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Abstract. We prove a statement on the boundedness of a certain class of singu-
lar type operators in the weighted spaces PO (R™, w) with variable exponent
p(z) and a power type weight w, from which we derive the boundedness of
pseudodifferential operators of Héormander class S?,o in such spaces.

This gives us a possibility to obtain a necessary and sufficient condition
for pseudodifferential operators of the class OPST"y with symbols slowly oscil-
lating at infinity, to be Fredholm within the frameworks of weighted Sobolev
spaces Hy? <‘)(]R") with constant smoothness s, variable p(-)-exponent, and
exponential weights w.
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1. Introduction

The main objective of this paper is to investigate the boundedness and Fredholm-
ness of pseudodifferential operators of the Hérmander class OPSRO in weighted

Sobolev type spaces Hy?')(R™) with constant smoothness s, variable p(-)-expo-
nent, and exponential weights w.

We prove the boundedness of more general singular type integral operators
in weighted variable exponent Lebesgue spaces LP(") (R™, w) with power weights w,
from which there follows the boundedness of operators of the class OPSY ; in such
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spaces. Making use of the calculus of pseudodifferential operators, we obtain the
result on boundedness of pseudodifferential operators in the spaces Hyy” (')(R”).

The obtained boundedness is the crucial result for the investigation of the
Fredholm property of pseudodifferential operators, with symbols slowly oscillat-
ing at infinity, in weighted Sobolev spaces, including their essential spectra and
behavior of solutions of pseudodifferential equations at infinity.

The paper is arranged as follows. After Section 2, where we give some neces-
sary preliminaries, in Section 3 we study the boundedness of singular type opera-
tors in the spaces L”(')(R”, w) with a power type weight w. With the help of the
results of Section 3, after a preliminary Section 4 on pseudodifferential operators,
in Section 5 we prove the boundedness of pseudodifferential operators in the space
H#P()(R™). In Section 6 we obtain a necessary and sufficient condition for pseudo-
differential operators with slowly oscillating symbols to be Fredholm in the spaces
L) (R™). In Section 7 we study Fredholmness of pseudodifferential operators with

analytical symbols in weighted spaces Hy" (')(R”).

We linger more in detail on results of every section and mention the relevant
investigations on the subject.

Section 3. In relation to the boundedness results in variable exponent Lebes-
gue spaces, observe that the last decade there was an evident increase of interest
to the operator theory in the generalized Lebesgue spaces with variable exponent
p(z), we refer, in particular to surveys L. Diening, P. Histé and A. Nekvinda [7],
P. Harjulehto and P. H&st6 [13], V. Kokilashvili [24], S. Samko [42] on the progress
in this topic.

Lebesgue and Sobolev spaces with variable exponent proved to be appropri-
ate for studying various applications, including electroreolhogical fluids, see [41].
This raised an enormous increase of interest to such spaces. Both the problem
of the boundedness of the main objects of harmonic analysis, such as maximal
and singular operators and potential type operators, and Fredholmness of singular
integral operators has already been treated in these spaces.

For maximal operators we refer, besides the above mentioned surveys, to L.
Diening [6], D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer [5] and A. Nekvinda
[31] in the non-weighted case, and to V. Kokilashvili and S. Samko [23] and V. Kok-
ilashvili, N. Samko and S. Samko [19] in the weighted case.

Boundedness of Calderon-Zygmund singular operators was studied by L. Di-
ening and M. RuZzicka [8], [9] in the non-weighted case and by V. Kokilashvili and
S. Samko [21], [22] in the weighted case. Recently, the boundedness of the Cauchy
singular operator St on Carleson curves I' was proved in V. Kokilashvili and S.
Samko [24], [18].

In the proof of the result on boundedness of singular type operators in the
spaces Lp(')(]R”, w), presented in Theorem 3.2, we use the technique of the point-
wise estimation of the sharp maximal operator of the power of order s,0 < s < 1
of the singular operator via the maximal operator. In Section 3.2 we develop this
technique for variable exponent Lebesgue space.
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Section 5. We use the results of Section 3 to prove the boundedness of pseu-
dodifferential operators in the space H*P()(R™). As a corollary of those results
and the formulas of composition of pseudodifferential operators we obtain bound-
edness of pseudodifferential operators of the class OPST|, from H sP()(R™) to
H57m7p(')(Rn).

As is known, the boundedness of pseudodifferential operators of the class
OPSg(;,O < § < 1 in the space L? was proved in the well known paper [3] by
A .P.Calderén and R.Vaillancourt. For the boundedness of pseudodifferential oper-
ators in Lebesgue spaces with constant p, 1 < p < oo, we refer to [48] and references
therein.

Section 6. Note that the Fredholmness of pseudodifferential operators of the
class OPST acting in the Sobolev spaces H*(R") was established by V.V.Grushin
[12]. Fredholmness of pseudodifferential operators of the class OPS{, acting in
the spaces H*(R™) was considered in the papers V.S. Rabinovich [33], see also the
paper [39] and the book [40], Chap. 4, by means of the limit operators method.
Fredholmness and exponential estimates of solutions of general pseudodifferential
operators acting in general exponential weight classes were considered in [37]. Note
also the paper by V.S. Rabinovich [38] where operators of the class OPSTY, with
symbols slowly oscillating at infinity were considered in weighted Hoélder-Zygmund
spaces.

Fredholmness of operators in algebras of pseudodifferential operators acting
in LP(R™), with constant p € (1, 00) with applications to one-dimensional singular
integral operators on Carleson curves has been developed in V. Rabinovich [34],
see also [36].

As regards Fredholm properties in variable Lebesgue spaces Lp(')(I‘,w), it
was studied only in the case of one-dimensional singular integral operators in the
papers V. Kokilashvili and S. Samko [20] and A. Karlovich [16].

Section 7. Finally, in this section we consider boundedness and Fredholmness
of operators with analytical symbols acting in weighted spaces Hy?” (')(R") with
exponential weight w. As a corollary of Fredholmness in weight spaces we consider
a Phragmen-Lindelof principle (see for instance [29], p. 284-286) for solutions of

pseudodifferential operators with analytical symbols in Hy?") (R™).

Notation :

Fu(¢) = fR" u(x)e 8 dx;

Fol f(a) = 2m) ™" [ou f(€)e'™dE;

H*?()(R™), see Definition 2.4;

IP(f), see (2.1);

Op(a), see (4.2);

ST, see Definition 4.1;

S(R™) is the Schwartz space of rapidly decreasing test functions;

(€ =vIi+IgP
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2. Preliminaries

2.1. Variable exponent spaces LP()(R" w) and H*P()(R™)

2.1.1. The spaces LP()(R"). Let p be a measurable function on R" such that
p:R™ — (1,00), n > 1. The generalized Lebesgue space with variable exponent is
defined via the modular

(f) = / F@)P@ de (2.1)

R

||pr(,) = inf{/\ >0:1IP (i) < 1} .

We denote p'(z) = p(pw()le.

In what follows we assume that p satisfies the conditions

by the norm

1 < p_ :=essinf p(x) < esssupp(z) =: py < o0, (2.2)
z€Rn 2ERN
A n 1
p@) —p@)l < =, @yeR",  Jz-yl<g. (2:3)
lz—yl

We shall also use the condition

‘p(l') - p(OO)| < m, T e Rn, (24)

which together with (2.2) and (2.3) guarantees the boundedness of the maximal
operator (2.18) in LPC)(R™), see [5].

Note that under the condition

1<p_<p(x) <psy <oo (2.5)
for a function a(z) € L>°(R™) we have
ol oy~ poey < llallzee (2.6)

which follows from the definition of the norm in LP(). Note also that under the
same condition (2.5) the modular boundedness is equivalent to the norm bounded-
ness and the modular convergence is equivalent to the norm convergence, because

as|flpsece =a<I/(f)<a (2.7)
and
Ci1<IP(f)<Cy = C3<|fll, <Ca (2.8)
with 3 = min (cil’—70110+) ;€4 = Imax (012)_70}20+> 703 = min (Cll/p_’cll/er) and
Cy = max (C’Ql/p‘,C’Ql/er .

By P = P(R™) we denote the class of exponents p satisfying condition (2.2)
and by P = P(R"™) the class of those p for which the maximal operator M is
bounded in the space LP)(R™).
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The validity of the Riesz-Thorin interpolation theorem for the variable expo-
nent spaces LP(), stated in Proposition 2.1, was observed by L. Diening [7]; it is
known in a more general setting for Musielak-Orlich spaces in [30], Theorem 14.16.
Proposition 2.1 follows from the fact that LP¢)(R") is an interpolation space be-
tween LP1()(R™) and LP>()(R") under the method of real-valued interpolation.
For complex interpolation for LP(")-spaces we refer to [7].

Proposition 2.1. Let p; : R™ — [1,00),5 = 1,2, be bounded measurable functions,
A a linear operator defined on LP*C)(R™) U LP2()(R™) and

||AUHLP1<'>(Rn) <Cj ”uHLPj(‘)(Rn) , J=12 (2.9)

Then A is also bounded on LP*C)(R™), where = pl(iz) + plrjf), 0 €[0,1], and

1
po ()
(2 1-6
A ro o) rro) S Al oo pmer 1Al L L praco -
The following proposition is an extension of the well-known theorem of M.A.
Krasnosel’skii [26] on the interpolation of the compactness property in LP-spaces
with a constant p.

Proposition 2.2. Let p; : R” — [1,00),j = 1,2, be bounded measurable func-
tions satisfying assumptions (2.2)—(2.4) and let a linear operator A defined on
LPr O (R™) U LP2O)(R™) satisfy assumption (2.9). If

A: LR — L O(R™)
is a compact operator, then

A LPO)(R™) — LPoO(R™)
is a compact operator for all 6 € (0,1].

Proof. We derive this proposition from the abstract Banach spaces version of
Krasnosel’skii’s theorem proved in the paper A. Persson [32]. The crucial condition
of Persson’s theorem is the existence of a unity approximation in the interpolation
couple with some properties. We formulate it with respect to the spaces LP() (R™)
under consideration:

there exists a topological space £ such that LPC)(R™) C &, and a sequence Py, of
linear operators with the properties:

(i) Py : &€ — €,

(ii) P (LPiO(R™)) € LPrO)(R™) N LP20)(R™) for every m,

(iii) the sequence P, strongly converges in LPi)(R™),i =1,2.

We take & = D'(R") and construct such a sequence P, in the following way.

Let ¢ € C§°(R™) be a non-negative function such that ¢(z) = 1 if |z| < 1/2 and
¢(x) = 0if |z| > 1, and ¢y, () = ¢(x/m). Let ¢, I be the operators of multiplica-
tion by ¢,,. Then for the sequence ¢,,I conditions (i) and (iii) are satisfied.

Let
¢(x)

p(x) = W and i (x) =m"p(mz)
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and T, be a sequence of operators

Tua) = [ one— g)ulw)is

It is known [6], Corollary 3.6 (see also [4]), that the identity approximation se-
quence T,, strongly converges to the unit operator in Lp(')(R"), under the as-
sumptions on p(-). Hence the sequence P,, = Ty, ¢ 1 strongly converges to the
unit operator in LP()(R™). Hence condition (iii) holds.

Moreover, it is easily seen that P,u € C§°(R") for every u € LPC)(R™).
Hence condition (ii) is also satisfied, and consequently, Proposition 2.2 follows
from A.Persson result [32]. O

Corollary 2.3. Let p: R" — (1,00) (1 < p_ < p(x) < py < 00). Then there exists
q:R" — (1,00) (1 <q_ <gq(z) <qy <00), and 0 € [0,1] such that LPL) (R™) is
an intermediate space between L? (R™) and L) (R™) corresponding to the inter-
polation parameter 6.

Proof. We will find ¢ and € from the equality p(lT) = g + ;(;gg, 6 € [0,1] and
conditions
1<g- <g(z) <gy < oc. (2.10)
Then
2(1-0)p(=)

a(r) === Op (x)
If we fix a 0 € (0,6p) where 6y = min {1, i, 2 (1 - p%)} , then condition (2.10)
will be satisfied. O

1 E - .
By xe(z) = { 07 ; E RO\ E we denote the characteristic function of a set

E CR™

2.1.2. The weighted spaces LP()(R”, w). By LP()(R™, w) we denote the weighted
Banach space of all measurable functions f : R™ — C such that

x)

. w(z p(z)
[l zee ey = llw fllpey = nf § A >0 / ‘()Af(
R™

der <13 < oo.

(2.11)
Observe that

I lzee e wy = 17N 20 (2.12)

1
Lo (R™,w®)
for any 0 < a < inf p(z).

From the Holder inequality for the LP()-spaces

/ u(e)u(e) de

< Ko lrom, o+
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it follows that

< Ellull o (g, 1y 101 L2 (27 0) (2.13)
(&%)

1
S w

/ ue)o(e) de

and for the conjugate space [LPC)(R™,w)]” we have
[LM')(R", w)] = 17O (R, 1/w) (2.14)

which is an immediate consequence of the fact that [L”(')(R”)]* = PO (R")
under conditions (2.2), see [25], [43].
In Section 3.3 we will deal with the power weights of the form

m
w(w) = (L+ 2)? [ lo - anl®, 2 € R™. (2.15)
k=1

2.1.3. Spaces Hs’p(')(]R"). Note that Sobolev type spaces W*?() of integer order
s € N with variable exponent p(-) have already been were investigated, we refer
to the original paper [25] and surveys mentioned in the beginning of Section 1. A
generalization to fractional values of s, the Bessel potential space, was considered
in [1], where a characterization of functions in the Bessel potential space based
on LP()(R™) was in particular given in terms of convergence of certain singular
operators. For our purposes we use the following definition of the space H**(") (R™).

Definition 2.4. Let s € R. By H*?) (R") we denote the closure of the set S(R")
respect to the norm

Hu”Hs‘p(»(Rn) = ||<D)su||Lp(_)(Rn) )
where (D)* = F~1 (£)° F.
In the case s > 0 the space H*?() (R™) may be characterized as the range

B3[LPC) (R™)], where

Bio(x) = . Gs(z —y) ¢(y) dy. (2.16)

is the Bessel potential operator with the kernel

G(z) = F! [<g>*s/2} (z) = c(s) /OOO e Lk =, TeR",

and in the case 0 < s <n and py < 2 it may be also interpreted in terms of Riesz
potentials:

H5PC) (R") = LPO)(R™) 0 I°[LPO) (R™))] (2.17)

where I*® is the Riesz potential operator, see Theorems 4.1 and 5.7 in [1].
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2.2. On maximal operators

We will need the following results for the maximal operator

1

Mf(x) =sup ——— / dy. 2.18

fla)=swp s [ 17l (2.18)
B(z,r)

Theorem 2.5. ([5]) Let p(x) satisfy conditions (2.2)—(2.4). Then the mazimal op-

erator M is bounded in the space LP()(R™).

The following theorem for weighted spaces was proved in [17] for the case of
R™, the case of bounded domains in R™ being earlier treated in [23].

Theorem 2.6. Let p(x) satisfy conditions (2.2)—(2.3) and let there exist an R > 0
such that p(x) = peo = const for |x| > R. Then the mazimal operator M is
bounded in the space LPC)(R™, w) with weight (2.15), if and only if

n
-

<Pk < (2.19)

n n -
—_— and —— <0+ ) G<
p/(l‘k) P ; i
Remark 2.7. In [17] and [23] the case of a single weight w(x) = |x — z0|? was
considered. The validity of Theorem 2.6 for weight (2.15) is easily obtained from

the case of a single weight.

- plen)

o0

m+1
Indeed, for the weight w(z) = [[ wi(x), with wp(x) = |z — zx|?, k =

k=1
1,....,m and wy1(x) = (1 + |z|)® we have to prove the boundedness of the
operator wM % in the space LP(") (R™). We make use of a standard partition of unity

m

1= 3" ax(t), where ay(t) are smooth functions equal to 1 in a neighborhood of the

point z, and equal to 0 outside some neighborhood of this point k = 1,...,m, (and
similarly in a neighborhood of infinity for k = m+ 1), so that ay(z)|z —z;|*% =0
in a neighborhood of the point x, if & # j. Then

wlr) 5= 3 oW

— = wu($)bu($) =
p=1 v=1 w,,(y)

where Wy, (z) = wg(z), k =1,...,m and Wp41(x) = (1+]2])%, Bo = B+ pep Bks

while b, (z),p=1,...,m+1, and ¢, (z),v =1,...,m+ 1, are bounded functions

supported in the same neighborhoods of the points z;. Then

f m—+1 f m—+1 f

M* <C ~LM~7 C 0 Mf

’w w‘_ ;w, qur M,VZ:lum Wy
n#V

The terms where p # v have separated singularities and are easily treated by
means of the Holder inequality, so that it remains to have the boundedness with
the separate weights w,, ().
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2.3. On sharp maximal function

Let

1
M f(x) = sup ——— |f(y) = fB(2)|dy, xeR" (2.20)
r>0 |B(‘T7T)| B(z,r)
where fg(z) = m fB(m ” f(y) dy, be the sharp maximal function.

The following theorem is well known for constant p, see [48], p. 148, where it
is given in the non-weighted case. For variable p(z) and the weighted case see [22].

Theorem 2.8. Let p(x) satisfy conditions (2.2)—(2.3) and p(x) = po for large
|x] > R > 0, and let w(x) be weight (2.15). Then under condition (2.19) there
exists a constant Cy > 0 such that

||f||Lp(-)(Rn,w) < CO HM#f||LP(')(R”7:w) (2~21)

for every f € LPO)(R™, w).

3. Boundedness in L”")(R", w) of singular type operators

3.1. Formulation of the main result

We consider operators of the form

bf(@) = [ koo =) f()dy (31)
]Rn
with k(z,z) € CY(R™ x (R™\{0})) and assume that the following conditions are
satisfied

M(A):=sup  sup |z|"TH|0%%(x, 2)| < oo (3.2)
|a|=1 z,z€R™ xR™

and

Ao(A) := sup  sup |z|"T! ‘85k(a:,z)‘ < 00 (3.3)
|8|=1 z,z€R™ xR"

and the operator A is of weak (1,1)-type:
v(A)
t

o e R : [Af(z)] > )] < / (@) dz. (3.4)
R’n

Theorem 3.1. Let the operator A satisfy conditions (3.2)—(3.4).

1. Let p satisfy conditions (2.2)—(2.4). Then the operator A is bounded in the
space LPC)(R™).

II. Let p satisfy conditions (2.2)—(2.3) and be constant at infinity, that is, there
exist R > 0 such that p(x) = const = ps for |x| > R. Then the operator A
is bounded in the space LPC)(R™, w) with weight (2.15), if

n
_m<ﬁk<m, I€217...,7’L, (35)



516 Rabinovich and Samko IEOT

and

(3.6)

n
/

oo [e'e)

n m
—— < B+ Y B <
k=1
In both cases 1 and 11,
1A o) mn ) < € pyw) [Ar(A) + A2(A) + v(A)] (3.7)
where the constant c(n,p,w) depends only on n, exponent p(x) and the weight w.

Theorem 3.1 is proved in Subsection 3.3.
In particular, from Theorem 3.1 we have the following corollary (see Defini-
tion 4.1 for the class OPSY).

Corollary 3.2. Statements of Theorem 3.1 are valid for every PDO A € OPSRO(R").

3.2. The crucial step: the pointwise estimate
Following the ideas of the paper T.Alvarez and C.Pérez [2], in this section we prove
the following statement.

Theorem 3.3. For any operator A of form (3.1) with the kernel k(x, z) satisfying
conditions (3.2)—(3.3), the following pointwise estimate is valid

MF(JAf°) () < C[Mf(2)]*, 0<s<l, (3.8)
where the constant C' > 0 has the form C = c(n, s)[A1(A) + A2(A) + v(A)] with
c(n, s) depending only on n and s.

Corollary 3.4. For any pseudodifferential operator A € OPS%O(R”) the pointwise

estimate (3.8) is valid.

Theorem 3.3 and its corollary are proved in Subsection 3.2.3.

3.2.1. Regularity of the kernel. To prove Theorem 3.3, we need some auxiliary
statements and some notions of regularity of the kernel.

Definition 3.5. ([10],[2]) Let » > 0 and zo € R™. We say that a kernel k(z,z)
satisfies the regqularity property (D1), if the inequality holds

D17’

k(u, v —x) — k(v,v —2)| < W (3.9)
for all u,v,x € R™ such that
lu—zol <7, |v—z<r |z — xo| > 4r, (3.10)

where Dy > 0 does not depend on u,v,x, xq.

Let
1

| B(xo,7)[?|
B(zo,r) B(zo,m)

H, ., (z)= |k(u,u — x) — k(v,v — )| dudv.  (3.11)
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Definition 3.6. A kernel k(x, z) is said to have the regularity property (Ds), if for
any locally integrable function [ (such that M f(xg) < 0o) the inequality

sup / | f(z)|Hy 2o (x)dx < DM f(x0) (3.12)
T>OB(10,47')

is valid, where Dy > 0 does not depend on f and xg.

Lemma 3.7. 1. Let the kernel k(z,2) € C1(R™ x R"\{0}) satisfy assumptions
(3.2)(3.3). Then k(xz,z) has the regularity property (D1) with the constant

Dy =223 [\ (A) + Ao (A)].
II. Any kernel k(x,z) with reqularity property (D1) satisfies also property (D2)

2n+1
si—=D1.

with the constant Dy = 57—

Proof. 1. By the mean value theorem we have
k(u,u—x) = k(v,v = 2) = [0:k(€,m) + 0:-k(E, )] (v — u)
where £ =u+0(v—u),n=u—x+0(v—z). By (3.2) we get
2
k(u,u — ) — k(0,0 — 2)] < (A + Aa(A)] In\TTH

We have || > [u—xz|—6lv—u| > |v—zo| — |[u—x0| —2r > |z — 30| —3r > +|z—20].
Therefore,

017"

|k(u,u—x) — k(v,v—z)| < W’

Cy = 22" T3 A\ (A) 4+ A2 (A)],

which gives (3.9) and proves the first part of the lemma.
II. Let k(z, z) have property (D1). By the definition of this property we obtain

H, 4 (2) < % when |z — xo| > 4r. (3.13)
Then
sup / | f ()| Hr,zo (v)dz < Dy Eli%,; mdm
|z—z0|>4r T2kr<|z—z| <2k
Hence
s [ @@ < Do oL [
T>0|I7wo\>4r = (25 |z —ao|<2k+1r
< 1 on+1
< 2Dy M f(z) ) g < g7 D1M (o). 0

k=0

Corollary 3.8. Every kernel k(x,z) € C1(R™ x R"\{0}) with properties (3.2)—(3.3)
has the regularity property (Ds).
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3.2.2. On Kolmogorov inequality. It is known that any sublinear operator A of
weak (1,1)-type admits the Kolmogorov inequality. Namely, the following lemma
is valid, see [10], p. 102.

Lemma 3.9. Let A be a sublinear operator of weak (1,1)-type and let E C R™ be a
measurable set in R™. Then the Kolmogorov inequality

A S
[ws@rar < B mp-ypz, 0<s <, (314)
E

is valid, where v(A) is the constant from the weak estimate (3.4).
To check that the constant in (3.14) is exactly %, we reproduce the proof
of this lemma from [10], p. 102, in Appendix 8.

3.2.3. Proof of Theorem 3.3. Fix the point z = xy. Observe that for any real-
valued function g on R™ and the ball B(xg,r), the following is valid

1

2
[B(zo,7)| / Ig(y)—gs(zo)ldyém / lg(y) —cldy  (3.15)

B(zo,r) B(zo,r)

for any constant ¢ on the right-hand side (which may depend on zy and 7). The
proof of (3.15) is well known:

1 1
S - dy< —— — dyd
Blzo.r)] / 19(Y) = fBao)ldy < Blog )2 / / l9(y) — g(u)|dydu
B(zo,r) B(wo,r) B(wo,r)
1

< —c| +|ec— g(u)|)dydu

Blao 1) (lg(y) — ¢l + |e — g(u)|)dy

B(xoﬂ") B(ﬂfoﬂ“)

~ Sy [ o) -dd

| B(ao, 7)] g A

B(zo,7)

Hence, for any partition of g = g1 + go we have

1 2
|B(z0.7)] - S B - 1
|B(z0,7)| / |9(ZU) QB($0)|dy_ 1B(zo,7)| / |g1(y) c1|dy (3 6)

Bleon) B(so.r)
pt [ et - ed
|B(x0,r)| g2y Co|ay
B(zo,7)

whatever the constants ¢; and ¢y are.
To prove estimate (3.8), we split g = Af as Af = Af1+Afs with f = f1+ fo,
where fi = [+ XB(zo,ar) and f2 = f - XR1\ B(x0,4r)-
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Then according to (3.16) we have

S —# s _ s
M# (|Af]°) (z) = |B($O,T)|B(/) AL W) = (IAF)*) B (x0)| dy
2 . 9 .
< |B(CU077”)|B(/) [|A f1(y)] _Cldy+|B($o,7‘)|B(/) [|Afa(y)]* — ca| dy.

We choose now ¢; = 0 and

1

c2 = [(|Af2])B(20)]" = Bz, )|

/ 1A fa(y)| dy

B(zo,r)

Then, taking into account that ||a|® — [b°]| < |a — b|® for 0 < s < 1, we have

# s ; s
M7 (A1) (o) < | B(xo,7)| / ‘Afl(i‘/) dy
B(zo,r)
c Nt
+|B<xo,r>|3(/ : ‘Afz(y”—% dy = e(1y +1).

Estimation of I;. Since the operator A is of weak (1,1)-type, from (3.14)
we obtain

v(A) 1 4mu(A) )
(1— )% [B(zo,7)] / [f1(y)ldy < = )%Mf( 0)- (3.17)

B(xzg,4r)

1
I <

Estimation of I;. By Jensen inequality and Fubini theorem after easy
estimations we get

e L
> = |B(wo,r)| /

B(zo,Tr)

|f (@) Hy oo (x)de,

1

(Afa)(y) — m dy

/ (Af2)(€)de

B(zo,r)

IN

R\ B(zg,4r)

where H, ,, () is the function defined in (3.11).
By Corollary 3.8, the kernel k(z, z) has property Ds. Therefore, according to

1
(3.12), I; < DoM f(xg), which completes the proof. O

3.3. Proof of Theorem 3.1
Let 0 < s < 1. By (2.12) we have

[Af Loy e ,wy = IIAFI°

w|=

5 .
L7 (R™ w®)
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Then by Theorem 2.8 we have
IAf I Lo n )y < Co | MF(AF]?)

1
s

o
L5 ®rwe)

where Cy is the constant from (2.21), so it does not depend on the choice of
operator A.

Theorem 2.8 was applicable in this case, because %t) satisfies conditions (2.2)-
(2.3) and the exponents s of the weight w® automatically satisfy the conditions
*m%m < 80k < ﬁ (and similarly for the exponent § at infinity), required by

Theorem 2.8. Theréfore, by Theorem 3.3 we get
1 s|= B 1
[ASI Lrer (&n ) < CoCF (M F)*]|7 ) = CoC
L s (R™ws)

M fll oy (me ) -

It remains to apply Theorems 2.5 and 2.6 to obtain [|Af[lLsc)@nw) <
cll fllLre) (mn ) Where the constant ¢ has the form ¢ = c(n, s, p, w)[A1(A) + X2 (A) +
v(A)] with ¢(n, s, p, w) not depending on the operator A. O

4. On calculus of pseudodifferential operators on R".

The goal of this section is to give some definitions and summarize (without proof)
some basic facts for pseudodifferential operators. Standard references are [15], [14],
[27], [44], [48], [50], [49].

We recall that S(R™) is the L. Schwartz space of functions ¢ € C*°(R™) with
the topology defined by the semi-norms

@l = sup (1+[z)™ Y |0%¢(x)|,m € NUO

n
vk la|<m

and by S’(R™) we denote the dual space of distributions.
Definition 4.1. We say that a function a belongs to the L. Héormander class ST,
if g € O (Rg X Rg) . and
jale = > sup |0gofa(x, )] (&) < oo (4.1)
jal<rlpl<e® R

for all the multi-indices a;, (3.

As usual, with a symbol a we associate the pseudodifferential operator defined
on the space S(R™) by the formula

Op(ayu(w) = () [ ¢ [ ale a9y (42)

We denote by ST o the class of double symbols a € C*(R} x Ry x RY)
satisfying the estimates

|Cl|r,t,l = Z sup |a?afaga(aj,y7§)| <£>—m < 0. (43)
lal<r,|B]<t,|y| <t B ¥R xR™

n
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With a € ST, we associate the pseudodifferential operator with double symbol

Au(z) = Opgla)u(z) = (27r)7n/

and we denote the class of such operators by OPSTY .
By H*(R™) we denote the Sobolev space with the norm

d¢ | alz,y,Ou(y)e’ ™ vdy,  (4.4)
Rn

n

ull e ey = IKD)° tll 2 ey »

where (D)* = Op ((€)"), (€) = (L +[¢")"/2.

Proposition 4.2. Let Op(a) € OPSTY,. Then:

(i) Op(a) is bounded in the space S(R™). Moreover, for every l; € NUO there
exist lo,r,t € NUO such that

Op(a)el,, < Clal,, lel,,
where the constant C' does not depend on a.
(i1) Op(a) is bounded from H*(R™) to H*~™(R™) and
||Op(a)HH5(R")—>H5*m(R") <C |a‘r,t’
where C' > 0, r,t € N do not depend on a.
Proposition 4.3. (i) Let A = Op(a) € OPSY§ (R"), B = Op(b) € OPS|§ (R").
Then AB € OPS{"’(}“"2 (R™) and AB = Op(c), where

o) =0 [ alm ot n e Wdydn, (@45)

and
|C(x’€)|zl,l2 < C(l1,12) |a|2k1+11+m1,l2 |b|11712+2k2 ) (4.6)

where 2ky > n + mq,2ky > n.
(ii) Let A= Opa(a) € OPST o(R™). Then A = Op(c) € OPST,(R"), where

c(x, &) = (2m)™" /n /n alx,x +y, &+ n)e_i(y’”)dydn, (4.7)

and
|C($a§)|11712 < C(l,l2) |a|2k1+11,12,12+2k2 )
where 2k, > n 4+ m,2ky > n.
(iii) Let A? be a formal adjoint operator for A = Op(a) € OPSY, defined by the
formula

(Au,v)) = (u, Atv) ,u,v € S (R™), ((u,v) = /
Then A* = Op(a') € OPST\(R™), and

ot (2,€) = (2m) " / / a(e + 9, €+ n)e @M dydn. (4.9)

u(x)v(a:)dx) . (4.8)

n
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The integrals in (4.5), (4.7), (4.9) are understood in the oscillatory sense.
Notice that formula (4.8) allows us to extend pseudodifferential operators to
the space of distributions S’ (R™).

Proposition 4.4. (see [48], p. 241). Let A = Op(a) € OPST},. Then

Au(z) = ka(z, z)u(x — z)dz,u € S(R™),
R’ll
where
ka(z,z) = ngza(m,f).
(Fg__l)z is the inverse Fourier transform in the sense of distributions.)

The kernel ka(x,z) € C°(R™ x R™\0), and satisfies
0802k a(x,2)| < Cagnla) ]z "™ 117N 2 20 (4.10)

for all the multi-indices o, B8, and all N > 0 so that n +m + |a| + N > 0, where
Co.p,n(a) depends on the finite set of the seminorms |a\:'}t of the symbol a.

4.1. Operators with slowly oscillating symbols

Below we set up some facts (without proof) on calculus of pseudodifferential op-
erators with slowly oscillating symbols following [35], see also [40], Chap. 4.

Definition 4.5. A symbol a is called slowly oscillating at infinity if a € ST, and

10807 a(x,€)] < Capla) (™11, (4.11)

where lim, ., Cap(z) = 0 for every a and 5 # 0. We denote by SO™ the class
of slowly oscillating symbols, and by SO{* the subclass in SO™ of symbols such
that the lim,_,o, Cop(x) = 0 for every o and §. We use the notations OPSO™,
OPSOy for the classes of operators with symbols in SO™, SOy* respectively.
A double symbol a € ST is called slowly oscillating if for every compact

set K C R"

sup |9¢ 0707 a(x, @ +y,€)| < C. () (€)™

yeK
where

lim CE, (z) =0

S Capy

for every o and |8+ 7| # 0. We denote by SOJ' the class of slowly oscillating
double symbols, and by OPSO}' the corresponding class of pseudodifferential
operators.

Proposition 4.6. (i) Let A = Op(a) € OPSO™ ,B = Op(b) € OPSO™2. Then
AB € OPSO™*™mz2 qgnd

AB = Op(a)Op(b) + Op(t(z,€)),

where t(z,€) € SOy M1,
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(ii) Let A= Opq(a) € OPSO'(R™). Then
A= Op(CL(.Z‘, x,f)) + Op(t($,f)),
where t(x, &) € SO~ 1.

5. Boundedness of pseudodifferential operators in H*?()(R")

Theorem 5.1. Let a variable exponent p satisfy conditions (2.2)—(2.4). Then the
operator A = Op(a) (€ OPSY ) is bounded in the space LPO(R™), and

Al Lo @y — Lro @ny < €(n,p) A1 (A) + A2(A) + v(A)] (5.1)

where the constant ¢(n,p) depends only on n and the exponent p(x). The constants
A (A), A2(A),v(A) are defined by formulas (3.2)—(3.4), and they depend on the
finite set of the semi-norms |al,., of the symbol a.

Proof. We have to check that the pseudodifferential operator A = Op(a) € OPS}
satisfy conditions (3.2)—(3.4). We obtain estimate (3.2), if in (4.10) we take |a| =
1,8 =0,N =1, and we obtain estimate (3.3) if in (4.10) we take o = 0, 8| =
1, N = 0. It is well known that a pseudodifferential operator A = Op (a) € OPSY{
is of weak (1, 1)-type (see for instance [48], p. 16-23, and p. 250), hence condition
(3.4) holds too.

One can check that A1(A4), A\2(A), v(A) depend on the finite set of the
constants Cy go(a). This implies that there exist L € N and a constant » =

%<{|a|”} - <L> such that
T rSLit<

1Al o @y ooy < elmopw)oe{lal, ). 52

Theorem 5.2. Let a wvariable exponent p satisfy conditions (2.2)—(2.4). Then
A = Op(a) (€ OPS{’,LO) is a bounded operator from H®*P() (R™) to the space
Hs—mp() (R™), and

||A||Hs,p(~)(Rn)ﬁHsfm,p(»(Rn) < c(n,p,s,m) [M(A) + A2 (A) +v(A)] (5.3)

where the constant c(n,p, s,m) depends only on n, the exponent p, the order m of
the operator, and the order s of the space. The constants A\1(A), A\a(A),v(A) are
defined by formulas (3.2)—(3.4).

Proof. By definition of the space H*P() (R™) we have
1Al oy o mrcoamy = || (D) A(D)

The operator (D)*~™ A(D)™* € OPSY and it is bounded in LP()(R™). Hence
A H5PO) (R™) — H5~™P() (R™) is bounded and estimate (5.3) holds. O

LPO) (R™)—LP() (R7)
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6. Fredholmness of pseudodifferential operators in the spaces
LPO(R™) and H*PO)(R™).

6.1. Sufficient conditions of Fredholmness in LP(") (R™)

Theorem 6.1. Let the function p satisfy conditions (2.2)—(2.4). Then an operator
A = Op(a) € OPSO° is a Fredholm operator in LPC) (R™), if

lim inf |a(x,£)] > 0. 6.1

Jim ot o (e (61)
Proof. Let ¢ € C5° (R" x R"), and ¢ (z,&) = 1if |z| + |¢] <1 and ¢ (z,&
2| +1€] = 2. We set pg (2,§) = ¢ (2/R,§/R) , r = 1—¢g. Condition (6.1)
that there exists R > 0 such that the symbol bg(z,£) = ¥r(z,&)a™?t (x,€)
Then, applying Proposition 4.6 we obtain that

Op (br) Op(a) = Op (Yr +1t) = I+ Op(pr +1t)

where o +t € SO; .

It is well known (see, for instance, [35], p. 35-38, [40], Chap. 4) that Op(r)
(€ OPSOy") is a compact operator in L? (R™) . Since LP()(R™) is an intermediate
space between L? (R™) and L9()(R") and Op(r) is a bounded operator in L) (R™)
and a compact operator in L? (R™), then by Proposition 2.1 Op(r) is a compact
operator in LP()(R™). Thus Op (¢r +t) is a compact operator in LP()(R"), and
Op (bgr) is a left regularizer of Op(a) in LP()(R™). In the same way one can prove
that Op (bg) is a right regularizer of Op(a). O

)=0if
implies

€ SO0,

6.2. Necessary conditions of the Fredholmness in L?(*) (R")

One can check that the following two conditions:
1) there exists a constant C' > 0 such that for every point = € R™

li inf | > C >0, 6.2
Am | dnf la(@, O (6.2)

2)
lim inf  |a(x,&)| >0 (6.3)

R—oo |z|>R,£€ER™

imply condition (6.1).
We will refer to condition (6.2) as a condition of uniform ellipticity of Op(a),
and to condition (6.3) as a condition of ellipticity at infinity.

6.2.1. Uniform ellipticity. We will prove that the Fredholmness of Op(a) € OPSO°
implies condition (6.2).

Theorem 6.2. Let the variable exponent satisfy conditions (2.2)—(2.4), and Op(a)
(€ OPSO°) be a Fredholm operator in LPC)(R™). Then condition (6.2) holds.

Proof. Fredholmness of Op(a) implies a priory estimate

10p (@) ull ooy @ny = Cllull Lo @y = 1Tl oo (gny » (6.4)
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where C > 0 does not depend on u, and T is a compact operator on Lp(')(R").
Let [lull o0y gy = 1 and up(z) = e?(hmz)qy (). One can see that lumll o) ey =1
and the sequence u,, weakly converges to 0 for h,, — oc.

Indeed, under condition (2.2) the general form of the linear functional on
LPO)(R™) is

fw)= [ flz)u(z)de,
R™

where f € Lp/(')(R”),ﬁ + ﬁ = 1, see [25], [43]. Since S(R™) is dense in

LPO)(R™), we can consider f and u in S(R™). Hence applying the Parseval equality
we obtain

flum) = [ f@)e!PmPu(z)de = (2m)" (€)a(€ + hyp)dE — 0

R?L Rn
for m — oo.
Let Upu(z) = ®My(z). One can see that Uy, is an isometric operator in
LPC) (R™). Moreover, if Op(a) is a pseudodifferential operator, then
Uy, 'Op(a)Un = Op(a(z, & + h)).
Hence inequality (6.4) implies that
10p(a(z, & + b)) ull Loy @y = C = 1 Tmll Loe) @y -

Since T is a compact operator, the sequence HTumHLp(.)(Rn) — 0. Hence for
every function w : [|ull zp)gny =1 there exists mg such that for m > mq

C
10p (a(z, & + hu))ull ocr @y 2 5 > 0. (6.5)
In [35], pages 51-55, the following was proved: if Op(a) € OPSO°, then
Wplnoo 10p (a(z, € + hi) — alz, hm)‘ﬂ)Hw(Rn)Hm(Rn) =0 (6.6)

for every function ¢ € C§°(R™),0 < ¢(x) < 1. Note that ||@I|| e 1) <1, and
by Theorem 5.1

10p (a(z,& + hi) — alz, hin) o) ey pacy < C
with C' > 0 independent of m. Then applying Proposition 2.1 we obtain that

W}E)noo HOp (a(:r,f + hm) - CL(.’E, hm)(p)‘|LP(')_>LP(~) =0 (67)

Hence (6.5) and (6.6) implies that for u € C§°(R™) (||u||Lp<.>(Rn) = 1) there
exists mg such that for m > mg

C
Ha(x,hm)uHLp(_)(Rn) > 1 > 0.

Choose a function u € C§°(R") : [|ul| 1.»¢) (gny = 1 with support in a neighbourhood
of the point zy € R™ such that

sup |a($7 hm) - a‘(an hm)l <e
TESUPPU
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uniformly with respect to m. By (2.6) we obtain that for sufficiently large m > mq
[(a(z, hin) = a(@o, hm)) UHLP(')(R”) <E.

Hence for sufficiently large m > my

C
|a($0a hm)| = ||a(x0, h’ﬁl)u”LP(‘)(R") > ||a(m, hm)u”Lp(-)(]Rn) — &€= 1 e>0
Hence we proved that if Op(a) is a Fredholm operator in LP()(R"), then there
exists a constant C7 > 0 such that for every xy € R™ and every sequence h,, — 0o

|a(x0,hm)| >C1>0 (68)

for enough large m.

Let condition (6.2) does not hold. Then for arbitrary e > 0 there exists an zg
and a sequence h,, — oo such that lim,,_. |a(xo, hm)| < €. Hence we obtained
contradiction with (6.8). O

6.2.2. Ellipticity at infinity. Here we will show that condition (6.3) is necessary
for the Fredholmness of pseudodifferential operator acting in Lp(')(R").

We denote by V}, the shift operator on the vector h € R”, that is, Vyu(z) =
u(x —h),z € R",u € S(R™).

Proposition 6.3. Let p satisfy conditions (2.2)—(2.4). Let a sequence (R™ 3) h,, —
00, and wy, (€ C (R™)) be a sequence converging in the sup-norm on R™ to a func-
tion w € C(R™). Moreover we suppose that there exists a constant C > 0 such that
for every m € N

m < , < . 6.9
i @) € 7o, 10@)] € 73 (6.9)
Then
mhjnoo ||thwm||Lp(~)(R") = ||w||Lp<oo>(Rn) : (6.10)
Proof. Let
v - p(z) . p(z+ham)
F(A,m)z/ o i (2) dx:/ Wm (@) dz.
n A n A
and let
p(o0)
F(), 00) :/ “’(;) dz,\ > 0,
First we will prove that there exists the limit
p(o0)
lim F (A m):=F () o00) ::/ “’(A‘T) dz, (6.11)

uniformly in A on every segment [a,b],0 < a < b < oco.
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Let
FLR ()\77’7'[,) _ / ’U)m(x) dl‘,
lwl>R | A
p(c0)
For(Aoo) = / w@) T
lw>R | A

Taking into account condition (6.9), by a given £ > 0 we can find Ry > 0
such that
FLRO ()\,m) <e (612)
uniformly in m, and
F> r, (A, 00) <e. (6.13)
Let B = {z € R" : |z| < R}

M, = {x € BRO :Sup|wm (‘T)| < 5} 7M; - BRO\ME'

Th
o W (I’) p(x+hm) eP-
I (A m) :/ . de < = |M.| < Ce, (6.14)
M, a
p(0)
LV :/ wi‘f) de < S M| = Ce, (6.15)
M. a
uniformly in A € [a,b].
Let
¢ Wiy (2) p(z+hm)
Is (A\,m) = / mf dz (6.16)
M!

It is evident that we can pass to the limit as m — oo under the sign of the integral
in (6.16). Then we obtain that uniformly in A € [a, b]
p(o0)

lim Ty (A, m) = /M W@ (6.17)

m— o0 A
Taking into account (6.12), (6.13), (6.14), (6.15), and 6.17) we obtain (6.11).

Let N U oo be a compactification of N by the point co. The topology on N U oo
is introduced such that it is discrete on N and the sets Ug = {j e N: 5> R} ,R >0
form the fundamental system of neighborhoods of the point co. From (6.11) it
follows that F: Ry x (NUoo) — Ry is a continuous function.

Further, by the definition of the norm in LP()(R™)

Vi Wil o) gy = inf {A > 0 F(A,m) < 1}

’
=

Moreover there exists a partial derivative F} (A, m) < 0 for every A € (0, c0)
and m € NU oo. Hence F'(-,m) is a monotonically decreasing function on (0, c0)
for every fix m € NU co. This implies that

Hthwm”LP(‘)(R") =inf{A>0:F(Am)<1}=A(m)



528 Rabinovich and Samko IEOT

where A\(m) is a unique solution of the equation F' (A,m) = 1. One can see that for
m = oo the equation F' (X, 00) = 1 has the unique solution A(00) = [[wl| 7o) (g -
Moreover
B} (1] s ey - 0) # 0.
Hence by the Implicit Function Theorem (see for instance [28], p. 360) we obtain
that A(m) is a continuous function on NU oo .
Hence

||w||Lp<oo)(]Rn) = A(oo) = lim A(m) = mlgnoo ”thmeLp(-)(Rn)

m—0o0

and we obtain equality (6.10). O

Proposition 6.4. Let A = Op(a) € OPSO° and a sequence h,, — oo. Then there
exists a subsequence hp,, and a symbol ap, € OPS?,O such that for every function
u € C§°(R™)

kliHrElO Voh, AVh,, u= Op(an(§))u

in the topology of S(R™).
Proof. Let A = Op(a) € OPSO° and a sequence h,,, — oco. Then
Vot AVh,, = Op(am), (6.18)

where a,,(z,€) = a(z + hpy, ). Following [35], p. 52-55, one can prove that for
every function u € C§°(R™)

lim Op(a(x 4+ hm, &) — alhm,&))u=0

in the topology of S(R™).

The sequence a(hyy,, &) is uniformly bounded and equi-continuous. Hence by
Arcela-Ascoly Theorem there exists a subsequence a(hy,, ,£) which converges to a
limit function ay(€) uniformly on compact sets in R™. This implies that

Op (a’(hmk ) 5)) u— Op (ah (f)) u

in the space S(R"). It is easy to check that a, € S?,. O

Theorem 6.5. Let A = Op(a) € OPSO° and A be a Fredholm operator in LP()(R™)
where p satisfies conditions (2.2)~(2.4). Then

I inf L&) > 0. 6.19
PG S CC (6.19)

Proof. Let Op(a) : LPO(R") — LPO(R™) be a Fredholm operator. Then the
following a priori estimate holds
10P(@)ul s gy = C Nl s gy — 1Tl o oy (6.20)

where C' > 0 and T is a compact operator.
Let p € C§°(R™) and ¢(x) = 1 for x in a neighborhood of the origin, ¢r(z) =
o(z/R),Yr =1 — pgr. One can see that for every u € S(R™)

ngnoc Ip(.) (wRu) =0.
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By (2.7)-(2.8) this implies that
ngnoo ||1/’RU||Lp<4)(Rn) =0.

Hence the sequence 1 strongly converges in Lp(‘)(R") to 0-operator for R — oo.
Since T is a compact operator

Rli—I>HOO ||T’(/JRIHLP(')(R“)HLP(')(R") =0. (6.21)
Formulas (6.20), (6.21) yield that there exist Ry such that for R > Ry
||Op(a)7/’RUHLp(-)(Rn) >C/2 ||7/1RU||LP<->(Rn) (6.22)

for every function u € LP()(R"). Let a sequence h,, € R” tend to infinity, and
a function u € C§°(R™). Then for fixed R > 0 there exists m > myg such that
YrVh,, u =V, u. Thus, for m > my

V.. (thmOp(a)thu)||Lp<»)(Rn) = HOP(GWRthUHLm-)(Rn)
> C/2 ||thu||Lp<->(Rn) : (6.23)
Let h,,, be a subsequence of h,, defined as in Proposition 6.4 and let w, =
Vo, Op(@)Vy,, v = Op(a(z + hm,,§)) u. Applying Proposition 6.4 we obtain

that wy — w = Op(ap)u in the space S(R™). Hence we can use Proposition 6.3
and pass to the limit in the inequality

Hthk wk’ LrO) (RR) = /2 thmku’ LrO @)
and obtain that
10p(an(&))ull oo @ny = C/2 [l oo n) - (6.24)
Going over to the adjoint operator we obtain that
1Op(an(€))" ul| sy = €72 o sy - (6.25)
where ﬁ + ﬁ = 1. Hence Op(ay,(€)) : LP(®)(R™) — LP(>)(R") is an invertible

operator. This implies (see for instance [45], [46], [47], [34])) that the invertibility
of Op(ay(€)) in LP(R™), p € (1, 00) implies the invertibility of Op(as(€)) in L?(R™)
and hence the condition

iIEIf lan(§)] > 0. (6.26)

Thus we proved that for every sequence h,, — oo there exists a subsequence hy,,
and a limit symbol a,(€) € S 5 such that a(hy,, ) converges to the limit function
ap, (&) for which condition (6.26) holds uniformly with respect to £ on compact sets
in R™.
Suppose now that condition (6.19) is not satisfied. Then there exists a se-
quence (M, &m), i — 00 such that
lim a(hm,&m) = 0. (6.27)

m— 00
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Note that &, can not tend to infinity because in this case (6.27) contradicts to the
above proved condition (6.2). Choose a subsequence (hp, ,&m,) of the sequence
(hm,&m) such that a(hp,,§) converges uniformly with respect to £ on compact
sets in R™ to the limit function ap(§). Suppose that &, — & € R™. (In the
contrary case we can pass to a subsequence again). Then

an(&o) = lim a(hm,,&m,) =0
k— o0
and we obtain the contradiction with (6.26). O

6.3. Fredholmness of pseudodifferential operators in H*?(")(R™)

The result on Fredholmness of pseudodifferential operators in the spaces H*?() (R™)
is given by the following theorem.

Theorem 6.6. Let the wvariable exponent p satisfy conditions (2.2)—(2.4). Let
Op(a) € OPSO™. Then

Op(a) : H*PO(R"™) — H*~™P()(R")
is a Fredholm operator if and only if

ngnoo IwHHIléfIZR a(x, &) (£) > 0. (6.28)
Proof. The operator A : H5P()(R™) — H*~™P()(R") is Fredholm if and only if
the operator B = (D)*~" Op(a) (D)* is Fredholm in LP()(R™). The operator
B = Op(b) € OPSO° and we can apply Theorems 6.1, 6.2, and 6.5. From Propo-
sition 4.6 it follows that b(z,&) = a(x,&) (€)™ + t(x, &), where t € SOJ. That is,
lim, ¢)—o0 t(x,€) = 0. Hence the condition

lim inf  |b(x,&] >0
RHOO\IIHE\ZR'( ¢l

is equivalent to condition (6.28). (]

7. Pseudodifferential operators with analytical symbols in

Let B be an open convex domain in R™ containing the origin. We denote by
S7%(B) a subclass of S, (R") consisting of symbols a(z, ) which have an analytic
extension with respect to the variable £ to the tube domain R¢ +iB, and such
that for all Iy, 1> € NUO

laly, ,p= s ("N aloga(z, ¢ + in)| < oo
rERT.CEREMED o <l BI<1>

As above, with a symbol a € ST (B) we associate a pseudodifferential op-
erator. The class of such pseudodifferential operators is denoted by OPSTY (B).
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Definition 7.1. We denote by R(B) a class of positive weights w such that:
1) logw € C*(R™), and

N;(log w) = sup Z ’85V (logw(z))| < oo
“ Bt

for all [;
2) V (logw(x)) € B for every x € R™.

A weight w(z) € R(B) is called slowly oscillating if:
OVlegwie) — 0,5 =1,...,n

3) limg— 00 o

We denote the class of slowly oscillating weights by R (B).
Let

1
/ Viegw)(z — t(z — y))dt.
0

It is easy to check that for all 1,1, e NUO

Sup Z }33359u)($,y)| <C _ Sup |3B logw(;z:)| < oo,
Y o)<l |8I<la w€R",1<|B|<l1+l>

Moreover, condition 2) implies that g, (z,y) € B for every (z,y) € R™ x R™.
The following Proposition is a key result for the study of pseudodifferential
operators in exponential weighted spaces.

Proposition 7.2. (see [40], p. 243-247). Let

A= Op(a(x,§)) € OPSTH(R", B); w(z) € R(B).
Then the operator wOp(p)w™" € OPST o(R"), and

wOp(a)w™ = Opg(a(z, € +igw(z,y)).
Proposition 7.3. (see [40], p. 243-247). Let
A = Op(a(z,§)) € OPSO™(B) = OPSO™ N OPSTy(B),

and a weight w € Rg(B). Then

wAw T = Op(a(z, € +iVlogw(x))) + Op(t(z, €)), (7.1)
where t(z, &) € SOFH(R™).

By H," ¢ )(R") we denote the weighted space with norm
ll gz gy = 1wl geoer @y -

pagebreak
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Theorem 7.4. Let the variable exponent satisfy conditions (2.2)—(2.4), Op(a) €
OPST,(B), w(x) € R(B). Then

Op(a) : HyPO(R™) — Hy ™ PO (R")
is a bounded operator.

Proof. Proof immediately follows from Proposition 7.2 and Theorem 5.2. O

Theorem 7.5. Let the variable exponent satisfy conditions (2.2)—(2.4). Let Op(a) €
OPSO™ NOPST\(B) and w € Ry (B). Then

Op(a) : HyPO(R™) — Hy ™ PO(R™)
is a Fredholm operator if and only if

i inf LE+iV] ™S 0. 7.2
Jim |x\ﬁ§>R|a(m §+iViogw(x)) (&) (7.2)

Proof. Proof follows directly from Proposition 7.3, and Theorems 6.1-6.5. (]

Theorem 7.5 has the following important corollary, in which spess(A : X —
X) stands for the essential spectrum of a bounded operator A: X — X (A e C
is said to be a point of the essential spectrum of A, if A — AI is not Fredholm
operator).

Theorem 7.6. Let the variable exponent satisfy conditions (2.2)—(2.4). Let Op(a) €
OPSO°N OPSRO(]R”, B) be a uniformly elliptic pseudodifferential operator at ev-
ery point © € R", w € Ry (B). Then

spess(Op(a) : HyPO(R") —HyPO(R™))

= |J {eC:x=an(l+iwn), €R}
heQ(a,w)

where Q(a,w) is the set of all sequences h,, — oo such that the limit

ap (€ +iwy) = hlir_I)loo a(hm, &+ (Viogw) (hm)) (7.3)

is uniform on every compact set in R™.

Theorem 7.6 shows that the essential spectrum of pseudodifferential opera-
tor does not depend on s, p, but it essentially depends on the weight w. General
speaking, the essential spectrum of Op(a) € OPS0° N OPS?’O(]R”, B) acting in
Hy? (')(R”) is a massive set in the complex plane C, and massivity of this set
depends on oscillations of symbol with respect to x, and oscillations of the char-
acteristic V (logw) of the weight w.
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Theorem 7.7 (Phragmen-Lindel6f principle). Let the variable exponent satisfy con-
ditions (2.2)~(2.4). Let Op(a) € OPSO™ NOPST(B) be an elliptic pseudodiffer-
ential operator at every point x € R™, w € Ry (B), limz—c w(x) = 00, and the
domain B be symmetric with respect to the origin. Let

. nf i “m g, .
Revoo [x]> R HineRr1iB lalz, &+ in)[ (&) (7.4)
Then

we HPV(R™), Opla)u € HE™PO(RY) = u € HPO(R™).

Proof. In view of Proposition 7.3, the operator w?Op(a)w=?,6 € [~1,1] can be
written as

w?Op(a)w™"1 = Op(a(z, & + 10V log w(z)) + Op(ty(z, €)),

where tg(x, &) belongs to SO ' (R"™). By Theorem 7.5 and condition (7.4), the
operator w?Op(a)w=1 : H*PC)(R™) — Hs~™P()(R") is a Fredholm operator for
all 0 € [—1,1].

We will prove that the index of weOp(a)w_QI does not depend on the pa-
rameter 0. Applying Proposition 4.2 we prove that the mapping [-1,1] 3 0 —
w?Op(a)w=?I : H*(R") — H* ™(R") is continuous. Theorem 5.2 implies that
the family w’Op(a)w=0I : H>PO(R") — H*~™P()(R") is uniformly bounded.
Hence in light of the Proposition 2.1 the family w?Op(a)w=0T : H*P()(R") —
H*=™P()(R™) is continuous. Hence,

Index (w’Op(a)w™I : H>PO(R™) — H*~™PO)(R™))
does not depend on 6 € [—1,1]. This yields that
Index(Op(a) : HEPO(R™) — H™PO(R")
= Index(Op(a) : Hjj’fg')(R") — Hi}__T’p(')(R").
Moreover, the conditions lim,_,. w(z) = oo imply that H{Z’p(')(R") C Hfu’fg')(R"),

and the last imbedding is dense.
Then (see [11], p. 308)

ker Op(a) : H,;:E)(l.)(Rn) — HZ,_—T’I)(.)(RT%)

coincides with ker Op(a) : Hﬁj’p(')(R") — Hf,fm’p(')(R") . Moreover, if the equa-
tion Op(a)u = f, where f € Hy "™P0)(R™) is solvable in Hi’fg')(R”), then u €
H;’P()(Rn) 0
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8. Appendix. Proof of Lemma 3.9

In view of (3.4) we have

/|Af(x)|sdx - S/As—w{x € B |Af(z)] > A}dA
E 0

o0

< [ uin (121, 2211 ) an
0
v(M)IIflla
[ET oo
—s [ xEaes [ @)
0 %
S

WAIFI)* B + A1) 1B

1-s
1 s s
17—5|E‘1 (A1)
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