ω = Rn. For dilatations

Kεf(x) =
1
εn

∫

Rn

k

(
x− y

ε

)
f(y)dy

the following weighted statement is valid.

Theorem 2.4. Let % be a weight, %−1 ∈ L
p′(·)
loc , p ∈ P1(Rn) and k(x) be an integrable

function on Rn with A :=
∫

Rn

sup
|y|≥|x|

|k(y)|dx < ∞. Then

i)
∣∣∣∣ sup

ε>0
Kεf(x)

∣∣∣∣ ≤ A(Mf)(x) for all f ∈ Lp(·)(Rn, %),

so that

ii)
∥∥∥∥ sup

ε>0
Kεf(x)

∥∥∥∥
Lp(·)(Rn,%)

≤ C1‖f‖Lp(·)(Rn,%)

in the case p(·) ∈ P%(Rn). If in addition
∫

Rn

k(y)dy = 1 and %(x) satisfies condition

(2.4), then also

iii) Kεf(x) → f

as ε → 0 in Lp(·)(Rn, %) and almost everywhere.

Proof. For the non-weighted case the statement of the theorem is known, see [4].
Statement i) can be proved exactly as in [8] since the step functions are dense in
Lp(·)(Rn, %); statement ii) is an immediate consequence of i).

To prove iii), observe that C∞0 (Rn) is dense in the space Lp(·)(Rn, %) by
Theorem (2.1). So splitting f = f1 + fε, where f1 ∈ C∞0 (Rn) and ‖fε‖Lp(·)(Rn,%) <
ε, we have

‖Kεf − f‖Lp(·)(Rn,%) ≤ ‖Kεf1 − f1‖Lp(·)(Rn,%) + ‖Kεfε − fε‖Lp(·)(Rn,%)

= I1,ε + I2,ε.

For I2,ε we obtain

I2,ε ≤
∥∥∥Kεfε

∥∥∥
Lp(·)(Rn,%)

+ ‖fε‖Lp(·)(Rn,%) ≤ C‖fε‖Lp(·)(Rn,%) ≤ Cε. (2.11)
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The a.e. convergence Kεf1
a.e.−−→ f1 as ε → 0 with f1 ∈ C∞0 (Rn) is obvious, see

[21]. The boundedness of the maximal operator implies that Ip[%(Mf)] < ∞. Using
i) and Lebesgue dominated convergence theorem we have that limε→0 Ip[%(Kεf1−
f1)] = 0, thus showing that I1,ε

ε→0−−−→ 0. Thus we have convergence in Lp(·)(Rn, %)-
norm and a.e. convergence. ¤

By Theorem (2.4), the boundedness in Lp(·)(Rn, %) of the maximal operator
guarantees the boundedness of convolution operators

Af(x) =
∫

Rn

k(y)f(x− y)dy

whose kernels k(x) have decreasing integrable dominants. However, the bound-
edness of the maximal operator requires in general the local log-condition (2.3).
Meanwhile, for rather “nice” kernels k(x) this condition may be avoided. Namely,
in [7] the following result was obtained.

Theorem 2.5. Let k(y) satisfy the estimate |k(y)| ≤ C
(1+|y|)ν , y ∈ Rn for some

ν > n
(
1− 1

p(∞) + 1
q(∞)

)
. Then the convolution operator A is bounded from the

space Lp(·)(Rn) to the space Lq(·)(Rn) under the only assumption that the exponents
p, q ∈ P1(Rn) satisfy decay condition (2.6) and q(∞) ≥ p(∞).

2.3. Boundedness of potential and singular operators in weighted Lp(·)-spaces

The following result is known, see [12], where Theorem (2.6) was stated for the
single power weight; its validity for a finite product of power weights is reduced to
the case of a single weight by the standard introduction of the unity partition. For
the completeness of presentation we give details of such a reduction in Appendix,
see Section (5).

Theorem 2.6. Let Ω ⊂ Rn be a bounded domain, let α(x) ∈ L∞(Ω) and ess infΩ α(x) >
0, let p ∈ P(Ω)

⋂
w-Lip (Ω) and let % be weight of form (2.8) with xk ∈ Ω. Under

condition (2.9) the operator

Iα(·)
% f(x) = %(x)

∫

Ω

f(y)
%(y)|x− y|n−α(x)

dy

is bounded in the space Lp(·)(Ω).

The following theorem on the boundedness of the singular operator

Sϕ(t) =
1
π

b∫

a

ϕ(t) dt

t− x
, x ∈ (a, b)

was proved in [11].
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Theorem 2.7. Let −∞ < a < b < ∞ and let p ∈ P(a, b)
⋂

w-Lip (a, b). The
operator S is bounded in the space Lp(·)[(a, b), %], where % is weight (2.8) with
xk ∈ [a, b], k = 1, 2, . . . , m, if and only if

− 1
p(xk)

< βk <
1

p′(xk)
, k = 1, 2, . . . , m.

3. Hardy-type inequalities in variable exponent setting

3.1. Definition and assumptions

Let now n = 1 and Ω = [a, b], where −∞ < a < b ≤ ∞, and consider the space
Lp(·)[(a, b), %] with the weight

%(x) =
{ |x− a|µ(x)|b− x|ν(x) when b < ∞
|x− a|µ(x)(1 + |x|)ν(x) when b = ∞ , (3.1)

where the exponents µ(x), ν(x) are bounded functions which have finite limits
µ(a) = lim

x→a
µ(x), ν(b) = lim

x→b
ν(x). We need the following notation for the class of

exponents.

Definition 3.1. Let Ω = (a, b), where −∞ ≤ a < b ≤ ∞ and let x0 ∈ [a, b]. By
w-Lipx0(Ω) we denote the class

w−Lipx0(Ω) =

{
µ ∈ L∞(Ω) : |µ(x)− µ(x0)| ≤ A

ln 1
|x−x0|

, |x− x0| ≤ 1
2

}
, (3.2)

in case x0 6= ∞, and

w−Lip∞(Ω) =
{

µ ∈ L∞(Ω) : |µ(x)− µ(∞)| ≤ A

ln(2 + |x|)
}

. (3.3)

For µ ∈ w-Lipa(a, b)
⋂

w-Lipb(a, b) with −∞ < a < b < ∞ one has

|x− a|µ(x)|b− x|ν(x) ≈ |x− a|µ(a)|b− x|ν(b). (3.4)

Similarly, for µ ∈ w-Lipa(R1)
⋂

w-Lipb(R1)
⋂

w-Lip∞(R1)

|x− a|µ(x)|b− x|ν(x) ≈ |x− a|µ(a)|b− x|ν(b)(1 + |x|)µ(∞)+ν(∞)−µ(a)−ν(b). (3.5)

Remark 3.2. From Theorem (2.1) it is easy to derive that the class C∞0 ((a, b))
of infinitely differentiable functions with support in (a, b), −∞ < a < b < ∞
is dense in the space Lp(·)[(a, b), %] with the weight (3.1), if p ∈ P1(a, b) and
µ(a)p(a) > −1, ν(b)p(b) > −1.

Everywhere in the sequel we assume that

p(x) ≡ p∞ = const for large |x| ≥ R in the case b = ∞. (3.6)
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3.2. Hardy inequalities

The following proposition was proved in [7] (see Theorem 3.3 there).

Proposition 3.3. Let p, r ∈ P1(R1
+)

⋂
w-Lip0(R1

+)
⋂

w-Lip∞(R1
+),

p(0) = r(0) and p(∞) = r(∞). (3.7)

and α, β ∈ w-Lip0(R1
+)

⋂
w-Lip∞(R1

+), The Hardy operators

Hα(·)f(x) = xα(x)−1

∫ x

0

f(y)
yα(y)

dy and Hβ(·)f(x) = xβ(x)

∫ ∞

x

f(y)
yβ(y)+1

dy (3.8)

are bounded from the space Lp(·)(R1
+) into Lr(·)(R1

+), if

α(0) <
1

p′(0)
, α(∞) <

1
p′(∞)

and β(0) > − 1
p(0)

, β(∞) < − 1
p(∞)

.

We need the following weighted statement derived from Proposition (3.3).

Theorem 3.4. Let p, r ∈ P1(R1
+)

⋂
w-Lip0(R1)

⋂
w-Lip∞(R1

+) and condition (3.7)
be satisfied, let 0 < b < ∞ and %(x) = xµ(x)|x − b|ν(x), x > 0, where µ ∈ w-
Lip0(R1

+)
⋂

w-Lip∞(R1
+), ν ∈ w-Lipb(R1

+)
⋂

w-Lip∞(R1
+) and

− 1
r(b)

< ν(b) <
1

p′(b)
. (3.9)

Let also α, β ∈ w-Lip0(R1
+)

⋂
w-Lip∞(R1

+). Then the Hardy-type inequalities
∥∥∥∥∥xα(x)−1

x∫

0

f(y)
yα(y)

dy

∥∥∥∥∥
Lr(·)(R1

+,%)

≤ C‖f‖Lp(·)(R1
+,%) (3.10)

and ∥∥∥∥∥xβ(x)

∞∫

x

f(y)
yβ(y)+1

dy

∥∥∥∥∥
Lr(·)(R1

+,%)

≤ C‖f‖Lp(·)(R1
+,%) (3.11)

are valid if

α(0) + µ(0) <
1

p′(0)
, α(∞) + µ(∞) + ν(∞) <

1
p′(∞)

(3.12)

and
− 1

p(0)
< β(0) + µ(0), − 1

p(∞)
< β(∞) + µ(∞) + ν(∞), (3.13)

respectively.

Proof. For (3.10) we have to show that the operator

Bf(x) = xα(x)+µ(x)−1|x− b|ν(x)

∫ x

0

f(y) dy

yα(y)+µ(y)|y − b|ν(y)

is bounded from Lp(·)(R1
+) to Lr(·)(R1

+). We have

‖Bf‖Lr(·)(R1
+) ≤ ‖Bf‖Lr(·)(0, b

2 ) + ‖Bf‖Lr(·)( b
2 ,2b) + ‖Bf‖Lr(·)(2b,+∞).



Characterization of the range of one-dimensional fractional integration . . . 9

For 0 < x < b
2 , we have |Bf(x)| ≤ Cxα(0)+µ(0)−1

∫ x

0
f(y)

yα(0)+µ(0) dy so that ‖Bf‖Lr(·)(0, b
2 )

is covered by Proposition (3.3). For b
2 ≤ x ≤ 2b we have

|Bf(x)| ≤ C|x− b|ν(b)

(∫ b
2

0

|f(y)|
yα(0)+µ(0)

dy +
∫ 2b

b
2

|f(y)|
|y − b|ν(b)

dy

)
,

where both the integrals are finite by the Hölder inequality, and |x − b|ν(b) ∈
Lr(·) ([

b
2 , 2b

])
. Finally, when x > 2b, we get

|Bf(x)| ≤ Cxα(∞)+µ(∞)+ν(∞)−1

(∫ b
2

0

|f(y)| dy

yα(0)+µ(0)
+

∫ 2b

b
2

|f(y)| dy

|y − b|ν(b)
+

∫ x

2b

|f(y)| dy

yα(∞)+µ(∞)+ν(∞)

)

where the first two integrals are finite by the Hölder inequality and xα(∞)+µ(∞)+ν(∞)−1 ∈
Lr(·)(2b,∞), while the last term is dominated by xα(∞)+µ(∞)+ν(∞)−1

∫ x

0
|f(y)| dy

yα(∞)+µ(∞)+ν(∞) ,
which is covered by Proposition (3.3).

Similarly one can prove inequality (3.11). ¤

Remark 3.5. Theorem (3.4) is also valid for the weight %(x) = xµ(x)
m∏

k=1

|x−bk|νk(x),

where 0 < b1 < b2 < · · · < bm < ∞, under natural modification. Namely, besides
assumptions (3.12)-(3.13), the following conditions should be imposed

− 1
r(bk)

< νk(bk) <
1

p′(bk)
, k = 1, . . . , m;

α(∞)+µ(∞)+
m∑

k=1

νk(∞) <
1

p′(∞)
and − 1

p(∞)
< β(∞)+µ(∞)+

m∑

k=1

νk(∞).

3.3. On singular operators with fixed singularity

Theorem 3.6. Let p, r ∈ P1(R1
+)

⋂
w-Lip0(R1

+)
⋂

w-Lip∞(R1
+) and condition (3.7)

be satisfied, let 0 < b < ∞ and %(x) = xµ(x)|x − b|ν(x), x > 0, where µ ∈ w-
Lip0(R1

+)
⋂

w-Lip∞(R1
+) and ν ∈ w-Lipb(R1

+)
⋂

w-Lip∞(R1
+). Let also β ∈ w-

Lip0(R1
+)

⋂
w-Lip∞(R1

+). Then the operator

Hβ(·)ϕ(x) := xβ(x)

∫ ∞

0

ϕ(t)
tβ(t)(x + t)

dt (3.14)

is bounded from the space Lp(·)(R1
+, %) into Lr(·)(R1

+, %), if

− 1
r(b)

< ν(b) <
1

p′(b)
, − 1

p(0)
< β(0) + µ(0) <

1
p′(0)

(3.15)

and

− 1
p(∞)

< β(∞) + µ(∞) + ν(∞) <
1

p′(∞)
. (3.16)



10 H. Rafeiro and S. Samko

Proof. Since
Hβf(x) ≤ Hβf(x) +Hβf(x) (3.17)

where Hβ and Hβ are the Hardy operators (3.8), Theorem (3.6) immediately
follows from Theorem (3.4). ¤

Remark 3.7. In the case of a similar operator Hβϕ(x) =:
∫ `

0

(
x
t

)β ϕ(t)
x+t dt, 0 < x <

` < ∞ on a finite interval, Theorem (3.6) is valid without condition (3.16). Note
that a weaker version of Theorem (3.6) for a finite interval was proved in [12].

3.4. On a Hardy-Littlewood inequality

The following extension of the Hardy-Littlewood inequality to the case of variable
exponents is valid. In the case where the exponent p is constant, this inequality is
well known, being due to Hardy and Littlewood, see for instance [19], p. 104-106
(we take this opportunity to note that there are misprints on p. 104 in formulas
(5.45)-(5.46): there should be x−αp instead of xαp). In the case of variable p,
an inequality of Hardy type for the multidimensional Riesz-type potentials over
bounded domains in Rn with the weight |x − x0|β was proved in [17] in the case
0 < α < n, α − n

p(x0)
< β < n

p′(x0)
. We admit infinite intervals (a, b) and thanks

to the unilateral structure of the Riemann-Liouville integral we can consider an
arbitrary α > 0 and the weight exponents in the interval

(
− 1

p(x0)
, 1

p′(x0)

)
.

Theorem 3.8. Let α > 0, −∞ < a < b < ∞, p ∈ P(a, b)
⋂

w-Lip (a, b) and % be
weight of form (3.1) with µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b). Then

∥∥∥∥∥∥
1

(x− a)α

x∫

a

ϕ(t) dt

(x− t)1−α

∥∥∥∥∥∥
Lp(·)[(a,b),%]

≤ C ‖ϕ‖Lp(·)[(a,b),%] (3.18)

under the conditions:

− 1
p(a)

< µ(a) <
1

p′(a)
, − 1

p(b)
< ν(b) <

1
p′(b)

. (3.19)

Inequality (3.18) is also valid in the case b = ∞, if additionally p(x) satisfies as-
sumption (3.6), µ, ν ∈ w-Lip∞(a,∞) and the second condition in (3.19) is replaced
by

− 1
p∞

< ν(∞) + µ(∞) <
1

p′∞
. (3.20)

Proof. The proof follows the principal idea in [17], but uses the unilateral nature
of the one-dimensional integration. Let a = 0 for simplicity. We continue ϕ(t) as
zero beyond the interval (0, b) and have

1
xα

x∫

0

ϕ(t) dt

(x− t)1−α
=

1
x

∫

R1

L
(

x− t

x

)
ϕ(t) dt, x > 0, (3.21)



Characterization of the range of one-dimensional fractional integration . . . 11

where L(ξ) =
{

ξα−1, ξ ∈ [0, 1]
0, ξ /∈ [0, 1] . The right-hand side in (3.21) may be ex-

tended for all x ∈ R1, if in the denominator we replace x by |x|. Then we have

1
|x|

∫

R1

L
(

x− t

|x|
)

ϕ(t) dt ≤ CMϕ(x), (3.22)

where the domination by the maximal operator is possible by the pointwise in-
equality i) of Theorem (2.4). Then from (3.21) and (3.22) we obtain

∥∥∥∥∥∥
1
xα

x∫

0

ϕ(t) dt

(x− t)1−α

∥∥∥∥∥∥
Lp(·)[(0,b),%]

≤ C‖Mϕ‖Lep(·)(R1,%∗)

where p̃(x) is an extension of p(x) from (a, b) to R1 provided by Lemma (2.2). An
extension %∗(x) of the weight may be taken, according to (3.4)-(3.5), as

%∗(x) =
{ |x− a|µ(a)|b− x|ν(b), b < ∞,
|x− a|µ(a)(1 + |x|)µ(∞)−µ(a)+ν(∞), b = ∞ , (3.23)

With this extension, the maximal operator is bounded in the space Lep(·)(R1, %∗)
by Theorem (2.3) and we arrive at (3.18). ¤

4. On fractional integrals and derivatives in Lp(·)[(a, b), %]

4.1. On Marchaud derivative

The Marchaud fractional derivative ([19], p. 200)

Dα
a+f =

f(x)
Γ(1− α)(x− a)α

+
α

Γ(1− α)

∫ x

a

f(x)− f(t)
(x− t)1+α

dt, (4.1)

of order 0 < α < 1, for “not so nice” functions f(x) is understood as

lim
ε→0

Dα
a+,εf =

f(x)
Γ(1− α)(x− a)α

+
α

Γ(1− α)
lim
ε→0

∫ x−ε

a

f(x)− f(t)
(x− t)1+α

dt, ε > 0,

where f(x) is assumed to be continued as zero beyond the interval [a, b]. It is
known ([19], p. 200) that

Dα
a+,εf =

f(x)
Γ(1− α)(x− a)α

+
α

Γ(1− α)
Aεf(x), (4.2)

where

Aεf(x) =
∫ x−ε

a

f(x)− f(t)
(x− t)1+α

dt for a + ε ≤ x ≤ b, (4.3)

Aεf(x) =
f(x)
α

[
1
εα
− 1

(x− a)α

]
for a ≤ x ≤ a + ε. (4.4)
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Lemma 4.1. Let −∞ < a < b < ∞, α > 0, let p ∈ P(a, b) and % be weight
of form (3.1) with µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b). The truncated fractional
differentiation operator Dα

a+,εf is bounded in Lp(·)[(a, b), %] for any fixed ε > 0
under conditions (3.19).

This is also valid for b = ∞, if we additionally assume that µ, ν ∈ w-
Lip∞(a,∞) and p(·) ∈ P%[(a,∞)]; for the latter inclusion, the following con-
ditions are sufficient: p ∈ P(a,∞)

⋂
w-Lip (a,∞), and (3.6), (3.20) and the first

condition in (3.19) hold.

Proof. After easy calculations we obtain

Dα
a+,εf(x) =

f(x)
Γ(1− α)εα

− αχ[a+ε,b](x)
Γ(1− α)

x−a∫

ε

f(x− t) dt

t1+α
, x ∈ [a, b],

where the second term is bounded in Lp(·)[(a, b), %]. Indeed, for x > a + ε by the

Hölder inequality we have
x−a∫
ε

f(x−t) dt
t1+α ≤ 1

ε1+α ‖f‖Lp(·)[(a,b),%] ·
∥∥%−1

∥∥
Lp′(·)(a,b)

where

the last factor is finite under the conditions µ(a)p′(a) < 1, ν(b)p′(b) < 1, in the
case of finite b.

In the case b = ∞ we have
∫ x−a

ε

f(x− t)
t1+α

dt ≤
∫

R
k(t)f(x− t)dt (4.5)

with k(t) = t−1−α · χ(ε,∞)(t) and then the boundeness follows by Theorem (2.4)
when p(·) ∈ P%[(a,∞)]. The sufficiency of the conditions for the latter inclusion,
mentioned in the theorem, follows from (4.5) and Theorem (2.3). ¤

Remark 4.2. The statement of Lemma (4.1) for b = ∞ in the case µ(a) = µ(∞)+
ν(∞) = 0 is valid for an arbitrary p ∈ P(a,∞) satisfying condition (2.6). This
follows from (4.5) and Theorem (2.5)

4.2. The left-hand side inverse operator to the Riemann-Liouville operator Iα
a+

When considering the operator left inverse to Iα
a+, we may not follow the same

lines as in the known proof for the case of constant p, see [19], Section 13, since
the proof there uses the p-mean continuity of the Lp space, which is no more valid
in the case of variable p, see [13]. Thus we have to modify the arguments from [19]
and make use of the maximal operator.

Theorem 4.3. Let −∞ < a < b < ∞, 0 < α < 1 and

f = Iα
a+ϕ, ϕ ∈ Lp(·)[(a, b), %],

where p ∈ P(a, b)
⋂

w-Lip (a, b) and % is weight (3.1) with µ ∈ w-Lipa(a, b), ν ∈
w-Lipb(a, b). Then

Dα
a+f = ϕ,
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where Dα
a+f = lim

ε→0
Dα

a+,εf with the limit in the norm of the space Lp(·)[(a, b), %],

under conditions (3.19).
This is also valid in the case b = ∞, if additionally µ, ν ∈ w-Lip∞(a, b) and

(3.6) and (3.20) hold.

Proof. Without loss of generality we take a = 0. We need to show that

lim
ε→0

‖ Dα
0+,εf − ϕ ‖Lp(·)[(0,b),%]= 0. (4.6)

In [19], p. 227-228, there was proved the following representation

Dα
0+,εI

α
0+ϕ =





x
ε∫

0

K(t)ϕ(x− εt)dt =: Aεϕ(x), ε ≤ x ≤ b

sin απ

πεα

x∫

0

ϕ(t)
(x− t)1−α

dt =: Bεϕ(x), 0 ≤ x ≤ ε,

(4.7)

with

K(t) =
sin απ

π

tα+ − (t− 1)α
+

t
, tα+ =

{
tα, t > 0
0, t < 0 , (4.8)

valid for ϕ ∈ Lp, where 1 ≤ p < ∞, and therefore valid for “nice” functions.
In the sequel the function ϕ(t) is assumed to be continued as zero beyond

[a, b] whenever necessary, so that Aε(x) and Bε(x) are well defined on the whole
line R1.

By Remark (3.2), “nice” functions are dense in Lp(·)[(a, b), %], so that to verify
(4.7) on Lp(·)[(a, b), %], we only need to check the boundedness of all the operators
involved in (4.7). The operators Dα

0+,ε and Iα
0+ are bounded by Lemma (4.1) and

Theorem (2.6), respectively. The operator Aε is bounded by Theorem (2.4) (after
the corresponding extension of p and % to the whole line R1). In the case b = ∞,
it suffices to have the boundedness on any (a,N), N < ∞, since all the operators
are of Volterra type.

Note that the kernel K(t) has a radial integrable decreasing majorant, so that
by Theorem (2.4)

|Aεϕ(x)| ≤ CMϕ(x). (4.9)

Representation (4.7) may be rewritten as

Dα
0+,εf(x) = χ[ε,b](x)Aεϕ(x) + χ[0,ε](x)Bεϕ(x), x ∈ [0, b] (4.10)

and then

Dα
0+,εf(x)−ϕ(x) = Aεϕ(x)−ϕ(x)+ χ[0,ε](x)[Bεϕ(x)−Aεϕ(x)], x ∈ [0, b]. (4.11)

By Part iii) of Theorem (2.4)

‖Aεϕ−ϕ‖Lp(·)[(0,b),%] ≤
∥∥∥∥

1
ε

∫

R1
K

(
x− ξ

ε

)
ϕ(ξ)dξ − ϕ(x)

∥∥∥∥
Lep(·)(R1,%∗)

→ 0 (4.12)
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where the extension p̃(x) of p(x) has been chosen according to Lemma (2.2) and
the extension %∗(x) of the weight is defined in (3.23). The condition p̃ ∈ P%(R1) of
Theorem (2.4) is satisfied according to Theorem (2.3). The term χ[0,ε](x)[Bεϕ(x)−
Aεϕ(x)] is estimated uniformly in ε by the maximal function:

χ[0,ε](x)|Bεϕ(x)−Aεϕ(x)| ≤ Cχ[0,ε](x)Mϕ(x). (4.13)

Indeed, taking into account the inequality 1
εα ≤ 1

xα for 0 < x < ε and the estimate
obtained in (3.21)-(3.22) and estimate (4.9), we get

|Bεϕ(x)−Aεϕ(x)| ≤ sin απ

πxα

∫ x

0

ϕ(y) dy

(x− y)1−α
+ CMϕ(x) ≤ C1Mϕ(x).

From (4.13) we have

‖χ[0,ε](x)[Bεϕ(x)−Aεϕ(x)]‖Lp(·)[(0,b),%] ≤ C‖Mϕ‖Lp(·)[(0,ε),%] (4.14)

which tends to zero as ε → 0 by the boundedness of the maximal operator.
It remains to conclude that from (4.11) there follows (4.6) by (4.12) and

(4.14). ¤

4.3. The range Iα
a+

[
Lp(·)[(a, b), %]

]
of the fractional integration operator

In the next theorem, we derive necessary and sufficient conditions for the repre-
sentability of a function f(x) by the fractional integral of a function in Lp(·)[(a, b), %].

Theorem 4.4. Let −∞ < a < b < ∞ and p ∈ P(a, b)
⋂

w-Lip (a, b), let % be weight
of form (3.1) with µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b) and let conditions (3.19) be
satisfied.

In order that a function f(x) be representable as f = Iα
a+ϕ with ϕ ∈ Lp(·)[(a, b), %],

it is necessary and sufficient that f ∈ Lp(·)[(a, b), %] and there exists lim
ε→0

Aεf(x) in

Lp(·)[(a, b), %] where Aεf(x) is the function defined in (4.3)-(4.4).
This statement remains valid in the case b = ∞, if the condition f ∈ Lp(·)[(a, b), %]

is replaced by
f(x)

(x− a)α
∈ Lp(·)[(a,∞), %] (4.15)

and we additionally assume that µ, ν ∈ w-Lip∞(a,∞) and conditions (3.6) and
(3.20) hold.

Proof. Necessity part is a consequence of Theorems (4.3), (3.8) and (2.6) because
by (4.2) we have

Aεf = Dα
a+,εf −

f(x)
Γ(1− α)(x− a)α

.

The necessity of condition (4.15) follows from (3.18).

Sufficiency part. Let a = 0 for simplicity. Given f ∈ Lp(·)[(0, b), %], we intro-
duce the functions

Bεf(x) =
f(x)

Γ(1− α)(x− a)α
+

α

Γ(1− α)
Aεf (4.16)
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where the limit lim
ε→0

Aεf(x) exists in Lp(·)[(0, b), %] by assumption. Observe that
f(x)

Γ(1−α)(x−a)α ∈ Lp(·)[(a, b), %], which follows from the fact that Aεf ∈ Lp(·)[(a, b), %],
see (4.4). After some transformations we arrive at the representation

Iα
0+Bεf(x) =





x
ε∫

0

K(y)f(x− εy)dy, ε ≤ x ≤ b;

sin απ
πεα

x∫

0

f(t)
(x− t)1−α

dt, 0 ≤ x ≤ ε.

(4.17)

similar to (4.7), see details of those transformations in [19], p. 229-230. Observe
that in [19] this representation was justified for f ∈ Lp with constant p; therefore
(4.17) is valid for “nice” functions dense in Lp(·)[(a, b), %] and consequently for all
f ∈ Lp(·)[(a, b), %] thanks to the boundedness of all the operators involved in (4.17)
(with fixed ε > 0, see the arguments in the proof of Theorem (4.3) after (4.8)) .

Since {Aεf} is convergent in Lp(·)[(a, b), %] as ε → 0, then Bεf(x) converges
in Lp(·)[(a, b), %] to ϕ(x) ∈ Lp(·)[(a, b), %], where

ϕ(x) =
f(x)

Γ(1− α)(x− a)α
+

α

Γ(1− α)
lim
ε→0

Aεϕ(x).

We need to show that f = Iα
0+ϕ. Since the operator Iα

a+ is continuous in
Lp(·)[(a, b), %] by Theorem (2.6), it is sufficient to prove that f = lim

ε→0
Iα
0+Bεf . To

this end, we have to show that the right-hand side of (4.17) tends to f as ε → 0
in the norm of the space Lp(·)[(a, b), %], which is done exactly as in the proof of
Theorem (4.3) thanks to the coincidence of the right-hand sides of (4.17) and
(4.7). ¤

4.4. On the interpretation of the range Iα
a+

[
Lp(·)[(a, b), %]

]
as fractional Sobolev

type

In this subsection we show that the range Iα
a+

[
Lp(·)[(a, b), %]

]
of the fractional

integration operator coincides with the fractional Sobolev space on Lα,p(·)[(a, b), %]
defined as the space of restrictions of Bessel potentials onto [a, b], see Theorem
(4.15).

First we observe that the ranges of the left-hand sided and right-hand sided
fractional integrals coincide under the appropriate assumptions. Namely, the fol-
lowing theorem is valid.

Theorem 4.5. Let 0 < α < 1, p ∈ P(a, b)
⋂

w-Lip (a, b),−∞ < a < b < ∞, and let
% be weight of form (3.1) with µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b). Then

Iα
a+[Lp(·)[(a, b), %]] = Iα

b−[Lp(·)[(a, b), %]], (4.18)
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under the conditions

α− 1
p(a)

< µ(a) <
1

p′(a)
, α− 1

p(b)
< ν(b) <

1
p′(b)

· (4.19)

Proof. The coincidence of the ranges stated in (4.18) under conditions (4.19) fol-
lows from the known ([19], p. 206) formulas

Iα
b−ϕ = Iα

a+

(
cos aπϕ + sin απr−α

a Srα
a ϕ

)
, (4.20)

Iα
a+ϕ = Iα

b−
(
cos aπϕ− sin απr−α

b Srα
b ϕ

)
(4.21)

where r±α
a (x) = (x− a)±α and r±α

b (x) = (b− x)±α. Formulas (4.20)-(4.21) being
valid for ϕ ∈ C∞0 , are extended to the whole space Lp(·)[(a, b), %] by continuity of
the operators involved. Indeed, the weighted singular operators r−α

a Srα
a , r−α

b Srα
b

are bounded in Lp(·)[(a, b), %] by Theorem (2.7) when −1/p(a) < µ(a)−α < 1/p′(a)
and −1/p(b) < ν(b) − α < 1/p′(b), and the fractional integrals Iα

a+ and Iα
b− are

bounded in Lp(·)[(a, b), %] by Theorem (2.6). ¤

Corollary 4.6. Let p ∈ P(a, b)
⋂

w-Lip (a, b). In the non-weighted case, the coinci-
dence

Iα
a+[Lp(·)(a, b)] = Iα

b−[Lp(·)(a, b)], (4.22)

holds if 0 < α < min{ 1
p(a) ,

1
p(b)}.

Similarly to Theorem (4.5), the following statement is proved for the whole
line R1 with the help of the known relations ([19], p. 202) between the left-hand-
sided and right-hand-sided fractional integrals via the singular operator.

Theorem 4.7. Let 0 < α < 1, let p ∈ P(R1)
⋂

w-Lip (R1) satisfy condition (3.6)
and let %(x) = |x − a|µ(x)|b − x|ν(x) with µ ∈ w-Lipa(R1)

⋂
w-Lip∞(R1) and

ν ∈ w-Lipb(R1)
⋂

w-Lip∞(R1). Then under conditions (4.19) and the condition

α− 1
p∞

< µ(∞) + ν(∞) <
1

p′∞
the following coincidence of the ranges holds

Iα
+[Lp(·)(R1, %)] = Iα

−[Lp(·)(R1, %)] = Iα[Lp(·)(R1, %)], (4.23)

where Iα is the one-dimensional Riesz operator.

The space of Bessel potentials is known as the range of the Bessel operator:

Bα[Lp(·)(Rn)] = {f : f = Bαϕ, ϕ ∈ Lp(·)(Rn)}, α ≥ 0,

where Bα is the Bessel potential operator which reduces to multiplication by(
1 + |ξ|2)−

α
2 in Fourier transforms; we refer to [2] for the study of these fractional

type spaces with variable exponent, including the characterization of Bα[Lp(·)(Rn)]
in terms of convergence of some hypersingular integrals.
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Definition 4.8. For a domain Ω ⊂ Rn we define the fractional Sobolev type space
Lα,p(·)(Ω) as the space of restrictions onto Ω of functions f ∈ Bα[Lep(·)(Rn)] with
some extension p̃(·) of p(·) from Ω to Rn:

Lα,p(·)(Ω) = Bα[Lep(·)(Rn)]
∣∣∣∣
Ω

(4.24)

and for f = Bϕ

∣∣∣∣
Ω

define the norm by

‖f‖Lα,p(·)(Ω) = inf ‖ϕ‖Lep(·)(Rn)

where the infimum is taken with respect to all possible ϕ in the representation

f = Bϕ

∣∣∣∣
Ω

and all the extensions p̃ .

We need a similar weighted space. To avoid complications with extension of
arbitrary weights from Ω to Rn, we restrict ourselves to the one-dimensional case
and power-type weights and use their extensions in the form

%̃(x) =
{ |x− a|eµ(x)|b− x|eν(x) when b < ∞
|x− a|eµ(x)(1 + |x|)eν(x) when b = ∞ , (4.25)

Definition 4.9. Let −∞ < a < b ≤ ∞. We define the fractional Sobolev type space
Lα,p(·)[(a, b), %] with weight (3.1) as

Lα,p(·)[(a, b), %]) = Bα[Lep(·)(R1, %̃)]

∣∣∣∣∣
(a,b)

(4.26)

where %̃ is an extension of form (4.25) with µ̃ ∈ w-Lipa(R1)
⋂

w-Lip∞(R1),

ν̃ ∈ w-Lipb(R1)
⋂

w-Lip∞(R1), and for f = Bϕ

∣∣∣∣
(a,b)

define the norm by

‖f‖Lα,p(·)((a,b),%) = inf ‖ϕ‖Lep(·)(R1,e%)

where the infimum is taken with respect to all possible ϕ in the representation

f = Bϕ

∣∣∣∣
(a,b)

and all the extensions p̃, µ̃ and ν̃.

We refer to [3] for the notion of Banach function spaces and to [19], Section
26, for the notion of the Riesz fractional differentiation Dα and its truncation Dα

ε ,
used in the following result for the Riesz and Bessel potentials.

Theorem 4.10. Let X = X(Rn) be a Banach function space, satisfying the assump-
tions

i) C∞0 is dense in X;
ii) the maximal operator M is bounded in X;
iii) Iαf(x) converges absolutely for almost all x for every f ∈ X and

(1 + |x|)−n−αIαf(x) ∈ L1(Rn).
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Then
Bα(X) = X

⋂
Iα(X) = {f ∈ X : Dαf = lim

ε→0
(X)

Dα
ε f ∈ X}. (4.27)

Proof. Theorem (4.10) was proved in [2] for the case of X = Lp(·)(Rn). The analysis
of the proof given in [2] shows that conditions i)-iii) are sufficient for that proof to
hold within the frameworks of abstract Banach function spaces. ¤

As a corollary to Theorem (4.10), we obtain the following result for the case
X = Lp(·)(Rn, %), important for the sequel.

Theorem 4.11. Let Ω = Rn, let p ∈ P(Rn)
⋂

w-Lip (Rn) satisfy condition (3.6) in
Rn, let % be weight of form (2.8) with the exponents satisfying condition (2.9) and
the condition

α− n

p∞
< γ +

m∑

k=1

βk <
n

p′∞
. (4.28)

Then
Lα,p(·)(Rn, %) = Lp(·)(Rn, %)

⋂
Iα[Lp(·)(Rn, %)]

= {f ∈ Lp(·)(Rn, %) : Dαf ∈ Lp(·)(Rn, %)}. (4.29)

Proof. Theorem (4.11) follows from Theorem (4.10). Indeed, condition i) of The-
orem (4.10) for the space X = Lp(·)(Rn, %) is fulfilled by Theorem (2.1), condition
ii) is satisfied by Theorem (2.3). Condition iii) is checked directly due to the known
pointwise estimate

|Iαϕ(x)| ≤ CMϕ(x) + C

∫

|x−y|>1

|ϕ(y)| dy

|x− y|n−α
,

where the second term is easily estimated by direct application of the Hölder
inequality. ¤

The next auxiliary Theorems (4.12) and (4.14) provide preliminary facts nec-
essary for the main result of this subsection given in Theorem (4.15).

Theorem 4.12. Let ϕ ∈ Lp(·)(R1, %), where p ∈ P1(R1
+)

⋂
w-Lip0(R1)

⋂
w-Lip∞(R1

+),
%(x) = |x|µ(x)|x−b|ν(x), 0 < b < ∞, where µ ∈ w-Lip0(R1

+)
⋂

w-Lip∞(R1
+), ν ∈ w-

Lipb(R1
+)

⋂
w-Lip∞(R1

+). Then

χ[0,∞]I
α
+ϕ = Iα

+ψ (4.30)

where

ψ(x) =





ϕ(x) + sin απ
π

∫ ∞

0

(
t

x

)α
ϕ(−t)
x + t

dt, x > 0

0, x < 0
∈ Lp(·)(R1, %), (4.31)

if the following conditions are satisfied:
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− 1
p(b)

< ν(b) <
1

p′(b)
, α− 1

p(0)
< µ(0) <

1
p′(0)

(4.32)

and
α− 1

p(∞)
< µ(∞) + ν(∞) <

1
p′(∞)

. (4.33)

Proof. Representation (4.30)-(4.31) is known in case p is constant and µ ≡ ν ≡ 0,
see [19], p. 211. By Theorem (2.1), the set C∞0 (R1) is dense in the space Lp(·)(R1, %).
Therefore, we need to prove that the operator

H−αϕ(x) =
∫ ∞

0

(
t

x

)α
ϕ(t)
x + t

dt

involved in (4.31) and studied in Theorem (3.6), is bounded from the space Lp(·)(R1
+, %)

into the space Lp(·)(R1
+, %), where p(x) = p(−x), %(x) = %(−x). This boundedness

does not follow formally from Theorem (3.6), because % 6= %. However, we ob-
serve that |x − b| ∼ |x + b| for x > 2b and 0 < x < b

2 . So the estimation of
∞∫
0

|%(x)H−αϕ(x)|p(x) dx is reduced to Theorem (3.6) when integrating over (0, b
2 )

and (2b,∞), while for x ∈ ( b
2 , 2b) the estimation is trivial by the Hölder inequality.

Having proved that ψ ∈ Lp(·)(R1, %), we can now proceed exactly as in
[19],Theorem 11.6. The main point is the interchange of integrals as in [19], pos-
sible by Fubini’s theorem, because the double integral Iα

0+(H−αϕ) is absolutely
convergent, which is a matter of direct verification.

¤

Corollary 4.13. Let ϕ ∈ Lp(·)(R1, %), where %(x) = |x − a|µ(x)|b − x|ν(x) with
µ ∈ w-Lipa(R1)

⋂
w-Lip∞(R1) and ν ∈ w-Lipb(R1)

⋂
w-Lip∞(R1). Under the

conditions

α− 1
p(a)

< µ(a) <
1

p′(a)
, α− 1

p(b)
< ν(b) <

1
p′(b)

(4.34)

and condition (4.33), the relation

χ(a,b)I
α
+ϕ = Iα

+ψ

holds, where ψ ∈ Lp(·)(R1, %).

Let f∗ be the zero extension of a function f defined on (a, b) to R1. The
following theorem provides sufficient conditions for f∗ to be representable by frac-
tional integral on R1 if f has such a property on (a, b). To this end, we need to deal
with some extension of the exponent p(x) and the weight %(x) to the whole line R1.
In Theorem (4.14) we use the extension p̃(x) satisfying the following conditions

p̃ ∈ P1(R1) and p̃(∞) = p̃(b) = p(b), (4.35)

p̃ ∈ w−Lipb (R1)
⋂

w−Lip∞ (R1), (4.36)
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and the extension (4.25) of the weight satisfying the conditions

µ̃ ∈ w−Lipa(R1)
⋂

w−Lip∞(R1) and ν̃ ∈ w−Lipb(R1)
⋂

w−Lip∞(R1),
(4.37)

µ̃(∞) + ν̃(∞)− α <
1

p̃′(∞)
. (4.38)

Theorem 4.14. Let −∞ < a < b < ∞ and let f(x) = Iα
a+ϕ, x ∈ (a, b), with

ϕ ∈ Lp(·)((a, b), %), where p ∈ P1(a, b)
⋂

w-Lipb(a, b), %(x) is weight (3.1) with
µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b) and

µ(a) <
1

p′(a)
, − 1

p(b)
< ν(b)− α <

1
p′(b)

. (4.39)

Then
f∗(x) = (Iα

+ϕ1)(x), x ∈ R1 (4.40)

where ϕ1(x) ∈ Lep(·)(R1, %̃) is given by

ϕ1(x) =





0, x < a
ϕ(x), a < x < b;
− α

Γ(1−α)

∫ b

a
f(t)dt

(x−t)1+α = : g(x), x > b.
(4.41)

and p̃(x) and %̃(x) are arbitrary extensions satisfying conditions (4.35)-(4.38).

Proof. The representation itself (4.40)-(4.41) is known, in the case of constant p,
see [19], p. 236. Thus it is valid for C∞0 -functions. We only have to show that
ϕ1 ∈ Lep(·)(R1, %̃). It suffices to show that g(x) ∈ Lep(·)[(b,∞), %̃]. It is known (see
(13.33) in [19]) that g(x) has the form

g(x) = − sinαπ

π

∫ b

a

(
b− τ

x− b

)α
ϕ(τ)dτ

x− τ
=: Aα

1 ϕ. (4.42)

To check that the operator Aα
1 is bounded from Lp(·)[(a, b), %] to Lep(·)[(b,∞), %̃], it

suffices to show that
∞∫

b

|Aψ(x)|ep(x) dx ≤ C < ∞

for all ψ with ‖ψ‖Lp(·)(a,b) ≤ 1, where

Aψ(x) = (x−a)eµ(x)(x− b)eν(x)

∫ b

a

(
b− τ

x− b

)α
ψ(τ)dτ

(x− τ)(τ − a)µ(a)(b− τ)ν(b)
, x > b.

We have
∞∫

b

|Aψ(x)|ep(x) dx =

2b∫

b

|Aψ(x)|ep(x) dx +

∞∫

2b

|Aψ(x)|ep(x) dx =: U1 + U2,
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For U1 we obtain

U1 ≤ C

2b∫

b

(x− b)[ν(b)−α]p(b)dx

∣∣∣∣∣∣

c∫

a

|ψ(τ)| dτ

(τ − a)µ(a)

∣∣∣∣∣∣

ep(x)

+C

2b∫

b

(x− b)[ν(b)−α]p(b)dx

∣∣∣∣∣∣

b∫

c

|ψ(τ)| dτ

(b− τ)ν(b)−α(x− τ)

∣∣∣∣∣∣

ep(x)

where a < c < b. The first term here is easily estimated via ‖ψ‖Lp(·)(a,b) by the
Hölder inequality under conditions (4.39). The second term has the form

C

b∫

0

x[ν(b)−α]p(b)dx

∣∣∣∣∣∣

b−c∫

0

|ψ(b− t)| dt

tν(b)−α(t + x)

∣∣∣∣∣∣

ep(x+b)

which is nothing else but the p̃(·+ b)-modular for the operator of the type (3.14)),
so it is easily treated by means of Theorem (3.6) with Remark (3.7) taken into
account.

Finally, for U2 we have

U2 ≤ C

∞∫

2b

dx

(1 + |x|)[1+α−eµ(∞)−eν(∞)]p(∞)

∣∣∣∣∣∣

b∫

a

|ψ(τ)| dτ

(τ − a)µ(a)(b− τ)ν(b)−α

∣∣∣∣∣∣

ep(x)

where it remains to make use of the Hölder inequality.
¤

Theorem 4.15. Let −∞ < a < b < ∞, p ∈ P(a, b)
⋂

w-Lip (a, b) and %(x) =
(x− a)µ(x)(b− x)ν(x), where µ ∈ w-Lipa(a, b), ν ∈ w-Lipb(a, b). Then

Iα
a+

[
Lp(·)[(a, b), %]

]
= Lα,p(·)[(a, b), %] (4.43)

under conditions (4.19).

Proof. Let f ∈ Lα,p(·)[(a, b), %]. Then by the definition in (4.26) there exists an
extension p̃ of p and extensions µ̃, ν̃ of the exponents of the weight to R1 and a
function g ∈ Lα,ep(·)(R1, %̃) such that

f(x) = g(x) for a ≤ x ≤ b.

By Theorem (4.11), g ∈ Iα[Lep(·)(R1, %̃)] and consequently g ∈ Iα
+[Lep(·)(R1, %̃)] by

Theorem (4.7), which implies that f ∈ Iα
a+[Lp(·)(a, b), %] by Corollary (4.13).

Conversely, let f ∈ Iα
a+

[
Lp(·)[(a, b), %]

]
. Let f∗ be the continuation of this

function by zero beyond the interval [a, b] and let p̃ be the continuation of p to R1

satisfying conditions ii)-iii) of Theorem (4.14). By Theorem (4.14) we have that
f∗ ∈ Iα[Lep(·)(R1, %)] and because f∗ ∈ Lep(·)(R1, %), by Theorem (4.11) we have
that f∗ ∈ Lα,ep(·)(R1, %). Hence f ∈ Lα,p(·) [(a, b), %] .

¤
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5. Appendix

For simplicity we prove the following technical lemma for the case of a bounded
set Ω in Rn, the case of unbounded sets needs some technical modifications. We
deal with the weights satisfying the condition

wk ∈ Lp(·)(Ω),
1

wk
∈ Lp′(·)(Ω), k = 1, 2, ..., m. (5.1)

We denote

Ωk = {x ∈ Ω : wk(x) = 0} ∪ {x ∈ Ω : wk(x) = ∞}, k = 1, ...,m.

From (5.1) it follows that |Ωk| = 0. We suppose that

Ωk

⋂
Ωj = ∅ for all j 6= k. (5.2)

Lemma 5.1. Let Ω be an open bounded set in Rn, wk(x) be weights satisfying the
assumptions (5.1) and (5.2) and let a linear operator A fulfill the conditions:
i) it is bounded in the spaces Lp(·)(Ω, wk), k = 1, . . . , m,
ii) the operator χE1AχE2 is bounded from the spaces Lp(·)(Ω, wk), k = 1, ..., m,
into L∞(Ω) for all disjoint sets E1, E2 ⊂ Ω such that E1

⋂
E2 = ∅.

Then the operator A is bounded in the space Lp(·)(Ω, w) with w(x) =
m∏

k=1

wk(x).

Proof. We have to prove the boundedness of the operator wA 1
w in the space

Lp(·)(Ω). We will make use of a corresponding partition of unity 1 =
m∑

k=1

ak(x). To

this end, we consider some neighborhoods Ek and Fk of the sets Ωk, that is, some
open sets Ek and Fk such that

Ωk ⊂ Ek ⊂ Ek ⊂ Fk ⊂ Ω and F k

⋂
F j = ∅ for all k 6= j. (5.3)

Such neighborhoods exist by assumption (5.2). We choose functions ak(x) such
that ak(x) ≡ 1 on Ek and ak(x) ≡ 0 on Ω\Fk, so that ak(x)[wj(x)]±1 ≡ 0 on
Ω\Fk if k 6= j. Then

w(x)
w(y)

=
m∑

k=1

wk(x)bk(x)
m∑

j=1

cj(y)
wj(y)

where bk(x) and cj(y) are bounded functions supported in the same neighborhoods
where the functions ak(x) and aj(y) were. Then

wA
f

w
=

m∑

k=1

bkwkA
ckf

wk
+

m∑
k,j=1
k 6=j

bkwkA
cjf

wj
.

The first sum contains operators bounded in Lp(·)(Ω) by assumption i). It remains
to obtain the boundedness of the operators

Ajkf = bkwkA
cjf

wj
, j 6= k.
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We have

Ω = Ek ∪ Ej ∪ Ejk with Ekj = Ω\(Ek ∪ Ej).

We denote for brevity χk = χEk
, χj = χEj

, χkj = χEkj
. It is easily seen that

cjχk ≡ 0 and bkχj ≡ 0.

Taking this into account, we represent the operator Ajk = (χk +χj +χkj)Ajk(χk +

χj + χkj) in the form Ajk =
4∑

i=1

Bi where

B1 = χkjwkbkAcj
χkj

wj
, B2 = χkwkbkAcj

χkj

wj
,

B3 = χkjwkbkAcj
χj

wj
, B4 = χkwkbkAcj

χj

wj
.

The operators B1, B2 and B3, containing the factor χjk are bounded in Lp(·)(Ω).
This follows from condition i) because χkj(x)wk(x) and χkj(x)

wj(x) may be represented,
whenever necessary, as

χkj(x)wk(x) = u(x)wj(x) and
χjk(x)
wj(x)

=
v(x)

wk(x)
,

where u and v are bounded functions.
Finally, for the operator B4 we observe that from condition ii) it follows that

the function χkbkAcj
χj

wj
f is bounded for f ∈ Lp(·)(Ω) and then it suffices to refer

to the fact that wk ∈ Lp(·)(Ω).
¤

Remark 5.2. An integral operator Af(x) =
∫
Ω

K(x, y)f(y) dy satisfies condition ii)

of Lemma (5.1) if sup
x,y:|x−y|≥ε

|K(x, y)| < ∞ for any ε > 0, and the weights satisfy

the second assumption in (5.1).
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