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Abstract

We study the boundedness of the maximal operator in weighted variable exponent spaces
rt) (X, o) on a doubling measure metric space X. When X is bounded, the weight belongs
to a version of a Muckenhoupt-type class, which is narrower than the expected Muckenhoupt
condition for variable exponent, but coincides with the usual Muckenhoupt class A, in the
case of constant p. For a bounded X we also consider a class of weights of the form o(z) =
[Ti; we(d(z, zk)), zx € X, where the functions wy(r) have finite upper and lower indices
m(w) and M (w) satisfying the condition _%‘Z’E(kX)) < m(w) < M(w) < aﬁlfcf)) ,
2im(X) is a certain version of the lower dimension of the space X. In the case of unbounded
X we admit weights of the form wo[l + d(zo, z)] [[;, weld(zk, z)].

Some of the results are new even in the case of constant p. We also deal with some new
notions of upper and lower local dimensions of measure metric spaces.
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1 Introduction

Within the last decade a significant progress has been made in the study of maximal, singular and
potential operators in variable exponent Lebesgue spaces LP{") in the Euclidean setting, including
weighted estimates. We refer in particular to the surveying articles [7], [21], [42] and papers [3],
141, [51, [6], I81, [241], [26], 1271, 28], [29], [31], [36] and references therein.

In the case of constant p these classical operators have been studied in a more general setting of
measure metric spaces, see in particular [2], [9], [10], [11], [13], [22]. In the variable exponent set-
ting, investigation of the classical operators of harmonic analysis on measure metric spaces started
several years ago. In [23], [25], [30], [31] there were proved results on the boundedness, includ-
ing certain weighted cases, of maximal, singular and potential operators on an arbitrary Carleson
curve, which is a typical example of Ahlfors-regular measure metric space with constant dimen-
sion. The non-weighted boundedness of the maximal operator on a bounded doubling measure
metric space was proved in [16] and [20]. We refer also to [15], where Sobolev-type theorem for



potential operators on bounded metric spaces in R with variable dimension was obtained and to
[35], where continuity of Sobolev functions on metric spaces in the limiting case was studied.

We obtain weighted estimates for the maximal operator on a doubling measure metric space
(X, d, ;) with weights in a certain subclass of Muckenhoupt class A,.). We also specially consider
the case of radial-type weights w(d(zo, x)), which are functions of the distance d(xg, z) in X, and
show that in this case the condition of weighted boundedness may be written in some natural terms
of relations between certain (Matuszewska-Orlicz type) indices of the weight w(r) and the lower
dimension dim(.X) of the space X.

The paper is organized as follows. In Section 2 we recall some facts for variable exponent
Lebesgue spaces on measure metric spaces. In Section 3 we formulate the main results - Theorems
A, B and C - on the weighted boundedness of the maximal operator. Theorem A gives a kind
of ”Muckenhoupt-looking” condition when X is bounded, which we called an “ersatz” of the
Muckenhoupt-expected condition. In Theorem B we deal with a bounded space X and radial-type
oscillating weights w[d (o, )] and obtain sufficient conditions for the boundedness in the form

2im(X)
(o)

dim(X)
P(xo)

m(w) < M(w) <

, (1.1)

where
. . uB(z,rt)
| _ln (hr;lj;lp 2 WBe) )
oim(X) = lim
t—0 Int

)

and m(w), M (w) are Matuszewska-Orlicz indices of the weight w, see Section 4 for these in-
dices and Subsection 5.4 for the way in which the dimension ?im(X') appeared as a kind of the
Matuszewska-Orlicz index of the measure pB(x,r). Finally, in Theorem C we give a version of
Theorem B for the case of unbounded spaces X.

In Section 4 we give some results on the upper and lower Matuszewska-Orlicz-type indices of
weights in the Zygmund-Bary-Stechkin class, which we need to prove Theorem B. In Section 5
we find some Zygmund-type conditions on functions w under which the weights w[d(zy, x)] are
Muckenhoupt weights. These conditions are given in terms of certain integral inequality imposed
on the functions pB(z, ) and w. In Section 6 we prove a weighted version of pointwise Diening’s
estimate for the maximal function, which in the non-weighted case on measure metric spaces was
proved in [16] and [20]. In Sections 7, 8 and 9 we give the proof of Theorems A, B and C. In the
case where X is a Carleson curve on the complex plane so that 9im(X) = 0im(X) = 1, Theorems
A, B and C were obtained in [25].

2 Some basics for variable exponent spaces

In the sequel (X, d, i) is a space with quasimetric d and a non-negative measure j; we refer
to [13], [14], [17] for the basic notions of function spaces on metric spaces. The quasidistance
d: X x X — R!is assumed to satisfy the standard conditions: d(z,y) = d(y,z) > 0, d(z,y) =
0 < x=y,and

d(z,y) < ald(z, z) + d(z,v)], a>1, (2.1)



where x,y, 2 € X. In the sequel we assume that the measure satisfies the doubling condition
w(B(x,2r)) < C,uB(z,r). (2.2)

The variable exponent p(x) defined on X is supposed to satisfy the conditions

l<p <plx)<p<oo, z€X (2.3)
and
A 1
p(z) =p)| < —— dlz.y) <5 zyeX (2.4)
D 3y

By L") (X, o), where o(z) > 0, we denote the weighted Banach space of measurable functions
f + X — C such that

p(z)
du(z) <1 ) < 0. (2.5)

Iflsocc = lefloo =i x>0 f |40
X

We write LPO(X, 1) = LPO(X) and || f|| 2oy (x) = IIf]lp() in the case o(t) = 1. The generalized
Lebesgue spaces L) (X)) with variable exponent on measure metric spaces have been considered
in [15], [16], [20], see also references therein. It is known that the Holder inequality holds in the
form

[ 15@g@ ) dute) < 11,0, ol 6)
X
with k& = p% + i, p(z) = p(pm()mll’ P = ég)ffp’(x) The modular
() = Blf) = [ 15@P duo)
X
and the norm || f||,,) are simultaneously greater than one and simultaneously less than 1.
We note also that the embedding
1O 10, 1], <l @)

is valid for 1 < s(z) < p(x) < p* < 00, when p(X) < 0.

Lemma 2.1. Let p be any function on X satisfying condition (2.4) and let w be a function on
0,¢],¢ = diam X.
i) Let { < oo. If there exist exponents a,b € R and constants ¢, > 0 and co > 0 such that

cr® <w(r) < cr® for re0,4], (2.8)
then

%[w(d(%xo))]p(“) < [w(d(x, 20))["" < Clw(d(w, 20))P ™, (2.9)



where C' > 1 does not depend on v,y € X.
ii) Let { = oo. Suppose that p(x) additionally satisfies the condition that there exists lim p(x) =:

r—00

p(o0) and |p(z) — p(o0)| < m. If w satisfies condition (2.8) for r < 1 and the condition
csr® <w(r) < ey for 1> 1, then (2.9) holds for d(z,x) < 1, while

%[w(d(x,xo))]p(oo) < [w(d(z, 20))P® < Clw(d(z, 20))]P°  for d(z,z0) >1. (2.10)

Proof. Let ! < oo. We denote g(z, z9) = [w(d(z, z))]P®770) To show that & < g(z, z) <
C, thatis, | In g(z, zo)| < C1, Cy = In C, we observe that

| In w(d(z, x0))|

[ In gz, w0)| = [p(x) = p(xo)] - [In w(d(z, z0))| < AL

20
In d(z,x0)
which is bounded by the condition on w. The case ¢ = oo is similarly treated. O
3 Main Results
3.1 Background
We use the notation M? for
o(z) /()]
MO f(x) =sup / du(y (3.1)
R G T

where B(z,7) = Bx(z,7) = {y € X : d(x,y) < 7}, and write M = M when o(t) = 1. In
the case of constant p € (1, 00) the following result is known, where A, = A,(X) is the class of
weights satisfying the Muckenhoupt condition

p—1

1 p 1 dp(y) ~
o\ [ oo |\ s [ G| < 62

B(z,r) B(z,r)

Theorem 3.1. (/2], [33]) Let (X, d, j1) be a doubling measure metric space and ¢ € A,. Then
the maximal operator M is bounded in the space L*(X, p).
The non-weighted boundedness result obtained in [16] and [20] runs as follows.

Theorem 3.2. Let X be bounded and doubling and the exponent p(x) satisfy assumptions
(2.3)-(2.4). Then the maximal operator M is bounded in the space Lp(')(X ).

The boundedness of the operator M in LP() (X, o) was proved in the case of the power weight
o(r) = |z — x|, 29 € X in [26], [29] for the case where X = ( is a bounded domain in R"
or X = I is a Carleson curve on the complex plane, and there was shown that the necessary and

sufficient condition for such a boundedness is —[ﬁ < B < m with n = 1 in the case of



Carleson curves. The case of radial weights of the form w(|x — z¢|) withzg € Q@ C R orzg € I’
was treated in [25], [24], [31], with the last condition replaced by
n
———<mw) < Mw) < ——
plag) < =M<
where m(w) and M (w) are the so called lower and upper indices of the function w, see Subsection
4.2 on these index numbers.

(3.3)

3.2 Statements of the main results

For a measure metric space (X, d, 1) we prove three main results given in Theorems A, B and C
stated below. The space (X, d, ) is assumed to satisfy the conditions: 1) all the balls B(x,r)
are measurable, 2) the space C'(X) of uniformly continuous functions on X is dense in L' (). In
most of the statements we also suppose that the measure y is doubling. Let

Apy(X) = Muckenhoupt class
be the class of weights for which the maximal operator is bounded in the space LPY(X, 0). In
Theorem A we make use of the class A,.y(X) of weights, which satisfy the condition

p——1
1 1 dp(y)
su - P) g / < 0. 34
acEX,?I“)>0 MB (I, T) / ‘Q(y)’ u(y) NB(:C7 T) |Q<y) ‘ pp,(y—)l ( )

B(z,r) B(z,r)

This class gp(.) (X)) is narrower than A, ., which may be seen on power weights, see Theorem B,
conditions of which cover a wider range of exponents of power weights than that covered by the
class A, (X). However, A,.)(X) coincides with the Muckenhoupt class A,, in case p is constant.

Theorem A states that gp(.) (X) C Ayy(X) under batural conditions.

Theorem A. Let X be a bounded doubling measure metric space, let p(x) satisfy conditions
(2.3), (2.4) and o fulfill condition (3.4). Then the operator M is bounded in Lp(')(X, 0).

In Theorems B and C we deal with a special class of radial type weights in the Zygmund-
Bary-Stechkin class of the type of almost monotonic functions, when the final statement may be
formulated in terms of numerical inequalities for the Matuszewska-Orlicz indices of the weights.
To this end, we arrive at the necessity to relate the properties of the weight to those of the measure
uB(x,r) as stated in (1.1). Such a result for the Euclidean case was earlier obtained in [24].
Theorem B is proved by means of Theorem A, but it is not contained in Theorem A, being more
general in its range of applicability. In Theorem B we consider weights of the form

T) = Hwk(d(%xk)), zp € X, (3.5)

where wy(r) may oscillate between two power functions as r — 0+ (radial Zygmund-Bary-
Stechkin type weights), and in Theorem C we consider similar weights of the form

o(z) = wo[l + d(zo, x Hwk z,xr)], vr€ X, k=0,1,...N. (3.6)



For lower and upper local dimensions at a point z € X, we use an approach different from
known in the fractal geometry and used in the variable exponent analysis on measure metric spaces
in [15], see also [12], [16]. To this end, we apply the same Matuzewska-Orlicz indices to measures
of balls to obtain local lower and upper dimensions in terms of these indices. This idea to introduce
local dimensions by the following definition was borrowed from [40].

Definition 3.3. The numbers

. pB(z,rh)
dim (X ! Olli% ”B(x’h)) vim(X; ) = inf
ﬁ( ,.T) - ?};‘113 In r ) 1m< 7‘7:) - }11>11 In r

T uB(z,rh)
i (T 5

(3.7)

will be referred to as local lower and upper dimensions of X at a point x € X.

Observe that the dimensions (3.7) are Matuszewska-Orlicz indices of measures pB(z,r) of
balls, see Subsection 4.2 on these indices.

The dimension dim(X; x) may be also rewritten in terms of the upper limit as well:

T puB(x,rh)
In (T s5ess)

2im(X;z) = sup (3.8)

0<r<1 In r

. . _ Ti—uB(z,rh)
Since the function po(x, ) = }1}3{1} CIN

([32], Ch.II, Theorem 1.3) we obtain that

is semimultiplicative in r, by properties of such functions

im(X;7) < dim(X;z)

and we may rewrite these dimensions also in the form

I — 1
r—0 Inr r—oo Inr

(3.9)

Lemma 3.4. [f the measure 11 is doubling, the above local dimensions are finite numbers and
im(X;z) < log, C,, (3.10)

where C, is the constant from the doubling condition (2.2).

Proof. As is known, by the iteration of the doubling condition, the inequality

B(z,R R 82 Cr
pB(z, R) )gC = , 0<r<R<o (3.11)
uB(z,r) r
may be obtained. Hence % < C't°22%% _ Then from (3.9) we obtain (3.10). O

For lower local dimensions we also introduce their ’lower bound”

In (lim sup inf %)
. . r—0 =zeX H (@) . .
oim(X) := lim < inf ?im(X;x). (3.12)
t—0 Int zeX
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Observe that in many cases the coincidence dim(X) = in)f( 0im(.X; z) holds, for instance, if the
[aS

meausres of balls have the form puB(z,r) = a(x)[p(r)]"®.

In case where X is unbounded, we will also need similar dimensions connected in a sense with
the influence of infinity. Let

—uB(x,rh)
(@, r) = Tim A
ool 1) = Jimn, 1B (z, h)
We introduce the numbers
1 oo 9 ~ . 1 oo 9
pim_(X) = lim (1) S ) = g Pe@1) (3.13)
r—0 In r 7—00 In r

As shown in [40], these limits do not depend on the ”starting” point x. It is easy to see that they
are non-negative. Similarly to Lemma 3.4, it may be shown that dim.,(X) < log, C, < oointhe
case of doubling measure.

In the sequel, we always assume that the dimensions never degenerate, that is,

oim(X) >0 and dim_(X)>0.

Remark 3.5. Observe that for an arbitrarily small ¢ > 0 we have
cwﬂ‘(x‘x)J’8 < uB(z,r) < clrm“(X”t)_E, O<r<R<o (3.14)

and
cr®®) 7 < B, r) < eqr®™=IT 0 <rg <1 (.15

where ¢;,7 = 1,2,3,4, depend on € > 0, but do not depend on r and x, the bounds in (3.15)
needed in the case X is unbounded. Bounds in (3.14)-(3.15) follow from properties (4.15) and
(4.21) given in Subsection 4.3; the fact that the ¢; do not depend on z, was proved in [40].

To formulate the next Theorems B and C, we need the following additional assumptions on the
measure i

the measure j is non-atomic; (3.16)
uB(x,r) iscontinuousin r forevery fixed x € X; (3.17)
in)f( uB(x,r) >0 forevery r > 0. (3.18)

S

Condition (3.18) is fulfilled for every doubling measure y, if X is bounded, since in this case there
exists a number d > 0 such that uB(z,r) > Cr? with C > 0 not depending on z and r. So we
will have to refer to condition (3.18) only in Theorem C for unbounded spaces X.

The Zygmund-Bary-Stechkin class CI>2 of weights and upper and lower indices of weights used
in the theorem below are defined in Section 4. Various examples of functions in Zygmund-Bary-
Stechkini-type classes with coinciding such indices may be found in [37], Section 1I; [38], Section
2.1, and with non-coinciding indices in [39].

Theorem B. Let X be a bounded doubling measure metric space satisfying assumptions
(3.16), (3.17), let p(x) fulfill conditions (2.3), (2.4) on X. The operator M is bounded in Lp(')(X, 0)

2im(X) —~
with weight (3.5), if r ?@0) wy(r) € @gin(x), or equivalently wy € W ([0,/]), ¢ = diam X, and
2im(X)
p(zy)

dim(X)
P (k)

<m(w) < M(w) <

k=12 N. (3.19)



In the case where X is a bounded open set in R, Theorem B was proved in [24] for Zygmund-
Bary-Stechkin type weights and in [29] for power weights.

Theorem C. Let
i) X be an unbounded measure metric space satisfying the doubling condition and assumptions
(3.16), (3.17) and (3.18);
ii) p satisfy conditions (2.3)-(2.4) and let there exist a ball B(xo, R),xy € X such that p(z) =
Poo = const for x € X\ B(zo, R).
Then the maximal operator M is bounded in LP") (X, w), with weight (3.6), if w;, € W(Rfr) and

oim(X oim(X
_Am(X) _ m(wy) < M(wy) < “,“( ) k=1...N (3.20)
p(zr) P (zx)
and v v
oim__ (X oim (X
_Amy,(X) D meo(wy) < Muo(wy) < # — A, (3.21)
Peo k=0 k=0 Poo
where A, = Qithos (X) —Dim. (X)
Poo Poo °
In particular, for the power type weight
N
o(x) = (1 +d(zo, x))™ [ [ld(x, zx)]*, xr€ X, k=0,1,..N (3.22)
k=1
conditions (3.20)-(3.21) take the form
im(X im(X
_Am(X) 01—‘,“—() k=1,.. N, (3.23)
p(zk) P ()
and N
oim__ (X oim_ (X
_ dim,(X) < Zﬁk < # — A, (3.24)
e k=0 Poo
The bounds in (3.21) turn to take a “natural” form —M;;(X) and m;?(X) with A, = 0 when

the dimensions dim__(X) and dim.,(X) coincide with each other.

The Euclidean space version of Theorem C for variable exponents and power weights was
obtained in [19].

4 Preliminaries on Zygmund-Bary-Stechkin classes.

In this section we follow some ideas of papers [1], [18], [37], [39], [41]. Let 0 < ¢ < oc0. A
non-negative function ¢ on [0, ¢] is said to be almost increasing (a.i.) or almost decreasing (a.d.), if
there exists a constant C' > 1 such that p(z) < Cp(y) for all z < y (or = > y, respectively). Let

W ={we C([0,4]): w(t)>0 for t >0, w(t) isai.} 4.1)



and
Wy ={we W :w(0) =0} 4.2)

Besides W we also need a wider class

W([0,0)) = {¢: Fa=a(p) € R" suchthat z%p(z) € W([0,4])}. 4.3)

4.1 The Zygmund-Bary-Stechkin type classes &5 = ©3([0,/]) and ¥ =
WG([¢, 0]), 0 < £ < o0,

The following class 5 of Zygmund-Bary-Stechkin type in the case « = 0 and § = 1,2, 3, ... was
introduced in [1] (in [1] functions w were increasing, not almost increasing).

Definition 4.1. The Zygmund-Bary-Stechkin type class 3 = ®3([0, /]), —o00 < a < 8 < o0,

—~

is defined as @3 := Z* N Z3, where Z* is the class of functions w € W satisfying the condition

/h wt) < ) ()

t1+a - he
and Zj3 is the class of functions w € W satisfying the condition

¢ w w
[ i <= 2

where ¢ = ¢(w) > 0 does not depend on h € (0, £].

We will also need an analogous class of functions with a similar behaviour at infinity. Let
Ci([¢,00)), 0 < ¢ < o0, be the class of functions w(t) on [¢, c0), continuous and positive at every
point t € [¢,00) and having a finite or infinite limit tlim w(t) =: w(co). We define

W ([l,00)) ={w e C([¢,00) : w(t) isai.} 4.4)

and
/V[v/([f, ) ={¢: Ja=a(p) €R' suchthat 2%p(x) € W([{,00)}. 4.5)

Definition 4.2. Let —co < a < 3 < co. We put U9 := 25N ZAQ, where Z° is the class of
functions w € W([¢, 00)) satisfying the condition

o Baw(t)dt
/ <%) % <cw(r), r— oo, (4.6)
and Z,, is the class of functions w € W ([¢, 00)) satisfying the condition
" aqw(t)dt
/ (;) % <cw(r), r—oo 4.7)
¢

where ¢ = c¢(w) > 0 does not depend on r € [¢, 00).
Observe that properties of functions in the class W2 ([¢, 00)) are easily derived from those of
functions in ®3([0, £]) because of the following equivalence

we V[l ) <« w,ed (0,04, (4.8)

where w.(t) = w (1) and £, = 1.



4.2 Indices m(w) and M (w) of non-negative a. i. functions

The numbers

In (Tim inf 22 ) In ( lim sup 220 1 (lim sup 20
m(w) = su o W) su no = lim ho M (4.9)
t>? Int 0<tI<)1 Int t—0 Int '

and

In (lim sup lfv((};f))) In (lim sup va((};f)))
M _ h—0 — h—0 4.10
(w) St1>1113 Int oo Int ( )

will be referred to as the lower and upper Matuszewska-Orlicz indices of the function w(t), see
[34], p. 20. We refer to [37], [39] for various properties of these indices. We have 0 < m(w) <
M(w) < oo forw € W.

The indices m(w) and M (w) may be also well defined for functions w(t) positive for ¢ > 0
which do not necessarily belong to W, for example, for w € W. Observe that

m(w,) = a+m(w), M(m,) =a+ M(w) where w,(t):=t"w(t) (4.11)

and
m(w*) = dm(w), M) =AM(w), ,A>0 (4.12)
for every w € w.

The indices m,(w) and M, (w) responsible for the behavior of functions w € W2 ([, c0)) at
infinity are introduced in the way similar to Definition in (4.9) and (4.10):

w(zh)

In [li_mhﬂoom]
Moo (W) = sup T , My(w) = inf o

w(rh)i|

I [T, 2%

(4.13)

4.3 Properties of functions w € ®5([0, /]) in terms of the indices m(w) and

The following statement is valid, see [37],[39] for &« = 0,3 = 1 and [18] for the general case
(observe that in [18] it was supposed that o > 0, the case where @ < 0 being a consequence of the
former in view of relations (4.11)).

Theorem 4.3. Let w € W([0,4]), 0 < £ < co. Then w € Z° if and only if o < m(w) < o0,
andw € Zg, > 0, if and only if —0o < M(w) < f3, so that

we P = a<m(w) < Mw)<p. (4.14)

Besides this, for w € ®F and any € > 0 there exist constants c; = c¢,(¢) > 0 and c; = cy(€) > 0
such that
et <p(t) < ept™@TE 0 <t <L (4.15)

10



The following properties are also valid
m(w) = sup{p € R* : t  w(t) isai on [0,(]}, (4.16)

M(w) =inf{v € R": tYw(t) isad. on [0,0]}. (4.17)

Lemma 4.4. Let w € W and —oo < m(w) < M(w) < cc. Then Le W and
1
m (—) = —M(w), M (—) = —m(w). (4.18)

Proof. By (4.11) and (4.17) the function % is a.d. under the choice A > M (w). Then
u%) is a.i. so that i € W. Relation (4.18) follows directly from the definition of the indices in
(4.9)-(4.10). O

Note also that
m(uv) > m(u) +m(v), M (uv) < M(u) + M(v) (4.19)
for u,v € W,

Remark 4.5. If w € W and m(w) > 0, then w € W.
Indeed, let a € R! be such that w,(t) = t*w(t) € W. Then according to (4.16) the function
tmi’gi?,s is a.i. for every ¢ > 0. But m(w,) = m(w) + a, so that tml(ug),g is a.i. for every € > 0.

Since m(w) > 0, then the function w itself is a.i., which means that it is in WW.

In the sequel we extend functions w € W for z > ( as w(x) = w(¢) whenever necessary.

One can easily reformulate properties of functions of the class @3 near the origin, given in
Theorem 4.3 and Lemma 4.4 for the case of the corresponding behavior at infinity of functions of
the class U?. This reformulation is an easy task because of the relation (4.8). Observe in particular
that for w € C.([¢,0)) one has w,(t) : = w (§) € Cy ([0, 1]) and the direct calculation shows
that .

Meo(Ww) = =M (wy), My(w)=—m(w,), w(t):= w (E) (4.20)
and the corresponding analogues of properties (4.15), (4.16) and (4.17) for functions in U2 ([¢, 00))
take the form

ertm=WmE <qp(t) < eptMe®@rE >0 w e U([E, 00)), (4.21)
Moo (w) = sup{p € R* : t7#w(t) isai. on [{,00)}, (4.22)
My(w) =inf{v € R': t™w(t) isad. on [f,00)}. (4.23)

Remark 4.6. Observe that from (4.20) it follows that properties (4.18) and (4.19) hold also for
the indices M (w) and My, (w).

Making use of Theorem 4.3 for ®5([0, 1]) and relations (4.20), we easily arrive at the following
version of statement (4.14) for the case / = oo.
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Lemma 4.7. Let w € W (RY). Then
we Z*RY) <<= a<min{m(w),mu(w)} < oo (4.24)

and

we Z5RL) = —oo <max{M(w), My(w)} < B. (4.25)

Remark 4.8. Every function w € W([O, ?]), 0 < ¢ < oo has the property
wAr) < CXNw(r), r>0, A>1, (4.26)

if M(w) < oo in the case ¢ < oo and both M (w) < oo and M, (w) < oo in the case { = 00),
where v > M (w) when ¢ < oo, and v > max(M(w), M(w)) when ¢ = oo, and C = C(v)
does not depend on 7 and ), so that w(r) satisfies the doubling condition. Inequality (4.26) follows
from the fact that the function “;(,f ) is a.d. according to (4.17) and (4.23).

We are interested in a statement of the type of Theorem 4.3 for parameter depending functions
w(z,r) with the parameter = running our measure metric space X. The main question in such a
generalization is a characterization, in terms of the bounds of the Matuszewska-Orlicz indices, of
the Zygmund conditions with a constant C' not depending on z. Results of such a type were proved
in [40]. Theorem 4.10 below is a consequence of parts I and Il of Theorems 3.1 and 3.2 in [40]. To
formulate Theorem 4.10, we need the following definition which extends the classes introduced in
(4.1) and (4.3).

Definition 4.9. By W = W (X x [0, ¢]) we denote the class of functions w with the properties

1) we L*®(X x[0,4]); 2) w(x,r)is continuous inr € [0, ¢] for any fixed z € X; 3) w(z,0) =0,
but

essinf w(z,r) :==do(r) >0 forevery r >0, (4.27)

reX
where ess i)?f w(z, ) is considered with respect to the measure ;2 on X; 4) for any fixed z € X the
e

function w(z, r) is a.i. in 7 with the uniform estimate w(z, ) < C,w(z,7r9), 0<1r; <1y < /L.
We also put

—_—~

W(X x [0,4]) = {w: Ja = a(w) € R" such that r*w(z,r) € W (X x [0,])}. (4.28)

For functions w € W (X x [0,/]) we consider their indices with respect to the variable ,
uniform with respect to z:

. . . ’LU(SCJ‘h) . UJ(.’D,T}'L)
o Cpprgr) (i)
mw_ililf In r ’ W In r '

(4.29)

Theorem 4.10. Let w € W(X x [0,/]) and 3, € R. The Zygmund conditions

. ¢
/w(x’t>dg;<Aw<x’r), /w(x’t)dt<Aw(z’r), 0<r<t
0 T

ti+h - rd tity T Y

12



with a constant A > 0 not depending on x and r are equivalent to the numerical inequalities
m(w) > B, M(w) <7,
respectively.

Remark 4.11. A similar reformulation of Lemma 4.7 for parameter depending functions
w(x,r) is also valid, being derived from Theorem 4.10 by direct arguments.

5 Radial-type weights o(z) = w|d(x, x)] as Muckenhoupt weights
for L""(X, o).

5.1 Auxiliary lemmas

The role of the indices m (wy.), M (wy) of weights involved in (3.5) and (3.6) and of similar indices
related to the measure p (that is, dimensions dim_(X) and dim,, (X)) may be seen from the
following lemmas.

Lemma 5.1. Let X be an unbounded doubling measure metric space and let o > vim,. (X).
Then for every 0 < € < a — 0imyo (X)) there exists a constant C = C(e), not depending on x and
r such that

du(y) Mmoo (X)—
— R < Og)rmeXK)mete ) <y <1 < o0, (5.1)
| e <6 :

X\B(z,r)
Proof.Letr > 1 and Ax(x) = {y € X : 2%r < d(z,y) < 2" 'r}. We obtain

o0

du(y) dp(y)
/ [d(, y)] _,; / [d(, y)l
X\B(a,r) Au(@)

1 / = uB(x, 28 1r)
du(y) <r ¢ E _—
koo — ka
(2r) A (2) h=0 ’

<

o0

k=0

Hence by (3.15) we have | [ d‘(i;‘ (;’))}a < Opime(X)—ate kz m which proves (5.1).
X\B(z,r) =0

O

Lemma 5.2. Let X be a doubling measure metric space, o0 a weight of form (3.5) and let p(+)
satisfy conditions (2.3), (2.4). Then

dim(X .
_umX) ), k=1,2,.,N, —  ee IZV(X). (5.2)
p(wk)
dim(X R
M(wy) < “,“( ) ko2 N = lepOx (5.3)
P () 0



Proof. Let 2 be an arbitrary bounded open set in X containing the point x. To check (5.3), it
suffices to show that

/{w A, 20) xk)<oo, k=1,2,..N,

with Lemma 2.1 taken into account. Let £ = diam X. By property (4.15) we have

du(x) R dp(z)
() <C / [d(x, )| (M(wi)+e)p! (2x) o Z/ [d(x, xy,)|(M(wr)+e)p’ ()’
k=04,

d(z,x)<t

where Ay, = {x € X : 27F710 < d(x,z;,) < 27%¢}. Hence I,(Q) < C Z 22 1)

{2+ 1£><M<wk>+s>p r)

Making use of (3.14), we obtain I,(Q) < C Y 27 kM (we)+e)p'(@x)—m(X)] “Since M (wy)p (z1) >

0im(X), the series is convergent under the choice of sufficiently small € > 0.
Similarly, statement (5.2) is verified. O
5.2 Some joint conditions on weight and measure.

In the sequel we suppose that w € W( [0,4]), ¢ = diam X and consider the condition that % €
Zy uniformly in x € X, that is,

[ uB(z,t)dt uB(z,T)
[ = oy

where C' > 0 does not depend on x € X and 0 < r < diam X. In Lemma 5.9 we will give a
sufficient condition for the validity of (5.4) in terms of the numbers M (w) and dim(X).
Observe that Lemma 5.3 does not use the doubling condition for the measure .

Lemma 5.3. Let w € W([0,£]), ¢ = diam X and let assumption (5.4) be satisfied. Then

dp(y) pB(z,r)
/ w(da,y) = wl) 62

B(z,r)
where C' > 0 does not depend on v € X and r € [0, 7).

Proof. Let v < m(w) when ¢ < oo and ¥ < min(m(w), ms(w)) when ¢ = oo and let

w,(z) = w(‘r) so that w, () is an a.i. function on [0, ] according to (4.16) and (4.22). We proceed
as follows
d - d ~vd
T / my) 3 / [d(z, y)] ™ dp(y) 5.6
w(d(m, y)) k=0 wV<d(x7 y))
B(z,r) X (z,r)
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x,y) < 27%r}. Since the measure is non-negative and the

where X (2,7) = {y € X : 277 1r < d(
function w, is almost increasing, and [d(z,y)]™ < C (27%r) ™" fory € Xy(x,7), C = 2mx0),

we obtain
= (27F) T (X, 1) — (B(z,27%r))
J= CkZ:O w, (27F1r) = Ckzzo w(27k=1r)

According to (4.26) the weight w € W satisfies the doubling condition. Therefore, we get

uB p(B(x,2771r))
J <O CZ RO (5.7)
The inequality
92—k
B(z,27%1 B
tw(tr)

w(27kr)

with C' > 0 not dependent on x and r is valid, which is obtained by the following direct estimation

n uB(z, tr) dt puB(x, 27k 1r) n , puB(x, 27k 1r)
/—tw(tr> >O—wy(2_k7”) _/_( r)” dt>()—<2 )

2—k—1
By (5.8) from (5.7) we then get

1
pB(x,r) uB(x,tr)d uB(x,r) /uB(x,tr)dt
CZ / tw(tr) =¢ w(r) +c w(tr)

J<C

O

which proves (5.5) in view of (5.4).
X) in

5.3 Sufficient conditions for o(z) := wld(z,xy)] to belong to Zp(.)(

terms of the Zygmund condition.
The following lemma is related to condition (5.4).
Lemma 5.4. Let w € W([O 0]),¢ = diam X and the measure | and the weight w satisfy
condition (5.4). Then a similar condition holds for the function “ B(x n.

[ uB(x.t) dt B

//’L ('I7 ) S CM (.ZU,T)’ (5.9)
tl-‘rl/ rv

0

for every v < m(w) when { < 0o and v < min(m(w), mao(w)) when { =

15



Proof. Since the function % is almost increasing, we obtain

/uB(az,w dt / pBatu(t) () /uB(x,w st < HBET)
titv tw(t) tv v tw(t) v
0
in view of (5.4). O

In the next lemma, a is the constant from (2.1).

Lemma 5.5. Let X be a measure metric space with doubling condition and let w €

W([0,¢]),¢ = diam X. If the measure 1 and the weight w satisfy condition (5.4), then the in-

o (d(z. ) W)

wiqy  wld(z,zo du(y

M=z [ i 10
B(z,r)

holds with ¢ > 0 not depending on 0 < r < { and x € X, in each of the following cases:
i) d(x,x¢) > 2ar,
ii) m(w) > 0 when { < oo, and min{m(w), ms(w)} > 0 when { = co.
In the case d(x,xo) < 2ar, the estimate

d
w(r) / 1(y) <o 5.11)
pB(x,r) w(d(y, z0))
B(z,r)
holds, which is valid jointly with (5.10) when m(w) > 0.
Proof.
1°. The case d(z, x¢) > 2abr. By (2.1) we have
1 1 1
d(y,xo) > —d(xg,x) — d(y,z) > —d(xg,z) — 17 > 2—d(:c0,:c). (5.12)
a a a
Let v < m(w) when ¢ < oo and v < min{m(w), ms(w)} when ¢ = co, and w, (r) = % Since
w, is an a.i. function, we have w, (d(y, zo|) > cw, (3 d(zo, z)). Taking also into account property

(4.26), we obtain w, (d(y, zo)) > cw,(d(xq,x)). Then we have

w w(d(z, zo)) du(y)  ld(z,0)]” du(y)
ML) < Cwu(d(%%))ﬂB(%’f’)Bé ity C Bl B(x/r Ty

If v > 0, we use (5.12) again and obtain (5.10). If v < 0, then grimm = [d(y, z0)" <
C ([d(y, )" + [d(z, zo)]") < C (r + [d(z, 20)]"') < Cild(z, x)]1"!, whence (5.10) again fol-
lows.

2%, The case d(z, o) < 2ar. Observe that in this case B(z,r) C B(wzg, Qr) with Q =
o(1+2a), since d(z,y) <r = d(zo,y) < ald(zo, 2) + d(z,y)] < a1 + 2a)r- Hence

oo wl(d(z, xo)) du(y) w(d(z,a)) du(y)
O el B e ey v il e v

B(zo,Qr) B(wo,Qr)
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by the doubling condition for x. Then by Lemma 5.3 we get

ME(1) < Cw(d(x,:co))

, (5.13)
w(Qr)
which gives (5.11) by (4.26). In the case m(w) > 0 the function w(z) is a.i. and then (5.13) yields
(5.10). O
Theorem 5.7 below provides the following sufficient conditions
[ Bz, t)[w(t)]Pe)
/ HBE DO by < Cubla. )P, (5.14)
0
[ Bt B
/M at < P BED) g = P20 (5.15)
tw(t)] % [w(r)] p-—1

0

for a function w(d(x, x¢)] to satisfy condition (3.4), w € W, where C' > 0 does not depend on
r > 0 and x € X. To this end, from Lemma 5.5 we deduce the following corollary.

Corollary 5.6. Let w € W([O,E]),E = diam X, ler p(x) satisfy conditions (2.3)-(2.4), let
xo € X and the measure |1 be doubling. When { < oo, condition (5.14) implies the inequality

1

WB(w,r) / [w(d(zo, )PV du(y) < Clw(&)]™ (5.16)

B(z,r)
and condition (5.15) implies the inequality

1 / dp(y) <_¢ (5.17)

uBr) ) o,y DO

where & = max(r,d(x,xy)). When { = oo, the implications (5.14) — (5.16) and (5.15) — (5.17)
are valid in case p = const,1 < p < o0.

Proof. When ¢ < oo, by Lemma 2.1, the exponent p(y) on the left-hand side of (5.16) and
(5.17) may be replaced by p(xo) from the very beginning, the assumptions of Lemma 2.1 on w
being satisfied by (4.15) and (4.26). Then (5.16)-(5.17) follow directly from (5.10)-(5.11) with
w(r) replaced by [w(r)]P(*°) in case of (5.16) and by [w(r)]~% in case of (5.17). When ¢ = oo and
p = const, we have p(y) = p(xq) and again (5.16)-(5.17) follow from (5.14)-(5.15). a

Theorem 5.7. Let w € W([O,ﬁ]),ﬁ = diam X, let p(x) satisfy conditions (2.3)-(2.4), let
xo € X and the measure |1 satisfy the doubling condition. If the function w and the measure i
fulfill conditions (5.14)-(5.15), then the function o(x) = w(d(x,xy)) satisfies condition (3.4), if
either { < oo, or { = oo and p = const.

17



Proof. By Corollary 5.6, we have 17 [ [w(d(zo,y))PWdu(y) < Clw(€)]P@) and

B(x,r
(@) B(z,r)
p——1
ey [ — 2 < ey Which yields the validity of (3.4). O
B(a.r)) [w(d(zo.y)]P= "

Corollary 5.8. Let w € W([O, 0]),¢ = diam X and the measure 1 satisfy the doubling condi-
tion, let o € X and p(x) = p = const. Then under conditions (5.14)-(5.15)

wld(z,z0)] € Ap(X), 1<p<oo. (5.18)

Note that known examples of weights in A,(X) on metric spaces even for constant p were
powers [ B(xg, d(xq, x))]* of the measure, see [13], p. 42. The statement of Corollary 5.8 giving
examples of radial functions of the distance seems to be new, see also Corollary 5.12.

5.4 Sufficient conditions for o(x) := w[d(z, ()] to belong to Zp(.)(X ) in
terms of indices of the weight and the lower local dimension.

Lemma 5.9. Let w € W([O,E]), ¢ = diam X. The conditions

M(w) < dim(X), if £ <00

M(w) <2im(X) and My (w) < dim(X), if £ = oo (5.19)

are sufficient for the validity of (5.4).

Proof. By F,(r) = % we denote for brevity the function involved in (5.4). Let
. o Fa(rh) s i f Fe(rh)
In (11:2n _}glf A0 > In [11}:52 g}lf 7.0 }
m(F;) = sup , Meo(Fy) = sup
r>1 Inr r>1 In r

be the lower index numbers (4.9) and (4.13) of this function with respect to the variable . By
Theorem 4.10 and Remark 4.11 we have

0 < inf m(F,) < oo, if { < o0
reX

(54) <= (5.20)

0< mm{;g)f{m(fx),;g)f( Moo (Fr)} < 00, if £ = o0.

Note that Theorem 4.10 is applicable because F(r) € W(X x 0, ¢]) under assumptions (3.16),
(3.17), (3.18). Sufficient conditions for (5.20) may be given in terms of the separated index num-
bers, namely, the upper indices M (w), M., (w) of the weight and the numbers dim(X), dim__(X),
although it should be noted that in this way we obtain not an equivalent condition, but a sufficient
one. Namely, by (4.18)-(4.19) and Remark 4.6, we obtain that the conditions

2im(X;2) — M(w) >0 and dim__(X)— M(w) > 0 (5.21)

imply min{ ég)f( m(Fz), ;g)f( Moo (Fz)} > 0. Then conditions (5.19) imply (5.4).

18



Corollary 5.10. Condition (5.4) for the function v(r) = r is satisfied, if

B < dim(X), when [ < oo (5.22)

B < min{dim(X), dim  (X)}, when (= oco. '
Theorem 5.11. Let w € W([O, 0)), let p(x) satisfy conditions (2.3)-(2.4) and let vy € X .

I) The case diam X < oo, if

dim(X)

2im(X)
(1) <m(w) < M(w) < . (5.23)

where gy = ;I:EL_OL then the function o(x) = w(d(x, x)) satisfies condition (3.4).

II) The case diam X = oo, if p = const, 1 < p < oo and

A ) < M) < 22D 524
D p
and
_dim,(X) < Moo (W) < Moo (w) < m_m“’(X), 1y L L, (5.25)

p P’ p v
then w(d(x,xg)) € Ay(X).
Proof. In view of Theorem 5.7, it suffices to verify that condition (5.23) or conditions (5.24)-

(5.25) imply conditions (5.14)-(5.15). This is easily done by means of Lemma 5.9 applied to
wy (1) = [w(r)]7P@) and wy(r) = [w(r)]?. Indeed, by (4.18) and (4.12) we have

M(wy) = —p(xo)m(w) and M (wy) = oM (w),

respectively. Then the conditions M (w;) < dim(X),7 = 1,2, of Lemma 5.9 are nothing else but
(5.23), and similarly conditions M, (w;) < dim__(X), 7 = 1,2, coincide with (5.24)-(5.25). a

Corollary 5.12. Let p = const,1 < p < o0, }—17 + Z% =1, and let xo € X.
I) In the case { < oo the inclusion [d(x,x)]” € A,(X) holds, if

im(X im(X
p p
1I) in the case { = oo the inclusion [1 + d(z, z0)|°[d(z, 0)]" € Ay(X) holds, if
im( X im(X i X i X

Proof. I. / < oo. By (5.26) and Theorem 5.11, condition (3.4) is satisfied for o(z) =
[d(zo, x)]” with p = const. Then ¢ € A,(X) according to Theorem 3.1.
II. The case ¢ = oo is similarly treated taking into account that for w = wyw, with wy(r) = (1+7)?
and wy(r) = 7 one has m(w) = M(w) = v and me(w) = My (w) = 5+ 7. O

Theorem 5.11 and Corollary 5.12 contain statements new even for the case of constant p.
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6 A weighted pointwise estimate of the maximal function.

The following pointwise estimate
MY@P® < o1+ M 0] (@) (6.1)

valid for for all ¢ € LP*0)(X) with |||,y < C, is due to L.Diening [5] for the Euclidean case;
it was extended in [16], [20] for doubling measure metric spaces. We need a similar weighted
estimate. For our purposes it will be sufficient to have it for a power weight of the form o(z) =
[d(0,7)]%, 29 € X. For the weighted means

Mg = 22 [ L0, 62)

puB(z,r) o(y)
By (x)

we prove the following theorem (obtained earlier for the Euclidean case in [29]).

Theorem 6.1. Let 1(X) < oo, p(x) satisfy (2.3) and (2.4), o € X and let o(z) = [d(z0, x)]°.

If0<pB< m?(ix )) then

pef@)" <0 14— [ 1P 63)

B(CE r

forall f € LPV(X) such that ||f||,) < ¢ < oo, where C = C(c,p,3) < oo is a constant not
depending on x, r and x.

Proof. It suffices to consider the case ¢ = 1. By the condition on  and the continuity of p(x)
we conclude that there exists a ¢ > 0 such that

Bp'(x) < 2im(X) forall z with d(zg,z) < 0. (6.4)
We may assume that 6 < 1. We denote

pr(z) = JMnin Tp(y)

and qr—%x) =1- [ﬁ . From (6.4) and the inequality & Zi((%) < 1itis easily seen that
) )

where a is the constant from (2.1), and in the sequel it is convenient to distinguish the cases
O0<r< 52and 5 <.

1° The case d(xo,x) < 2 and 0 < r < ;> (the main case). In this case,
applying the Holder inequality with the exponents p,.(z) and ¢, () to the integral on the right-hand
side of the equality

p(z)

e C ()]
~ [uB(z, )@ / (d(vo, )P

B(z,r)
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where M, stands for M¢| _,, we get
p(z)
' M, ( fy) ) <
[d({]’}o’ y)]ﬁ
p(z) p(z)
pr(@) ar (@)
C dy
. — pr(@) g : / S . (66
< Gt | ] e e, ) oo
B(z,r) B(z,r)

We make use of estimate (5.10) with w(t) = t%(*)_ This estimate is applicable by Lemma 5.5.
Indeed, the condition m(w) = [q,.(z) > 0 is fulfilled, the case 5 = 0 being trivial. According to
Lemma 5.9, the condition (¢, (z) < dim(X) provided by (6.5), is sufficient for the validity of the
corresponding condition (5.4) required by Lemma 5.5. We obtain

p(z)
Pr(ﬁ)
fl) N\ ld(wo, )] e
e ()| <€ AW
05 [,uB 'r pr(Z)
Here
/ |f(y)|Pr™ dy < / dy + / 1f(y)[PY) dy,
B(x,r
B(a,r) () B(x,7)
{y: |fy)| =1}

since p,(z) < p(y) fory € B(x,r). Hence

p(x)

pr(z)
p(z) —Bp(x
w (L ¢ oy, Mool | B L,
Nidwo P )| =7 g i | 200 2 ’
K ’ B(z,r)
pt
where Cy = {max[2u(X), 1]}7- . The expression in the brackets is less than or equal to 1. Since
2) > 1, we obtain
pr(z) —
- C uB(z,r 1
Mo < [l [ e a <
[/"LB(‘/E’ r)]PT‘(W) B(x,r,n)
pr(x)—p(z) 1
< CluB pr(z) 14— p) 4
< OB, s [ @t
B(z,r)
From here (6.3) follows, since
pr(z)—p(x)
[B(z,r)] 7@ < C. (6.7)
pr(z)—p(z) p(@)—pr(z) |, 1
Indeed, [uB(x,r)] »@  =e »@ TiB@En | where
p(z) — pr(2) 1 ‘ 1
1 < Il
b Bt S P e g
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with &, € B(x,r), and then by (2.4),

1 1
p(CL’) — pr<m) In 1 < Ahl uB(x,r) < Aln uB(z,r)
pr(T) pB(z,r)l = In @ - Ini

since |z — &,.| < r. As is known, when X is bounded and the measure x is doubling, then there
exist an exponent ) > 0(Q) = log, C,,) and a constant ¢y > 0 such that

nB(x,r) > cor?, (6.8)

which follows from (3.11). According to the bounds in (3.14), (3.15), one may also choose () as
a number greater than sup 0im(X;z). Then we easily obtain that In m <cln %, c =
z€X ’

p(z)—pr(x) 1
p B EGn

Q+ ‘11;—;0' Hence < Acy which proves (6.7) and yields estimate (6.3).
%

29  The case d(xg,x) > J 0<r < 0. This case is trivial, because d(xg,y) >

2a’ 4a2*
Yd(zo,z)—d(z,y) > 35 — 3% = 12 . Thus [d(zo, y)]® > (&)ﬂ. Since [d(xg, z)]? < (diam X)),

it follows that M2f(z) < c¢M, f(z), and one may proceed as above for the case 3 = 0.

3% The case r > &. This case is also easy. It suffices to show that the left-hand side of
(6.3) is bounded. We have

/(W)

Mrf( ) < 1B (l’, &) / [d(£o,y)]ﬁ dy + / [d(%o,y)}ﬂ dy

s s
d(xo,y)S&TQ d($07y)28?

(diam x)#

nB(e 327

ponents ps = mind(m0 )<y p(y) and ¢s = pjs which is possible because from (6.4) we
7/ = 8a

Here < (' by (6.8). The first integral is bounded by Holder inequality with the ex-

have 3¢5 < dim(X) which, by Lemmas 5.3 and 5.9, guarantees the convergence of the integral

du(y) . . . .. . 5
| d(z0)< 5 Ao g)P ° The estimate of the second integral is trivial since d(zo,y) > g5 . O

Corollary 6.2. Let o(r) = 1% and 0 < 3 < 22X Under conditions (2.3) and (2.4)

P’ (z0)

IMef(z)P) < C(14+ M[|f()IPV] () forall f € LPO(X) such that || f||p.) < 1.

7 Proof of Theorem A.

Let Hpr(') < 1. We follow the known trick ([5]) and represent I?(M?2f) as

(i)

o(y)

pi(x)\ P~
fp(Mgf)=/<[Q($)]pl(x) > dp(z), (7.1)
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where p; (z) = ’% . We make use of estimate (6.1) valid for for all t» € LP*)(X) with [|¢)],, () <
C'. We intend to choose ¥ (y) = % with f € LP0)(X) in (6.1). This is possible because

[l

forall f € LP) with || f||, < 1. Estimate (7.2) is obtained by means of the Holder inequality with

)
p_

du(y) < C, (7.2)

_p)_
the exponents p_ and p’ = =, taking into account that ){ lo(y)] P~Tdu(y) < oo, the latter
following from condition (3.4). In view of (7.2), we may apply estimate (6.1). Then (7.1) implies

i)\ 17
1+ M (‘M >] du(z).

P(Mef) < c / o) o

Since [[o(z)]P®du(x) < oo by (3.4), we obtain
X

Pmef) <ee [ M FOPO) )] duto) 1.3
b
under notation (3.1) with o;(x) = [o(x)]"*®). By Theorem 3.1, the weighted LP-boundedness,
p = p_ = const, of the maximal operator is valid if o;(z) = [o(2)]"*®) € A,_, that is,
1 / 1 du(y) |
sup | ———= [ [oi(y)["dply) — / —= 1 <o (14)
2€X,r>0 MB(%T)B( : MB(fB>7")B( ) o1 (y)[P-

It remains to note that (7.4) is nothing else but condition (3.4).
Therefore, by the boundedness of the weighted operator M in L,_, from (7.3) we get

IP(MEf) < e+ c / F@P O du(y) = c + ¢ / FOPY du(y) <c< oo (15)
X X

8 Proof of Theorem B

It suffices to prove Theorem B for a single weight w(d(z, z¢)), o € X, rﬁo)w(r) € @Y, the
reduction to the case of a single weight being made by standard arguments, we refer for instance
to [24], Subsection 5.1, where the Euclidean case was considered.

8.1 Proof of Theorem B for the case of power weights o(z) = [d(x, z)]".

Let o(z) = [d(zo,2)]’. We assume that || f||,) < 1 and have to show that I?(M?f) < C' < oo

when
oim(X) dim(X)
— < <

p(wo) P (wo)

(8.1)
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We start from the representation in (7.1), which yields

& . p1(z)\ P~ )
M ([d(xo,y)]5>( ) ) du(x), (8.2)

where p;(z) = ’% and distinguish between the cases 5 < 0 and 3 > 0.

IP(M2f) < C’/ ({d(%’x)]ﬂpl(mo)

1° The case —D;E‘ < 3 < 0. We make use of estimate (6.1) valid for all ¢» € LP*()(X) with

14|y £ C, where C' > 01is any fixed constant. For ¢(x) = mwehave Hw le < a0|| prl()

(diam X)l. From imbedding (2.7) we then have H¢||p1(.) < agC’Hpr(.) < agC. Therefore, by
P(Mef) < c/ <[d(x0, 2] e /)

(6.1) we get
p1(y) p-
J M (\W )D )

o s (s ()

<c+te / (M2 (1F(PO) (@) dp(a),

X

where ¢1(z) = [d(xg, )], v = Bp1(xo). By Theorem 3.1, the weighted maximal operator M2
is bounded in LP- with constant p_ if 0y E A, _. By Corollary 5.12 this is the case, if —L';—E)() <

v < am;(X) which is satisfied since — a;'? < 3 < 0. Therefore,

IP(MEf) < et o / FQ)P @O dy = c v / F@)PY dy < oo,
X X

2% Thecase 0 < 3 < aﬁif)). We represent the functional /7(M2f) in the form

s = [ ((meraP ™) duo (83)

X

with py(z) = ’@ > 1, A > 1, where A will be chosen in the interval 1 < A\ < p_. In (8.3), we
wish to use the pointwise weighted estimate

MO f ()PP < e[+ M) ()], (8.4)

obtained in (6.3). This estimate is applicable according to Theorem 6.1 if || f{|,,() < cand 8 <
[211]1(13(: )}) The condition || f|/,,() < c is satisfied since pi(x) < p(x), and the condition on 3 is

fulfilled if A < % p(xo). Therefore, under the choice




we may apply (8.4) in (8.3). This yields I?(M?f) < c+c [ ‘M(|f|p1('))(x)|Adu(x) <c+
X
cf (If(z) (m))/\ dpi() by the boundedness of the maximal operator M in L*(X), A > 1. Hence
X
PMf) < e+ e [ (@)@ du() < c.
X

8.2 Proof of Theorem B in the general case.

19 The case (5.23). This case is covered by Theorem A, because the weight w(d(x,zg))
satisfies condition (3.4) by Theorem 5.7.

2° The remaining case. The interval in (5.23) coincides with the interval in (3.19), if

qgo = p'(xg), that is, the maximal value gy = plzo) maXgex pfzgo_)l is taken on at the point

p——1
xo. Therefore, to get rid of the right-hand side bound in (5.23), we may split integration over X
into two parts, one over a small neighborhood Bs = B(xg, d) of the point z, and another over its

exterior X'\ By, and to choose ¢ sufficiently small so that the number p=Bs)=1 g arbitrarily close

p(zo)
to % = p,éo). To this end, under notation (3.1) with o(z) = w(d(xg, z)] we put
MO =15, M1, + 15, MO 5, + L\, M2, + Ly, MO s, 8.5)

=: M{ + M5+ M+ M;.

Since the weight is strictly positive beyond any neighborhood of the point x, we have M? f(z) <
CMf(z). For M3 we have

o _
Miflw) =sup e

B(z,r)NBsNX

da) [ ), ) ),

w(d(wo,y))

Here d(zg,x) > 0 > d(zo,y). Observe that the function w.(t) = t};(j% isa.d. forany e > 0
according to (4.17). Therefore

w(d(&?o,!]})) we(d($,x0)) . [d(x(]’x)]M(w)—l—a d($0’x) M(w)+e
v R o R e e e R

Hence

where by M ()12 f(2) we denoted the weighted maximal function with the power weight
[d(, xo)|M@*+e, Similarly MY f(2) < CMpuw)—<f(z). Thus from (8.5) we obtain

Mef(z) < 1M1, f(x) + M[f(2) + Mupsw) e f(2) + M) f (). (8.7)

The operator M is bounded by Theorem 3.2, the boundedness of the maximal operators M y;(u) 1<
and M., (,)— with power weights was proved in Subsection 8.1, the boundedness condition (8.1)
being satisfied for 5 = M (w) + ¢ and § = m(w) — € under a choice of  sufficiently small.
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It remains to prove the boundedness of the first term on the right-hand side of (8.7). This is
nothing else but the boundedness of the same operator M? over a ”small” measure metric space
Xs = Bs = B(xg,0) with the measure induced by that on X. This measure is also doubling.
According to the previous case, the required boundedness on X holds if

Oim(X oim(X
_mX) ) < M(w) < 2B 8.8)
(o) Py
where pj = © 7]5565))—1 and p_(Xs) = mgl p(x). Let us show that, given the condition —%
TEXS
m(w) < M(w) < D;‘;‘EX f 1, one can always choose d sufficiently small such that (8.8) holds. Given
M(w) < 22X e have to choose d so that M (w) < 22 < AmX ) . We have
P’ (zo) P P'(zo
oim(X oim(X oim(X
_g ) = _,( ) _ a(d), where a(d) = 2im(X) [p(zo) — p—(Xs)].
Ps P (20) p(o)

By the continuity of p(x) we can choose § so that a(d) < Dﬁfj)) — M (w). Then L%EX) > M(w)

and (8.8) is fulfilled. Then M" is bounded in LP")(Bs) which completes the proof.

9 Proof of Theorem C.

We have to show that I (oM f) < C' < oo provided that || of||,.) < 1. Let Xp = X N B(xo, R).
We may choose R large enough so that all the points z;, k = 1, ..., N, lie inside the ball B(zq, R)
We split the function f as f = f - 1p,, + f - 1x\p,, = ¢ + ¥, so that I\ (oM f) < I (oMyp) +
I% (o M1)). When estimating 1% (oM ), we distinguish the cases © € Byg and x € X\ Byp.

Let first x € Byg. We find it convenient to introduce a notation for the maximal function with
respect to the portion By of X, thatis, Mp,, f(z) = sup,-, m fB(M)mBm |f(y)|du(y),
x € Byp. For M f(x) = Mx f(z) we have

1
Moa) sup s [ W) = Male). )
B(z,r)NBygr
Then by (9.1) and Theorem B,
/ o) M ()" dpu(z) < C / [0(2) M,y (@)@ dpu() < C ©2)

Bsr Bsr

since [|of | v (B,) < l0f e x) < 1.

Let z € X\Byg. If r < %, where a > 1 is the constant from (2.1), then B(z,7) N Bar = )
and M, p(z) = 0. So we consider r > 2E. Tt can be also easily seen then that whenever the set
B(x,r) N Bag is non-empty, we have d(x, z) < a(2R + r) < a(a + 1)r. Consequently

M) = M{BM}/ ldu(y) ) [ 11@ldnty)

'u :U’ af a+1) Bar
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We use statement (5.3) of Lemma 5.2 and the fact that the measure is doubling and get M, p(z) <

m [1+ |[of]ly(-] and then in view of (3.15) we obtain
C

Mop(x) < A, )| 5m (0 for € X\Bg (9.3)

with an arbitrary small € > 0. Observe that for x € X\ Byg

N

o(z) ~ [ [ weld(z, 20)] < Cld(z, zo)*, A= My(wy)

k=0 k=0
with an arbitrarily € > 0, according to (4.21). Therefore,

(/‘[ (2) Mep(a)™ dp(z) < C l/) Dmfxi)Akmm =y <00 (94)

X\Bsr X\X(z0,4R)

By Lemma 5.1 the last integral is convergent if Dim_ (X) — A|Jpoe > 0imyo(X), that is, A <
dim_(X) — M , which is satisfied by condition (3.21). Combining (9.2) and (9.4), we get

I5% (oMy) < C < 0. 9.5)

Now we pass to the function . Let first z € Bg. If r < R, then B(z,7) N X\ Bsr = () and
M., )(x) = 0,2 € Xg. Therefore, we have to consider only » > R and then

1 1 oo
M) = Sy / 100 S ey )/ (1 + 1)) disy).
Hence M, ¢(x) < C' < oco. Thus, My (z) < C for z € Xg and then
/ (@) M (@) dp(z) < C / ()" D dp(x) < 00 (9.6)

by statement (5.2) of Lemma 5.2. It remains to estimate

/ (o) M () PO d () = / lole) M) dpu(z).
X\Xg X\Xr

To this end, it suffices to make use of the known boundedness of the maximal operator in the
Lebesgue space with constant p,, > 1, see Theorem 3.1. Theorem 3.1 is applicable in this case
since our weight o is in A, according to Part II of Theorem 5.11. (Note that since all the points
xr, k =1,..., N and oo are distinct, it is easily verified that from belonging to A,__(X) of separate
weights there follows belonging to A, (X) of of their products). Therefore,

[ letmopaun <c [ loetardu) < 0 / JOdur) < €
X\Xg X\Xr
which together with (9.6) yields I, (M) < C < oo and proves the theorem.
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