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Abstract. Within the frameworks of weighted Lebesgue spaces with variable
exponent, we give a characterization of the range of the one-dimensional
Riemann-Liouville fractional integral operator in terms of convergence of the
corresponding hypersingular integrals. We also show that this range coincides
with the weighted Sobolev-type space L*?")[(a,b), o).

Mathematics Subject Classification (2000). Primary 46E30; Secondary 47B38.

Keywords. fractional integrals, Riesz potentials, Bessel potentials, variable
exponent spaces, Marchaud fractional derivative.

1. Introduction

Recently the spaces I*[LP()(R")] and B*[LP()(R™)] of Riesz and Bessel potential
spaces were studied within the frameworks of variable exponents p(-) in papers [1]
and [2] in the case of the whole space R™. In particular, the following characteri-
zation of the space of Bessel potentials was obtained in [2]:

BLPOR™) = LPOR™Y) (I LPOR™)] = {f € LPOR") : D*f € LPO(R™)},
(1.1)
where D f is the Riesz fractional derivative.

A similar characterization for potentials over a domain in R™ remains an open
question even in the case of constant p. For an analogue of the Riesz derivative
adjusted for domains in R™ we refer to [14].

In this paper we solve such a problem of characterization in the one-dimensional
case n = 1. We study the range of fractional integrals over the space L”(')(Q7 0)
with variable exponent p(-) and a power type weight o, where Q = (a,b) is a
finite or infinite interval. We obtain a characterization of this range in terms of
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convergence of the corresponding Marchaud derivatives and show that this range
may be also obtained as the restriction on 2 of Bessel potentials with densities in
LPC) (9, 0). We refer to [19], p. 229-232, for such results in the non-weighted case
and constant p.

Note that an increasing interest to the variable exponent Lebesgue spaces
LP0) observed last years was caused by possible applications (elasticity theory, fluid
mechanics, differential equations, see for example [15]). We refer to papers [20] and
[13] for basics on the Lebesgue spaces with variable exponents and to the surveys
[6], [10], [18] on harmonic analysis in such spaces. One of the breakthrough results
obtained for variable p(x) was the statement on the boundedness of the Hardy-
Littlewood maximal operator in the generalized Lebesgue space LP() under certain
conditions on p(x), see [4] and the further development in the above survey papers.
The importance of the boundedness of the maximal operator is known due to the
fact that many convolution operators occurred in applications may be dominated
by the maximal operator. This tool is also used in this paper.

Let 0 < @ < 1 and z € (a,b). We study the ranges 1% [LP()[(a,b), ¢]] of the
Riemann-Liouville fractional integration operators
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over weighted Lebesgue spaces LP()[(a, b), o] with variable exponent p(z). We show
that the ranges of operators (1.2) coincide (Theorem (4.5)) under natural assump-
tions and obtain necessary and sufficient conditions for a function f to belong to
this range (Theorem (4.4)). Finally we show that this range coincides with the
Sobolev type space L*P()[(a,b), o] (Theorem (4.15)). When developing necessary
tools for the proof, we also obtain results of independent interest for Hardy-type
operators (Theorems (3.4), (3.8)) and for singular operators with fixed singularity
(Theorem (3.6)).

A non-weighted result of a type of Theorem (4.15) for variable exponents
was obtained in [1] and [2] for the Riesz potential operator in the case of the
whole space 2 = R™. We deal not with the Riesz potential operator, but with the
fractional integration operator Iy, which has the unilateral nature. However the
main novelty in comparison with [1] and [2] is not only in a different nature of the
operator or admission of the weight, but in the fact that the case of a domain in
R™, when we may have an essential influence of the boundary, is more difficult.
We show how it is possible to characterize this range in the one-dimensional case
with Q = (a,b), —00 < a < b < oo. In comparison with [1] and [2], the results
obtained in this paper require different terms and methods.

Notation
|| is the Lebesgue measure of a set @ CR"™, B(z,7) ={y e R": |z —y| <r};

o is a weight, i.e., an a.e. finite and positive function;

P() and P1(9), see (2.1)-(2.2);
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w-Lip (Q), see (2.3);

w-Lipg, (), see (3.2);

M is the maximal operator, see (2.7);

P,(Q) is the set of exponents p € P(2) such that M is bounded in LP()(Q, g).

2. Preliminaries

2.1. On spaces LP(") with variable exponents
Although our main results concern the one-dimensional case n = 1, some auxiliary
statements below are given for the multidimensional case. We refer to [13], [16] for
details on variable Lebesgue spaces over domains in R”, but give some necessary
definitions. For a measurable function p : Q@ — [1,00), where Q C R" is an open
set, we put
pT =pT(Q) :=esssupp(z) and p~ =p (Q) :=essinf p(z).
€ €

In the sequel we use the notation

PQ):={peLl>®Q):1<p <px)<p" <o} (2.1)
and

Pu@) = {p € L¥(Q) : 1 < p~ < pla) < p* < o0} (2.2)

The generalized Lebesgue space LP()(Q) with variable exponent is introduced

as the set of functions f on € for which

L(f) = /Q 1 (2)[") da < oo,

By w-Lip (Q), for bounded 2, we denote the class of exponents p € L™ (Q) satis-
fying the log-condition

Ip(z) — p(y)| < <

1
_— -yl < = Q. 2.
< ey vy mve (23)

By p'(x) we denote the conjugate exponent: ﬁw) + ﬁ =1.

The weighted Lebesgue space LP() (€, o) is defined as the set of all measurable
on 2 functions f for which

. of
[ fllLror 2,0 = lofllLror (@) = inf {)\ >0:1, <)\> < 1} < o0

In [11] the following theorem was proved.

Theorem 2.1. Let p € P;(R"). The class C§°(R™) is dense in the space LPC)(R™, o)
with an a.e. positive weight o if

[o(2)]"™) € Lioo(R"). (2.4)

Observe that condition ((2.4)) implies that the indicator function of sets with
finite measure belong to LP)(R™, g).
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Lemma 2.2. Let Q be a bounded domain in R™ and p € Py (Q) (w-Lip(Q). There
exists an extension p(x) of p(x) to the whole space R™ such that p(x) = p(z) for
z € Q, pePR") Nw-Lip(R"™), p(x) is constant outside some large fized ball and

PPRY)=p(Q; PR =pT(Q) (2.5)

Proof. Tt is known in general that any continuous function defined on an arbitrary
closed set in R™ may be extended to the whole space R™ with preservation of its
continuity modulus, see [21], Ch.6, section 2. This extension p may be realized
in such a way that (2.5) is valid, see for example, [5], Theorem 4.2. To get an
extension constant outside some ball, it suffices to arrange a new extension in the
form

_ T\ ~ x

g -1 () [ (3)]

where C' is any constant such that p~ () < C < p*(Q) and n(x) is any C§°-

function with support in the ball |x| < 2 and equal identically to 1 in the ball

|| < 1, and R is sufficiently large so that @ C {z € R™ : |z| < R}. (Then
D«(x) = p(z) for x € Q and p.(x) = C for |z| > 2R).

O

Everywhere in the sequel, when (2 is unbounded, we assume that there exists
the limit p(co) : lim p(x). In the case p(z) = const beyond some big ball, we use
r—00
the notation p(z) = poo(= p(c0)), |z| > R.
In case of unbounded domains we will also use the decay condition

C
|p($) —p(oo)| < m, x €. (26)

2.2. On maximal and convolution operators in L?()

Let
1
M =sup ——— d 2.7
(Mep)(z) SUP B ] B(meIw(y)ly (2.7)

be the Hardy-Littlewood maximal operator. The following theorem for the weight

o@) =1+ [[lz—2xl®, — axeQ k=12..m (2.8)
k=1

was in particular proved in [12] when € is bounded and in [9], when € is unbounded.

Theorem 2.3. Let p € P(Q)(w-Lip () and ¢ be weight of form (2.8).
I) When Q is bounded, the mazimal operator is bounded in LP\) (S, o) if and only

if

n n
< Bi< . k=1,2,...m. 2.9
oen) <P = P (29)

II) Let Q2 be unbounded and p be constant outside some ball of large radius R > 0:
p() = Poo, |z| > R. The mazimal operator is bounded in LPC) (S, o) if and only
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if condition (2.9) and the condition

n
/

R D (2.10)
P £y

o0 oo

are satisfied.

By P,(€2) we denote the set os exponents p € P(£2) such that M is bounded
in LPO)(Q, o).

Let QQ = R"™. For dilatations
1 T —
K@) =5 [ & (y) F(y)dy

3

the following weighted statement is valid.

Theorem 2.4. Let ¢ be a weight, o~ ' € 74 p € P1(R™) and k(z) be an integrable

loc 7

function on R™ with A := / sup |k(y)|dz < co. Then

R™ [y|>]|=|
i) supKef(2)| < AMS)(@)  forall  feL'OR"0),
e
so that
i) sup K. f(z) < Cillfllprey (e, 0
e>0 LrO) (R™, o)

in the case p(-) € Po(R™). If in addition/ k(y)dy =1 and o(x) satisfies condition
(2.4), then also

ii) Kef(e) = f
as € — 0 in LPO(R™, o) and almost everywhere.
Proof. For the non-weighted case the statement of the theorem is known, see [4].
Statement i) can be proved exactly as in [8] since the step functions are dense in
LPO)(R™, p); statement i) is an immediate consequence of i).

To prove i), observe that C§°(R™) is dense in the space LP()(R™, o) by

Theorem (2.1). So splitting f = f1 + fe, where f1 € C§°(R") and || fz || vy (mn,0) <
€, we have

IKef = fllioror@n,ey < IKefit = fill ooy @n,o) + 1Kefe = fell oo mn o)
= Il,s + 12,8'
For I, . we obtain
Do < [Kefe]| gy + Weliro@n o) < Clfellnogng < Co - (211)
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The a.e. convergence K. f; 2% f; ase — 0 with f; € C§°(R") is obvious, see
[21]. The boundedness of the maximal operator implies that I,[o(M f)] < co. Using
i) and Lebesgue dominated convergence theorem we have that lim._.o I),[o(K. f1 —
f1)] = 0, thus showing that I . 2% 0. Thus we have convergence in LP()(R”, p)-
norm and a.e. convergence. O

By Theorem (2.4), the boundedness in LP()(R™, o) of the maximal operator
guarantees the boundedness of convolution operators

Af(z) = [ k(y)f(z —y)dy
R[

whose kernels k(z) have decreasing integrable dominants. However, the bound-

edness of the maximal operator requires in general the local log-condition (2.3).

Meanwhile, for rather “nice” kernels k(z) this condition may be avoided. Namely,

in [7] the following result was obtained.

Theorem 2.5. Let k(y) satisfy the estimate |k(y)| < W, y € R™ for some
1 1

v>n (1 ~ 5y T W) . Then the convolution operator A is bounded from the

space LPC) (R™) to the space L) (R™) under the only assumption that the exponents
p,q € P1(R™) satisfy decay condition (2.6) and q(c0) > p(00).

2.3. Boundedness of potential and singular operators in weighted L”()-spaces

The following result is known, see [12], where Theorem (2.6) was stated for the
single power weight; its validity for a finite product of power weights is reduced to
the case of a single weight by the standard introduction of the unity partition. For
the completeness of presentation we give details of such a reduction in Appendix,
see Section (5).

Theorem 2.6. Let Q C R™ be a bounded domain, let o(z) € L*°(Q) and essinfq a(z) >
0, let p € P(Q) N w-Lip (Q) and let o be weight of form (2.8) with x) € Q. Under
condition (2.9) the operator

of- fy)
Ig( )f(l‘) = Q(x)/ﬂ Q(ZJ)‘QT _ y|n—0¢(x) dy

is bounded in the space LP)(€).

The following theorem on the boundedness of the singular operator

b
/@(t) ;it’ z € (a,b)

t—

3=

Se(t) =

was proved in [11].
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Theorem 2.7. Let —0c0 < a < b < oo and let p € P(a,b)(\w-Lip(a,b). The
operator S is bounded in the space LP()[(a,b), 0], where o is weight (2.8) with
xp € [a,b], k=1,2,...,m, if and only if
1 1
< Bp<——, k=1,2,...,m.
p(zk)

P (k)

3. Hardy-type inequalities in variable exponent setting

3.1. Definition and assumptions
Let now n = 1 and Q = [a,b], where —0o < a < b < 00, and consider the space
LPO)[(a,b), o] with the weight

o) = { |z — at®)|p — 2V when b < oo

x — a|P®) (1 + |z (@) when b=o00 '’ (3.1)
| |

where the exponents u(x),v(z) are bounded functions which have finite limits
wu(a) = lim p(z),v(b) = 1in}) v(x). We need the following notation for the class of
r—a €Tr—

exponents.

Definition 3.1. Let Q = (a,b), where —oco < a < b < o0 and let zg € [a,b]. By
w-Lipg, (£2) we denote the class

w—Lip,, (Q) = {u € L™(Q) : |u(x) — p(xo)] < Ll, | — x| < ;}, (3.2)

“In
|z—z0]

in case xg # 0o, and

w—Lipa () = {u € L) : |u(a) — p(oo)]| < ln@ﬁl)} (3.3)

For p1 € w-Lipg(a, b) [ w-Lipy(a, b) with —co < a < b < co one has
|z — a|t @b — 2”@ x|z — a|' Db — z|"®). (3.4)
Similarly, for pu € w-Lip,(RY) N w-Lipy(R) () w-Lipso (RY)
|z — a|u(ar) b — x|tl(w) ~ |z — a‘u(a)“} _ x|V(b)(1 + ‘x|)u(00)+l'(00)7u(a)w(b). (3.5)

Remark 3.2. From Theorem (2.1) it is easy to derive that the class C§°((a,b))
of infinitely differentiable functions with support in (a,b), —co < a < b < ©©
is dense in the space LP()[(a,b), o] with the weight (3.1), if p € Pi(a,b) and
pu(a)p(a) > =1, v(b)p(b) > —1.

Everywhere in the sequel we assume that

p(T) = poo = const  for large |z| > R in the case b= oc. (3.6)
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3.2. Hardy inequalities

The following proposition was proved in [7] (see Theorem 3.3 there).
Proposition 3.3. Let p,r € Py(RL) N w-Lipo(RL) Nw-Lipso(RL),

p(0) =7(0) and p(oco) = r(oo). (3.7)
and o, 3 € w-Lipo(RY) Nw-Lips (RY), The Hardy operators

7{Of@):x()1()yﬁﬂ@ aml?%mf@)=$M)L S (38

are bounded from the space LPO)(RL) into L") (RY), if
1 1 1 1
— a(0) < —— and B(0) > ———, [Bloo) < ———.
)< i) =@ 7
We need the following weighted statement derived from Proposition (3.3).
Theorem 3.4. Let p,r € P1(R}) N w-Lipo(R) N w-Lipee (RL) and condition (3.7)
be satisfied, let 0 < b < oo and o(x) = x*®|z — b @) 2 > 0, where p € w-
Lipo(RL) Nw-Lipso (RY), v € w-Lipy(RY) N w-Lips (RL) and
1 1
——— < () < ——.
O

Let also o, € w-Lipo(RY) Nw-Lipso(RL). Then the Hardy-type inequalities

(3.9)

w1
pe= ya((y))d SOHf||Lp<->(R1+,g) (3.10)
LrO(R] ,0)
and
@ fy
™ )/yﬁ((y)zrldy < C||fHLp<->(R1+,Q) (3.11)
z L7O(RY o)
are valid if
1 1
a(0) +p(0) < , a(00) + p(00) + v(o0) < 3.12
(0)+4(0) < s, a(o0) 4 a(o0) +1(00) < s (312
and ) ,
S <P, s < B(00) +uloo) tvla) (313)
respectively.

Proof. For (3.10) we have to show that the operator

_ a(@)tp(z)—1,. _ 3v(z) ¢ f(y) dy

is bounded from LPC)(RY) to L™)(RY). We have
HBfHLT<'>(R}r) < HBf”Lr(-)(o,g) + HBf||L7-<.>(g’2b) +IBfl L) (2, 400)-
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For0 < 2 < §, wehave [Bf(a)| < Ca*© O [% L0 dy so that | Bf | e 0,2
is covered by Proposition (3.3). For % < x < 2b we have

2 2b
|Bf(2)] < Cla — b (/0 y(ﬁf )|()dy+[ |y|f(§’|)u|(b)dy>,

where both the integrals are finite by the Hélder inequality, and |z — b[¥(®) €
L™ ([%,2b]). Finally, when = > 2b, we get

2b T
a(oo)+pu(co)+r(oco)—1 |f( )l dy |f( )| dy ‘f(y)| dy
[Bf(x)| < Cx < /0 ORI R P OB P COEe e e es)

where the first two integrals are finite by the Holder inequality and g (00)Fp(o0)tr(o0)—1 ¢
L")(2b, 00), while the last term is dominated by g (°0)F#(ee)Fv(e) =1 [ Lf )l dy

yo(o0)+u(oo)+r (o)

which is covered by Proposition (3.3).
Similarly one can prove inequality (3.11). O

m
Remark 3.5. Theorem (3.4) is also valid for the weight o(z) = x#(®) ] |z—bg|"*®),

k=1
where 0 < by < by < --+ < by, < 00, under natural modification. Namely, besides
assumptions (3.12)-(3.13), the following conditions should be imposed

1
(bk) < Vk(bk) p/(bk;)’ k=1,. , ;3
04(00)‘1'#(00)"‘];’/1@(00) < 7(50) and  — () < 5(OO)+M(OO)+;VI€(OO)~

3.3. On singular operators with fixed singularity

Theorem 3.6. Let p,r € P1(RL) N w-Lipo(RL) N w-Lipso (RY) and condition (3.7)
be satisfied, let 0 < b < oo and o(zx) = x*® |z — " @) 2 > 0, where pu € w-
Lipo(RY) Nw-Lipso (RY) and v € w-Lipy(RL) Nw-Lipoo(RL). Let also f € w-
Lipo(RL) N w-Lipso (RY.). Then the operator

BO () e B [P
HPYp(x) :=x /0 150 (5 1 1) dt (3.14)

is bounded from the space LIJ(')(R}H 0) into LT(')(R}H 0), if

1 1

) p0)

< B(0) + p(0) < (3.15)

1
p'(0)

and

(3.16)
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Proof. Since

HP f(x) < HP f(z) + Hpf(x) (3.17)
where HP and Hp are the Hardy operators (3.8), Theorem (3.6) immediately
follows from Theorem (3.4). d

. Cra\B oot
Remark 3.7. In the case of a similar operator HPp(z) =: [; (%) %dt, O<a <
¢ < oo on a finite interval, Theorem (3.6) is valid without condition (3.16). Note

that a weaker version of Theorem (3.6) for a finite interval was proved in [12].

3.4. On a Hardy-Littlewood inequality

The following extension of the Hardy-Littlewood inequality to the case of variable
exponents is valid. In the case where the exponent p is constant, this inequality is
well known, being due to Hardy and Littlewood, see for instance [19], p. 104-106
(we take this opportunity to note that there are misprints on p. 104 in formulas
(5.45)-(5.46): there should be z~? instead of z*P). In the case of variable p,
an inequality of Hardy type for the multidimensional Riesz-type potentials over
bounded domains in R™ with the weight |x — 20| was proved in [17] in the case
0<a<n, a-— L) < B < . We admit infinite intervals (a,b) and thanks

p(wo p’(wo)
to the unilateral structure of the Riemann-Liouville integral we can consider an

. . . . i 1
arbitrary a > 0 and the weight exponents in the interval (—m7 m).

Theorem 3.8. Let a > 0, —00 < a < b < 00, p € P(a,b)(\w-Lip(a,b) and g be
weight of form (3.1) with p € w-Lipy(a,b),v € w-Lipy(a,b). Then

(z —1a)a / (x@—(?)clita <C H‘PHLP(-)[(Q,Z))’Q] (3.18)
“ LrO)[(a,b),e]
under the conditions:
1 1 1
-3 < pla) < O] <vb) < RT0k (3.19)

Inequality (3.18) is also valid in the case b = oo, if additionally p(z) satisfies as-
sumption (3.6), p, v € w-Lips(a,00) and the second condition in (3.19) is replaced

by
IR v(00) + p(oo) < € (3.20)

/
P S

Proof. The proof follows the principal idea in [17], but uses the unilateral nature
of the one-dimensional integration. Let a = 0 for simplicity. We continue ¢(t) as
zero beyond the interval (0,b) and have

x

xl(,o m:;HJE(x;t) p(t)dt, x>0, (3.21)
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a—1
where L(§) = { €7, €0 ] . The right-hand side in (3.21) may be ex-

0, £ ¢[0,1]

tended for all z € R!, if in the denominator we replace = by |x|. Then we have

|x|/ (5

where the domination by the maximal operator is possible by the pointwise in-
equality 7) of Theorem (2.4). Then from (3.21) and (3.22) we obtain

1 [ o(t)dt
x“/(x—t)l—@ < ClMell e e o,
0 LrO)[(0,b),0]

> (t) dt < CMep(z), (3.22)

where p(z) is an extension of p(x) from (a,b) to R! provided by Lemma (2.2). An
extension . (z) of the weight may be taken, according to (3.4)-(3.5), as

| |z — a|@) \bfx|"(b) b < oo,
or@) = { 3 2ot 3 s, b 29
With this extension, the maximal operator is bounded in the space Lﬁ(')(Rl, 0x)
by Theorem (2.3) and we arrive at (3.18). O
4. On fractional integrals and derivatives in L”()[(a,b), o]
4.1. On Marchaud derivative
The Marchaud fractional derivative ([19], p. 200)
f(z) / f
DY, f = 4.1
wrf Frl-—a)(z—a)* T(1-a) H’a (41)
of order 0 < a < 1, for “not so nice” functions f(x) is understood as
: f(z) a /’H fx) = f(#)
lim DY = | 7dt
el = Fi oy o T @ e, woprre =70

where f(z) is assumed to be continued as zero beyond the interval [a,b]. It is
known ([19], p. 200) that

o g f(z) o
Da+,ef_ F(l—a)(x—a)a + F(l_a)Aef(x)v (42)
where -
A f(x) = /a Wdt for a+e<z<b, (4.3)

Aaf(x) = L‘T) [1 :

o {-ja_(ﬁt—a,)a] for a<zr<a-+te. (44)
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Lemma 4.1. Let —0co < a < b < 00, a > 0, let p € P(a,b) and o be weight
of form (3.1) with p € w-Lip,(a,b), v € w-Lipy(a,b). The truncated fractional
differentiation operator D, _f is bounded in LPO)[(a,b), o] for any fized ¢ > 0
under conditions (3.19).

This is also wvalid for b = oo, if we additionally assume that p,v € w-
Lipoo(a,00) and p(-) € P,l(a,00)]; for the latter inclusion, the following con-
ditions are sufficient: p € P(a,00) (w-Lip (a,0), and (3.6), (3.20) and the first
condition in (3.19) hold.

Proof. After easy calculations we obtain

f(fE) ()éX[a+5 b] f x _t re [CI,, b]

Do f(@) = (1 — a)e> Il —«) t“‘(JZ ’

where the second term is bounded in LP()|(a, b), ¢]- Indeed, for x > a + € by the

r—a
Holder inequality we have [ w < = £l 2o ((a0),0]" Hg_l HLP,“((L,b) where

g
the last factor is finite under the conditions u(a)p’(a) < 1, v(b)p'(b) < 1, in the
case of finite b.
In the case b = co we have

/E T D4 < / k(1) (2 — bt (4.5)

with k(t) = t717% - X(c,00)(t) and then the boundeness follows by Theorem (2.4)
when p(-) € P,[(a,00)]. The sufficiency of the conditions for the latter inclusion,
mentioned in the theorem, follows from (4.5) and Theorem (2.3). O

Remark 4.2. The statement of Lemma (4.1) for b = oo in the case p(a) = p(oo) +
v(oo) = 0 is valid for an arbitrary p € P(a,00) satistying condition (2.6). This
follows from (4.5) and Theorem (2.5)

4.2. The left-hand side inverse operator to the Riemann-Liouville operator I3,

When considering the operator left inverse to I, , we may not follow the same
lines as in the known proof for the case of constant p, see [19], Section 13, since
the proof there uses the p-mean continuity of the LP space, which is no more valid
in the case of variable p, see [13]. Thus we have to modify the arguments from [19]
and make use of the maximal operator.

Theorem 4.3. Let —co <a<b< oo, 0<a<1and

f = giMOa 2 € Lp(')[(a,b),g},

where p € P(a,b) (w-Lip (a,b) and o is weight (3.1) with p € w-Lipy(a,b), v
w-Lipy(a,b). Then

]D)ngf = QD,



Characterization of the range of one-dimensional fractional integration ... 13

where DY, f = liH(l) Dg, . f with the limit in the norm of the space L*O)[(a,b), o],

under conditions (3.19).
This is also wvalid in the case b = oo, if additionally p,v € w-Lips(a,b) and
(3.6) and (3.20) hold.

Proof. Without loss of generality we take a = 0. We need to show that

lim | DG e f = @ oo (0,0),0= O- (4.6)
In [19], p. 227-228, there was proved the following representation
/K(t)np(x —et)dt =: A.p(x), e<xz<b
0
Doy Lo = (4.7)
x
sin am o(t)
dt =: B 0<z<
— / DT cp(z), 0<z<e¢,
with ( )
_ sinartf —(t—1)% ot t>0
K(t) = — ; : g = { 0. t<0 (4.8)

valid for ¢ € LP, where 1 < p < oo, and therefore valid for “nice” functions.

In the sequel the function ¢(t) is assumed to be continued as zero beyond
[a,b] whenever necessary, so that A.(z) and B.(z) are well defined on the whole
line R*.

By Remark (3.2), “nice” functions are dense in LP)[(a, b), o], so that to verify
(4.7) on LP()[(a,b), o], we only need to check the boundedness of all the operators
involved in (4.7). The operators Df, . and I, are bounded by Lemma (4.1) and
Theorem (2.6), respectively. The operator A, is bounded by Theorem (2.4) (after
the corresponding extension of p and o to the whole line R!). In the case b = oo,
it suffices to have the boundedness on any (a, N), N < oo, since all the operators
are of Volterra type.

Note that the kernel K(¢) has a radial integrable decreasing majorant, so that
by Theorem (2.4)

[Acp(@)] < CMep(z). (4.9)
Representation (4.7) may be rewritten as
Dgy f (@) = X[ep) (2) Acp(2) + X(o.e(2) Bep(x),  x €0,0] (4.10)

and then
DGy o f(x)=p(z) = Acp() = p(2)+ X[0,6) (2)[Bep(2) = Acp()], x € [0,0]. (4.11)
By Part 4i) of Theorem (2.4)

L (P v - v

— 0 (4.12)

[Aco—@llLrorg0,0),0) <
Lﬁ(‘)(R17g*)
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where the extension p(x) of p(z) has been chosen according to Lemma (2.2) and
the extension g.(z) of the weight is defined in (3.23). The condition p € P,(R!) of
Theorem (2.4) is satisfied according to Theorem (2.3). The term x|o o (2)[Be(x) —
Acp(x)] is estimated uniformly in € by the maximal function:

X[0.¢] ()| Bep(x) = Acip(@)| < Cxpo,e)(2) Mep(). (4.13)

Indeed, taking into account the inequality E% < x% for 0 < x < € and the estimate
obtained in (3.21)-(3.22) and estimate (4.9), we get

Bop(a) — Aup()] < SOT /0 ’ ( wly) dy + O Mop(z) < C1Mp(z).

T x—y)t—e
From (4.13) we have

[1X[0,6)(@)[Bep(z) — Acp ()]l o)1 (0,6),0) £ CHMPl Lr)((0,6),0) (4.14)
which tends to zero as € — 0 by the boundedness of the maximal operator.

It remains to conclude that from (4.11) there follows (4.6) by (4.12) and
(4.14). O

4.3. The range I¢, [LP()[(a,b), ¢]] of the fractional integration operator

In the next theorem, we derive necessary and sufficient conditions for the repre-
sentability of a function f(z) by the fractional integral of a function in LP()[(a, b), g].

Theorem 4.4. Let —0o < a < b < o0 and p € P(a,b) (w-Lip(a,b), let o be weight
of form (3.1) with p € w-Lip,(a,b), v € w-Lipy(a,b) and let conditions (3.19) be
satisfied.

In order that a function f(x) be representable as f = I, ¢ with p € LP1)[(a,b), o,
it is necessary and sufficient that f € LP)[(a,b), o] and there exists gir% A f(z) in
LPO)[(a,b), o] where A, f(x) is the function defined in (4.3)-(4.4).

This statement remains valid in the case b = oo, if the condition f € LP)[(a,b), o]
is replaced by

f(x)

(z —a)*
and we additionally assume that p,v € w-Lipe(a,00) and conditions (3.6) and
(3.20) hold.

S Lp(')[(a,oo)7 0l (4.15)

Proof. Necessity part is a consequence of Theorems (4.3), (3.8) and (2.6) because
by (4.2) we have
f(z)

A f=DY — :
2 whel 'l —a)(z—a)
The necessity of condition (4.15) follows from (3.18).

Sufficiency part. Let a = 0 for simplicity. Given f € LP()[(0,b), o], we intro-
duce the functions

+ Acf (4.16)
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where the limit 1111(1) A.f(z) exists in LP()[(0,b), o] by assumption. Observe that

s 87—~ € L*O(a,b), o, which follows from the fact that A. f € L*)[(a,b), o,

see (4.4). After some transformations we arrive at the representation

/K@V@—WM% c<u<b
0

I3, B. f(x) = (4.17)

TEX

. t
sin am / (m _f(t))l—a dt, 0 S X S E.
0

similar to (4.7), see details of those transformations in [19], p. 229-230. Observe
that in [19] this representation was justified for f € LP with constant p; therefore
(4.17) is valid for “nice” functions dense in LP()[(a,b), o] and consequently for all
f € LPO)[(a,b), o] thanks to the boundedness of all the operators involved in (4.17)
(with fixed € > 0, see the arguments in the proof of Theorem (4.3) after (4.8)) .

Since {A.f} is convergent in LP()[(a,b), o] as ¢ — 0, then B, f(z) converges
in L70[(a,b), o] to ¢(x) € L¥O|(a,b), o], where

/(@) |
[—a@—ar  T—a) b4

p(r) = T

We need to show that f = I§, . Since the operator I, is continuous in

LPO)[(a,b), o] by Theorem (2.6), it is sufficient to prove that f = lir% I B. f. To
E—

this end, we have to show that the right-hand side of (4.17) tends to f ase — 0

in the norm of the space LP()[(a,b), o], which is done exactly as in the proof of

Theorem (4.3) thanks to the coincidence of the right-hand sides of (4.17) and

(4.7). O

4.4. On the interpretation of the range I%, [LP()[(a,b), ¢]| as fractional Sobolev
type
In this subsection we show that the range I¢, [LP()[(a,b), ]] of the fractional
integration operator coincides with the fractional Sobolev space on L*P()[(a,b), o]
defined as the space of restrictions of Bessel potentials onto [a,b], see Theorem
(4.15).
First we observe that the ranges of the left-hand sided and right-hand sided
fractional integrals coincide under the appropriate assumptions. Namely, the fol-
lowing theorem is valid.

Theorem 4.5. Let 0 < a < 1, p € P(a,b)(w-Lip (a,b),—0co < a < b < 0o, and let
o0 be weight of form (3.1) with p € w-Lipy(a,b), v € w-Lipy(a,b). Then

I3 [LP9(a,0), o] = I [L7V[(a,b), o], (4.18)
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under the conditions

1 1 1 1
a_m<u(a)<m, a—m<u(b)<m. (4.19)

Proof. The coincidence of the ranges stated in (4.18) under conditions (4.19) fol-
lows from the known ([19], p. 206) formulas

Ip =12, (cosamp + sinamr, “Srde), (4.20)

IS o =1 (cosamp —sinamr, “Srip) (4.21)
where r¥%(z) = (z — a)*® and 7*(z) = (b — x)**. Formulas (4.20)-(4.21) being

valid for p € C§°, are extended to the whole space LP()[(a,b), o] by continuity of
the operators involved. Indeed, the weighted singular operators ry *Srg, r, *Sry

are bounded in LP")[(a, b), o] by Theorem (2.7) when —1/p(a) < pu(a)—a < 1/p'(a)
and —1/p(b) < v(b) —a < 1/p'(b), and the fractional integrals I, and Ij* are

bounded in LP")[(a,b), o] by Theorem (2.6). O

Corollary 4.6. Let p € P(a,b) (w-Lip (a,b). In the non-weighted case, the coinci-
dence

1 [Lp(')(a, b)] = Iy~ [Lp(')(a, b)l, (4.22)
holds if 0 < a < min{ﬁ, ﬁ}.

Similarly to Theorem (4.5), the following statement is proved for the whole
line R! with the help of the known relations ([19], p. 202) between the left-hand-
sided and right-hand-sided fractional integrals via the singular operator.

Theorem 4.7. Let 0 < o < 1, let p € P(RY) N w-Lip (RY) satisfy condition (3.6)
and let o(z) = |z — a|*®|b — z|"® with p € w-Lip,(RY) N w-Lipso(R') and
v € w-Lipy(RY) N w-Lipso (RY). Then under conditions (4.19) and the condition
1 1
a— — < p(oo) +rv(oo) < —
Poo (c0) +(c) Poo

the following coincidence of the ranges holds
I[LPORY, 0)] = IS[LPI(R, 0)] = I*[LPV (R, 0)], (4.23)

where I* is the one-dimensional Riesz operator.

The space of Bessel potentials is known as the range of the Bessel operator:
BILO®Y = {f: f=B, ¢el’O®RM}, a>0,

where B® is the Bessel potential operator which reduces to multiplication by

(1+1¢/*) * in Fourier transforms; we refer to [2] for the study of these fractional

type spaces with variable exponent, including the characterization of B*[LP()(R™)]
in terms of convergence of some hypersingular integrals.
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Definition 4.8. For a domain {2 C R™ we define the fractional Sobolev type space
L*P0)(Q) as the space of restrictions onto € of functions f € B*[LP()(R™)] with
some extension p(-) of p(-) from Q to R™:
LoPO(Q) = BYLPO)(R™)] (4.24)
Q

and for f = By

define the norm by
Q

£l Loy ) = inf (@]l Lo @m)
where the infimum is taken with respect to all possible ¢ in the representation

[ =By

and all the extensions p .

Q

We need a similar weighted space. To avoid complications with extension of
arbitrary weights from  to R™, we restrict ourselves to the one-dimensional case
and power-type weights and use their extensions in the form

5(z) = { |z — alF®)|p — 2|7(®) when b < oo

|z — alF@) (1 + |z|)7@) when b= oo (4.25)

Definition 4.9. Let —oco < a < b < oco. We define the fractional Sobolev type space
LoP0)[(a,b), o] with weight (3.1) as

L*?O[(a,b), o)) = B*[LPO)(RY, )] (4.26)

(a;b)
where ¢ is an extension of form (4.25) with i € w-Lip, (R') () w-Lips (RY),

v € w-Lipy(RY) N w-Lips (RY), and for f = By define the norm by
(a;b)

Hf||L‘1=P(')((a,b),g) = inf H@HLﬁ(-)(Rl@
where the infimum is taken with respect to all possible ¢ in the representation

=By and all the extensions p, g and v.
(ab)

We refer to [3] for the notion of Banach function spaces and to [19], Section

26, for the notion of the Riesz fractional differentiation D* and its truncation DZ,
used in the following result for the Riesz and Bessel potentials.

Theorem 4.10. Let X = X(R") be a Banach function space, satisfying the assump-
tions

i) C§° is dense in X;

i) the mazimal operator M is bounded in X;

i11) I“f(x) converges absolutely for almost all x for every f € X and
(L + )" I f(x) € L' (R™).
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Then
B*(X) =X[)I*(X) = {f €X:D*f = lim D2 f € X}. (4.27)

(X)

Proof. Theorem (4.10) was proved in [2] for the case of X = LP()(R"). The analysis
of the proof given in [2] shows that conditions i)-iii) are sufficient for that proof to
hold within the frameworks of abstract Banach function spaces. O

As a corollary to Theorem (4.10), we obtain the following result for the case
X = LPO)(R™, p), important for the sequel.

Theorem 4.11. Let Q = R™, let p € P(R™) (" w-Lip (R™) satisfy condition (3.6) in
R™, let o be weight of form (2.8) with the exponents satisfying condition (2.9) and
the condition

a— <yt B < (4.28)
Pos Pt Pho
Then
Laap(-)(Rn’ 0) = Lp(')(R", 0) ﬂIQ[LP(')(Rn, 0)]
= {f € LPO(R", p) : D*f € LPV(R™, 0)}. (4.29)

Proof. Theorem (4.11) follows from Theorem (4.10). Indeed, condition 4) of The-
orem (4.10) for the space X = LPO)(R", p) is fulfilled by Theorem (2.1), condition
ii) is satisfied by Theorem (2.3). Condition ) is checked directly due to the known
pointwise estimate

d
o)l < CMple) v [ A0
|z—y|>1
where the second term is easily estimated by direct application of the Holder
inequality. O

The next auxiliary Theorems (4.12) and (4.14) provide preliminary facts nec-
essary for the main result of this subsection given in Theorem (4.15).

Theorem 4.12. Let ¢ € LPO(RY, o), where p € P1(RL) N w-Lipo(RY) Nw-Lipeo(RY),
o(x) = |z["® |z —b"(®),0 < b < 0o, where p € w-Lipo(RY) N w-Lipso (RL), v € w-
Lipy(RY) Nw-Lipss (RY). Then

X[0,00] L5 = I$0 (4.30)

where

sin a > E “ 90(*15)
o) =4 PO /0 <x> it T2 0 CpORL ), (431)
07 <0

if the following conditions are satisfied:
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1 1 1

<v(b) < ) 20

—m (4.32)
and

o= — < p(00) + (00) < (4.33)

p(o0)
Proof. Representation (4.30)-(4.31) is known in case p is constant and u = v = 0,
see [19], p. 211. By Theorem (2.1), the set C5°(R") is dense in the space LP() (R, o).
Therefore, we need to prove that the operator

X\ elt
H %p(x) :/ () 20 dt
0 x T+t
involved in (4.31) and studied in Theorem (3.6), is bounded from the space LP)(R! , 3)
into the space LP()(RY, o), where p(z) = p(—z),8(z) = o(—=). This boundedness
does not follow formally from Theorem (3.6), because o # p. However, we ob-

serve that |z — b] ~ |z 4+ b for > 2b and 0 < = < 5. So the estimation of

p'(o0)

of lo(x)H~*p(2)[P®) dz is reduced to Theorem (3.6) when integrating over (0, %)

and (2b, c0), while for z € (%, 2b) the estimation is trivial by the Holder inequality.
Having proved that ¢ € Lp(')(R17g), we can now proceed exactly as in
[19],Theorem 11.6. The main point is the interchange of integrals as in [19], pos-
sible by Fubini’s theorem, because the double integral I§, (H~%y) is absolutely

convergent, which is a matter of direct verification.
O

Corollary 4.13. Let p € LPO)(RY, o), where o(x) = |z — a|*®|b — x| with
p € w-Lipy(RY) w-Lipso (RY) and v € w-Lipy(RY) w-Lipoo (RY). Under the
conditions

(4.34)

and condition (4.33), the relation
X(ap)I$p =180
holds, where ¢» € LPC)(RY, o).

Let f* be the zero extension of a function f defined on (a,b) to R!. The
following theorem provides sufficient conditions for f* to be representable by frac-
tional integral on R! if f has such a property on (a, b). To this end, we need to deal
with some extension of the exponent p(x) and the weight o() to the whole line R!.
In Theorem (4.14) we use the extension p(z) satisfying the following conditions

pePi(RY)  and p(oo) = p(b) = p(b), (4.35)

p € w—Lipy, (RY) ﬂw—Lipoo (RY), (4.36)
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and the extension (4.25) of the weight satisfying the conditions

i € w—Lip,(R") ﬂ w—Lipo(R')  and ¥ € w—Lipy(R") (]w—Lipoo (RY),
(4.37)

fi(oo) + V(00) —a < ——. 4.38
filoe) + 7(60) — < = (4.38)
Theorem 4.14. Let —o0 < a < b < oo and let f(x) = I$, ¢, x € (a,b), with

¢ € LPU)((a,b), 0), where p € Pi(a,b) w-Lipy(a,b), o(x) is weight (3.1) with
u € w-Lip,(a,b),v € w-Lipy(a,b) and

u(a) < p,za), Z% <v(b)—a< ﬁ. (4.39)
Then
fA(z) = (I$¢e1)(z), zeR! (4.40)
where o1 (x) € LPO(RY, §) is given by
0, r<a
o1(z) =< o), a<w<b; (4.41)

b d
_F(loia) fa (sz(glia = g((E), x> b

and p(x) and o(x) are arbitrary extensions satisfying conditions (4.35)-(4.38).

Proof. The representation itself (4.40)-(4.41) is known, in the case of constant p,
see [19], p. 236. Thus it is valid for C§°-functions. We only have to show that
1 € LPO(RY, 5). Tt suffices to show that g(z) € LPO)[(b,00),8]. Tt is known (see
(13.33) in [19]) that g(x) has the form

o) = _sinar /: (b—r>“ p(r)dr _ A% (4.42)

T z—0b T—T

To check that the operator A§ is bounded from LP()[(a, b), o] to LPO)[(b, c0), 9], it
suffices to show that

/mw(x)?(w) dr < C < o0
b
for all ¥ with [|9]| o) (4,5 < 1, Where

i 5 b rb—7\° T)dr
Aeh(x) = (m—a)“(’”) (x— b)u(w) /a (I — b) T ipi)z(a)(b oL x> b.
We have

[ 2b [
[ @) dz = [ @) de+ [ 120() P do = 03+ U
b b 2b
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For U; we obtain

7 woldr [
dr
U< 0 [ (o — p)r®—alp)g / 4
1> /( ) (T _ a)“(a)
b a
B(z)

b
b)) -als(®) [¥(7)| dr
+C/ da / b7 O-a(z 1)

where a < ¢ < b. The first term here is easily estimated via [|¢[| Lo (q,p) by the
Hoélder inequality under conditions (4.39). The second term has the form
p(z+b)

b —c
C/x[u(b)fa]p(b)dx / lp(b—1t)|dt
tu(b)foz(t + l‘)
0 0
which is nothing else but the p(- + b)-modular for the operator of the type (3.14)),
so it is easily treated by means of Theorem (3.6) with Remark (3.7) taken into

account.
Finally, for Uy we have

0o b
da [(7)| dr
Uz < C/ (1 + |z|)T+e—i(oe)=(o0)]p() / (1 —a)M@) (b — 7))«
2b

a

p(=)

where it remains to make use of the Holder inequality.

(]

Theorem 4.15. Let —o00 < a < b < o0, p € P(a,b)(w-Lip(a,b) and o(z) =
(z — a)" @) (b — 2)*®)  where p € w-Lip,(a,b), v € w-Lipy(a,b). Then

12, [0 1(@.b). o] = Lo7Of(a.b). (443

under conditions (4.19).

Proof. Let f € L*?()[(a,b), o]. Then by the definition in (4.26) there exists an
extension p of p and extensions g, v of the exponents of the weight to R! and a
function g € L*P0)(R', ) such that

fl@)=g(x) for a<z<hb

By Theorem (4.11), g € I*[LPO)(R!, p)] and consequently g € I¢[LPO)(R?, 9)] by
Theorem (4.7), which implies that f € I, [LP()(a,b), o] by Corollary (4.13).
Conversely, let f € I, [LP)[(a,b), 0]|. Let f* be the continuation of this
function by zero beyond the interval [a,b] and let p be the continuation of p to R!
satisfying conditions #i)-iii) of Theorem (4.14). By Theorem (4.14) we have that
f* € I*[LPO(RY, p)] and because f* € LPO)(R', p), by Theorem (4.11) we have
that f* € L*PO)(R', ). Hence f € L*P0) [(a,b), o] .
O
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5. Appendix

For simplicity we prove the following technical lemma for the case of a bounded
set 2 in R", the case of unbounded sets needs some technical modifications. We
deal with the weights satisfying the condition
1 '
w € LPO(Q), — e LPO(Q), k=1,2,..,m. (5.1)
w
We denote

QY ={reQ:wg(zx) =0} U{r € Q:wi(z) =00}, k=1,..,m.
From (5.1) it follows that |Q)| = 0. We suppose that
Q)9 =0 forall j#k. (5.2)

Lemma 5.1. Let Q be an open bounded set in R™, wy(x) be weights satisfying the
assumptions (5.1) and (5.2) and let a linear operator A fulfill the conditions:

i) it is bounded in the spaces LPC)(Q,wy), k=1,...,m,

1) the operator x g, Axg, is bounded from the spaces LPO(Qwy), k = 1,....m
into L°°(Q) for all disjoint sets Ey, By C Q such that E1 () Es = 0.

Then the operator A is bounded in the space LPC)(Q, w) with w(z) = H wy(x).

Proof. We have to prove the boundedness of the operator wAE in the space

LPC) (). We will make use of a corresponding partition of unity 1 = > ax(x). To
k=1

this end, we consider some neighborhoods Ej and F}, of the sets €, that is, some

open sets B and F} such that

QCE.CE,CF,CQ and Fp[|F;=0 forall k#j. (5.3)

Such neighborhoods exist by assumption (5.2). We choose functions ay(x) such
that ai(z) = 1 on Ej and ax(z) = 0 on Q\Fy, so that ag(z)w;(z)]** = 0 on
O\Fy, if k # j. Then

Jy)

w(xi _ Z wi () by () Z ij((y)
k=1 o

where b (z) and ¢;(y) are bounded functions supported in the same neighborhoods
where the functions ay, (x) and a;(y) were. Then

}:bkka447+ }: brw /1Jf

kj=1
k#£j

The first sum contains operators bounded in LP()(Q) by assumption 7). It remains
to obtain the boundedness of the operators

Cj X
Ajrf = bkka%, J#k.

J
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We have
O=FE,UE; UEj, with E; = Q\(E,UEj).
We denote for brevity xx = XE,, Xj = XE;» Xkj = XEy,;- [t is easily seen that
cixtk =0 and bpx; =0.
Taking this into account, we represent the operator A, = (X +Xx;+ X&) Ak (Xt +
X; + Xkj) in the form Aj;, = ‘421Bi where

iz
Xkj Xkj

By = xpjwibgAc; =2, By = xpwibyAc; =L,
wj Wy

X3 X3
Bs = xpjwibpAc; =%, By = xpwibpAc; =L,
wj wj

The operators By, By and B3, containing the factor x ;i are bounded in Lp(')(Q).

This follows from condition i) because x;(z)wg(z) and %((;)) may be represented,

whenever necessary, as
k(@) v(x)

ks (@)wk(w) = uehw(w) and T =0

where v and v are bounded functions.
Finally, for the operator By we observe that from condition 4i) it follows that
the function xxbrAc; Z%f is bounded for f € LP()(Q) and then it suffices to refer

to the fact that wy € LPO) ().
O

Remark 5.2. An integral operator Af(z) = [ K(x,y)f(y) dy satisfies condition i)
Q

of Lemma (5.1) if  sup |K(z,y)| < oo for any € > 0, and the weights satisfy
z,y:|lz—y|>e
the second assumption in (5.1).
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