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Abstract

 

—Mikhlin’s ideas and results related to the theory of spaces  with nonstandard growth are
developed. These spaces are called Lebesgue spaces with variable index; they are used in mechanics, the
theory of differential equations, and variational problems. The boundedness of Fourier multipliers and

singular operators on the spaces  are considered. All theorems are derived from an extrapolation
theorem due to Rubio de Francia. The considerations essentially use theorems on the boundedness of
operators and maximal Hardy–Littlewood functions on Lebesgue spaces with constant index.
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INTRODUCTION

This paper develops ideas and results of S. G. Mikhlin related, in particular, to the theory of spaces of
functions with nonstandard growth, known also as generalized Lebesgue spaces with variable index, which
have been extensively studied in recent years. Mathematical problems related to spaces with variable index
arise in applications to continuum mechanics (in particular, in the theory of electrorheological fluids). They
arise also in the theory of differential equations and variational problems. All this has determined a signifi-
cant interest in these spaces in recent years. A survey of the development of harmonic analysis on spaces
with variable index of integrability is contained in [15, 23, 38] (see also the references therein).

In this paper, we prove theorems on the boundedness of Fourier multipliers and singular integral opera-
tors, as well as of majorants of partial sums of trigonometric Fourier series, etc., on weighted Lebesgue

spaces  with variable index 

 

p

 

(

 

x

 

); we also give their vector-valued analogues. The proofs of all of these

theorems are based on a version of Rubio de Francia’s extrapolation theorem [34] for the spaces , which
is also proved in this paper. We develop some ideas and approaches of [12, 13]. An important role in the
proofs is played by well-known theorems on the boundedness of the operators mentioned above for constant

 

p

 

 and Muckenhoupt weights. We also consider the boundedness of the maximal Hardy–Littlewood function
on Lebesgue spaces with variable index.

1. DEFINITIONS AND AUXILIARY ASSERTIONS

Let (

 

X

 

, 

 

d

 

, 

 

µ

 

) be a metric space with metric 

 

d

 

 and nonnegative finite measure 

 

µ

 

. By 

 

B

 

(

 

x

 

, 

 

r

 

) = {

 

y

 

 

 

∈

 

 

 

X

 

:

 

d

 

(

 

x

 

, 

 

y

 

) < 

 

r

 

} we denote a ball in 

 

X

 

. We assume that the measure 

 

µ

 

 satisfies the doubling condition

where 

 

C

 

 > 0 does not depend on 

 

r

 

 > 0 and 

 

x

 

 

 

∈

 

 

 

X

 

. For locally 

 

µ

 

-integrable functions 

 

f

 

: 

 

X

 

  

 

�

 

1

 

, consider
the operator 

 

�

 

 taking each function 

 

f

 

 to the maximal Hardy–Littlewood function, which is defined by
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p ·( )
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p ·( )

µB x 2r,( ) CµB x r,( ),≤

� f x( ) 1
µB x r,( )
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B x r,( )
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By 

 

A

 

s

 

 = 

 

A

 

s

 

(

 

X

 

), where 1 

 

≤

 

 

 

s

 

 < 

 

∞

 

, we denote the class of weights 

 

w

 

: 

 

X

 

  

 

�

 

1

 

 being locally almost everywhere
positive 

 

µ

 

-integrable functions satisfying the Muckenhoupt condition

for 1 < 

 

s

 

 < 

 

∞

 

; for 

 

s

 

 = 1, the weights are required to satisfy the condition

for almost all 

 

x

 

 

 

∈

 

 

 

X

 

, where the constant 

 

C

 

 > 0 does not depend on 

 

x

 

 

 

∈

 

 

 

X

 

. Obviously, 

 

A

 

1

 

 

 

⊂

 

 

 

A

 

s

 

 for 1 < 

 

s

 

 < 

 

∞

 

.

In [10, 30], is was proved that the condition 

 

w

 

 

 

∈

 

 

 

A

 

s

 

 is equivalent to the boundedness of the operator 

 

�

 

on the space (

 

X

 

), i.e., to

here, 

 

C

 

 > 0 does not depend on 

 

f

 

.
Let 

 

Ω

 

 be an open set in 

 

X

 

, and let 

 

�

 

(

 

Ω

 

) denote the class of measurable functions on 

 

Ω

 

 for which

(1.1)

where 

 

p

 

–

 

 = p–(Ω) = (x) and p+ = p+(Ω) = (x).

Consider the weighted Banach space (Ω) of measurable functions f : Ω  � such that

(1.2)

Definition 1.1. We say that a function p ∈ �(Ω) belongs to the class �ρ(Ω) if the maximal operator �

is bounded on the space (Ω).

Definition 1.2. A function p: Ω  �1 is called a function of class WL (a weakly Lipschitz function) if

(1.3)

where A > 0 does not depend on x and y.
Let us introduce the following numbers:
(1) the lower boundary of local “dimensions” in X, namely,

(1.4)

(2) the lower and upper boundaries of “dimensions” (related to the influence of infinity), namely,

(1.5)

and

(1.6)

1
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It is easy to see that m(µB), m∞(µB), and M∞(µB) are nonnegative. In what follows, when considering
these boundaries of dimensions, we always assume that m(µB), m∞(µB), M∞(µB) ∈ (0, ∞).

Note that, in (1.4),  can be transposed as

provided that there exists an ε > 0 such that the function µB(x, r) is continuous for r ∈ (0, ε) uniformly with
respect to x ∈ X. A similar fact is valid for expressions (1.5)–(1.6).

2. CLASSES OF WEIGHT FUNCTIONS

We deal, in particular, with the weights

(2.1)

where β∞ = 0 for a bounded metric space X. Let Π = {x0, x1, …, xN}.

Definition 2.1. We say that a weight function of the form (2.1) belongs to the class Vp(·)(X, Π), where
p(·) ∈ C(X), if

(2.2)

and

(2.3)

In the case of a bounded metric space X, we consider the more general class of weights

(2.4)

with “radial” weights, where the functions wk(·) belong to the Zygmund–Bari–Stechkin class, in which
oscillation between power functions with different exponents is allowed.

Let U = U([0, �]) denote the class of functions u ∈ C[0, �] (where 0 < � < ∞) such that u(0) = 0, u(t) >

0 for t > 0, and u is a nondecreasing function on [0, �]. By  we denote the class of functions u such that

xau(x) ∈ U for some a ∈ �1.

Definition 2.2 [1]. We say that v belongs to the Zygmund–Bari–Stechkin class  if

where c = c(v) > 0 does not depend on h ∈ (0, �].

As is known, v ∈  if and only if 0 < m(v) ≤ M(v) < δ, where

(2.5)

(see [35, 36, 19]).
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∏=

Ũ
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Definition 2.3. We say that a weight function ρ of the form (2.4) belongs to the class (X, Π), where
p(·) ∈ C(X), if

wk(r) ∈ for xk ∈ Π and k = 1, 2, …, N, (2.6)

or, equivalently,

(2.7)

Note that, if the metric space X has constant dimension s in the sense that

where c1 > 0 and c2 > 0 are constants not depending on x ∈ X and r > 0, then inequalities (2.2), (2.3), and
(2.7) can be written in the forms

(2.8)

and

(2.9)

where k = 1, 2, …, N, respectively. 

3. BOUNDEDNESS OF THE MAXIMAL HARDY–LITTLEWOOD OPERATOR 
ON WEIGHTED SPACES WITH VARIABLE INDEX

The following assertions are valid.
Theorem 3.1. Suppose that X is a bounded metric space endowed with a measure satisfying the doubling

condition, p ∈ WL(X), and ρ ∈ (X, Π). Then, � is bounded on (X).

Theorem 3.2. Suppose that X is an unbounded metric space endowed with a measure satisfying the dou-
bling condition, p ∈ WL(X), there exists an R > 0 such that p(x) ≡ p∞ = const for x ∈ X\B(x0, R), and ρ ∈
Vp(·)(X, Π). Then, � is bounded on (X).

Euclidean versions of Theorems 3.1 and 3.2 were proved in [14] for the nonweight case and in [26, 25]
for the weight case.

4. AN EXTRAPOLATION THEOREM

Let � be a family of ordered pairs ( f, g) of nonnegative measurable functions f and g defined on an open
subset Ω of X. When saying that the inequality

(4.1)

holds for all pairs ( f, g) ∈ � and weights w ∈ Aq(Ω) (for some q, 1 ≤ q < ∞), we always mean that it holds
for all pairs such that the left-hand side of this inequality is finite, and the constant C depends only on p0
and the Aq-constant of the weight w.

Theorem 4.1. Let X be a metric space with a measure, and let Ω be an open set in X. Suppose that 1 <
p0 < p–, the weight ρ and the index p(·) ∈ � satisfy the condition ( )' ∈  (where (·) = ), and

� is a family such that the inequality

V p ·( )
osc

r
1/ p xk( )

Φm µB( )
0

wk r( ) Ũ and m µB( )
p xk( )

----------------– m wk( ) M wk( ) m µB( )
p ' xk( )
---------------- for k<≤<∈ 1 2 … N ., , ,=

c1rs µB x r,( ) c2rs,≤ ≤

s
p xk( )
-------------– βk

s
p ' xk( )
--------------, s

p∞
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k 1=

N
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s

p∞'
------< < < <

s
p xk( )
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--------------,<≤<

V p ·( )
osc Lρ

p ·( )

Lρ
p ·( )

f
p0 x( )w x( ) µ x( )d

Ω
∫ C g

p0 x( )w x( ) µ x( )d

Ω
∫≤

p̃ � 1

ρ
p0

--------
p̃ p ·( )/ p0
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(4.2)

holds for all ( f, g) ∈ � and all w ∈ A1(Ω). Then, for all ( f, g) ∈ � with f ∈ (Ω), the inequality

(4.3)

with a constant C > 0 not depending on f and g holds.
Note that Theorem 4.1 does not assume the measure on X to satisfy the doubling condition.
Theorem 4.1 combined with Theorems 3.1 and 3.2 implies the following assertion.
Theorem 4.2. Let X be a metric space with a measure satisfying the doubling condition, and let Ω be an

open set in X. Suppose that

(1) if the set Ω is bounded, then p ∈ WL(Ω) and ρ ∈ (Ω, Π), and

(2) if the set Ω is unbounded, then p ∈ WL(Ω), p(x) ≡ p∞ = const for x ∈ Ω\B(x0, R) for some x0 ∈ Ω and
R > 0, and ρ ∈ Vp(·)(Ω, Π).

Then, the fulfillment of inequality (4.2) for all ( f, g) ∈ � from some family � and all w ∈ A1(Ω) implies

that of inequality (4.3) for all pairs ( f, g) from � for which f ∈ (Ω).

Remark 4.3. Since the intervals (2.2), (2.3), and (2.7) are open, it follows that there exists a p0 ∈ (1, p–) for
which

and

where (x) = .

Proof of Theorem 4.1. By virtue of the Riesz theorem, which is valid for spaces with variable index pro-
vided that 1 < p– ≤ p+ < ∞ (see [27, 37]), we have

where the supremum is over all nonnegative h such that  ≤ 1 and f is assumed to be nonnegative.
Take any such function h. Let us show that

(4.4)

where the constant C > 0 does not depend on h, for an arbitrary pair ( f, g) from the given family �. By
assumption, p and ρ are such that ( )' ∈ , i.e.,

(4.5)

where the constant C0 > 0 does not depend on ϕ.

Let us apply the construction

(4.6)

f
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Ω
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Ω
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osc
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V p̃( ) ' ·( ) Ω Π,( )∈⇒
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p0ρ
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hρ
p0–

L
p̃( ) ' ·( )

f
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Ω
∫ C gρ

L
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1/ρ

p0

ρ
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�ϕ L
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ϕ L
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due to Rubio de Francia [34], where each �k is the k-times iterated maximal operator and C0 is the same
constant as in (4.5) (C0 ≥ 1). The following assertions are obvious:

(1) ϕ(x) ≤ Sϕ(x), where x ∈ Ω, for any nonnegative function ϕ;

(4.7)

(3) �(Sϕ)(x) ≤ 2c0Sϕ(x) for x ∈ Ω, so that Sϕ ∈ A1(Ω), where the constant A1 does not depend on ϕ.
Therefore, Sϕ ∈ (Ω).

According to results of Section 1, for ϕ = h, we have

(4.8)

Hölder’s inequality for variable indices, the condition in Section 2, and the assumption that f ∈  imply

Therefore, the integral (x)Sh(x)dµ(x) is finite, and we can apply condition (4.1) to the right-hand side

of (4.8), which yields

Applying Hölder’s inequality to the right-hand side, we obtain

(4.9)

By virtue of (4.8), to prove (4.4), it suffices to show that  is bounded by a constant not depend-

ing on h. This follows from (4.7) and the normalization condition  ≤ 1, which completes the
proof of the theorem.

5. APPLICATION TO THE BOUNDEDNESS ON  
OF CLASSICAL OPERATORS OF HARMONIC ANALYSIS

5.1. Multipliers of the Fourier Transform

We say that a measurable function �n  �1 is a Fourier multiplier in the space (�n) if the operator

Tm defined on the Schwartz space S(�n) by

extends to a bounded operator on (�n).

Below, we generalize classical Mikhlin’s theorem on Fourier multipliers to Lebesgue spaces with vari-
able index.

2( ) ρ
p0–

Sϕ L
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ϕ L
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f
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Ω
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Ω
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f
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Ω
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Ω
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p0ρ
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L
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Sh L
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≤ C fρ
L

p ·( )
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L
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L
p ·( ) ∞.<≤

f
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Theorem 5.1. Suppose that p ∈ �(�n) ∩ p ∈ WL, p(x) = p∞ = const for |x | ≥ R for some R > 0, and ρ is
a weight function of the form (2.1), where

(5.1)

and

(5.2)

Suppose also that a function m(x) is continuous on �n everywhere except, possibly, at the origin and has

mixed derivative  and derivatives Dαm = , where α = (α1, …, αn), of all orders |α| =

α1 + … + αn ≤ n – 1 continuous outside the origin. Finally, suppose that

where the constant C > 0 does not depend on x. Then, m is a Fourier multiplier in (�n).

Theorem 5.1 follows from Theorems 4.2 and 3.2 and the fact that, for any constant s such that 1 < s < ∞
and any weight ρ ∈ As, every function m satisfying the conditions of Theorem 5.1 is a Fourier multiplier in

(�n). This fact was proved in [28] (see also [2]).

This theorem can be generalized to weighted spaces with variable index. Namely, the following analogue
of the Mikhlin–Hörmander theorem is valid.

Theorem 5.2. Suppose that p(·) and ρ satisfy the conditions of Theorem 5.1 and m: �n  �1 is a func-
tion such that

for some s (1 < s ≤ 2) and all α with |α| ≤ �, where  > 1. Then, m is a Fourier multiplier in (�n).

Theorem 5.2 follows from Theorems 4.2 and 3.2 as well.

In the statement of the following theorem, ∆j denotes any interval of the form [2j, 2j + 1] or [–2j + 1, –2j],
where j ∈ �.

Theorem 5.3. Suppose that p ∈ �(�1) ∩ WL(�1) and p(x) is constant outside some finite interval. Sup-
pose also that ρ has the form (2.1) and conditions (5.1)–(5.2) with n = 1 hold. Finally, suppose that, in each
of the intervals ∆j , a function m can be represented as

where the  are finite measures such that  var  < ∞. Then, m is a Fourier multiplier in (�1).

In the case of constant p, this theorem was proved in [29] for ρ ≡ 1 and in [2, 3] for ρ ∈ Ap.

5.2. Multipliers of Trigonometric Fourier Series

Using Theorem 4.1 and known results on constant indices, we can generalize theorems about Marcink-
iewicz multipliers and Littlewood–Paley expansions for trigonometric Fourier series to weighted spaces
with variable index.

n
p xk( )
-------------– βk

n
p ' xk( )
-------------- for k< < 1 2 … N, , ,=

n
p∞
------– β βk

k 1=

N

∑+
n
p∞'
------.< <

∂nm
∂x1x2…xn

------------------------- ∂ α m

∂x1
α1x2

α2…xn
αn

-------------------------------

x α Dαm x( ) C if α n 1,–≤ ≤

Lρ
p ·( )

Lρ
s

Rs α n– Dαm x( ) s
xd

R x 2R< <
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⎜ ⎟
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1/s

R 0>
sup ∞<

� p–( )/n Lρ
p ·( )

m λ( ) µ∆ j
, λd
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µ∆ j
 

j
sup µ∆ j

Lρ
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Suppose that � = [–π, π], f is a 2π-periodic function, and

(5.3)

According to the notation introduced above, the expression ρ ∈ (�, Π) means that ρ is a weight of the
form (2.4) satisfying condition (2.6) or (2.7) for n = 1.

Theorem 5.4. Suppose that p ∈ �(�) ∩ WL(�), ρ ∈ (�, Π), and a sequence of λk satisfies the con-
ditions

where A > 0 does not depend on k and j. Then, there exists a function F(x) ∈ (�) such that the series

 + (akcoskx + bksinkx) is a Fourier expansion for F, and

where c > 0 does not depend on f ∈ (�).

Theorem 5.5. If p ∈ �(�) ∩ WL(�) and ρ ∈ (�, Π), then there exist constants c1 > 0 and c2 > 0
such that

(5.4)

for all f ∈ (�), where Ak(x) = akcoskx + bksinkx,  = 0, and A0 = /2.

For constant p and ρ ∈ Ap, this theorem was proved in [28].

5.3. Majorants of Partial Sums of Fourier Series

Suppose that

where Sk( f, x) is a partial sum of Fourier series (5.3).

Theorem 5.6. If p ∈ �(�) ∩ WL(�) and ρ ∈ (�, Π), then

(5.5)

for all f ∈ (�), where the constant c > 0 does not depend on f.

For constant p and ρ ∈ Ap, Theorem 5.6 was proved in [18].

5.4. Singular Cauchy Integral

Consider the singular integral

where Γ is a simple finite Carleson curve and ν is the natural parameter on Γ.

f x( )
a0

2
----- ak kxcos bk kxsin+( ).

k 0=

∞

∑+∼

V p ·( )
osc
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osc
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k 2 j 1–=

2 j 1–

∑ A,≤ ≤

Lρ
p ·( )

λ0a0( )/2 λkk 0=
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F
Lρ

p ·( ) cA f
Lρ

p ·( ),≤

Lρ
p ·( )

V p ·( )
osc

c1 f
Lρ

p ·( ) Ak x( )
k 2 j 1–=

2 j 1–

∑
2

j 0=

∞
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⎛ ⎞

Lρ
p ·( )

1
2
---

c2 f
Lρ

p ·( )≤ ≤

Lρ
p ·( ) A

2 1– a0

S* f( ) S* f x,( ) Sk f x,( ) ,
k 0≥
sup= =

V p ·( )
osc

S* f( )
Lρ

p ·( ) c f
Lρ

p ·( )≤

Lρ
p ·( )

SΓ f t( ) 1
πi
----- f τ( ) νd

τ t–
-----------------,

Γ
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Theorem 5.7. If p ∈ �(Γ) ∩ WL(Γ) and ρ ∈ (Γ, Π), then the operator SΓ is bounded on the space

(Γ).

In the case of power weights, Theorem 5.7 was proved in [24], where the case of an infinite Carleson
curve was also considered. For constant p and ρ ∈ Ap(Γ), Theorem 5.7 was proved by different methods in
[22] and [9].

5.5. Multidimensional Singular Operators

Consider the multidimensional singular operator

(5.6)

We assume that the singular kernel K(x, y) satisfies the following conditions:

(5.7)

(5.8)

and

(5.9)

where α is an arbitrary positive index;

(5.10)

(5.11)

Theorem 5.8. Suppose that p ∈ �(�n) ∩ WL(�n); p(x) ≡ p∞ = const outside some ball |x | < R; ρ is a
weight function of the form (2.1), where d(x, xk) = |x – xk |; conditions (5.1) and (5.2) hold; and the kernel

K(x, y) satisfies conditions (5.7)–(5.11). Then, the operator T is bounded on the space (�n).

For constant p and ρ ∈ Ap(�
n), this theorem was proved in [11]. For variable p(·), the weightless case of

Theorem 5.8 was proved in [16].

5.6. Commutators

Consider the commutators

generated by operator (5.6) and a function b ∈ BMO(�n).

Theorem 5.9. Suppose that p ∈ �(�n) ∩ WL(�n); p(x) ≡ p∞ = const outside some ball |x | < R; ρ is a
weight function of the form (2.1), where d(x, xk) = |x – xk |; conditions (5.1) and (5.2) hold; and the kernel

K(x, y) satisfies conditions (5.7)–(5.11). Then, the commutator [b, T] is bounded on the space (�n).

For constant p and ρ ∈ Ap(�
n) with 1 < p < ∞, Theorem 5.9 was proved earlier (see [32]). The weightless

case of Theorem 5.9 for variable p(·) was proved in [20].

V p ·( )
osc

Lρ
p ·( )

Tf x( ) K x y,( ) f y( ) y, where xd
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∫ε 0→
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n
.∈=
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----------------------- if x ' x–

1
2
--- x y–<≤
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y ' y– α

x y– n α+
----------------------- if y ' y–

1
2
--- x y– ,<≤

K x y,( ) y exists;d

x y– ε>
∫ε 0→

lim

the operator (5.6) is bounded on L2
�

n( ).

Lρ
p ·( )

b T,[ ] f x( ) b x( )Tf x( ) T bf( ) x( )–=

Lρ
p ·( )
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5.7. The Fefferman–Stein Function

Suppose that f is a measurable locally integrable function on �n, B is a ball in �n, and fB = (x)dx.

Consider the maximal Fefferman–Stein function

Theorem 5.10. Suppose that p ∈ �(�n) ∩ WL(�n); p(x) ≡ p∞ = const outside some ball |x | < R; ρ is a
weight function of the form (2.1), where d(x, xk) = |x – xk |; and conditions (5.1) and (5.2) hold. Then,

(5.12)

where C > 0 does not depend on f.
For constant p and ρ ∈ Ap, inequality (5.12) was proved in [17].

5.8. Pseudodifferential Operators

Consider the pseudodifferential operator σ(x, D) defined by

Theorem 5.11. Suppose that p ∈ �(�n) ∩ WL(�n); p(x) ≡ p∞ = const outside a ball |x | < R; ρ is a weight
function of the form (2.1), where d(x, xk) = |x – xk |; conditions (5.1) and (5.2) hold; and

Then, the operator σ(x, D) admits a continuous extension to the space (�n).

For constant p and ρ ∈ Ap, Theorem 5.11 was proved in [31]. For variable p(·), the weightless case of
Theorem 5.11 was proved in [33] by a different method.

5.9. Vector-Valued Operators

Consider a sequence f = (f1, f2, …, fk, …) of locally integrable functions fi: �
n  �1.

Theorem 5.12. Suppose that p ∈ �(�n) ∩ WL(�n); p(x) ≡ p∞ = const outside a ball |x | < R; ρ is a weight
function of the form (2.1), where d(x, xk) = |x – xk |; and conditions (5.1)–(5.2) hold. Then, for any θ such that
0 < θ < ∞,

where c > 0 does not depend on f.
For a constant number p and a function ρ from the class Ap, the weight inequalities for vector-valued

functions were proved in [2–4] (see also [8]).
The corresponding assertions for vector-valued operators are also valid for singular integrals, commuta-

tors, maximal Fefferman–Stein function, Fourier multipliers, etc.
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