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Abstract

We study the boundedness of the maximal operator in weighted variable exponent spaces
Lp(·)(X, %) on a doubling measure metric space X . When X is bounded, the weight belongs
to a version of a Muckenhoupt-type class, which is narrower than the expected Muckenhoupt
condition for variable exponent, but coincides with the usual Muckenhoupt class Ap in the
case of constant p. For a bounded X we also consider a class of weights of the form %(x) =∏n

k=1 wk(d(x, xk)), xk ∈ X , where the functions wk(r) have �nite upper and lower indices
m(w) and M(w) satisfying the condition −dim(X)

p(xk) < m(w) ≤ M(w) < dim(X)
p′(xk) , where

dim(X) is a certain version of the lower dimension of the space X . In the case of unbounded
X we admit weights of the form w0[1 + d(x0, x)]

∏m
k=1 wk[d(xk, x)].

Some of the results are new even in the case of constant p. We also deal with some new
notions of upper and lower local dimensions of measure metric spaces.

Key Words and Phrases: maximal functions, weighted Lebesgue spaces, variable exponent
spaces, metric space, doubling condition, Zygmund conditions, Bary-Stechkin class.
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1 Introduction
Within the last decade a signi�cant progress has been made in the study of maximal, singular and
potential operators in variable exponent Lebesgue spaces Lp(·) in the Euclidean setting, including
weighted estimates. We refer in particular to the surveying articles [7], [21], [42] and papers [3],
[4], [5], [6], [8], [24], [26], [27], [28], [29], [31], [36] and references therein.

In the case of constant p these classical operators have been studied in a more general setting of
measure metric spaces, see in particular [2], [9], [10], [11], [13], [22]. In the variable exponent set-
ting, investigation of the classical operators of harmonic analysis on measure metric spaces started
several years ago. In [23], [25], [30], [31] there were proved results on the boundedness, includ-
ing certain weighted cases, of maximal, singular and potential operators on an arbitrary Carleson
curve, which is a typical example of Ahlfors-regular measure metric space with constant dimen-
sion. The non-weighted boundedness of the maximal operator on a bounded doubling measure
metric space was proved in [16] and [20]. We refer also to [15], where Sobolev-type theorem for
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potential operators on bounded metric spaces in Rn with variable dimension was obtained and to
[35], where continuity of Sobolev functions on metric spaces in the limiting case was studied.

We obtain weighted estimates for the maximal operator on a doubling measure metric space
(X, d, µ) with weights in a certain subclass of Muckenhoupt class Ap(·). We also specially consider
the case of radial-type weights w(d(x0, x)), which are functions of the distance d(x0, x) in X , and
show that in this case the condition of weighted boundedness may be written in some natural terms
of relations between certain (Matuszewska-Orlicz type) indices of the weight w(r) and the lower
dimension dim(X) of the space X .

The paper is organized as follows. In Section 2 we recall some facts for variable exponent
Lebesgue spaces on measure metric spaces. In Section 3 we formulate the main results - Theorems
A, B and C - on the weighted boundedness of the maximal operator. Theorem A gives a kind
of �Muckenhoupt-looking� condition when X is bounded, which we called an �ersatz� of the
Muckenhoupt-expected condition. In Theorem B we deal with a bounded space X and radial-type
oscillating weights w[d(x0, x)] and obtain suf�cient conditions for the boundedness in the form

−dim(X)

p(x0)
< m(w) ≤ M(w) <

dim(X)

p′(x0)
, (1.1)

where

dim(X) = lim
t→0

ln

(
lim sup

r→0
inf
x∈X

µB(x,rt)
µB(x,r)

)

ln t
,

and m(w),M(w) are Matuszewska-Orlicz indices of the weight w, see Section 4 for these in-
dices and Subsection 5.4 for the way in which the dimension dim(X) appeared as a kind of the
Matuszewska-Orlicz index of the measure µB(x, r). Finally, in Theorem C we give a version of
Theorem B for the case of unbounded spaces X .

In Section 4 we give some results on the upper and lower Matuszewska-Orlicz-type indices of
weights in the Zygmund-Bary-Stechkin class, which we need to prove Theorem B. In Section 5
we �nd some Zygmund-type conditions on functions w under which the weights w[d(x0, x)] are
Muckenhoupt weights. These conditions are given in terms of certain integral inequality imposed
on the functions µB(x, r) and w. In Section 6 we prove a weighted version of pointwise Diening's
estimate for the maximal function, which in the non-weighted case on measure metric spaces was
proved in [16] and [20]. In Sections 7, 8 and 9 we give the proof of Theorems A, B and C. In the
case where X is a Carleson curve on the complex plane so that dim(X) = dim(X) = 1, Theorems
A, B and C were obtained in [25].

2 Some basics for variable exponent spaces
In the sequel (X, d, µ) is a space with quasimetric d and a non-negative measure µ; we refer
to [13], [14], [17] for the basic notions of function spaces on metric spaces. The quasidistance
d : X ×X → R1 is assumed to satisfy the standard conditions: d(x, y) = d(y, x) ≥ 0, d(x, y) =
0 ⇐⇒ x = y, and

d(x, y) ≤ a[d(x, z) + d(z, y)], a ≥ 1, (2.1)
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where x, y, z ∈ X . In the sequel we assume that the measure satis�es the doubling condition

µ(B(x, 2r)) ≤ CµµB(x, r). (2.2)

The variable exponent p(x) de�ned on X is supposed to satisfy the conditions

1 < p− ≤ p(x) ≤ p+ < ∞, x ∈ X (2.3)

and
|p(x)− p(y)| ≤ A

ln 1
d(x,y)

, d(x, y) ≤ 1

2
, x, y ∈ X. (2.4)

By Lp(·)(X, %), where %(x) ≥ 0, we denote the weighted Banach space of measurable functions
f : X → C such that

‖f‖Lp(·)(X,%) := ‖%f‖p(·) = inf



λ > 0 :

∫

X

∣∣∣∣
%(x)f(x)

λ

∣∣∣∣
p(x)

dµ(x) ≤ 1



 < ∞. (2.5)

We write Lp(·)(X, 1) = Lp(·)(X) and ‖f‖Lp(·)(X) = ‖f‖p(·) in the case %(t) ≡ 1. The generalized
Lebesgue spaces Lp(·)(X) with variable exponent on measure metric spaces have been considered
in [15], [16], [20], see also references therein. It is known that the Hölder inequality holds in the
form ∫

X

|f(x)g(x)| dµ(x) ≤ k
∥∥f

∥∥
p(·) ·

∥∥g
∥∥

p′(·) (2.6)

with k = 1
p−

+ 1
p′−

, p′(x) = p(x)
p(x)−1

, p′− = inf
x∈X

p′(x). The modular

Ip(f) = Ip
X(f) =

∫

X

|f(x)|p(x) dµ(x)

and the norm ‖f‖p(·) are simultaneously greater than one and simultaneously less than 1.
We note also that the embedding

Lp(·) ⊆ Ls(·),
∥∥f

∥∥
s(·) ≤ C

∥∥f
∥∥

p(·), (2.7)

is valid for 1 ≤ s(x) ≤ p(x) ≤ p+ < ∞, when µ(X) < ∞.

Lemma 2.1. Let p be any function on X satisfying condition (2.4) and let w be a function on
[0, `], ` = diam X .
i) Let ` < ∞. If there exist exponents a, b ∈ R1 and constants c1 > 0 and c2 > 0 such that

c1r
a ≤ w(r) ≤ c2r

b for r ∈ [0, `], (2.8)

then
1

C
[w(d(x, x0))]

p(x0) ≤ [w(d(x, x0))]
p(x) ≤ C[w(d(x, x0))]

p(x0), (2.9)
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where C > 1 does not depend on x, x0 ∈ X.
ii) Let ` = ∞. Suppose that p(x) additionally satis�es the condition that there exists lim

x→∞
p(x) =:

p(∞) and |p(x)− p(∞)| ≤ A
ln (2+d(x,x0))

. If w satis�es condition (2.8) for r ≤ 1 and the condition
c3r

α ≤ w(r) ≤ c4r
β for r ≥ 1, then (2.9) holds for d(x, x0) ≤ 1, while

1

C
[w(d(x, x0))]

p(∞) ≤ [w(d(x, x0))]
p(x) ≤ C[w(d(x, x0))]

p(∞) for d(x, x0) ≥ 1. (2.10)

Proof. Let l < ∞. We denote g(x, x0) = [w(d(x, x0))]
p(x)−p(x0). To show that 1

C
≤ g(x, x0) ≤

C, that is, | ln g(x, x0)| ≤ C1, C1 = ln C, we observe that

| ln g(x, x0)| = |p(x)− p(x0)| · |ln w(d(x, x0))| ≤ A`
| ln w(d(x, x0))|

ln 2`
d(x,x0)

which is bounded by the condition on w. The case ` = ∞ is similarly treated. 2

3 Main Results
3.1 Background
We use the notation M% for

M%f(x) = sup
r>0

%(x)

µ(B(x, r))

∫

B(x,r)

|f(y)|
%(y)

dµ(y) (3.1)

where B(x, r) = BX(x, r) = {y ∈ X : d(x, y) < r}, and write M = M1 when %(t) ≡ 1. In
the case of constant p ∈ (1,∞) the following result is known, where Ap = Ap(X) is the class of
weights satisfying the Muckenhoupt condition

sup
x∈X,r>0


 1

µB(x, r)

∫

B(x,r)

|%(y)|pdµ(y)





 1

µB(x, r)

∫

B(x,r)

dµ(y)

|%(y)|p′




p−1

< ∞. (3.2)

Theorem 3.1. ([2], [33]) Let (X, d, µ) be a doubling measure metric space and % ∈ Ap. Then
the maximal operator M is bounded in the space Lp(X, %).

The non-weighted boundedness result obtained in [16] and [20] runs as follows.

Theorem 3.2. Let X be bounded and doubling and the exponent p(x) satisfy assumptions
(2.3)-(2.4). Then the maximal operator M is bounded in the space Lp(·)(X).

The boundedness of the operatorM% in Lp(·)(X, %) was proved in the case of the power weight
%(x) = |x − x0|β, x0 ∈ X in [26], [29] for the case where X = Ω is a bounded domain in Rn

or X = Γ is a Carleson curve on the complex plane, and there was shown that the necessary and
suf�cient condition for such a boundedness is − n

p(x0)
< β < n

p′(x0)
with n = 1 in the case of
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Carleson curves. The case of radial weights of the form w(|x− x0|) with x0 ∈ Ω ⊂ Rn or x0 ∈ Γ
was treated in [25], [24], [31], with the last condition replaced by

− n

p(x0)
< m(w) ≤ M(w) <

n

p′(x0)
(3.3)

where m(w) and M(w) are the so called lower and upper indices of the function w, see Subsection
4.2 on these index numbers.

3.2 Statements of the main results
For a measure metric space (X, d, µ) we prove three main results given in Theorems A, B and C
stated below. The space (X, d, µ) is assumed to satisfy the conditions: 1) all the balls B(x, r)
are measurable, 2) the space C(X) of uniformly continuous functions on X is dense in L1(µ). In
most of the statements we also suppose that the measure µ is doubling. Let

Ap(·)(X) = Muckenhoupt class

be the class of weights for which the maximal operator is bounded in the space Lp(·)(X, %). In
Theorem A we make use of the class Ãp(·)(X) of weights, which satisfy the condition

sup
x∈X,r>0


 1

µB(x, r)

∫

B(x,r)

|%(y)|p(y)dµ(y)





 1

µB(x, r)

∫

B(x,r)

dµ(y)

|%(y)|
p(y)

p−−1




p−−1

< ∞. (3.4)

This class Ãp(·)(X) is narrower than Ap(·), which may be seen on power weights, see Theorem B,
conditions of which cover a wider range of exponents of power weights than that covered by the
class Ãp(·)(X). However, Ãp(·)(X) coincides with the Muckenhoupt class Ap in case p is constant.
Theorem A states that Ãp(·)(X) ⊂ Ap(·)(X) under batural conditions.

Theorem A. Let X be a bounded doubling measure metric space, let p(x) satisfy conditions
(2.3), (2.4) and % ful�ll condition (3.4). Then the operator M is bounded in Lp(·)(X, %).

In Theorems B and C we deal with a special class of radial type weights in the Zygmund-
Bary-Stechkin class of the type of almost monotonic functions, when the �nal statement may be
formulated in terms of numerical inequalities for the Matuszewska-Orlicz indices of the weights.
To this end, we arrive at the necessity to relate the properties of the weight to those of the measure
µB(x, r) as stated in (1.1). Such a result for the Euclidean case was earlier obtained in [24].
Theorem B is proved by means of Theorem A, but it is not contained in Theorem A, being more
general in its range of applicability. In Theorem B we consider weights of the form

%(x) =
N∏

k=1

wk(d(x, xk)), xk ∈ X, (3.5)

where wk(r) may oscillate between two power functions as r → 0+ (radial Zygmund-Bary-
Stechkin type weights), and in Theorem C we consider similar weights of the form

%(x) = w0[1 + d(x0, x)]
N∏

k=1

wk[d(x, xk)], xk ∈ X, k = 0, 1, ...N. (3.6)
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For lower and upper local dimensions at a point x ∈ X , we use an approach different from
known in the fractal geometry and used in the variable exponent analysis on measure metric spaces
in [15], see also [12], [16]. To this end, we apply the same Matuzewska-Orlicz indices to measures
of balls to obtain local lower and upper dimensions in terms of these indices. This idea to introduce
local dimensions by the following de�nition was borrowed from [40].

De�nition 3.3. The numbers

dim(X; x) = sup
r>1

ln

(
lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
, dim(X; x) = inf

r>1

ln
(

lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
(3.7)

will be referred to as local lower and upper dimensions of X at a point x ∈ X .
Observe that the dimensions (3.7) are Matuszewska-Orlicz indices of measures µB(x, r) of

balls, see Subsection 4.2 on these indices.
The dimension dim(X; x) may be also rewritten in terms of the upper limit as well:

dim(X; x) = sup
0<r<1

ln
(

lim
h→0

µB(x,rh)
µB(x,h)

)

ln r
. (3.8)

Since the function µ0(x, r) = lim
h→0

µB(x,rh)
µB(x,h)

is semimultiplicative in r, by properties of such functions
([32], Ch.II, Theorem 1.3) we obtain that

dim(X; x) ≤ dim(X; x)

and we may rewrite these dimensions also in the form

dim(X; x) = lim
r→0

ln µ0(x, r)

ln r
, dim(X; x) = lim

r→∞
ln µ0(x, r)

ln r
. (3.9)

Lemma 3.4. If the measure µ is doubling, the above local dimensions are �nite numbers and

dim(X; x) ≤ log2 Cµ, (3.10)

where Cµ is the constant from the doubling condition (2.2).

Proof. As is known, by the iteration of the doubling condition, the inequality

µB(x, R)

µB(x, r)
≤ C

(
R

r

)log2 Cµ

, 0 < r ≤ R < ∞ (3.11)

may be obtained. Hence µB(x,tr)
µB(x,r)

≤ Ctlog2 Cµ . Then from (3.9) we obtain (3.10). 2

For lower local dimensions we also introduce their �lower bound�

dim(X) := lim
t→0

ln

(
lim sup

r→0
inf
x∈X

µB(x,rt)
µB(x,r)

)

ln t
≤ inf

x∈X
dim(X; x). (3.12)
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Observe that in many cases the coincidence dim(X) = inf
x∈X

dim(X; x) holds, for instance, if the
meausres of balls have the form µB(x, r) = a(x)[ϕ(r)]b(x).

In case where X is unbounded, we will also need similar dimensions connected in a sense with
the in�uence of in�nity. Let

µ∞(x, r) = lim
h→∞

µB(x, rh)

µB(x, h)
.

We introduce the numbers

dim∞(X) = lim
r→0

ln µ∞(x, r)

ln r
, dim∞(X) = lim

r→∞
ln µ∞(x, r)

ln r
. (3.13)

As shown in [40], these limits do not depend on the �starting� point x. It is easy to see that they
are non-negative. Similarly to Lemma 3.4, it may be shown that dim∞(X) ≤ log2 Cµ < ∞ in the
case of doubling measure.

In the sequel, we always assume that the dimensions never degenerate, that is,

dim(X) > 0 and dim∞(X) > 0.

Remark 3.5. Observe that for an arbitrarily small ε > 0 we have

c1r
dim(X;x)+ε ≤ µB(x, r) ≤ c1r

dim(X;x)−ε, 0 < r ≤ R < ∞ (3.14)

and
c3r

dim∞(X)−ε ≤ µB(x, r) ≤ c4r
dim∞(X)+ε, 0 < r0 ≤ r, (3.15)

where ci, i = 1, 2, 3, 4, depend on ε > 0, but do not depend on r and x, the bounds in (3.15)
needed in the case X is unbounded. Bounds in (3.14)-(3.15) follow from properties (4.15) and
(4.21) given in Subsection 4.3; the fact that the ci do not depend on x, was proved in [40].

To formulate the next Theorems B and C, we need the following additional assumptions on the
measure µ:

the measure µ is non-atomic; (3.16)
µB(x, r) is continuous in r for every �xed x ∈ X; (3.17)

inf
x∈X

µB(x, r) > 0 for every r > 0. (3.18)

Condition (3.18) is ful�lled for every doubling measure µ, if X is bounded, since in this case there
exists a number d > 0 such that µB(x, r) ≥ Crd with C > 0 not depending on x and r. So we
will have to refer to condition (3.18) only in Theorem C for unbounded spaces X .

The Zygmund-Bary-Stechkin class Φ0
γ of weights and upper and lower indices of weights used

in the theorem below are de�ned in Section 4. Various examples of functions in Zygmund-Bary-
Stechkini-type classes with coinciding such indices may be found in [37], Section II; [38], Section
2.1, and with non-coinciding indices in [39].

Theorem B. Let X be a bounded doubling measure metric space satisfying assumptions
(3.16), (3.17), let p(x) ful�ll conditions (2.3), (2.4) on X . The operatorM is bounded in Lp(·)(X, %)

with weight (3.5), if r
dim(X)
p(xk) wk(r) ∈ Φ0

dim(X), or equivalently wk ∈ W̃ ([0, `]), ` = diam X, and

−dim(X)

p(xk)
< m(w) ≤ M(w) <

dim(X)

p′(xk)
, k = 1, 2, ..., N. (3.19)
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In the case where X is a bounded open set in Rn, Theorem B was proved in [24] for Zygmund-
Bary-Stechkin type weights and in [29] for power weights.

Theorem C. Let
i) X be an unbounded measure metric space satisfying the doubling condition and assumptions
(3.16), (3.17) and (3.18);
ii) p satisfy conditions (2.3)-(2.4) and let there exist a ball B(x0, R), x0 ∈ X such that p(x) ≡
p∞ = const for x ∈ X\B(x0, R).
Then the maximal operator M is bounded in Lp(·)(X,w), with weight (3.6), if wk ∈ W̃ (R1

+) and

−dim(X)

p(xk)
< m(wk) ≤ M(wk) <

dim(X)

p′(xk)
, k = 1, ..., N, (3.20)

and

−dim∞(X)

p∞
<

N∑

k=0

m∞(wk) ≤
N∑

k=0

M∞(wk) <
dim∞(X)

p′∞
−∆p∞ , (3.21)

where ∆p∞ =
dim∞(X)−dim∞(X)

p∞
.

In particular, for the power type weight

%(x) = (1 + d(x0, x))β0

N∏

k=1

[d(x, xk)]
βk , xk ∈ X, k = 0, 1, ...N (3.22)

conditions (3.20)-(3.21) take the form

−dim(X)

p(xk)
< βk <

dim(X)

p′(xk)
, k = 1, ..., N, (3.23)

and

−dim∞(X)

p∞
<

N∑

k=0

βk <
dim∞(X)

p′∞
−∆p∞ . (3.24)

The bounds in (3.21) turn to take a �natural� form −dim∞(X)

p∞
and dim∞(X)

p′∞
with ∆p∞ = 0 when

the dimensions dim∞(X) and dim∞(X) coincide with each other.
The Euclidean space version of Theorem C for variable exponents and power weights was

obtained in [19].

4 Preliminaries on Zygmund-Bary-Stechkin classes.
In this section we follow some ideas of papers [1], [18], [37], [39], [41]. Let 0 < ` ≤ ∞. A
non-negative function ϕ on [0, `] is said to be almost increasing (a.i.) or almost decreasing (a.d.), if
there exists a constant C ≥ 1 such that ϕ(x) ≤ Cϕ(y) for all x ≤ y (or x ≥ y, respectively). Let

W = {w ∈ C([0, `]) : w(t) > 0 for t > 0, w(t) is a.i.} (4.1)
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and
W0 = {w ∈ W : w(0) = 0}. (4.2)

Besides W we also need a wider class
W̃ ([0, `]) = {ϕ : ∃a = a(ϕ) ∈ R1 such that xaϕ(x) ∈ W ([0, `])}. (4.3)

4.1 The Zygmund-Bary-Stechkin type classes Φα
β = Φα

β([0, `]) and Ψα
β =

Ψα
β([`,∞]), 0 < ` < ∞.

The following class Φα
β of Zygmund-Bary-Stechkin type in the case α = 0 and β = 1, 2, 3, ... was

introduced in [1] (in [1] functions w were increasing, not almost increasing).

De�nition 4.1. The Zygmund-Bary-Stechkin type class Φα
β = Φα

β([0, `]), −∞ < α < β < ∞,

is de�ned as Φα
β := Zα ∩ Zβ , where Zα is the class of functions w ∈ W̃ satisfying the condition

∫ h

0

w(t)

t1+α
dt ≤ c

w(h)

hα
(Zα)

and Zβ is the class of functions w ∈ W satisfying the condition
∫ `

h

w(t)

t1+β
d(t) ≤ c

w(h)

hβ
, (Zβ)

where c = c(w) > 0 does not depend on h ∈ (0, `].

We will also need an analogous class of functions with a similar behaviour at in�nity. Let
C+([`,∞)), 0 < ` < ∞, be the class of functions w(t) on [`,∞), continuous and positive at every
point t ∈ [`,∞) and having a �nite or in�nite limit lim

t→∞
w(t) =: w(∞). We de�ne

W ([`,∞)) = {w ∈ C+([`,∞) : w(t) is a.i.} (4.4)
and

W̃ ([`,∞)) = {ϕ : ∃a = a(ϕ) ∈ R1 such that xaϕ(x) ∈ W ([`,∞)}. (4.5)

De�nition 4.2. Let −∞ < α < β < ∞. We put Ψβ
α := Ẑβ ∩ Ẑα, where Ẑβ is the class of

functions w ∈ W̃ ([`,∞)) satisfying the condition∫ ∞

r

(r

t

)β w(t) dt

t
≤ cw(r), r →∞, (4.6)

and Ẑα is the class of functions w ∈ W ([`,∞)) satisfying the condition∫ r

`

(r

t

)α w(t) dt

t
≤ cw(r), r →∞ (4.7)

where c = c(w) > 0 does not depend on r ∈ [`,∞).
Observe that properties of functions in the class Ψβ

α([`,∞)) are easily derived from those of
functions in Φα

β([0, `]) because of the following equivalence

w ∈ Ψβ
α([`,∞)) ⇐⇒ w∗ ∈ Φ−β

−α([0, `∗]), (4.8)
where w∗(t) = w

(
1
t

)
and `∗ = 1

`
.
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4.2 Indices m(w) and M(w) of non-negative a. i. functions
The numbers

m(w) = sup
t>1

ln
(
lim inf

h→0

w(ht)
w(h)

)

ln t
= sup

0<t<1

ln

(
lim sup

h→0

w(ht)
w(h)

)

ln t
= lim

t→0

ln

(
lim sup

h→0

w(ht)
w(h)

)

ln t
(4.9)

and

M(w) = sup
t>1

ln

(
lim sup

h→0

w(ht)
w(h)

)

ln t
= lim

t→∞

ln

(
lim sup

h→0

w(ht)
w(h)

)

ln t
(4.10)

will be referred to as the lower and upper Matuszewska-Orlicz indices of the function w(t), see
[34], p. 20. We refer to [37], [39] for various properties of these indices. We have 0 ≤ m(w) ≤
M(w) ≤ ∞ for w ∈ W .

The indices m(w) and M(w) may be also well de�ned for functions w(t) positive for t > 0

which do not necessarily belong to W , for example, for w ∈ W̃ . Observe that

m(wa) = a + m(w), M(ma) = a + M(w) where wa(t) := taw(t) (4.11)

and
m(wλ) = λm(w), M(wλ) = λM(w), , λ ≥ 0 (4.12)

for every w ∈ W̃ .

The indices m∞(w) and M∞(w) responsible for the behavior of functions w ∈ Ψβ
α([`,∞)) at

in�nity are introduced in the way similar to De�nition in (4.9) and (4.10):

m∞(w) = sup
x>1

ln
[
limh→∞

w(xh)
w(h)

]

ln x
, M∞(w) = inf

x>1

ln
[
limh→∞

w(xh)
w(h)

]

ln x
. (4.13)

4.3 Properties of functions w ∈ Φα
β([0, `]) in terms of the indices m(w) and

M(w)

The following statement is valid, see [37],[39] for α = 0, β = 1 and [18] for the general case
(observe that in [18] it was supposed that α ≥ 0, the case where α < 0 being a consequence of the
former in view of relations (4.11)).

Theorem 4.3. Let w ∈ W̃ ([0, `]), 0 < ` < ∞. Then w ∈ Zα if and only if α < m(w) < ∞,
and w ∈ Zβ, β > 0, if and only if −∞ < M(w) < β, so that

w ∈ Φα
β ⇐⇒ α < m(w) ≤ M(w) < β. (4.14)

Besides this, for w ∈ Φα
β and any ε > 0 there exist constants c1 = c1(ε) > 0 and c2 = c2(ε) > 0

such that
c1t

M(w)+ε ≤ w(t) ≤ c2t
m(w)−ε, 0 ≤ t ≤ `. (4.15)

10



The following properties are also valid

m(w) = sup{µ ∈ R1 : t−µw(t) is a.i. on [0, `]}, (4.16)

M(w) = inf{ν ∈ R1 : t−νw(t) is a.d. on [0, `]}. (4.17)

Lemma 4.4. Let w ∈ W̃ and −∞ < m(w) ≤ M(w) < ∞. Then 1
w
∈ W̃ and

m

(
1

w

)
= −M(w), M

(
1

w

)
= −m(w). (4.18)

Proof. By (4.11) and (4.17) the function w(t)
tλ

is a.d. under the choice λ > M(w). Then
tλ

w(t)
is a.i. so that 1

w
∈ W̃ . Relation (4.18) follows directly from the de�nition of the indices in

(4.9)-(4.10). 2

Note also that

m(uv) ≥ m(u) + m(v), M(uv) ≤ M(u) + M(v) (4.19)

for u, v ∈ W̃ .

Remark 4.5. If w ∈ W̃ and m(w) > 0, then w ∈ W .
Indeed, let a ∈ R1 be such that wa(t) = taw(t) ∈ W . Then according to (4.16) the function

wa(t)

tm(wa)−ε is a.i. for every ε > 0. But m(wa) = m(w) + a, so that w(t)

tm(w)−ε is a.i. for every ε > 0.
Since m(w) > 0, then the function w itself is a.i., which means that it is in W .

In the sequel we extend functions w ∈ W̃ for x > ` as w(x) ≡ w(`) whenever necessary.
One can easily reformulate properties of functions of the class Φβ

γ near the origin, given in
Theorem 4.3 and Lemma 4.4 for the case of the corresponding behavior at in�nity of functions of
the class Ψβ

α. This reformulation is an easy task because of the relation (4.8). Observe in particular
that for w ∈ C+([`,∞)) one has w∗(t) : = w

(
1
t

) ∈ C+

([
0, 1

`

])
and the direct calculation shows

that
m∞(w) = −M(w∗), M∞(w) = −m(w∗), w∗(t) : = w

(
1

t

)
(4.20)

and the corresponding analogues of properties (4.15), (4.16) and (4.17) for functions in Ψβ
α([`,∞))

take the form

c1t
m∞(w)−ε ≤ w(t) ≤ c2t

M∞(w)+ε, t ≥ `, w ∈ Ψβ
α([`,∞)), (4.21)

m∞(w) = sup{µ ∈ R1 : t−µw(t) is a.i. on [`,∞)}, (4.22)
M∞(w) = inf{ν ∈ R1 : t−νw(t) is a.d. on [`,∞)}. (4.23)

Remark 4.6. Observe that from (4.20) it follows that properties (4.18) and (4.19) hold also for
the indices m∞(w) and M∞(w).

Making use of Theorem 4.3 for Φα
β([0, 1]) and relations (4.20), we easily arrive at the following

version of statement (4.14) for the case ` = ∞.

11



Lemma 4.7. Let w ∈ W̃ (R1
+). Then

w ∈ Zα(R1
+) ⇐⇒ α < min{m(w),m∞(w)} < ∞ (4.24)

and
w ∈ Zβ(R1

+) ⇐⇒ −∞ < max{M(w),M∞(w)} < β. (4.25)

Remark 4.8. Every function w ∈ W̃ ([0, `]), 0 < ` ≤ ∞ has the property

w(λr) ≤ Cλνw(r), r > 0, λ ≥ 1, (4.26)

if M(w) < ∞ in the case ` < ∞ and both M(w) < ∞ and M∞(w) < ∞ in the case ` = ∞),
where ν > M(w) when ` < ∞, and ν > max(M∞(w),M(w)) when ` = ∞, and C = C(ν)
does not depend on r and λ, so that w(r) satis�es the doubling condition. Inequality (4.26) follows
from the fact that the function w(r)

rν is a.d. according to (4.17) and (4.23).
We are interested in a statement of the type of Theorem 4.3 for parameter depending functions

w(x, r) with the parameter x running our measure metric space X . The main question in such a
generalization is a characterization, in terms of the bounds of the Matuszewska-Orlicz indices, of
the Zygmund conditions with a constant C not depending on x. Results of such a type were proved
in [40]. Theorem 4.10 below is a consequence of parts I and II of Theorems 3.1 and 3.2 in [40]. To
formulate Theorem 4.10, we need the following de�nition which extends the classes introduced in
(4.1) and (4.3).

De�nition 4.9. By W = W (X × [0, `]) we denote the class of functions w with the properties
1) w ∈ L∞(X×[0, `]); 2) w(x, r) is continuous in r ∈ [0, `] for any �xed x ∈ X; 3) w(x, 0) = 0,
but

ess inf
x∈X

w(x, r) := d0(r) > 0 for every r > 0, (4.27)

where ess inf
x∈X

w(x, r) is considered with respect to the measure µ on X; 4) for any �xed x ∈ X the
function w(x, r) is a.i. in r with the uniform estimate w(x, r1) ≤ Cww(x, r2), 0 ≤ r1 ≤ r2 ≤ `.
We also put

W̃ (X × [0, `]) = {w : ∃a = a(w) ∈ R1 such that raw(x, r) ∈ W (X × [0, `])}. (4.28)

For functions w ∈ W̃ (X × [0, `]) we consider their indices with respect to the variable r,
uniform with respect to x:

m(w) = sup
r>1

ln

(
lim inf

h→0
inf
x∈X

w(x,rh)
w(x,h)

)

ln r
, M(w) = inf

r>1

ln

(
lim sup

h→0
sup
x∈X

w(x,rh)
w(x,h)

)

ln r
. (4.29)

Theorem 4.10. Let w ∈ W̃ (X × [0, `]) and β, γ ∈ R1. The Zygmund conditions
∫ r

0

w(x, t)

t1+β
dx ≤ A

w(x, r)

rβ
,

∫ `

r

w(x, t)

t1+γ
dt ≤ A

w(x, r)

rγ
, 0 < r ≤ `

12



with a constant A > 0 not depending on x and r are equivalent to the numerical inequalities

m(w) > β, M(w) < γ,

respectively.

Remark 4.11. A similar reformulation of Lemma 4.7 for parameter depending functions
w(x, r) is also valid, being derived from Theorem 4.10 by direct arguments.

5 Radial-type weights %(x) = w[d(x0, x)] as Muckenhoupt weights
for Lp(·(X, %).

5.1 Auxiliary lemmas
The role of the indices m(wk), M(wk) of weights involved in (3.5) and (3.6) and of similar indices
related to the measure µ (that is, dimensions dim∞(X) and dim∞(X)) may be seen from the
following lemmas.

Lemma 5.1. Let X be an unbounded doubling measure metric space and let α > dim∞(X).
Then for every 0 < ε < α − dim∞(X) there exists a constant C = C(ε), not depending on x and
r such that ∫

X\B(x,r)

dµ(y)

[d(x, y)]α
≤ C(x)rdim∞(X)−α+ε, 0 < r0 ≤ r < ∞, (5.1)

Proof. Let r ≥ 1 and Ak(x) = {y ∈ X : 2kr ≤ d(x, y) ≤ 2k+1r}. We obtain
∫

X\B(x,r)

dµ(y)

[d(x, y)]α
=

∞∑

k=0

∫

Ak(x)

dµ(y)

[d(x, y)]α

≤
∞∑

k=0

1

(2kr)α

∫

Ak(x)

dµ(y) ≤ r−α

∞∑

k=0

µB(x, 2k+1r)

2kα
.

Hence by (3.15) we have
∫

X\B(x,r)

dµ(y)
[d(x,y)]α

≤ Crdim∞(X)−α+ε
∞∑

k=0

1

2k[α−dim∞(X)−ε] which proves (5.1).
2

Lemma 5.2. Let X be a doubling measure metric space, % a weight of form (3.5) and let p(·)
satisfy conditions (2.3), (2.4). Then

−dim(X)

p(xk)
< m(wk), k = 1, 2, ..., N, =⇒ % ∈ L

p(·)
loc (X). (5.2)

M(wk) <
dim(X)

p′(xk)
, k = 1, 2, ..., N, =⇒ 1

%
∈ L

p′(·)
loc (X). (5.3)
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Proof. Let Ω be an arbitrary bounded open set in X containing the point xk. To check (5.3), it
suf�ces to show that

Ik(Ω) :=

∫

Ω

dµ(x)

{w[d(x, xk)]}p′(xk)
< ∞, k = 1, 2, ..N,

with Lemma 2.1 taken into account. Let ` = diam X . By property (4.15) we have

Ik(Ω) ≤ C

∫

d(x,xk)<`

dµ(x)

[d(x, xk)](M(wk)+ε)p′(xk)
=

∞∑

k=0

∫

Ak

dµ(x)

[d(x, xk)](M(wk)+ε)p′(xk)
,

where Ak = {x ∈ X : 2−k−1` < d(x, xk) < 2−k`}. Hence Ik(Ω) ≤ C
∞∑

k=0

µB(x,2−k`)

(2−k−1`)
(M(wk)+ε)p′(xk) .

Making use of (3.14), we obtain Ik(Ω) ≤ C
∞∑

k=0

2−k[(M(wk)+ε)p′(xk)−dim(X)]. Since M(wk)p
′(xk) >

dim(X), the series is convergent under the choice of suf�ciently small ε > 0.
Similarly, statement (5.2) is veri�ed. 2

5.2 Some joint conditions on weight and measure.
In the sequel we suppose that w ∈ W̃ ([0, `]), ` = diam X and consider the condition that µB(x,r)

w(r)
∈

Z0 uniformly in x ∈ X, that is,
r∫

0

µB(x, t) dt

tw(t)
≤ C

µB(x, r)

w(r)
, (5.4)

where C > 0 does not depend on x ∈ X and 0 < r < diam X . In Lemma 5.9 we will give a
suf�cient condition for the validity of (5.4) in terms of the numbers M(w) and dim(X).

Observe that Lemma 5.3 does not use the doubling condition for the measure µ.

Lemma 5.3. Let w ∈ W̃ ([0, `]), ` = diam X and let assumption (5.4) be satis�ed. Then
∫

B(x,r)

dµ(y)

w(d(x, y))
≤ C

µB(x, r)

w(r)
(5.5)

where C > 0 does not depend on x ∈ X and r ∈ [0, `).

Proof. Let ν < m(w) when ` < ∞ and ν < min(m(w),m∞(w)) when ` = ∞ and let
wν(x) = w(x)

xν so that wν(x) is an a.i. function on [0, `] according to (4.16) and (4.22). We proceed
as follows:

J :=

∫

B(x,r)

dµ(y)

w(d(x, y))
=

∞∑

k=0

∫

Xk(x,r)

[d(x, y)]−νdµ(y)

wν(d(x, y))
(5.6)
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where Xk(x, r) = {y ∈ X : 2−k−1r ≤ d(x, y) < 2−kr}. Since the measure is non-negative and the
function wν is almost increasing, and [d(x, y)]−ν ≤ C

(
2−kr

)−ν for y ∈ Xk(x, r), C = 2max(ν,0),
we obtain

J ≤ C

∞∑

k=0

(
2−kr

)−ν
µ(Xk(x, r))

wν(2−k−1r)
≤ C

∞∑

k=0

µ(B(x, 2−kr))

w(2−k−1r)

= C
µB(x, r)

w
(

r
2

) + C

∞∑

k=0

µ(B(x, 2−k−1r))

w(2−k−2r)
.

According to (4.26) the weight w ∈ W̃ satis�es the doubling condition. Therefore, we get

J ≤ C
µB(x, r)

w(r)
+ C

∞∑

k=0

µ(B(x, 2−k−1r))

w(2−kr)
. (5.7)

The inequality

µB(x, 2−k−1r)

w(2−kr)
≤ C

2−k∫

2−k−1

µB(x, tr) dt

tw(tr)
(5.8)

with C > 0 not dependent on x and r is valid, which is obtained by the following direct estimation:

2−k∫

2−k−1

µB(x, tr) dt

tw(tr)
≥ C

µB(x, 2−k−1r)

wν(2−kr)

2−k∫

2−k−1

(tr)−νdt ≥ C
µB(x, 2−k−1r)

w(2−kr)
.

By (5.8) from (5.7) we then get

J ≤ C
µB(x, r)

w(r)
+ C

∞∑

k=0

2−k∫

2−k−1

µB(x, tr)dt

tw(tr)
= C

µB(x, r)

w(r)
+ C

1∫

0

µB(x, tr)dt

w(tr)

which proves (5.5) in view of (5.4). 2

5.3 Suf�cient conditions for %(x) := w[d(x, x0)] to belong to Ãp(·)(X) in
terms of the Zygmund condition.

The following lemma is related to condition (5.4).

Lemma 5.4. Let w ∈ W̃ ([0, `]), ` = diam X and the measure µ and the weight w satisfy
condition (5.4). Then a similar condition holds for the function µB(x,r)

rν :

r∫

0

µB(x, t) dt

t1+ν
≤ C

µB(x, r)

rν
, (5.9)

for every ν < m(w) when ` < ∞ and ν < min(m(w),m∞(w)) when ` = ∞.
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Proof. Since the function w(r)
rν is almost increasing, we obtain

r∫

0

µB(x, t) dt

t1+ν
=

r∫

0

µB(x, t)

tw(t)

w(t)

tν
dt ≤ C

w(r)

rν

r∫

0

µB(x, t)

tw(t)
dt ≤ C

µB(x, r)

rν

in view of (5.4). 2

In the next lemma, a is the constant from (2.1).

Lemma 5.5. Let X be a measure metric space with doubling condition and let w ∈
W̃ ([0, `]), ` = diam X . If the measure µ and the weight w satisfy condition (5.4), then the in-
equality

Mw
r (1) :=

w(d(x, x0))

µB(x, r)

∫

B(x,r)

dµ(y)

w(d(y, x0))
≤ c (5.10)

holds with c > 0 not depending on 0 < r < ` and x ∈ X , in each of the following cases:
i) d(x, x0) ≥ 2ar,
ii) m(w) > 0 when ` < ∞, and min{m(w),m∞(w)} > 0 when ` = ∞.
In the case d(x, x0) ≤ 2ar, the estimate

w(r)

µB(x, r)

∫

B(x,r)

dµ(y)

w(d(y, x0))
≤ c (5.11)

holds, which is valid jointly with (5.10) when m(w) > 0.

Proof.
10. The case d(x, x0) ≥ 2abr. By (2.1) we have

d(y, x0) ≥ 1

a
d(x0, x)− d(y, x) ≥ 1

a
d(x0, x)− r ≥ 1

2a
d(x0, x). (5.12)

Let ν < m(w) when ` < ∞ and ν < min{m(w),m∞(w)} when ` = ∞, and wν(r) = w(r)
rν . Since

wν is an a.i. function, we have wν(d(y, x0|) ≥ cwν

(
1
2a

d(x0, x)
)
. Taking also into account property

(4.26), we obtain wν(d(y, x0)) ≥ cwν(d(x0, x)). Then we have

Mw
r (1) ≤ C

w(d(x, x0))

wν(d(x, x0))µB(x, r)

∫

B(x,r)

dµ(y)

[d(y, x0)]ν
= C

[d(x, x0)]

µB(x, r)

ν ∫

B(x,r)

dµ(y)

[d(y, x0)]ν
.

If ν ≥ 0, we use (5.12) again and obtain (5.10). If ν < 0, then 1
[d(y,x0)]ν

= [d(y, x0)]
|ν| ≤

C
(
[d(y, x)]|ν| + [d(x, x0)]

|ν|)≤ C
(
r|ν| + [d(x, x0)]

|ν|) ≤ C1[d(x, x0)]
|ν|, whence (5.10) again fol-

lows.
20. The case d(x, x0) ≤ 2ar. Observe that in this case B(x, r) ⊂ B(x0, Qr) with Q =

a(1 + 2a), since d(x, y) < r =⇒ d(x0, y) ≤ a[d(x0, x) + d(x, y)] < a(1 + 2a)r. Hence

Mw
r (1) ≤ w(d(x, x0))

µB(x, r)

∫

B(x0,Qr)

dµ(y)

w(d(y, x0))
≤ C

w(d(x, x0))

µB(x,Qr)

∫

B(x0,Qr)

dµ(y)

w(d(y, x0))
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by the doubling condition for µ. Then by Lemma 5.3 we get

Mw
r (1) ≤ C

w(d(x, x0))

w(Qr)
, (5.13)

which gives (5.11) by (4.26). In the case m(w) > 0 the function w(x) is a.i. and then (5.13) yields
(5.10). 2

Theorem 5.7 below provides the following suf�cient conditions
r∫

0

µB(x, t)[w(t)]p(x0)

t
dt ≤ CµB(x, r)[w(r)]p(x0), (5.14)

r∫

0

µB(x, t)

t[w(t)]q0
dt ≤ C

µB(x, r)

[w(r)]q0
with q0 =

p(x0)

p− − 1
(5.15)

for a function w[d(x, x0)] to satisfy condition (3.4), w ∈ W̃ , where C > 0 does not depend on
r > 0 and x ∈ X . To this end, from Lemma 5.5 we deduce the following corollary.

Corollary 5.6. Let w ∈ W̃ ([0, `]), ` = diam X , let p(x) satisfy conditions (2.3)-(2.4), let
x0 ∈ X and the measure µ be doubling. When ` < ∞, condition (5.14) implies the inequality

1

µB(x, r)

∫

B(x,r)

[w(d(x0, y))]p(y)dµ(y) ≤ C[w(ξ)]p(x0) (5.16)

and condition (5.15) implies the inequality

1

µB(x, r)

∫

B(x,r)

dµ(y)

[w(d(x0, y))]
p(y)

p−−1

≤ C

[w(ξ)]q0
, (5.17)

where ξ = max(r, d(x, x0)). When ` = ∞, the implications (5.14) → (5.16) and (5.15) → (5.17)
are valid in case p = const, 1 < p < ∞.

Proof. When ` < ∞, by Lemma 2.1, the exponent p(y) on the left-hand side of (5.16) and
(5.17) may be replaced by p(x0) from the very beginning, the assumptions of Lemma 2.1 on w
being satis�ed by (4.15) and (4.26). Then (5.16)-(5.17) follow directly from (5.10)-(5.11) with
w(r) replaced by [w(r)]p(x0) in case of (5.16) and by [w(r)]−q0 in case of (5.17). When ` = ∞ and
p = const, we have p(y) = p(x0) and again (5.16)-(5.17) follow from (5.14)-(5.15). 2

Theorem 5.7. Let w ∈ W̃ ([0, `]), ` = diam X , let p(x) satisfy conditions (2.3)-(2.4), let
x0 ∈ X and the measure µ satisfy the doubling condition. If the function w and the measure µ
ful�ll conditions (5.14)-(5.15), then the function %(x) = w(d(x, x0)) satis�es condition (3.4), if
either ` < ∞, or ` = ∞ and p = const.
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Proof. By Corollary 5.6, we have 1
µB(x,r)

∫
B(x,r)

[w(d(x0, y))]p(y)dµ(y) ≤ C[w(ξ)]p(x0) and
(

1
µB(x,r)

∫
B(x,r))

dµ(y)

[w(d(x0,y)]
p(y)

p−−1

)p−−1

≤ C
[w(ξ)]p(x0) , which yields the validity of (3.4). 2

Corollary 5.8. Let w ∈ W̃ ([0, `]), ` = diam X and the measure µ satisfy the doubling condi-
tion, let x0 ∈ X and p(x) = p = const. Then under conditions (5.14)-(5.15)

w[d(x, x0)] ∈ Ap(X), 1 < p < ∞. (5.18)

Note that known examples of weights in Ap(X) on metric spaces even for constant p were
powers [µB(x0, d(x0, x))]α of the measure, see [13], p. 42. The statement of Corollary 5.8 giving
examples of radial functions of the distance seems to be new, see also Corollary 5.12.

5.4 Suf�cient conditions for %(x) := w[d(x, x0)] to belong to Ãp(·)(X) in
terms of indices of the weight and the lower local dimension.

Lemma 5.9. Let w ∈ W̃ ([0, `]), ` = diam X . The conditions

M(w) < dim(X), if ` < ∞
M(w) < dim(X) and M∞(w) < dim∞(X), if ` = ∞ (5.19)

are suf�cient for the validity of (5.4).

Proof. By Fx(r) = µB(x,r)
w(r)

we denote for brevity the function involved in (5.4). Let

m(Fx) = sup
r>1

ln
(
lim inf

h→0

Fx(rh)
Fx(h)

)

ln r
, m∞(Fx) = sup

r>1

ln
[
lim inf
h→∞

Fx(rh)
Fx(r)

]

ln r

be the lower index numbers (4.9) and (4.13) of this function with respect to the variable r. By
Theorem 4.10 and Remark 4.11 we have

(5.4) ⇐⇒
0 < inf

x∈X
m(Fx) < ∞, if ` < ∞

0 < min{ inf
x∈X

m(Fx), inf
x∈X

m∞(Fx)} < ∞, if ` = ∞.
(5.20)

Note that Theorem 4.10 is applicable because Fx(r) ∈ W̃ (X × [0, `]) under assumptions (3.16),
(3.17), (3.18). Suf�cient conditions for (5.20) may be given in terms of the separated index num-
bers, namely, the upper indices M(w),M∞(w) of the weight and the numbers dim(X), dim∞(X),
although it should be noted that in this way we obtain not an equivalent condition, but a suf�cient
one. Namely, by (4.18)-(4.19) and Remark 4.6, we obtain that the conditions

dim(X; x)−M(w) > 0 and dim∞(X)−M∞(w) > 0 (5.21)

imply min{ inf
x∈X

m(Fx), inf
x∈X

m∞(Fx)} > 0. Then conditions (5.19) imply (5.4).
2
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Corollary 5.10. Condition (5.4) for the function v(r) = rβ is satis�ed, if

β < dim(X), when ` < ∞
β < min{dim(X), dim∞(X)}, when ` = ∞.

(5.22)

Theorem 5.11. Let w ∈ W̃ ([0, `]), let p(x) satisfy conditions (2.3)-(2.4) and let x0 ∈ X .
I) The case diam X < ∞; if

−dim(X)

p(x0)
< m(w) ≤ M(w) <

dim(X)

q0

, (5.23)

where q0 = p(x0)
p−−1

, then the function %(x) = w(d(x, x0)) satis�es condition (3.4).
II) The case diam X = ∞; if p = const, 1 < p < ∞ and

−dim(X)

p
< m(w) ≤ M(w) <

dim(X)

p′
(5.24)

and
−dim∞(X)

p
< m∞(w) ≤ M∞(w) <

dim∞(X)

p′
,

1

p
+

1

p′
= 1, (5.25)

then w(d(x, x0)) ∈ Ap(X).

Proof. In view of Theorem 5.7, it suf�ces to verify that condition (5.23) or conditions (5.24)-
(5.25) imply conditions (5.14)-(5.15). This is easily done by means of Lemma 5.9 applied to
w1(r) = [w(r)]−p(x0) and w2(r) = [w(r)]q0 . Indeed, by (4.18) and (4.12) we have

M(w1) = −p(x0)m(w) and M(w2) = q0M(w),

respectively. Then the conditions M(wi) < dim(X), i = 1, 2, of Lemma 5.9 are nothing else but
(5.23), and similarly conditions M∞(wi) < dim∞(X), i = 1, 2, coincide with (5.24)-(5.25). 2

Corollary 5.12. Let p = const, 1 < p < ∞, 1
p

+ 1
p′ = 1, and let x0 ∈ X .

I) In the case ` < ∞ the inclusion [d(x, x0)]
γ ∈ Ap(X) holds, if

−dim(X)

p
< γ <

dim(X)

p′
; (5.26)

II) in the case ` = ∞ the inclusion [1 + d(x, x0)]
β[d(x, x0)]

γ ∈ Ap(X) holds, if

−dim(X)

p
< γ <

dim(X)

p′
and − dim∞(X)

p
< β + γ <

dim∞(X)

p′
/ (5.27)

Proof. I. ` < ∞. By (5.26) and Theorem 5.11, condition (3.4) is satis�ed for %(x) =
[d(x0, x)]γ with p = const. Then % ∈ Ap(X) according to Theorem 3.1.
II. The case ` = ∞ is similarly treated taking into account that for w = w1w2 with w1(r) = (1+r)β

and w2(r) = rγ one has m(w) = M(w) = γ and m∞(w) = M∞(w) = β + γ. 2

Theorem 5.11 and Corollary 5.12 contain statements new even for the case of constant p.
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6 A weighted pointwise estimate of the maximal function.
The following pointwise estimate

|Mψ(x)|p1(x) ≤ c
(
1 +M[

ψp1(·)](x)
)

(6.1)

valid for for all ψ ∈ Lp1(·)(X) with ‖ψ‖p1(·) ≤ C, is due to L.Diening [5] for the Euclidean case;
it was extended in [16], [20] for doubling measure metric spaces. We need a similar weighted
estimate. For our purposes it will be suf�cient to have it for a power weight of the form %(x) =
[d(x0, x)]β, x0 ∈ X . For the weighted means

M%
rf(x) =

%(x)

µB(x, r)

∫

Br(x)

|f(y)|
%(y)

dy (6.2)

we prove the following theorem (obtained earlier for the Euclidean case in [29]).

Theorem 6.1. Let µ(X) < ∞, p(x) satisfy (2.3) and (2.4), x0 ∈ X and let %(x) = [d(x0, x)]β .
If 0 ≤ β < dim(X)

p′(x0)
, then

[M%
rf(x)

]p(x) ≤ C


1 +

1

µB(x, r)

∫

B(x,r)

|f(y)|p(y) dy


 (6.3)

for all f ∈ Lp(·)(X) such that ‖f‖p(·) ≤ c < ∞, where C = C(c, p, β) < ∞ is a constant not
depending on x, r and x0.

Proof. It suf�ces to consider the case c = 1. By the condition on β and the continuity of p(x)
we conclude that there exists a δ > 0 such that

βp′(x) < dim(X) for all x with d(x0, x) ≤ δ. (6.4)
We may assume that δ ≤ 1. We denote

pr(x) = min
d(x,y)≤r

p(y)

and 1
qr(x)

= 1− 1
pr(x)

. From (6.4) and the inequality µB(x,r)
2µ(X)

≤ 1
2

it is easily seen that

βqr(x) < dim(X) if d(x0, x) ≤ δ

2a
and 0 < r ≤ δ

4a2
(6.5)

where a is the constant from (2.1), and in the sequel it is convenient to distinguish the cases
0 < r ≤ δ

4a2 and δ
4a2 ≤ r.

10 The case d(x0,x) ≤ δ
2a and 0 < r ≤ δ

4a2 (the main case). In this case,
applying the Hölder inequality with the exponents pr(x) and qr(x) to the integral on the right-hand
side of the equality

∣∣∣∣Mr

( f(y)

[d(x0, y)]β

)∣∣∣∣
p(x)

=
C

[µB(x, r)]p(x)




∫

B(x,r)

|f(y)|
[d(x0, y)]β

dy




p(x)
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where Mr stands for M%
r |%≡1, we get

∣∣∣∣Mr

(
f(y)

[d(x0, y)]β

)∣∣∣∣
p(x)

≤

≤ C

[µB(x, r)]p(x)




∫

B(x,r)

|f(y)|pr(x) dy




p(x)
pr(x)

·




∫

B(x,r)

dy

[d(x0, y)]βqr(x)




p(x)
qr(x)

. (6.6)

We make use of estimate (5.10) with w(t) = tβqr(x). This estimate is applicable by Lemma 5.5.
Indeed, the condition m(w) = βqr(x) ≥ 0 is ful�lled, the case β = 0 being trivial. According to
Lemma 5.9, the condition βqr(x) < dim(X) provided by (6.5), is suf�cient for the validity of the
corresponding condition (5.4) required by Lemma 5.5. We obtain

∣∣∣∣Mr

(
f(y)

[d(x0, x)]β

)∣∣∣∣
p(x)

≤ C
[d(x0, x)]−βp(x)

[µB(x, r)]
p(x)

pr(x)




∫

B(x,r)

|f(y)|pr(x) dy




p(x)
pr(x)

.

Here ∫

B(x,r)

|f(y)|pr(x) dy ≤
∫

B(x,r)

dy +

∫

B(x, r)
{y : |f(y)| ≥ 1}

|f(y)|p(y) dy,

since pr(x) ≤ p(y) for y ∈ B(x, r). Hence

∣∣∣∣Mr

(
f(y))

[d(x0, x)]β

)∣∣∣∣
p(x)

≤ C1C2
[d(x0, x)]−βp(x)

[µB(x, r)]
p(x)

pr(x)


µB(x, r)

2µ(X)
+

1

2

∫

B(x,r)

|f(y)|p(y) dy




p(x)
pr(x)

,

where C2 = {max[2µ(X), 1]}
p+

p− . The expression in the brackets is less than or equal to 1. Since
p(x)
pr(x)

≥ 1, we obtain

|M%
rf |p(x) ≤ C

[µB(x, r)]
p(x)

pr(x)


µB(x, r)

2µ(X)
+

1

2

∫

B(x,r)

|f(y)|p(y) dy


 ≤

≤ C [µB(x, r)]
pr(x)−p(x)

pr(x)


1 +

1

µB(x, r)

∫

B(x,r)

|f(y)|p(y) dy


 .

From here (6.3) follows, since
[B(x, r)]

pr(x)−p(x)
pr(x) ≤ C. (6.7)

Indeed, [µB(x, r)]
pr(x)−p(x)

pr(x) = e
p(x)−pr(x)

pr(x)
ln 1

µB(x,r) , where
∣∣∣p(x)− pr(x)

pr(x)
ln

1

µB(x, r)

∣∣∣ ≤
∣∣p(x)− p(ξr)

∣∣ ln
1

µB(x, r)
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with ξr ∈ B(x, r), and then by (2.4),

∣∣∣p(x)− pr(x)

pr(x)
ln

1

µB(x, r)

∣∣∣ ≤ A
ln 1

µB(x,r)

ln 1
|x−ξr|

≤ A
ln 1

µB(x,r)

ln 1
r

,

since |x − ξr| ≤ r. As is known, when X is bounded and the measure µ is doubling, then there
exist an exponent Q > 0(Q = log2 Cµ) and a constant c0 > 0 such that

µB(x, r) ≥ c0r
Q, (6.8)

which follows from (3.11). According to the bounds in (3.14), (3.15), one may also choose Q as
a number greater than sup

x∈X
dim(X; x). Then we easily obtain that ln 1

µB(x,r)
≤ c1 ln 1

r
, c1 =

Q + | ln c0|
ln 4

δ0

. Hence
∣∣∣p(x)−pr(x)

pr
ln 1

µB(x,r)

∣∣∣ ≤ Ac1 which proves (6.7) and yields estimate (6.3).

20 The case d(x0,x) ≥ δ
2a , 0 < r ≤ δ

4a2 . This case is trivial, because d(x0, y) ≥
1
a
d(x0, x)−d(x, y) ≥ δ

2a2− δ
4a2 = δ

4a2 . Thus [d(x0, y)]β ≥ (
δ

4a2

)β . Since [d(x0, x)]β ≤ ( diam X)β ,
it follows that M%

rf(x) ≤ cMrf(x), and one may proceed as above for the case β = 0.

30 The case r ≥ δ
4a2 . This case is also easy. It suf�ces to show that the left-hand side of

(6.3) is bounded. We have

M%
rf(x) ≤ C( diam X)β

µB
(
x, δ

4a2

)





∫

d(x0,y)≤ δ
8a2

|f(y)|
[d(x0, y)]β

dy +

∫

d(x0,y)≥ δ
8a2

|f(y)|
[d(x0, y)]β

dy





.

Here ( diam X)β

µB(x, δ
4a2 )

≤ C by (6.8). The �rst integral is bounded by Hölder inequality with the ex-
ponents pδ = mind(x0,y)≤ δ

8a2
p(y) and qδ = p′δ which is possible because from (6.4) we

have βqδ < dim(X) which, by Lemmas 5.3 and 5.9, guarantees the convergence of the integral∫
d(x0,y)≤ δ

8a2

dµ(y)

[d(x0,y)]βqδ
. The estimate of the second integral is trivial since d(x0, y) ≥ δ

8a2 . 2

Corollary 6.2. Let %(r) = rβ and 0 ≤ β < dim(X)
p′(x0)

. Under conditions (2.3) and (2.4)

|M%f(x)|p(x) ≤ C
(
1 +M [|f(·)|p(·)] (x)

)
for all f ∈ Lp(·)(X) such that ‖f‖p(·) ≤ 1 .

7 Proof of Theorem A.
Let

∥∥f
∥∥

p(·) ≤ 1. We follow the known trick ([5]) and represent Ip(M%f) as

Ip(M%f) =

∫

X

(
[%(x)]p1(x)

∣∣∣∣M
(

f(y)

%(y)

)
(x)

∣∣∣∣
p1(x)

)p−

dµ(x), (7.1)
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where p1(x) = p(x)
p−

. We make use of estimate (6.1) valid for for all ψ ∈ Lp1(·)(X) with ‖ψ‖p1(·) ≤
C. We intend to choose ψ(y) = f(y)

%(y)
with f ∈ Lp(·)(X) in (6.1). This is possible because

∫

X

∣∣∣∣
f(y)

%(y)

∣∣∣∣
p(y)
p−

dµ(y) ≤ C, (7.2)

for all f ∈ Lp(·) with ‖f‖p ≤ 1. Estimate (7.2) is obtained by means of the Hölder inequality with
the exponents p− and p′− = p−

p−−1
, taking into account that

∫
X

[%(y)]
− p(y)

p−−1 dµ(y) < ∞, the latter
following from condition (3.4). In view of (7.2), we may apply estimate (6.1). Then (7.1) implies

Ip(M%f) ≤ c

∫

X

[%(x)]p(x)

[
1 +M

(∣∣∣∣
f(y)

%(y)

∣∣∣∣
p1(y)

)]p−

dµ(x).

Since
∫
X

[%(x)]p(x)dµ(x) < ∞ by (3.4), we obtain

Ip(M%f) ≤ c + c

∫

X

[M%1(|f(·)|p1(·))(x)
]p−

dµ(x) (7.3)

under notation (3.1) with %1(x) = [%(x)]p1(x). By Theorem 3.1, the weighted Lp-boundedness,
p = p− = const, of the maximal operator is valid if %1(x) = [%(x)]p1(x) ∈ Ap− , that is,

sup
x∈X,r>0


 1

µB(x, r)

∫

B(x,r)

|%1(y)|p−dµ(y)




1
p

 1

µB(x, r)

∫

B(x,r)

dµ(y)

|%1(y)|p′−




1
p′−

< ∞. (7.4)

It remains to note that (7.4) is nothing else but condition (3.4).
Therefore, by the boundedness of the weighted operator M%1 in Lp− , from (7.3) we get

Ip(M%f) ≤ c + c

∫

X

|f(y)|p1(y)·p− dµ(y) = c + c

∫

X

|f(y)|p(y) dµ(y) ≤ c < ∞. (7.5)

8 Proof of Theorem B
It suf�ces to prove Theorem B for a single weight w(d(x, x0)), x0 ∈ X, r

1
p(x0) w(r) ∈ Φ0

1, the
reduction to the case of a single weight being made by standard arguments, we refer for instance
to [24], Subsection 5.1, where the Euclidean case was considered.

8.1 Proof of Theorem B for the case of power weights %(x) = [d(x0, x)]β.
Let %(x) = [d(x0, x)]β . We assume that ‖f‖p(·) ≤ 1 and have to show that Ip(M%f) ≤ C < ∞
when

−dim(X)

p(x0)
< β <

dim(X)

p′(x0)
. (8.1)
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We start from the representation in (7.1), which yields

Ip(M%f) ≤ C

∫

X

(
[d(x0, x)]βp1(x0)

∣∣∣∣M
(

f(y)

[d(x0, y)]β

)
(x)

∣∣∣∣
p1(x)

)p−

dµ(x), (8.2)

where p1(x) = p(x)
p−

and distinguish between the cases β ≤ 0 and β ≥ 0.

10 The case−dim(X)
p(x0)

< β ≤ 0. We make use of estimate (6.1) valid for all ψ ∈ Lp1(·)(X) with
‖ψ‖p1(·) ≤ C, where C > 0 is any �xed constant. For ψ(x) = f(x)

[d(x0,x)]β
we have

∥∥ψ
∥∥

p1(·) ≤ a0

∥∥ f
∥∥

p1(·) , a0 =

( diam X)|β|. From imbedding (2.7) we then have
∥∥ψ

∥∥
p1(·) ≤ a0C

∥∥f
∥∥

p(·) ≤ a0C`. Therefore, by
(6.1) we get

Ip(M%f) ≤ c

∫

X

(
[d(x0, x)]βp1(x0)

[
1 +M

(∣∣∣∣
f(y)

[d(x0, y)]β

∣∣∣∣
p1(y)

)])p−

dµ(x)

≤ c

∫

X

{
[d(x0, x)]βp(x0) +

(
[d(x0, x)]βp1(x0)M

(
f(y)|p1(y)

[d(x0, y)]βp1(x0)

))p−}
dµ(x) ≤

≤ c + c

∫

X

(M%1
(|f(·)|p1(·)) (x)

)p−
dµ(x),

where %1(x) = [d(x0, x)]γ, γ = βp1(x0). By Theorem 3.1, the weighted maximal operator M%1

is bounded in Lp− with constant p− if %1 ∈ Ap− . By Corollary 5.12 this is the case, if −dim(X)
p−

<

γ < dim(X)
p′−

, which is satis�ed since −dim(X)
p(x0)

< β ≤ 0. Therefore,

Ip(M%f) ≤ c + c

∫

X

|f(y)|p1(y)·p− dy = c + c

∫

X

|f(y)|p(y) dy < ∞.

20 The case 0 ≤ β < dim(X)
p′(x0)

. We represent the functional Ip(M%f) in the form

Ip(M%f) =

∫

X

(∣∣M%f(x)
∣∣p1(x)

)λ

dµ(x) (8.3)

with p1(x) = p(x)
λ

> 1, λ > 1, where λ will be chosen in the interval 1 < λ < p−. In (8.3), we
wish to use the pointwise weighted estimate

|M%f(x)|p1(x) ≤ c
[
1 +M(f p1(·))(x)

]
, (8.4)

obtained in (6.3). This estimate is applicable according to Theorem 6.1 if ‖f‖p1(·) ≤ c and β <
dim(X)
[p1(x0)]′ . The condition ‖f‖p1(·) ≤ c is satis�ed since p1(x) ≤ p(x), and the condition on β is
ful�lled if λ < dim(X)−β

dim(X)
p(x0). Therefore, under the choice

1 < λ < min
(
p−,

dim(X)− β

dim(X)
p(x0)

)
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we may apply (8.4) in (8.3). This yields Ip(M%f) ≤ c + c
∫
X

∣∣M(|f |p1(·))(x)
∣∣λ dµ(x) ≤ c +

c
∫
X

(|f(x)|p1(x)
)λ

dµ(x) by the boundedness of the maximal operator M in Lλ(X), λ > 1. Hence

Ip(M%f) ≤ c + c
∫
X

|f(x)|p(x) dµ(x) ≤ c.

8.2 Proof of Theorem B in the general case.

10 The case (5.23). This case is covered by Theorem A, because the weight w(d(x, x0))
satis�es condition (3.4) by Theorem 5.7.

20 The remaining case. The interval in (5.23) coincides with the interval in (3.19), if
q0 = p′(x0), that is, the maximal value q0 = p(x0)

p−−1
= maxx∈X

p(x0)
p(x)−1

is taken on at the point
x0. Therefore, to get rid of the right-hand side bound in (5.23), we may split integration over X
into two parts, one over a small neighborhood Bδ = B(x0, δ) of the point x0, and another over its
exterior X\Bδ, and to choose δ suf�ciently small so that the number p−(Bδ)−1

p(x0)
is arbitrarily close

to p(x0)−1
p(x0)

= 1
p′(x0)

. To this end, under notation (3.1) with %(x) = w[d(x0, x)] we put

M% = 1Bδ
M%1Bδ

+ 1Bδ
M%1X\Bδ

+ 1X\Bδ
M%1Bδ

+ 1X\Bδ
M%1X\Bδ

(8.5)

= : M%
1 +M%

2 +M%
3 +M%

4.

Since the weight is strictly positive beyond any neighborhood of the point x0, we haveM%
4f(x) ≤

CMf(x). For M%
3 we have

M%
3f(x) = sup

r>0

1X\Bδ
(x)

µB(x, r)

∫

B(x,r)∩Bδ∩X

w(d(x0, x))

w(d(x0, y))
|f(y)| dµ(y).

Here d(x0, x) > δ > d(x0, y). Observe that the function wε(t) = w(t)

tM(w)+ε is a.d. for any ε > 0
according to (4.17). Therefore

w(d(x0, x))

w(d(x0, y))
=

wε(d(x, x0))

wε(d(x0, y))
· [d(x0, x)]M(w)+ε

[d(x0, y)]M(w)+ε
≤ C

[
d(x0, x)

d(x0, y)

]M(w)+ε

.

Hence
M%

3f(x) ≤ CMM(w)+εf(x) (8.6)
where by MM(w)+εf(x) we denoted the weighted maximal function with the power weight
[d(x, x0)]

M(w)+ε. Similarly Mw
2 f(x) ≤ CMm(w)−εf(x). Thus from (8.5) we obtain

M%f(x) ≤ 1Bδ
M%1Bδ

f(x) +Mf(x) +MM(w)+εf(x) +Mm(w)−εf(x). (8.7)

The operatorM is bounded by Theorem 3.2, the boundedness of the maximal operatorsMM(w)+ε

and Mm(w)−ε with power weights was proved in Subsection 8.1, the boundedness condition (8.1)
being satis�ed for β = M(w) + ε and β = m(w)− ε under a choice of ε suf�ciently small.
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It remains to prove the boundedness of the �rst term on the right-hand side of (8.7). This is
nothing else but the boundedness of the same operator M% over a �small� measure metric space
Xδ = Bδ = B(x0, δ) with the measure induced by that on X . This measure is also doubling.
According to the previous case, the required boundedness on Xδ holds if

−dim(X)

p(x0)
< m(w) ≤ M(w) <

dim(X)

p′δ
(8.8)

where p′δ = p−(Xδ)−1
p(x0)

and p−(Xδ) = min
x∈Xδ

p(x). Let us show that, given the condition −dim(X;x)
p(x0)

<

m(w) ≤ M(w) < dim(X;x)
p′(x0)

, one can always choose δ suf�ciently small such that (8.8) holds. Given
M(w) < dim(X)

p′(x0)
, we have to choose δ so that M(w) < dim(X)

p′δ
≤ dim(X)

p′(x0)
. We have

dim(X)

p′δ
=

dim(X)

p′(x0)
− a(δ), where a(δ) =

dim(X)

p(x0)
[p(x0)− p−(Xδ)] .

By the continuity of p(x) we can choose δ so that a(δ) < dim(X)
p′(x0)

−M(w). Then dim(X)
p′δ

> M(w)

and (8.8) is ful�lled. Then Mw is bounded in Lp(·)(Bδ) which completes the proof.

9 Proof of Theorem C.
We have to show that Ip

X(%Mf) ≤ C < ∞ provided that ‖%f‖p(·) ≤ 1. Let XR = X ∩ B(x0, R).
We may choose R large enough so that all the points xk, k = 1, . . . , N, lie inside the ball B(x0, R).
We split the function f as f = f · 1B2R

+ f · 1X\B2R
= ϕ + ψ, so that Ip

X(%Mf) ≤ Ip
X(%Mϕ) +

Ip
X(%Mψ). When estimating Ip

X(%Mϕ), we distinguish the cases x ∈ B4R and x ∈ X\B4R.
Let �rst x ∈ B4R. We �nd it convenient to introduce a notation for the maximal function with

respect to the portion B4R of X , that is, MB4R
f(x) = supr>0

1
µ{B(x,r)∩B4R}

∫
B(x,r)∩B4R

|f(y)|dµ(y),

x ∈ B4R. For Mf(x) = MXf(x) we have

Mϕ(x) ≤ sup
r>0

1

µ{B(x, r) ∩B4R}
∫

B(x,r)∩B4R

|f(y)|dµ(y) = MB4R
(x). (9.1)

Then by (9.1) and Theorem B,
∫

B4R

[%(x)Mϕ(x)]p(x)dµ(x) ≤ C

∫

B4R

[%(x)MB4R
f(x)]p(x)dµ(x) ≤ C (9.2)

since ‖%f‖Lp(·)(B4R) ≤ ‖%f‖Lp(·)(X) ≤ 1.

Let x ∈ X\B4R. If r < 2R
a

, where a ≥ 1 is the constant from (2.1), then B(x, r) ∩ B2R = ∅
and Mrϕ(x) = 0. So we consider r ≥ 2R

a
. It can be also easily seen then that whenever the set

B(x, r) ∩B2R is non-empty, we have d(x, x0) ≤ a(2R + r) ≤ a(a + 1)r. Consequently

Mrϕ(x) =
1

µ{B(x, r)}
∫

B(x,r)

|ϕ(y)|dµ(y) ≤ 1

µB
(
x, d(x,x0)

a(a+1)

)
∫

B2R

|f(y)|dµ(y).
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We use statement (5.3) of Lemma 5.2 and the fact that the measure is doubling and getMrϕ(x) ≤
C

µB(x,d(x,x0))

[
1 + ‖%f‖p(·)

]
and then in view of (3.15) we obtain

Mϕ(x) ≤ C

[d(x, x0)]dim∞(X)−ε
for x ∈ X\B4R (9.3)

with an arbitrary small ε > 0. Observe that for x ∈ X\B4R

%(x) ∼
N∏

k=0

wk[d(x, x0)] ≤ C[d(x, x0)]
λ+ε, λ =

N∑

k=0

M∞(wk)

with an arbitrarily ε > 0, according to (4.21). Therefore,
∫

X\B4R

[%(x)Mϕ(x)]p(x) dµ(x) ≤ C

∫

X\X(x0,4R)

dµ(x)

[d(x, x0)][dim∞(X)−λ−2ε]p∞
= C1 < ∞ (9.4)

By Lemma 5.1 the last integral is convergent if [dim∞(X) − λ]p∞ > dim∞(X), that is, λ <

dim∞(X)− dim∞(X)
p∞

, which is satis�ed by condition (3.21). Combining (9.2) and (9.4), we get

Ip
X (%Mϕ) ≤ C < ∞. (9.5)

Now we pass to the function ψ. Let �rst x ∈ BR. If r < R, then B(x, r) ∩ X\B2R = ∅ and
Mrψ(x) = 0, x ∈ XR. Therefore, we have to consider only r ≥ R and then

Mrψ(x) =
1

µ{B(x, r)}
∫

B(x,r)∩B2R

|f(y)|dµ(y) ≤ 1

µ{B(x, r)}
∫

B(x,r)∩B2R

(1 + |f(y)|p∞) dµ(y).

Hence Mrψ(x) ≤ C < ∞. Thus, Mψ(x) ≤ C for x ∈ XR and then
∫

XR

[%(x)Mψ(x)]p(x)dµ(x) ≤ C

∫

XR

[%(x)]p(x)dµ(x) < ∞ (9.6)

by statement (5.2) of Lemma 5.2. It remains to estimate∫

X\XR

[%(x)Mψ(x)]p(t)dµ(x) =

∫

X\XR

[%(x)Mψ(x)]p∞dµ(x).

To this end, it suf�ces to make use of the known boundedness of the maximal operator in the
Lebesgue space with constant p∞ > 1, see Theorem 3.1. Theorem 3.1 is applicable in this case
since our weight % is in Ap∞ according to Part II of Theorem 5.11. (Note that since all the points
xk, k = 1, ..., N and∞ are distinct, it is easily veri�ed that from belonging to Ap∞(X) of separate
weights there follows belonging to Ap∞(X) of of their products). Therefore,

∫

X\XR

[%(t)Mψ(x)]p(t)dµ(t) ≤ C

∫

X\XR

[%(t)ψ(x)]p∞dµ(t) ≤ C

∫

X

[%(t)f(t)]p(t)dµ(t) ≤ C

which together with (9.6) yields Ip
X(Mψ) ≤ C < ∞ and proves the theorem.
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