ISSN 1063-4541, Vestnik St. Petersburg University. Mathematics, 2008, Vol. 41, No. 2, pp. 134—144. © Allerton Press, Inc., 2008.
Original Russian Text © V.M. Kokilashvili, S.G. Samko, 2008, published in Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1. Matematika, Mekhanika,
Astronomiya, 2008, No. 2, pp. 56-68.

TO THE 100th ANNIVERSARY OF BIRTHDAY
OF SOLOMON GRIGOR’EVICH MIKHLIN

Dedicated to the memory of Solomon Grigor’evich Mikhlin

Singular Operators and Fourier Multipliers
in Weighted Lebesgue Spaces with Variable Index

V. M. Kokilashvili* and S. G. Samko?

¢ Razmadze Mathematical Institute, Academy of Sciences of Georgia,
ul. M. Aleksidze 1, Thilisi, 0193 Georgia

b University of Algarve, Campus de Gambelas, Faro, 8000-810 Portugal
Received November 11, 2007

Abstract—Mikhlin’s ideas and results related to the theory of spaces Lg ) with nonstandard growth are
developed. These spaces are called Lebesgue spaces with variable index; they are used in mechanics, the
theory of differential equations, and variational problems. The boundedness of Fourier multipliers and
singular operators on the spaces Lg ) are considered. All theorems are derived from an extrapolation

theorem due to Rubio de Francia. The considerations essentially use theorems on the boundedness of
operators and maximal Hardy-Littlewood functions on Lebesgue spaces with constant index.
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INTRODUCTION

This paper develops ideas and results of S. G. Mikhlin related, in particular, to the theory of spaces of
functions with nonstandard growth, known also as generalized Lebesgue spaces with variable index, which
have been extensively studied in recent years. Mathematical problems related to spaces with variable index
arise in applications to continuum mechanics (in particular, in the theory of electrorheological fluids). They
arise also in the theory of differential equations and variational problems. All this has determined a signifi-
cant interest in these spaces in recent years. A survey of the development of harmonic analysis on spaces
with variable index of integrability is contained in [15, 23, 38] (see also the references therein).

In this paper, we prove theorems on the boundedness of Fourier multipliers and singular integral opera-
tors, as well as of majorants of partial sums of trigonometric Fourier series, etc., on weighted Lebesgue

spaces Ls ) with variable index p(x); we also give their vector-valued analogues. The proofs of all of these

theorems are based on a version of Rubio de Francia’s extrapolation theorem [34] for the spaces Lg ' which

is also proved in this paper. We develop some ideas and approaches of [12, 13]. An important role in the
proofs is played by well-known theorems on the boundedness of the operators mentioned above for constant
p and Muckenhoupt weights. We also consider the boundedness of the maximal Hardy—Littlewood function
on Lebesgue spaces with variable index.

1. DEFINITIONS AND AUXILIARY ASSERTIONS

Let (X, d, W) be a metric space with metric d and nonnegative finite measure .. By B(x, r) = {y € X:
d(x, y) < r} we denote a ball in X. We assume that the measure U satisfies the doubling condition

WB(x,2r) < CuB(x,r),

where C > 0 does not depend on r > 0 and x € X. For locally u-integrable functions f: X —» R', consider
the operator .l taking each function f to the maximal Hardy-Littlewood function, which is defined by

Mf) = supes [ Fldu().

B(x,r)
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SINGULAR OPERATORS AND FOURIER MULTIPLIERS 135

By A;=A (X), where 1 < s <, we denote the class of weights w: X —» R' being locally almost everywhere
positive U-integrable functions satisfying the Muckenhoupt condition

s—1
1o 1
Sgp[ﬁjw <y>du(y>)(m§jw <y>du<y>J <o
B B

for 1 < s < oo; for s = 1, the weights are required to satisfy the condition
Mw(x) < Cw(x)
for almost all x € X, where the constant C > 0 does not depend on x € X. Obviously, A; C A, for I < s < oo,
In [10, 30], is was proved that the condition w € A, is equivalent to the boundedness of the operator Jl

on the space L, (X), i.e., to

[ s oy w' nduee) < CJIFCOIw (odu():

here, C > 0 does not depend on f.
Let Q be an open set in X, and let () denote the class of measurable functions on Q for which

1<p_<p,<oo, (1.1)

where p_=p_(Q) = essigfp (x) and p, = p,(Q) = esssupp (x).
xe xeQ
Consider the weighted Banach space LS(') (€2) of measurable functions f: Q —~ C such that

J

Q

. (x)
A1 g0 := ol = mf{x >0 "an(x) < 1} <oo. (1.2)

p(x)f(x)
A

Definition 1.1. We say that a function p € %P () belongs to the class B ,(€) if the maximal operator JIil
is bounded on the space Lg(') Q).

Definition 1.2. A function p: Q — C' is called a function of class WL (a weakly Lipschitz function) if
A 1
- <2 < -
Ip(x) = p(y) S Tndiy) for x, ye Q such that d(x,y)< 5 (1.3)
where A > 0 does not depend on x and y.

Let us introduce the following numbers:
(1) the lower boundary of local “dimensions” in X, namely,

In| lim inf essinf UB(x, rt)
r— e xe X IJ,B(X, r)
m(UB) = sup ; (1.4)
1>1 Int

(2) the lower and upper boundaries of “dimensions” (related to the influence of infinity), namely,

ln(lim inf essinf}’M)
B) - w r—e xeX },LB(X, r) (1 5)
(1 - t>Il) In? '
and
ln(lim sup esssup M)
row  xeX WB(X,r)
M, (UB) = sup . (1.6)
1>1 Int
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136 KOKILASHVILI, SAMKO
It is easy to see that m(uB), m.(ULB), and M_,(UB) are nonnegative. In what follows, when considering
these boundaries of dimensions, we always assume that m(uUB), m.,(UB), M_.(LB) € (0, o).

Note that, in (1.4), essinf can be transposed as
xe X

In (hmmf%)
m(WB) = essinfsup o B

xeX >1 Int

provided that there exists an € > 0 such that the function WB(x, r) is continuous for r € (0, €) uniformly with
respect to x € X. A similar fact is valid for expressions (1.5)—(1.6).

2. CLASSES OF WEIGHT FUNCTIONS
We deal, in particular, with the weights

N
p(x) = [T1dCx 201" (1 +d(xp )™, 3 X, k=0.1,...N, 2.1)
k=1
where B, = 0 for a bounded metric space X. Let IT = {x,, x,, ..., xy}.
Definition 2.1. We say that a weight function of the form (2.1) belongs to the class V,,,(X, IT), where
p() € CX), if
_muB) o _m(uB) 22
P(x;) <Pe< P'(x;) .
and
_m(UB) M.(uB)
BB+ ZBk<m (B) - 2.3)
k=1 P
In the case of a bounded metric space X, we consider the more general class of weights
p(x) = Hwk d(x, x;)] (2.4)

k=1

with “radial” weights, where the functions w,(-) belong to the Zygmund-Bari—Stechkin class, in which
oscillation between power functions with different exponents is allowed.

Let U = U([0, €]) denote the class of functions u € C[0, €] (where 0 < € < o) such that u(0) = 0, u(¢) >
0 for > 0, and u is a nondecreasing function on [0, €]. By U we denote the class of functions u such that
xu(x) € U for someae R'.

Definition 2.2 [1]. We say that v belongs to the Zygmund—Bari—Stechkin class q>§ if

j"( )it < cv(h) and Jv(t)dt_ V(h)

where ¢ = ¢(v) > 0 does not depend on h € (0, €].

As is known, v € (I)g if and only if 0 < m(v) £ M(v) < d, where

ln(lim infw(ht)) ln(lim sup W(ht))
B h—s0 w(h) 4 M B h—>0 w(h) 5 s
T and MOw) = sup In? )

(see [35, 36, 19]).
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SINGULAR OPERATORS AND FOURIER MULTIPLIERS 137

0SC

Definition 2.3. We say that a weight function p of the form (2.4) belongs to the class V) (X, IT), where
() € CX), if

1/p(xy)
r

wi(r) € @5 for x e I and k=1,2, ..., N, (2.6)

or, equivalently,

wrye U and ~"HB) iy < Mow) <TBB) for k= 1,2, N 2.7)
p(xy) p'(x;)

Note that, if the metric space X has constant dimension s in the sense that

c,r' SuB(x, r)<cyr’,

where c¢; > 0 and ¢, > 0 are constants not depending on x € X and r > 0, then inequalities (2.2), (2.3), and
(2.7) can be written in the forms

d <Bi<

N
S S
_p—(xk) - p_w <B.+ 2 B, < p_m (2.8)

5
p'(x;) i
and

S
p(xy)
where k=1, 2, ..., N, respectively.

<m(w) < M(w) < —

p'(x)

(2.9)

3. BOUNDEDNESS OF THE MAXIMAL HARDY-LITTLEWOOD OPERATOR
ON WEIGHTED SPACES WITH VARIABLE INDEX

The following assertions are valid.
Theorem 3.1. Suppose that X is a bounded metric space endowed with a measure satisfying the doubling
condition, p € WL(X), and p € Vf,?) (X, II). Then, M is bounded on Lg(') X).

Theorem 3.2. Suppose that X is an unbounded metric space endowed with a measure satisfying the dou-
bling condition, p € WL(X), there exists an R > 0 such that p(x) = p., = const for x € X\B(x,, R), and p €

VX, IT). Then, M is bounded on Lg(.) X,

Euclidean versions of Theorems 3.1 and 3.2 were proved in [14] for the nonweight case and in [26, 25]
for the weight case.

4. AN EXTRAPOLATION THEOREM

Let & be a family of ordered pairs ( f, ) of nonnegative measurable functions fand g defined on an open
subset € of X. When saying that the inequality

[ Cowodueo < € [g"(x)w(x)du(x) (4.1)
Q Q

holds for all pairs (f, g) € % and weights w € A () (for some g, 1 < g < =), we always mean that it holds
for all pairs such that the left-hand side of this inequality is finite, and the constant C depends only on p,
and the A -constant of the weight w.

Theorem 4.1. Let X be a metric space with a measure, and let Q be an open set in X. Suppose that 1 <
Po <P, the weight p and the index p(-) € P satisfy the condition (p)' € %L (where p(-) = p(+)/py), and

7o

%F is a family such that the inequality
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138 KOKILASHVILI, SAMKO

[ owdueo < € [g"(xwix)du(x) (4.2)
Q Q

holds for all (f, g) € F and all w € A\(Q). Then, for all (f, g) € F withfe Lg(') (Q), the inequality
1110 < Cle @3)

with a constant C > 0 not depending on f and g holds.
Note that Theorem 4.1 does not assume the measure on X to satisfy the doubling condition.
Theorem 4.1 combined with Theorems 3.1 and 3.2 implies the following assertion.

Theorem 4.2. Let X be a metric space with a measure satisfying the doubling condition, and let € be an
open set in X. Suppose that

(1) if the set Q is bounded, then p € WL(L2) and p € V‘;S(Lf) (& I1), and

(2) if the set Q is unbounded, then p € WL(Q), p(x) = p.. = const for x € Q\B(x,, R) for some x, € Q and
R>0,andp e Vp(_)(Q, I0).

Then, the fulfillment of inequality (4.2) for all (f, g) € F from some family F and all w € A,(Q) implies
that of inequality (4.3) for all pairs (f, g) from F for which f € Lg(') (Q).

Remark 4.3. Since the intervals (2.2), (2.3), and (2.7) are open, it follows that there exists a p, € (1, p_) for
which

p € Vp(-)(ga H) = p*]’o (S V(IB)'(')(Q’ H)
and
pe Vi(Q I =p e Vi, (Q 1),

P

where p (x) =
P Po

Proof of Theorem 4.1. By virtue of the Riesz theorem, which is valid for spaces with variable index pro-
vided that 1 < p_<p, <o (see [27, 37]), we have

1050 = I"p" o < sup [ £ omodnc).
Q

where the supremum is over all nonnegative / such that ”hp%” o <1 and fis assumed to be nonnegative.
Take any such function 4. Let us show that

[ 17 @R duex) < Clgpl (44)
Q

where the constant C > 0 does not depend on A, for an arbitrary pair (f, g) from the given family &. By
assumption, p and p are such that (p)' € 9731/ rg > 1.€4,
P

o ttgl o < colo™ ol o, (4.5)
where the constant C, > 0 does not depend on ¢.

Let us apply the construction

o

Se(x) = Y (2Cy) “Mi(x) (4.6)

k=0
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SINGULAR OPERATORS AND FOURIER MULTIPLIERS 139

due to Rubio de Francia [34], where each Jl* is the k-times iterated maximal operator and C, is the same
constant as in (4.5) (Cy = 1). The following assertions are obvious:

(1) o(x) < S@(x), where x € €, for any nonnegative function ;

) [p 56l L) S 2llp gl

(3) M(SP)(x) < 2¢,Se(x) for x € Q so that S € A,(Q), where the constant A; does not depend on @.
Therefore, Sp € A o (Q).

L7 03 4.7)

According to results of Section 1, for ¢ = &, we have
[ ndue) < [ £ (0 Sh(x)du(x), 4.8)
Q Q
Holder’s inequality for variable indices, the condition in Section 2, and the assumption that f € LS © imply

[ coshednc = [ @p"p " sheoduo <kl f"p"l o o™ sl gove
Q Q

<ol Inp" oo < Clpl o < oo.

Therefore, the integral JQ Vs (x)Sh(x)d(x) is finite, and we can apply condition (4.1) to the right-hand side
of (4.8), which yields

[ )Sh(x)du(x) < €[ " (x)Sh(x)du(x).
Q Q

Applying Holder’s inequality to the right-hand side, we obtain

[ £ coshednco < Clpgl oo™ shll v (4.9)

Q

By virtue of (4.8), to prove (4.4), it suffices to show that " p_pOS h” L(5)'( 1s bounded by a constant not depend-

ing on h. This follows from (4.7) and the normalization condition ||hp_p°|
proof of the theorem.

(o <1, which completes the

5. APPLICATION TO THE BOUNDEDNESS ON L’"
OF CLASSICAL OPERATORS OF HARMONIC ANALYSIS

5.1. Multipliers of the Fourier Transform

We say that a measurable function R” —» R' is a Fourier multiplier in the space Ly ©(R") if the operator
T,, defined on the Schwartz space S(R") by

—

T,.f =mf

extends to a bounded operator on Lg(') (RM.

Below, we generalize classical Mikhlin’s theorem on Fourier multipliers to Lebesgue spaces with vari-
able index.

VESTNIK ST. PETERSBURG UNIVERSITY. MATHEMATICS  Vol. 41 No.2 2008



140 KOKILASHVILI, SAMKO

Theorem 5.1. Suppose that p € P(R") np e WL, p(x) = p.. = const for |x| > R for some R >0, and p is
a weight function of the form (2.1), where

n n
- <Py <—— for k =1,2,...,N 5.1
Pp(xp) ‘ p'(x;)
and
N

n n
—<B+ ) Bi<—. (5.2)

P- kz:“l Cpl
Suppose also that a function m(x) is continuous on R" everywhere except, possibly, at the origin and has

n [o
mixed derivative -——Q—T—-— and derivatives D%m = ———9——21———— , where .= (0., ..., 0,), of all orders |o| =
X1 X, ox, ' xy7 X"

o + ... + 0, <n—1 continuous outside the origin. Finally, suppose that
1™ D%m(x) < C if o <n—1,

where the constant C > 0 does not depend on x. Then, m is a Fourier multiplier in Lg(') (RY).

Theorem 5.1 follows from Theorems 4.2 and 3.2 and the fact that, for any constant s such that 1 < s < o
and any weight p € A, every function m satisfying the conditions of Theorem 5.1 is a Fourier multiplier in

L, (R"). This fact was proved in [28] (see also [2]).

This theorem can be generalized to weighted spaces with variable index. Namely, the following analogue
of the Mikhlin—Hormander theorem is valid.

Theorem 5.2. Suppose that p(-) and p satisfy the conditions of Theorem 5.1 and m: R" — R'isa Sfunc-
tion such that

R>0

1/s
sup[Rm o J |Dam(x)|sdx} < oo
R<|x|<2R
for some s (1 <s<2)and all o with || <€, where (€ p_)In > 1. Then, m is a Fourier multiplier in Lg(‘) (R".
Theorem 5.2 follows from Theorems 4.2 and 3.2 as well.
In the statement of the following theorem, A; denotes any interval of the form [2/, 27+ 1] or [-2/*+!, -2/],

where j € Z.

Theorem 5.3. Suppose that p € P(R") N WL(R") and p(x) is constant outside some finite interval. Sup-
pose also that p has the form (2.1) and conditions (5.1)—(5.2) with n = 1 hold. Finally, suppose that, in each
of the intervals A;, a function m can be represented as

A
m(\) = jduAj, Ae A,

J

where the \L, are finite measures such that sup varll, < oo. Then, m is a Fourier multiplier in LS( "(RY.
J - J
J

In the case of constant p, this theorem was proved in [29] for p =1 and in [2, 3] for p € A,

5.2. Multipliers of Trigonometric Fourier Series

Using Theorem 4.1 and known results on constant indices, we can generalize theorems about Marcink-
iewicz multipliers and Littlewood—Paley expansions for trigonometric Fourier series to weighted spaces
with variable index.

VESTNIK ST. PETERSBURG UNIVERSITY. MATHEMATICS = Vol. 41 No. 2 2008



SINGULAR OPERATORS AND FOURIER MULTIPLIERS 141

Suppose that T = [-7, 7], fis a 2n-periodic function, and

F(x) ~ %’ + 3 (aycoskx + bysinkx). (5.3)
k=0

According to the notation introduced above, the expression p € Vf,s(?) (T, IT) means that p is a weight of the
form (2.4) satisfying condition (2.6) or (2.7) forn =1.

Theorem 5.4. Suppose thatp € P(T) " WL(T), p e V), (T,10), and a sequence of A, satisfies the con-
ditions

21
|Ad <A and 2 A=Ay <A,

k=2""
where A > 0 does not depend on k and j. Then, there exists a function F(x) € Lg(') (T) such that the series

(Agay)/2 + ZZ’: o M (@i coskx + bysinkx) is a Fourier expansion for F, and

150 o < cALA o

where ¢ > 0 does not depend on f € Lg(') ().

Theorem 5.5. If p € P(T) " WL(T) and p € V, (T, II), then there exist constants ¢, >0 and ¢, > 0
such that

oo p/-1

1
24 =
2
cill £l € [2 D Al j <ol fll o (54)
P Lg(') P

J=0{k=2""
forallfe L5 (T), where A(x) = aycoskx + bysinkx, A =0, and Ay = a, /2.

For constant p and p € A, this theorem was proved in [28].

5.3. Majorants of Partial Sums of Fourier Series

Suppose that
S«(f) = Sx(fx) = igl(a)lSk(f, x)

B

where S,(f, x) is a partial sum of Fourier series (5.3).

Theorem 5.6. Ifp € P(T) " WL(T) and p e Vi, (T, D), then

p(

||S*(f)||Ls<~> < C"f”Lgm (5.5)

forallfe Lg(') (T), where the constant ¢ > 0 does not depend on f.
For constant p and p € A, Theorem 5.6 was proved in [18].

5.4. Singular Cauchy Integral
Consider the singular integral

T

where I is a simple finite Carleson curve and v is the natural parameter on I'.
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142 KOKILASHVILI, SAMKO

Theorem 5.7. If p € P(I') N WL(I') and p € V;?C_) (', II), then the operator Sy is bounded on the space
L (D).

In the case of power weights, Theorem 5.7 was proved in [24], where the case of an infinite Carleson
curve was also considered. For constant p and p € A,(I'), Theorem 5.7 was proved by different methods in
[22] and [9].

5.5. Multidimensional Singular Operators

Consider the multidimensional singular operator

Tf(x) = lim J’ K(x,y)f(y)dy, where xe R". (5.6)
[x—yl>e

We assume that the singular kernel K(x, y) satisfies the following conditions:

K (x, I < Clx =™ (5.7)
) x=x* . . 1
K, y)~ Kyl € CE=2 i oo < ey (58)
-y 2
and
o
. - el 1
IK(x,y)—K(x,y)ISC% if [y'=yl<5lx-)l, (5.9)
|x =yl 2
where o is an arbitrary positive index;
lim K(x,y)dy exists; (5.10)
e—0
[x-yl>e
the operator (5.6) is bounded on LZ(R”). (5.11)

Theorem 5.8. Suppose that p € P(R") N WL(R"); p(x) = p.. = const outside some ball |x| < R; p is a
weight function of the form (2.1), where d(x, x;) = |x — x;|; conditions (5.1) and (5.2) hold; and the kernel

K(x, y) satisfies conditions (5.7)—(5.11). Then, the operator T is bounded on the space Lg(') (R").

For constant p and p € AP(R"), this theorem was proved in [11]. For variable p(-), the weightless case of
Theorem 5.8 was proved in [16].

5.6. Commutators

Consider the commutators
[D, T1f(x) = b(x)Tf(x)—T(bf)(x)
generated by operator (5.6) and a function » € BMO(R").

Theorem 5.9. Suppose that p € P(R") n WL(R"); p(x) = p.. = const outside some ball |x| < R; p is a
weight function of the form (2.1), where d(x, x;) = |x — x;|; conditions (5.1) and (5.2) hold; and the kernel

K(x, y) satisfies conditions (5.7)—(5.11). Then, the commutator [b, T) is bounded on the space L’; © (R".

For constant p and p € AP(R") with 1 < p < eo, Theorem 5.9 was proved earlier (see [32]). The weightless
case of Theorem 5.9 for variable p(-) was proved in [20].
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5.7. The Fefferman—Stein Function

Suppose that fis a measurable locally integrable function on R", B is a ball in R", and f; = ﬁJB f (x)dx.

Consider the maximal Fefferman—Stein function
# 1
MF0) = sup e [|7C0) = fildx.
B

Theorem 5.10. Suppose that p € P(R") N WL(R"); p(x) = p.. = const outside some ball |x| <R; p is a
weight function of the form (2.1), where d(x, x;) = |x — x;|; and conditions (5.1) and (5.2) hold. Then,

LA sy S CIA A gy, (5.12)

where C > 0 does not depend on f.
For constant p and p € A,, inequality (5.12) was proved in [17].

5.8. Pseudodifferential Operators
Consider the pseudodifferential operator 6(x, D) defined by

o(x, D)f(x) = [o(x &)™ f (€)de.

R

Theorem 5.11. Suppose that p € P(R") " WL(R"); p(x) = p.. = const outside a ball |x| < R; p is a weight
Sfunction of the form (2.1), where d(x, x;) = |x — x;|; conditions (5.1) and (5.2) hold; and

10805 (x, )| < cqp(1 +1EN ™.

Then, the operator 6(x, D) admits a continuous extension to the space Lg(') (R").

For constant p and p € A,, Theorem 5.11 was proved in [31]. For variable p(-), the weightless case of
Theorem 5.11 was proved in [33] by a different method.

5.9. Vector-Valued Operators
Consider a sequence = (3, fy, ..., fi» ...) of locally integrable functions f;: R" — R'.

Theorem 5.12. Suppose that p € P(R") n WL(R"); p(x) = p.. = const outside a ball |x| < R; p is a weight
Sfunction of the form (2.1), where d(x, x;) = |x — x;|; and conditions (5.1)—(5.2) hold. Then, for any 0 such that
0<0<eo,

1 1
= 6 = 0
0 0
(Z(Mm ) <c [zw ] ,
j=1 LIO®R") j=1 LIOR")
where ¢ > 0 does not depend on f.

For a constant number p and a function p from the class A, the weight inequalities for vector-valued
functions were proved in [2—4] (see also [8]).

The corresponding assertions for vector-valued operators are also valid for singular integrals, commuta-
tors, maximal Fefferman—Stein function, Fourier multipliers, etc.
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