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Abstract. We prove a statement on the boundedness of a certain class of singu-
lar type operators in the weighted spaces Lp(·)(Rn, w) with variable exponent
p(x) and a power type weight w, from which we derive the boundedness of
pseudodifferential operators of Hörmander class S0

1,0 in such spaces.
This gives us a possibility to obtain a necessary and sufficient condition

for pseudodifferential operators of the class OPSm
1,0 with symbols slowly oscil-

lating at infinity, to be Fredholm within the frameworks of weighted Sobolev

spaces H
s,p(·)
w (Rn) with constant smoothness s, variable p(·)-exponent, and

exponential weights w.
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1. Introduction

The main objective of this paper is to investigate the boundedness and Fredholm-
ness of pseudodifferential operators of the Hörmander class OPS0

1,0 in weighted

Sobolev type spaces Hs,p(·)
w (Rn) with constant smoothness s, variable p(·)-expo-

nent, and exponential weights w.
We prove the boundedness of more general singular type integral operators

in weighted variable exponent Lebesgue spaces Lp(·)(Rn, w) with power weights w,
from which there follows the boundedness of operators of the class OPS0

1,0 in such
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spaces. Making use of the calculus of pseudodifferential operators, we obtain the
result on boundedness of pseudodifferential operators in the spaces Hs,p(·)

w (Rn).
The obtained boundedness is the crucial result for the investigation of the

Fredholm property of pseudodifferential operators, with symbols slowly oscillat-
ing at infinity, in weighted Sobolev spaces, including their essential spectra and
behavior of solutions of pseudodifferential equations at infinity.

The paper is arranged as follows. After Section 2, where we give some neces-
sary preliminaries, in Section 3 we study the boundedness of singular type opera-
tors in the spaces Lp(·)(Rn, w) with a power type weight w. With the help of the
results of Section 3, after a preliminary Section 4 on pseudodifferential operators,
in Section 5 we prove the boundedness of pseudodifferential operators in the space
Hs,p(·)(Rn). In Section 6 we obtain a necessary and sufficient condition for pseudo-
differential operators with slowly oscillating symbols to be Fredholm in the spaces
Lp(·)(Rn). In Section 7 we study Fredholmness of pseudodifferential operators with
analytical symbols in weighted spaces Hs,p(·)

w (Rn).

We linger more in detail on results of every section and mention the relevant
investigations on the subject.

Section 3. In relation to the boundedness results in variable exponent Lebes-
gue spaces, observe that the last decade there was an evident increase of interest
to the operator theory in the generalized Lebesgue spaces with variable exponent
p(x), we refer, in particular to surveys L. Diening, P. Hästö and A. Nekvinda [7],
P. Harjulehto and P. Hästö [13], V. Kokilashvili [24], S. Samko [42] on the progress
in this topic.

Lebesgue and Sobolev spaces with variable exponent proved to be appropri-
ate for studying various applications, including electroreolhogical fluids, see [41].
This raised an enormous increase of interest to such spaces. Both the problem
of the boundedness of the main objects of harmonic analysis, such as maximal
and singular operators and potential type operators, and Fredholmness of singular
integral operators has already been treated in these spaces.

For maximal operators we refer, besides the above mentioned surveys, to L.
Diening [6], D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer [5] and A. Nekvinda
[31] in the non-weighted case, and to V. Kokilashvili and S. Samko [23] and V. Kok-
ilashvili, N. Samko and S. Samko [19] in the weighted case.

Boundedness of Calderon-Zygmund singular operators was studied by L. Di-
ening and M. Ružička [8], [9] in the non-weighted case and by V. Kokilashvili and
S. Samko [21], [22] in the weighted case. Recently, the boundedness of the Cauchy
singular operator SΓ on Carleson curves Γ was proved in V. Kokilashvili and S.
Samko [24], [18].

In the proof of the result on boundedness of singular type operators in the
spaces Lp(·)(Rn, w), presented in Theorem 3.2, we use the technique of the point-
wise estimation of the sharp maximal operator of the power of order s, 0 < s < 1
of the singular operator via the maximal operator. In Section 3.2 we develop this
technique for variable exponent Lebesgue space.
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Section 5. We use the results of Section 3 to prove the boundedness of pseu-
dodifferential operators in the space Hs,p(·)(Rn). As a corollary of those results
and the formulas of composition of pseudodifferential operators we obtain bound-
edness of pseudodifferential operators of the class OPSm

1,0 from Hs,p(·)(Rn) to
Hs−m,p(·)(Rn).

As is known, the boundedness of pseudodifferential operators of the class
OPS0

δ,δ, 0 ≤ δ < 1 in the space L2 was proved in the well known paper [3] by
A.P.Calderón and R.Vaillancourt. For the boundedness of pseudodifferential oper-
ators in Lebesgue spaces with constant p, 1 < p <∞, we refer to [48] and references
therein.

Section 6. Note that the Fredholmness of pseudodifferential operators of the
class OPSm

1,0 acting in the Sobolev spaces Hs(Rn) was established by V.V.Grushin
[12]. Fredholmness of pseudodifferential operators of the class OPSm

0,0 acting in
the spaces Hs(Rn) was considered in the papers V.S. Rabinovich [33], see also the
paper [39] and the book [40], Chap. 4, by means of the limit operators method.
Fredholmness and exponential estimates of solutions of general pseudodifferential
operators acting in general exponential weight classes were considered in [37]. Note
also the paper by V.S. Rabinovich [38] where operators of the class OPSm

1,0 with
symbols slowly oscillating at infinity were considered in weighted Hölder-Zygmund
spaces.

Fredholmness of operators in algebras of pseudodifferential operators acting
in Lp(Rn), with constant p ∈ (1,∞) with applications to one-dimensional singular
integral operators on Carleson curves has been developed in V. Rabinovich [34],
see also [36].

As regards Fredholm properties in variable Lebesgue spaces Lp(·)(Γ, w), it
was studied only in the case of one-dimensional singular integral operators in the
papers V. Kokilashvili and S. Samko [20] and A. Karlovich [16].

Section 7. Finally, in this section we consider boundedness and Fredholmness
of operators with analytical symbols acting in weighted spaces Hs,p(·)

w (Rn) with
exponential weight w. As a corollary of Fredholmness in weight spaces we consider
a Phragmen-Lindelöf principle (see for instance [29], p. 284–286) for solutions of
pseudodifferential operators with analytical symbols in Hs,p(·)

w (Rn).

N o t a t i o n :
Fu(ξ) =

∫
Rn u(x)e−ixξdx;

F−1f(x) = (2π)−n
∫

Rn f(ξ)eixξdξ;
Hs,p(·)(Rn), see Definition 2.4;
Ip(f), see (2.1);
Op(a), see (4.2);
Sm

1,0, see Definition 4.1;
S(Rn) is the Schwartz space of rapidly decreasing test functions;
〈ξ〉 =

√
1 + |ξ|2.
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2. Preliminaries

2.1. Variable exponent spaces Lp(·)(Rn, w) and Hs,p(·)(Rn)
2.1.1. The spaces Lp(·)(Rn). Let p be a measurable function on Rn such that
p : Rn → (1,∞), n ≥ 1. The generalized Lebesgue space with variable exponent is
defined via the modular

Ip (f) :=
∫

Rn

|f(x)|p(x) dx (2.1)

by the norm

‖f‖p(·) = inf
{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
.

We denote p′(x) = p(x)
p(x)−1 .

In what follows we assume that p satisfies the conditions

1 < p− := ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) =: p+ <∞, (2.2)

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, x, y ∈ Rn, |x− y| ≤ 1
2
. (2.3)

We shall also use the condition

|p(x)− p(∞)| ≤ A

ln (2 + |x|)
, x ∈ Rn, (2.4)

which together with (2.2) and (2.3) guarantees the boundedness of the maximal
operator (2.18) in Lp(·)(Rn), see [5].

Note that under the condition

1 ≤ p− ≤ p(x) ≤ p+ <∞ (2.5)

for a function a(x) ∈ L∞(Rn) we have

‖aI‖Lp(·)→Lp(·) ≤ ‖a‖L∞ (2.6)

which follows from the definition of the norm in Lp(·). Note also that under the
same condition (2.5) the modular boundedness is equivalent to the norm bounded-
ness and the modular convergence is equivalent to the norm convergence, because

c1 ≤ ‖f‖p ≤ c2 =⇒ c3 ≤ Ip(f) ≤ c4 (2.7)

and
C1 ≤ Ip(f) ≤ C2 =⇒ C3 ≤ ‖f‖p ≤ C4 (2.8)

with c3 = min
(
c
p−
1 , cp

+

1

)
, c4 = max

(
c
p−
2 , cp

+

2

)
, C3 = min

(
C

1/p−
1 , C

1/p+

1

)
and

C4 = max
(
C

1/p−
2 , C

1/p+

2

)
.

By P = P(Rn) we denote the class of exponents p satisfying condition (2.2)
and by P = P(Rn) the class of those p for which the maximal operator M is
bounded in the space Lp(·)(Rn).
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The validity of the Riesz-Thorin interpolation theorem for the variable expo-
nent spaces Lp(·), stated in Proposition 2.1, was observed by L. Diening [7]; it is
known in a more general setting for Musielak-Orlich spaces in [30], Theorem 14.16.
Proposition 2.1 follows from the fact that Lpθ(·)(Rn) is an interpolation space be-
tween Lp1(·)(Rn) and Lp2(·)(Rn) under the method of real-valued interpolation.
For complex interpolation for Lp(·)-spaces we refer to [7].

Proposition 2.1. Let pj : Rn → [1,∞), j = 1, 2, be bounded measurable functions,
A a linear operator defined on Lp1(·)(Rn) ∪ Lp2(·)(Rn) and

‖Au‖
Lpj(·)(Rn)

≤ Cj ‖u‖Lpj(·)(Rn)
, j = 1, 2. (2.9)

Then A is also bounded on Lpθ(·)(Rn), where 1
pθ(x) = θ

p1(x) + 1−θ
p2(x) , θ ∈ [0, 1] , and

‖A‖Lpθ(·)→Lpθ(·) ≤ ‖A‖θ
Lp1(·)→Lp1(·) ‖A‖1−θ

Lp2(·)→Lp2(·) .

The following proposition is an extension of the well-known theorem of M.A.
Krasnosel′skii [26] on the interpolation of the compactness property in Lp-spaces
with a constant p.

Proposition 2.2. Let pj : Rn → [1,∞), j = 1, 2, be bounded measurable func-
tions satisfying assumptions (2.2)–(2.4) and let a linear operator A defined on
Lp1(·)(Rn) ∪ Lp2(·)(Rn) satisfy assumption (2.9). If

A : Lp1(·)(Rn) → Lp1(·)(Rn)

is a compact operator, then

A : Lpθ(·)(Rn) → Lpθ(·)(Rn)

is a compact operator for all θ ∈ (0, 1].

Proof. We derive this proposition from the abstract Banach spaces version of
Krasnosel′skii’s theorem proved in the paper A. Persson [32]. The crucial condition
of Persson’s theorem is the existence of a unity approximation in the interpolation
couple with some properties. We formulate it with respect to the spaces Lp(·)(Rn)
under consideration:

there exists a topological space E such that Lp(·)(Rn) ⊂ E, and a sequence Pm of
linear operators with the properties:

(i) Pm : E → E ,
(ii) Pm(Lpj(·)(Rn)) ⊂ Lp1(·)(Rn) ∩ Lp2(·)(Rn) for every m,
(iii) the sequence Pm strongly converges in Lpi(·)(Rn), i = 1, 2.

We take E = D′(Rn) and construct such a sequence Pm in the following way.
Let φ ∈ C∞0 (Rn) be a non-negative function such that φ(x) = 1 if |x| ≤ 1/2 and
φ(x) = 0 if |x| ≥ 1, and φm(x) = φ(x/m). Let φmI be the operators of multiplica-
tion by φm. Then for the sequence φmI conditions (i) and (iii) are satisfied.

Let

ϕ(x) =
φ(x)∫

Rn φ(x)dx
and ϕm(x) = mnϕ(mx)
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and Tm be a sequence of operators

Tmu(x) =
∫

Rn

ϕm(x− y)u(y)dy.

It is known [6], Corollary 3.6 (see also [4]), that the identity approximation se-
quence Tm strongly converges to the unit operator in Lp(·)(Rn), under the as-
sumptions on p(·). Hence the sequence Pm = TmφmI strongly converges to the
unit operator in Lp(·)(Rn). Hence condition (iii) holds.

Moreover, it is easily seen that Pmu ∈ C∞0 (Rn) for every u ∈ Lp(·)(Rn).
Hence condition (ii) is also satisfied, and consequently, Proposition 2.2 follows
from A.Persson result [32]. �

Corollary 2.3. Let p : Rn → (1,∞) (1 < p− ≤ p(x) ≤ p+ <∞) . Then there exists
q : Rn → (1,∞) (1 < q− ≤ q(x) ≤ q+ <∞) , and θ ∈ [0, 1] such that Lp(·) (Rn) is
an intermediate space between L2 (Rn) and Lq(·)(Rn) corresponding to the inter-
polation parameter θ.

Proof. We will find q and θ from the equality 1
p(x) = θ

2 + 1−θ
q(x) , θ ∈ [0, 1] and

conditions
1 < q− ≤ q(x) ≤ q+ <∞. (2.10)

Then

q (x) =
2 (1− θ) p (x)

2− θp (x)
.

If we fix a θ ∈ (0, θ0) where θ0 = min
{

1, 2
p+
, 2

(
1− 1

p−

)}
, then condition (2.10)

will be satisfied. �

By χE(x) =
{

1, x ∈ E
0, x ∈ Rn\E we denote the characteristic function of a set

E ⊂ Rn.

2.1.2. The weighted spaces Lp(·)(Rn, w). By Lp(·)(Rn, w) we denote the weighted
Banach space of all measurable functions f : Rn → C such that

‖f‖Lp(·)(Rn,w) := ‖wf‖p(·) = inf

λ > 0 :
∫

Rn

∣∣∣∣w(x)f(x)
λ

∣∣∣∣p(x)

dx ≤ 1

 <∞.

(2.11)
Observe that

‖f‖Lp(·)(Rn,w) = ‖fa‖
1
a

L
p(·)

a (Rn,wa)
(2.12)

for any 0 < a ≤ inf p(x).
From the Hölder inequality for the Lp(·)-spaces∣∣∣∣∫

Rn

u(x)v(x) dx
∣∣∣∣ ≤ k‖u‖Lp(·)(Rn)‖v‖Lp′(·)(Rn),

1
p(x)

+
1

p′(x)
≡ 1,



Vol. 60 (2008) Boundedness and Fredholmness of PDO 513

it follows that ∣∣∣∣∫
Rn

u(x)v(x) dx
∣∣∣∣ ≤ k‖u‖Lp′(Rn, 1

w )‖v‖Lp(Rn,w), (2.13)

and for the conjugate space
[
Lp(·)(Rn, w)

]∗
we have[

Lp(·)(Rn, w)
]∗

= Lp′(·) (Rn, 1/w) (2.14)

which is an immediate consequence of the fact that
[
Lp(·)(Rn)

]∗
= Lp′(·) (Rn)

under conditions (2.2), see [25], [43].
In Section 3.3 we will deal with the power weights of the form

w(x) = (1 + |x|)β
m∏

k=1

|x− xk|βk , xk ∈ Rn. (2.15)

2.1.3. Spaces Hs,p(·)(Rn). Note that Sobolev type spaces W s,p(·) of integer order
s ∈ N with variable exponent p(·) have already been were investigated, we refer
to the original paper [25] and surveys mentioned in the beginning of Section 1. A
generalization to fractional values of s, the Bessel potential space, was considered
in [1], where a characterization of functions in the Bessel potential space based
on Lp(·)(Rn) was in particular given in terms of convergence of certain singular
operators. For our purposes we use the following definition of the spaceHs,p(·)(Rn).

Definition 2.4. Let s ∈ R. By Hs,p(·) (Rn) we denote the closure of the set S(Rn)
respect to the norm

‖u‖Hs,p(·)(Rn) = ‖〈D〉s u‖Lp(·)(Rn) ,

where 〈D〉s = F−1 〈ξ〉s F.

In the case s > 0 the space Hs,p(·) (Rn) may be characterized as the range
Bs[Lp(·)(Rn)], where

Bsϕ(x) =
∫

Rn

Gs(x− y)ϕ(y) dy. (2.16)

is the Bessel potential operator with the kernel

Gs(x) = F−1
[
〈ξ〉−s/2

]
(x) = c(s)

∫ ∞

0

e−
π|x|2

t − t
4π t

s−n
2
dt

t
, x ∈ Rn,

and in the case 0 < s < n and p+ < n
s it may be also interpreted in terms of Riesz

potentials:

Hs,p(·) (Rn) = Lp(·)(Rn) ∩ Is[Lp(·)(Rn)] (2.17)

where Is is the Riesz potential operator, see Theorems 4.1 and 5.7 in [1].
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2.2. On maximal operators

We will need the following results for the maximal operator

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy. (2.18)

Theorem 2.5. ([5]) Let p(x) satisfy conditions (2.2)–(2.4). Then the maximal op-
erator M is bounded in the space Lp(·)(Rn).

The following theorem for weighted spaces was proved in [17] for the case of
Rn, the case of bounded domains in Rn being earlier treated in [23].

Theorem 2.6. Let p(x) satisfy conditions (2.2)–(2.3) and let there exist an R > 0
such that p(x) ≡ p∞ = const for |x| ≥ R. Then the maximal operator M is
bounded in the space Lp(·)(Rn, w) with weight (2.15), if and only if

− n

p(xk)
< βk <

n

p′(xk)
and − n

p∞
< β +

n∑
k=1

βk <
n

p′∞
. (2.19)

Remark 2.7. In [17] and [23] the case of a single weight w(x) = |x − x0|β was
considered. The validity of Theorem 2.6 for weight (2.15) is easily obtained from
the case of a single weight.

Indeed, for the weight w(x) =
m+1∏
k=1

wk(x), with wk(x) = |x − xk|βk , k =

1, . . . ,m and wm+1(x) = (1 + |x|)β we have to prove the boundedness of the
operator wM 1

w in the space Lp(·)(Rn). We make use of a standard partition of unity

1 =
m∑

k=1

ak(t), where ak(t) are smooth functions equal to 1 in a neighborhood of the

point xk and equal to 0 outside some neighborhood of this point k = 1, . . . ,m, (and
similarly in a neighborhood of infinity for k = m+1), so that ak(x)|x−xj |±βj ≡ 0
in a neighborhood of the point xk, if k 6= j. Then

w(x)
w(y)

=
m+1∑
µ=1

w̃µ(x)bµ(x)
m+1∑
ν=1

cν(y)
w̃ν(y)

where w̃k(x) = wk(x), k = 1, . . . ,m and w̃m+1(x) = (1+ |x|)β0 , β0 = β+
∑∞

k=0 βk,
while bµ(x), µ = 1, . . . ,m+ 1, and cν(x), ν = 1, . . . ,m+ 1, are bounded functions
supported in the same neighborhoods of the points xk. Then∣∣∣∣wM f

w

∣∣∣∣ ≤ C
m+1∑
µ=1

w̃µM
f

w̃µ
+ C

m+1∑
µ,ν=1
µ6=ν

w̃µM
f

w̃ν
.

The terms where µ 6= ν have separated singularities and are easily treated by
means of the Hölder inequality, so that it remains to have the boundedness with
the separate weights wµ(x).
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2.3. On sharp maximal function

Let

M#f(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)− fB(x)| dy, x ∈ Rn (2.20)

where fB(x) = 1
|B(x,r)|

∫
B(x,r)

f(y) dy, be the sharp maximal function.

The following theorem is well known for constant p, see [48], p. 148, where it
is given in the non-weighted case. For variable p(x) and the weighted case see [22].

Theorem 2.8. Let p(x) satisfy conditions (2.2)–(2.3) and p(x) = p∞ for large
|x| ≥ R > 0, and let w(x) be weight (2.15). Then under condition (2.19) there
exists a constant C0 > 0 such that

‖f‖Lp(·)(Rn,w) ≤ C0

∥∥M#f
∥∥

Lp(·)(Rn,w)
(2.21)

for every f ∈ Lp(·)(Rn, w).

3. Boundedness in Lp(·)(Rn, w) of singular type operators

3.1. Formulation of the main result

We consider operators of the form

Af(x) =
∫

Rn

k(x, x− y)f(y)dy (3.1)

with k(x, z) ∈ C1(Rn × (Rn\{0})) and assume that the following conditions are
satisfied

λ1(A) := sup
|α|=1

sup
x,z∈Rn×Rn

|z|n+1 |∂α
x k(x, z)| <∞ (3.2)

and
λ2(A) := sup

|β|=1

sup
x,z∈Rn×Rn

|z|n+1
∣∣∂β

z k(x, z)
∣∣ <∞ (3.3)

and the operator A is of weak (1,1)-type:

|{x ∈ Rn : |Af(x)| > t}| ≤ ν(A)
t

∫
Rn

|f(x)| dx. (3.4)

Theorem 3.1. Let the operator A satisfy conditions (3.2)–(3.4).
I. Let p satisfy conditions (2.2)–(2.4). Then the operator A is bounded in the

space Lp(·)(Rn).
II. Let p satisfy conditions (2.2)–(2.3) and be constant at infinity, that is, there

exist R > 0 such that p(x) ≡ const = p∞ for |x| ≥ R. Then the operator A
is bounded in the space Lp(·)(Rn, w) with weight (2.15), if

− n

p(xk)
< βk <

n

p′(xk)
, k = 1, . . . , n, (3.5)
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and

− n

p∞
< β +

m∑
k=1

βk <
n

p′∞
. (3.6)

In both cases I and II,

‖A‖Lp(·)(Rn,w) ≤ c(n, p, w) [λ1(A) + λ2(A) + ν(A)] (3.7)

where the constant c(n, p, w) depends only on n, exponent p(x) and the weight w.

Theorem 3.1 is proved in Subsection 3.3.
In particular, from Theorem 3.1 we have the following corollary (see Defini-

tion 4.1 for the class OPS0).

Corollary 3.2. Statements of Theorem 3.1 are valid for every PDO A∈OPS0
1,0(Rn).

3.2. The crucial step: the pointwise estimate

Following the ideas of the paper T.Alvarez and C.Pérez [2], in this section we prove
the following statement.

Theorem 3.3. For any operator A of form (3.1) with the kernel k(x, z) satisfying
conditions (3.2)–(3.3), the following pointwise estimate is valid

M# (|Af |s) (x) ≤ C[Mf(x)]s, 0 < s < 1, (3.8)

where the constant C > 0 has the form C = c(n, s)[λ1(A) + λ2(A) + ν(A)] with
c(n, s) depending only on n and s.

Corollary 3.4. For any pseudodifferential operator A ∈ OPS0
1,0(Rn) the pointwise

estimate (3.8) is valid.

Theorem 3.3 and its corollary are proved in Subsection 3.2.3.

3.2.1. Regularity of the kernel. To prove Theorem 3.3, we need some auxiliary
statements and some notions of regularity of the kernel.

Definition 3.5. ([10],[2]) Let r > 0 and x0 ∈ Rn. We say that a kernel k(x, z)
satisfies the regularity property (D1), if the inequality holds

|k(u, u− x)− k(v, v − x)| ≤ D1r

|x− x0|n+1
(3.9)

for all u, v, x ∈ Rn such that

|u− x0| < r, |v − x| < r, |x− x0| > 4r, (3.10)

where D1 > 0 does not depend on u, v, x, x0.

Let

Hr,x0(x) =
1

|B(x0, r)|2|

∫
B(x0,r)

∫
B(x0,r)

|k(u, u− x)− k(v, v − x)| dudv. (3.11)
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Definition 3.6. A kernel k(x, z) is said to have the regularity property (D2), if for
any locally integrable function f (such that Mf(x0) <∞) the inequality

sup
r>0

∫
B(x0,4r)

|f(x)|Hr,x0(x)dx ≤ D2Mf(x0) (3.12)

is valid, where D2 > 0 does not depend on f and x0.

Lemma 3.7. I. Let the kernel k(x, z) ∈ C1(Rn × Rn\{0}) satisfy assumptions
(3.2)–(3.3). Then k(x, z) has the regularity property (D1) with the constant
D1 = 22n+3 [λ1(A) + λ2(A)].

II. Any kernel k(x, z) with regularity property (D1) satisfies also property (D2)
with the constant D2 = 2n+1

2n−1D1.

Proof. I. By the mean value theorem we have

k(u, u− x)− k(v, v − x) = [∂xk(ξ, η) + ∂zk(ξ, η)](v − u)

where ξ = u+ θ(v − u), η = u− x+ θ(v − x). By (3.2) we get

|k(u, u− x)− k(v, v − x)| ≤ [λ1(A) + λ2(A)]
2r

|η|n+1
.

We have |η| ≥ |u−x|−θ|v−u| ≥ |x−x0|−|u−x0|−2r ≥ |x−x0|−3r ≥ 1
4 |x−x0|.

Therefore,

|k(u, u− x)− k(v, v − x)| ≤ C1r

|x− x0|n+1
, C1 = 22n+3 [λ1(A) + λ2(A)] ,

which gives (3.9) and proves the first part of the lemma.
II. Let k(x, z) have property (D1). By the definition of this property we obtain

Hr,x0(x) ≤
D1r

|x− x0|n+1
when |x− x0| > 4r. (3.13)

Then

sup
r>0

∫
|x−x0|>4r

|f(x)|Hr,x0(x)dx ≤ D1 sup
r>0

∞∑
k=0

∫
2kr<|x−x0|<2k+1r

r|f(x)|
|x− x0|n+1

dx.

Hence

sup
r>0

∫
|x−x0|>4r

|f(x)|Hr,x0(x)dx ≤ D1 sup
r>0

∞∑
k=0

1
2nk−1

1
(2k+1r)n

∫
|x−x0|<2k+1r

|f(x)|dx

≤ 2D1Mf(x0)
∞∑

k=0

1
2nk

≤ 2n+1

2n − 1
D1Mf(x0). �

Corollary 3.8. Every kernel k(x, z) ∈ C1(Rn×Rn\{0}) with properties (3.2)–(3.3)
has the regularity property (D2).
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3.2.2. On Kolmogorov inequality. It is known that any sublinear operator A of
weak (1,1)-type admits the Kolmogorov inequality. Namely, the following lemma
is valid, see [10], p. 102.

Lemma 3.9. Let A be a sublinear operator of weak (1, 1)-type and let E ⊂ Rn be a
measurable set in Rn. Then the Kolmogorov inequality∫

E

|Af(x)|sdx ≤ [ν(A)]s

1− s
|E|1−s‖f‖s

1, 0 < s < 1, (3.14)

is valid, where ν(A) is the constant from the weak estimate (3.4).

To check that the constant in (3.14) is exactly νs(A)
1−s , we reproduce the proof

of this lemma from [10], p. 102, in Appendix 8.

3.2.3. Proof of Theorem 3.3. Fix the point x = x0. Observe that for any real-
valued function g on Rn and the ball B(x0, r), the following is valid

1
|B(x0, r)|

∫
B(x0,r)

|g(y)− gB(x0)|dy ≤
2

|B(x0, r)|

∫
B(x0,r)

|g(y)− c|dy (3.15)

for any constant c on the right-hand side (which may depend on x0 and r). The
proof of (3.15) is well known:

1
|B(x0, r)|

∫
B(x0,r)

|g(y)− fB(x0)|dy ≤
1

|B(x0, r)|2

∫
B(x0,r)

∫
B(x0,r)

|g(y)− g(u)|dydu

≤ 1
|B(x0, r)|2

∫
B(x0,r)

∫
B(x0,r)

(|g(y)− c|+ |c− g(u)|)dydu

=
2

|B(x0, r)|

∫
B(x0,r)

|g(y)− c|dy.

Hence, for any partition of g = g1 + g2 we have

1
|B(x0, r)|

∫
B(x0,r)

|g(y)− gB(x0)|dy ≤
2

|B(x0, r)|

∫
B(x0,r)

|g1(y)− c1|dy (3.16)

+
2

|B(x0, r)|

∫
B(x0,r)

|g2(y)− c2|dy

whatever the constants c1 and c2 are.
To prove estimate (3.8), we split g = Af as Af = Af1+Af2 with f = f1+f2,

where f1 = f · χB(x0,4r) and f2 = f · χR1\B(x0,4r).
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Then according to (3.16) we have

M# (|Af |s) (x) =
1

|B(x0, r)|

∫
B(x0,r)

||Af(y)|s − (|Af |s)B(x0)| dy

≤ 2
|B(x0, r)|

∫
B(x0,r)

||Af1(y)|s − c1| dy +
2

|B(x0, r)|

∫
B(x0,r)

||Af2(y)|s − c2| dy.

We choose now c1 = 0 and

c2 = [(|Af2|)B(x0)]
s =

 1
|B(x0, r)|

∫
B(x0,r)

|Af2(y)| dy


s

.

Then, taking into account that ||a|s − |bs|| ≤ |a− b|s for 0 < s < 1, we have

M# (|Af |s) (x0) ≤
c

|B(x0, r)|

∫
B(x0,r)

∣∣∣∣Af1(y)∣∣∣∣sdy
+

c

|B(x0, r)|

∫
B(x0,r)

∣∣∣∣ |Af2(y)| − c
1
s
2

∣∣∣∣sdy =: c(I1 + I2).

E s t i m a t i o n o f I1. Since the operator A is of weak (1,1)-type, from (3.14)
we obtain

I
1
s
1 ≤ ν(A)

(1− s)
1
s

1
|B(x0, r)|

∫
B(x0,4r)

|f1(y)|dy ≤
4nν(A)
(1− s)

1
s

Mf(x0). (3.17)

E s t i m a t i o n o f I2. By Jensen inequality and Fubini theorem after easy
estimations we get

I
1
s
2 ≤ 1

|B(x0, r)|

∫
B(x0,r)

∣∣∣∣∣(Af2)(y)− 1
|B(x0, r)|

∫
B(x0,r)

(Af2)(ξ)dξ

∣∣∣∣∣dy
≤

∫
R1\B(x0,4r)

|f(x)|Hr,x0(x)dx,

where Hr,x0(x) is the function defined in (3.11).
By Corollary 3.8, the kernel k(x, z) has property D2. Therefore, according to

(3.12), I
1
s
2 ≤ D2Mf(x0), which completes the proof. �

3.3. Proof of Theorem 3.1
Let 0 < s < 1. By (2.12) we have

‖Af‖Lp(·)(Rn,w) = ‖|Af |s‖
1
s

L
p(·)

s (Rn,ws)
.
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Then by Theorem 2.8 we have

‖Af‖Lp(·)(Rn,w) ≤ C0

∥∥M#(|Af |s)
∥∥ 1

s

L
p(·)

s (Rn,ws)
,

where C0 is the constant from (2.21), so it does not depend on the choice of
operator A.

Theorem 2.8 was applicable in this case, because p(t)
s satisfies conditions (2.2)-

(2.3) and the exponents sβk of the weight ws automatically satisfy the conditions
− 1

p(xk)
s

< sβk <
1

p′(xk)
s

(and similarly for the exponent β at infinity), required by

Theorem 2.8. Therefore, by Theorem 3.3 we get

‖Af‖Lp(·)(Rn,w) ≤ C0C
1
s ‖(Mf)s‖

1
s

L
p(·)

s (Rn,ws)
= C0C

1
s ‖Mf‖Lp(·)(Rn,w) .

It remains to apply Theorems 2.5 and 2.6 to obtain ‖Af‖Lp(·)(Rn,w) ≤
c‖f‖Lp(·)(Rn,w) where the constant c has the form c = c(n, s, p, w)[λ1(A)+λ2(A)+
ν(A)] with c(n, s, p, w) not depending on the operator A. �

4. On calculus of pseudodifferential operators on Rn.

The goal of this section is to give some definitions and summarize (without proof)
some basic facts for pseudodifferential operators. Standard references are [15], [14],
[27], [44], [48], [50], [49].

We recall that S(Rn) is the L. Schwartz space of functions ϕ ∈ C∞(Rn) with
the topology defined by the semi-norms

|ϕ|m = sup
x∈Rn

(1 + |x|)m
∑
|α|≤m

|∂αϕ(x)| ,m ∈ N∪0

and by S′(Rn) we denote the dual space of distributions.

Definition 4.1. We say that a function a belongs to the L. Hörmander class Sm
1,0,

if a ∈ C∞
(
Rn

x × Rn
ξ

)
, and

|a|r,t =
∑

|α|≤r,|β|≤t

sup
Rn×Rn

∣∣∂α
ξ ∂

β
xa(x, ξ)

∣∣ 〈ξ〉−m+|α|
<∞ (4.1)

for all the multi-indices α, β.

As usual, with a symbol a we associate the pseudodifferential operator defined
on the space S(Rn) by the formula

Op(a)u(x) = (2π)−n
∫

Rn

dξ

∫
Rn

a(x, ξ)u(y)ei(x−y,ξ)dy. (4.2)

We denote by Sm
1,0,0 the class of double symbols a ∈ C∞(Rn

x × Rn
y × Rn

ξ )
satisfying the estimates

|a|r,t,l =
∑

|α|≤r,|β|≤t,|γ|≤l

sup
Rn×Rn×Rn

∣∣∂α
ξ ∂

β
x∂

γ
y a(x, y, ξ)

∣∣ 〈ξ〉−m
<∞. (4.3)
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With a ∈ Sm
1,0,0 we associate the pseudodifferential operator with double symbol

Au(x) = Opd(a)u(x) = (2π)−n
∫

Rn

dξ

∫
Rn

a(x, y, ξ)u(y)ei(x−y,ξ)dy, (4.4)

and we denote the class of such operators by OPSm
1,0,0.

By Hs(Rn) we denote the Sobolev space with the norm

‖u‖Hs(Rn) = ‖〈D〉s u‖L2(Rn) ,

where 〈D〉s = Op (〈ξ〉s) , 〈ξ〉 = (1 + |ξ|2)1/2.

Proposition 4.2. Let Op(a) ∈ OPSm
1,0. Then:

(i) Op(a) is bounded in the space S(Rn). Moreover, for every l1 ∈ N∪0 there
exist l2, r, t ∈ N∪0 such that

|Op(a)ϕ|l1 ≤ C |a|r,t |ϕ|l2 ,

where the constant C does not depend on a.
(ii) Op(a) is bounded from Hs(Rn) to Hs−m(Rn) and

‖Op(a)‖Hs(Rn)→Hs−m(Rn) ≤ C |a|r,t ,

where C > 0, r, t ∈ N do not depend on a.

Proposition 4.3. (i) Let A = Op(a) ∈ OPSm1
1,0 (Rn), B = Op(b) ∈ OPSm2

1,0 (Rn) .
Then AB ∈ OPSm1+m2

1,0 (Rn) and AB = Op(c), where

c(x, ξ) = (2π)−n

∫
Rn

∫
Rn

a(x, ξ + η)b(x+ y, ξ)e−i(y,η)dydη, (4.5)

and
|c(x, ξ)|l1,l2

≤ C(l1, l2) |a|2k1+l1+m1,l2
|b|l1,l2+2k2

, (4.6)
where 2k1 > n+m1, 2k2 > n.

(ii) Let A = Opd(a) ∈ OPSm
1,0,0(Rn). Then A = Op(c) ∈ OPSm

1,0(Rn), where

c(x, ξ) = (2π)−n

∫
Rn

∫
Rn

a(x, x+ y, ξ + η)e−i(y,η)dydη, (4.7)

and
|c(x, ξ)|l1,l2

≤ C(l1, l2) |a|2k1+l1,l2,l2+2k2
,

where 2k1 > n+m, 2k2 > n.
(iii) Let At be a formal adjoint operator for A = Op(a) ∈ OPSm

1,0 defined by the
formula

(Au, v)) =
(
u,Atv

)
, u, v ∈ S (Rn) ,

(
(u, v) =

∫
Rn

u(x)v̄(x)dx
)
. (4.8)

Then At = Op(at) ∈ OPSm
1,0(Rn), and

at(x, ξ) = (2π)−n

∫
Rn

∫
Rn

ā(x+ y, ξ + η)e−i(y,η)dydη. (4.9)
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The integrals in (4.5), (4.7), (4.9) are understood in the oscillatory sense.
Notice that formula (4.8) allows us to extend pseudodifferential operators to

the space of distributions S′ (Rn) .

Proposition 4.4. (see [48], p. 241). Let A = Op(a) ∈ OPSm
1,0. Then

Au(x) =
∫

Rn

kA(x, z)u(x− z)dz, u ∈ S(Rn),

where
kA(x, z) = F−1

ξ→za(x, ξ).

(F−1
ξ→z is the inverse Fourier transform in the sense of distributions.)

The kernel kA(x, z) ∈ C∞(Rn × Rn\0), and satisfies∣∣∂β
x∂

α
z kA(x, z)

∣∣ ≤ Cα,β,N (a) |z|−n−m−|α|−N
, z 6= 0 (4.10)

for all the multi-indices α, β, and all N ≥ 0 so that n +m + |α| + N > 0, where
Cα,β,N (a) depends on the finite set of the seminorms |a|mr,t of the symbol a.

4.1. Operators with slowly oscillating symbols

Below we set up some facts (without proof) on calculus of pseudodifferential op-
erators with slowly oscillating symbols following [35], see also [40], Chap. 4.

Definition 4.5. A symbol a is called slowly oscillating at infinity if a ∈ Sm
1,0, and∣∣∂α

ξ ∂
β
xa(x, ξ)

∣∣ ≤ Cαβ(x) 〈ξ〉m−|α| , (4.11)

where limx→∞ Cαβ(x) = 0 for every α and β 6= 0. We denote by SOm the class
of slowly oscillating symbols, and by SOm

0 the subclass in SOm of symbols such
that the limx→∞ Cαβ(x) = 0 for every α and β. We use the notations OPSOm,
OPSOm

0 for the classes of operators with symbols in SOm, SOm
0 respectively.

A double symbol a ∈ Sm
1,0,0 is called slowly oscillating if for every compact

set K ⊂ Rn

sup
y∈K

∣∣∂α
ξ ∂

β
x∂

γ
y a(x, x+ y, ξ)

∣∣ ≤ CK
αβγ(x) 〈ξ〉m ,

where
lim

x→∞
CK

αβγ(x) = 0

for every α and |β + γ| 6= 0. We denote by SOm
d the class of slowly oscillating

double symbols, and by OPSOm
d the corresponding class of pseudodifferential

operators.

Proposition 4.6. (i) Let A = Op(a) ∈ OPSOm1 , B = Op(b) ∈ OPSOm2 . Then
AB ∈ OPSOm1+m2 , and

AB = Op(a)Op(b) +Op(t(x, ξ)),

where t(x, ξ) ∈ SOm1+m2−1
0 .
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(ii) Let A = Opd(a) ∈ OPSOm
d (Rn). Then

A = Op(a(x, x, ξ)) +Op(t(x, ξ)),

where t(x, ξ) ∈ SOm−1
0 .

5. Boundedness of pseudodifferential operators in Hs,p(·)(Rn)

Theorem 5.1. Let a variable exponent p satisfy conditions (2.2)–(2.4). Then the
operator A = Op(a)

(
∈ OPS0

1,0

)
is bounded in the space Lp(·)(Rn), and

‖A‖Lp(·)(Rn)→Lp(·)(Rn) ≤ c(n, p) [λ1(A) + λ2(A) + ν(A)] (5.1)

where the constant c(n, p) depends only on n and the exponent p(x). The constants
λ1(A), λ2(A), ν(A) are defined by formulas (3.2)–(3.4), and they depend on the
finite set of the semi-norms |a|r,t of the symbol a.

Proof. We have to check that the pseudodifferential operator A = Op(a) ∈ OPS0
1,0

satisfy conditions (3.2)–(3.4). We obtain estimate (3.2), if in (4.10) we take |α| =
1, β = 0, N = 1, and we obtain estimate (3.3) if in (4.10) we take α = 0, |β| =
1, N = 0. It is well known that a pseudodifferential operator A = Op (a) ∈ OPS0

1,0

is of weak (1, 1)-type (see for instance [48], p. 16–23, and p. 250), hence condition
(3.4) holds too.

One can check that λ1(A), λ2(A), ν(A) depend on the finite set of the
constants Cα,β,0(a). This implies that there exist L ∈ N and a constant κ =

κ
({

|a|r,t

}
r≤L,t≤L

)
such that

‖A‖Lp(·)(Rn)→Lp(·)(Rn) ≤ c(n, p, w)κ(
{
|a|r,t

}
r≤L,t≤L

). (5.2)
�

Theorem 5.2. Let a variable exponent p satisfy conditions (2.2)–(2.4). Then
A = Op(a)

(
∈ OPSm

1,0

)
is a bounded operator from Hs,p(·) (Rn) to the space

Hs−m,p(·) (Rn) , and

‖A‖Hs,p(·)(Rn)→Hs−m,p(·)(Rn) ≤ c(n, p, s,m) [λ1(A) + λ2(A) + ν(A)] (5.3)

where the constant c(n, p, s,m) depends only on n, the exponent p, the order m of
the operator, and the order s of the space. The constants λ1(A), λ2(A), ν(A) are
defined by formulas (3.2)–(3.4).

Proof. By definition of the space Hs,p(·) (Rn) we have

‖A‖Hs,p(·)(Rn)→Hs−m,p(·)(Rn) =
∥∥∥〈D〉s−m

A 〈D〉−s
∥∥∥

Lp(·)(Rn)→Lp(·)(Rn)
.

The operator 〈D〉s−m
A 〈D〉−s ∈ OPS0

1,0 and it is bounded in Lp(·)(Rn). Hence
A : Hs,p(·) (Rn) → Hs−m,p(·) (Rn) is bounded and estimate (5.3) holds. �
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6. Fredholmness of pseudodifferential operators in the spaces
Lp(·)(Rn) and Hs,p(·)(Rn).

6.1. Sufficient conditions of Fredholmness in Lp(·)(Rn)
Theorem 6.1. Let the function p satisfy conditions (2.2)–(2.4). Then an operator
A = Op(a) ∈ OPSO0 is a Fredholm operator in Lp(·) (Rn) , if

lim
R→∞

inf
|x|+|ξ|≥R

|a (x, ξ)| > 0. (6.1)

Proof. Let ϕ ∈ C∞0 (Rn × Rn) , and ϕ (x, ξ) = 1 if |x|+ |ξ| ≤ 1 and ϕ (x, ξ) = 0 if
|x|+|ξ| ≥ 2.We set ϕR (x, ξ) = ϕ (x/R, ξ/R) , ψR = 1−ϕR. Condition (6.1) implies
that there exists R > 0 such that the symbol bR(x, ξ) = ψR(x, ξ)a−1 (x, ξ) ∈ SO0.
Then, applying Proposition 4.6 we obtain that

Op (bR)Op(a) = Op (ψR + t) = I +Op (ϕR + t)

where ϕR + t ∈ SO−1
0 .

It is well known (see, for instance, [35], p. 35–38, [40], Chap. 4) that Op(r)(
∈ OPSO−1

0

)
is a compact operator in L2 (Rn) . Since Lp(·)(Rn) is an intermediate

space between L2 (Rn) and Lq(·)(Rn) and Op(r) is a bounded operator in Lq(·)(Rn)
and a compact operator in L2 (Rn) , then by Proposition 2.1 Op(r) is a compact
operator in Lp(·)(Rn). Thus Op (ϕR + t) is a compact operator in Lp(·)(Rn), and
Op (bR) is a left regularizer of Op(a) in Lp(·)(Rn). In the same way one can prove
that Op (bR) is a right regularizer of Op(a). �

6.2. Necessary conditions of the Fredholmness in Lp(·)(Rn)
One can check that the following two conditions:

1) there exists a constant C > 0 such that for every point x ∈ Rn

lim
R→∞

inf
|ξ|>R

|a(x, ξ)| > C > 0, (6.2)

2)
lim

R→∞
inf

|x|>R,ξ∈Rn
|a(x, ξ)| > 0 (6.3)

imply condition (6.1).
We will refer to condition (6.2) as a condition of uniform ellipticity of Op(a),

and to condition (6.3) as a condition of ellipticity at infinity.

6.2.1. Uniform ellipticity. We will prove that the Fredholmness of Op(a)∈OPSO0

implies condition (6.2).

Theorem 6.2. Let the variable exponent satisfy conditions (2.2)–(2.4), and Op(a)(
∈ OPSO0

)
be a Fredholm operator in Lp(·)(Rn). Then condition (6.2) holds.

Proof. Fredholmness of Op(a) implies a priory estimate

‖Op (a)u‖Lp(·)(Rn) ≥ C ‖u‖Lp(·)(Rn) − ‖Tu‖Lp(·)(Rn) , (6.4)
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where C > 0 does not depend on u, and T is a compact operator on Lp(·)(Rn).
Let ‖u‖Lp(·)(Rn) = 1 and um(x) = ei(hm,x)u(x). One can see that ‖um‖Lp(·)(Rn) = 1
and the sequence um weakly converges to 0 for hm →∞.

Indeed, under condition (2.2) the general form of the linear functional on
Lp(·)(Rn) is

f(u) =
∫

Rn

f̄(x)u(x)dx,

where f ∈ Lp′(·)(Rn), 1
p(x) + 1

p′(x) = 1, see [25], [43]. Since S(Rn) is dense in
Lp(·)(Rn), we can consider f and u in S(Rn). Hence applying the Parseval equality
we obtain

f(um) =
∫

Rn

f̄(x)ei(hm,x)u(x)dx = (2π)n
∫

Rn

f̂(ξ)û(ξ + hm)dξ → 0

for m→∞.
Let Uhu(x) = ei(x,h)u(x). One can see that Uh is an isometric operator in

Lp(·)(Rn). Moreover, if Op(a) is a pseudodifferential operator, then

U−1
h Op(a)Uh = Op(a(x, ξ + h)).

Hence inequality (6.4) implies that

‖Op(a(x, ξ + hm))u‖Lp(·)(Rn) ≥ C − ‖Tum‖Lp(·)(Rn) .

Since T is a compact operator, the sequence ‖Tum‖Lp(·)(Rn) → 0. Hence for
every function u : ‖u‖Lp(·)(Rn) = 1 there exists m0 such that for m > m0

‖Op (a(x, ξ + hm))u‖Lp(·)(Rn) ≥
C

2
> 0. (6.5)

In [35], pages 51–55, the following was proved: if Op(a) ∈ OPSO0, then

lim
m→∞

‖Op (a(x, ξ + hm)− a(x, hm)ϕ)‖L2(Rn)→L2(Rn) = 0 (6.6)

for every function ϕ ∈ C∞0 (Rn), 0 ≤ ϕ(x) ≤ 1. Note that ‖ϕI‖Lq(·)→Lq(·) ≤ 1, and
by Theorem 5.1

‖Op (a(x, ξ + hm)− a(x, hm)ϕ)‖Lq(·)→Lq(·) ≤ C

with C > 0 independent of m. Then applying Proposition 2.1 we obtain that

lim
m→∞

‖Op (a(x, ξ + hm)− a(x, hm)ϕ)‖Lp(·)→Lp(·) = 0 (6.7)

Hence (6.5) and (6.6) implies that for u ∈ C∞0 (Rn)
(
‖u‖Lp(·)(Rn) = 1

)
there

exists m0 such that for m > m0

‖a(x, hm)u‖Lp(·)(Rn) ≥
C

4
> 0.

Choose a function u ∈ C∞0 (Rn) : ‖u‖Lp(·)(Rn) = 1 with support in a neighbourhood
of the point x0 ∈ Rn such that

sup
x∈suppu

|a(x, hm)− a(x0, hm)| < ε
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uniformly with respect to m. By (2.6) we obtain that for sufficiently large m > m0

‖(a(x, hm)− a(x0, hm))u‖Lp(·)(Rn) < ε.

Hence for sufficiently large m > m0

|a(x0, hm)| = ‖a(x0, hm)u‖Lp(·)(Rn) ≥ ‖a(x, hm)u‖Lp(·)(Rn) − ε =
C

4
− ε > 0

Hence we proved that if Op(a) is a Fredholm operator in Lp(·)(Rn), then there
exists a constant C1 > 0 such that for every x0 ∈ Rn and every sequence hm →∞

|a(x0, hm)| ≥ C1 > 0 (6.8)

for enough large m.
Let condition (6.2) does not hold. Then for arbitrary ε > 0 there exists an x0

and a sequence hm → ∞ such that limm→∞ |a(x0, hm)| < ε. Hence we obtained
contradiction with (6.8). �

6.2.2. Ellipticity at infinity. Here we will show that condition (6.3) is necessary
for the Fredholmness of pseudodifferential operator acting in Lp(·)(Rn).

We denote by Vh the shift operator on the vector h ∈ Rn, that is, Vhu(x) =
u(x− h), x ∈ Rn, u ∈ S(Rn).

Proposition 6.3. Let p satisfy conditions (2.2)–(2.4). Let a sequence (Rn 3)hm →
∞, and wm (∈ C (Rn)) be a sequence converging in the sup-norm on Rn to a func-
tion w ∈ C(Rn). Moreover we suppose that there exists a constant C > 0 such that
for every m ∈ N

|wm (x) | ≤ C

〈x〉n
, |w(x)| ≤ C

〈x〉n
. (6.9)

Then
lim

m→∞
‖Vhm

wm‖Lp(·)(Rn) = ‖w‖Lp(∞)(Rn) . (6.10)

Proof. Let

F (λ,m) =
∫

Rn

∣∣∣∣Vhmwm(x)
λ

∣∣∣∣p(x)

dx =
∫

Rn

∣∣∣∣wm(x)
λ

∣∣∣∣p(x+hm)

dx.

and let

F (λ,∞) =
∫

Rn

∣∣∣∣w(x)
λ

∣∣∣∣p(∞)

dx, λ > 0,

First we will prove that there exists the limit

lim
m→∞

F (λ,m) := F (λ,∞) :=
∫

Rn

∣∣∣∣w(x)
λ

∣∣∣∣p(∞)

dx, (6.11)

uniformly in λ on every segment [a, b] , 0 < a < b <∞.
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Let

F1,R (λ,m) =
∫
|x|≥R

∣∣∣∣wm(x)
λ

∣∣∣∣p(x+hm)

dx,

F2,R (λ,∞) =
∫
|x|≥R

∣∣∣∣w(x)
λ

∣∣∣∣p(∞)

dx.

Taking into account condition (6.9), by a given ε > 0 we can find R0 > 0
such that

F1,R0 (λ,m) < ε (6.12)
uniformly in m, and

F2,R0 (λ,∞) < ε. (6.13)
Let BR = {x ∈ Rn : |x| < R}

Mε =
{
x ∈ B̄R0 : sup

m
|wm (x)| ≤ ε

}
,M

′

ε = B̄R0\Mε.

Then

I1 (λ,m) =
∫

Mε

∣∣∣∣wm (x)
λ

∣∣∣∣p(x+hm)

dx ≤ εp−

a
|Mε| ≤ Cε, (6.14)

I2 (λ) =
∫

Mε

∣∣∣∣w (x)
λ

∣∣∣∣p(∞)

dx ≤ ε

a
|Mε| = Cε, (6.15)

uniformly in λ ∈ [a, b] .
Let

I3 (λ,m) =
∫

M ′
ε

∣∣∣∣wm (x)
λ

∣∣∣∣p(x+hm)

dx (6.16)

It is evident that we can pass to the limit as m→∞ under the sign of the integral
in (6.16). Then we obtain that uniformly in λ ∈ [a, b]

lim
m→∞

I3 (λ,m) =
∫

M ′
ε

∣∣∣∣w (x)
λ

∣∣∣∣p(∞)

dx. (6.17)

Taking into account (6.12), (6.13), (6.14), (6.15), and 6.17) we obtain (6.11).
Let N ∪∞ be a compactification of N by the point∞. The topology on N ∪∞

is introduced such that it is discrete on N and the sets UR = {j ∈ N : j > R} , R > 0
form the fundamental system of neighborhoods of the point ∞. From (6.11) it
follows that F : R+ × (N ∪∞) → R+ is a continuous function.

Further, by the definition of the norm in Lp(·)(Rn)

‖Vhm
wm‖Lp(·)(Rn) = inf {λ > 0 : F (λ,m) ≤ 1} .

Moreover there exists a partial derivative F ′λ (λ,m) < 0 for every λ ∈ (0,∞)
and m ∈ N ∪∞. Hence F (·,m) is a monotonically decreasing function on (0,∞)
for every fix m ∈ N ∪∞. This implies that

‖Vhm
wm‖Lp(·)(Rn) = inf {λ > 0 : F (λ,m) ≤ 1} = λ(m)
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where λ(m) is a unique solution of the equation F (λ,m) = 1. One can see that for
m = ∞ the equation F (λ,∞) = 1 has the unique solution λ(∞) = ‖w‖Lp(∞)(Rn) .

Moreover
F ′λ

(
‖w‖Lp(∞)(Rn) ,∞

)
6= 0.

Hence by the Implicit Function Theorem (see for instance [28], p. 360) we obtain
that λ(m) is a continuous function on N ∪∞ .

Hence

‖w‖Lp(∞)(Rn) = λ(∞) = lim
m→∞

λ(m) = lim
m→∞

‖Vhm
wm‖Lp(·)(Rn)

and we obtain equality (6.10). �

Proposition 6.4. Let A = Op(a) ∈ OPSO0 and a sequence hm → ∞. Then there
exists a subsequence hmk

and a symbol ah ∈ OPS0
1,0 such that for every function

u ∈ C∞0 (Rn)
lim

k→∞
V−hmk

AVhmk
u = Op(ah(ξ))u

in the topology of S(Rn).

Proof. Let A = Op(a) ∈ OPSO0 and a sequence hm →∞. Then

V−hmAVhm = Op(am), (6.18)

where am(x, ξ) = a(x + hm, ξ). Following [35], p. 52-55, one can prove that for
every function u ∈ C∞0 (Rn)

lim
m→∞

Op(a(x+ hm, ξ)− a(hm, ξ))u = 0

in the topology of S(Rn).
The sequence a(hm, ξ) is uniformly bounded and equi-continuous. Hence by

Arcela-Ascoly Theorem there exists a subsequence a(hmk
, ξ) which converges to a

limit function ah(ξ) uniformly on compact sets in Rn. This implies that

Op (a(hmk
, ξ))u→ Op (ah(ξ))u

in the space S(Rn). It is easy to check that ah ∈ S0
1,0. �

Theorem 6.5. Let A = Op(a) ∈ OPSO0 and A be a Fredholm operator in Lp(·)(Rn)
where p satisfies conditions (2.2)–(2.4). Then

lim
R→∞

inf
|x|>R,ξ∈Rn

|a(x, ξ)| > 0. (6.19)

Proof. Let Op(a) : Lp(·)(Rn) → Lp(·)(Rn) be a Fredholm operator. Then the
following a priori estimate holds

‖Op(a)u‖Lp(·)(Rn) ≥ C ‖u‖Lp(·)(Rn) − ‖Tu‖Lp(·)(Rn)), (6.20)

where C > 0 and T is a compact operator.
Let ϕ ∈ C∞0 (Rn) and ϕ(x) = 1 for x in a neighborhood of the origin, ϕR(x) =

ϕ(x/R), ψR = 1− ϕR. One can see that for every u ∈ S(Rn)

lim
R→∞

Ip(·)(ψRu) = 0.
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By (2.7)–(2.8) this implies that

lim
R→∞

‖ψRu‖Lp(·)(Rn) = 0.

Hence the sequence ψRI strongly converges in Lp(·)(Rn) to 0-operator for R→∞.
Since T is a compact operator

lim
R→∞

‖TψRI‖Lp(·)(Rn)→Lp(·)(Rn) = 0. (6.21)

Formulas (6.20), (6.21) yield that there exist R0 such that for R > R0

‖Op(a)ψRu‖Lp(·)(Rn) ≥ C/2 ‖ψRu‖Lp(·)(Rn) (6.22)

for every function u ∈ Lp(·)(Rn). Let a sequence hm ∈ Rn tend to infinity, and
a function u ∈ C∞0 (Rn). Then for fixed R > 0 there exists m ≥ m0 such that
ψRVhmu = Vhmu. Thus, for m ≥ m0

‖Vhm (V−hmOp(a)Vhmu)‖Lp(·)(Rn) = ‖Op(a)ψRVhmu‖Lp(·)(Rn)

≥ C/2 ‖Vhm
u‖Lp(·)(Rn) . (6.23)

Let hmk
be a subsequence of hm defined as in Proposition 6.4 and let wk =

V−hmk
Op(a)Vhmk

u = Op (a(x+ hmk
, ξ))u. Applying Proposition 6.4 we obtain

that wk → w = Op(ah)u in the space S(Rn). Hence we can use Proposition 6.3
and pass to the limit in the inequality∥∥∥Vhmk

wk

∥∥∥
Lp(·)(Rn)

≥ C/2
∥∥∥Vhmk

u
∥∥∥

Lp(·)(Rn)
,

and obtain that

‖Op(ah(ξ))u‖Lp(∞)(Rn) ≥ C/2 ‖u‖Lp(∞)(Rn) . (6.24)

Going over to the adjoint operator we obtain that∥∥(Op(ah(ξ)))∗ u
∥∥

Lq(∞)(Rn)
≥ C/2 ‖u‖Lq(∞)(Rn) , (6.25)

where 1
p(x) + 1

q(x) = 1. Hence Op(ah(ξ)) : Lp(∞)(Rn) → Lp(∞)(Rn) is an invertible
operator. This implies (see for instance [45], [46], [47], [34])) that the invertibility
of Op(ah(ξ)) in Lp(Rn), p ∈ (1,∞) implies the invertibility of Op(ah(ξ)) in L2(Rn)
and hence the condition

inf
ξ
|ah(ξ)| > 0. (6.26)

Thus we proved that for every sequence hm →∞ there exists a subsequence hmk

and a limit symbol ah(ξ) ∈ S0
1,0 such that a(hmk

, ξ) converges to the limit function
ah(ξ) for which condition (6.26) holds uniformly with respect to ξ on compact sets
in Rn.

Suppose now that condition (6.19) is not satisfied. Then there exists a se-
quence (hm, ξm), hm →∞ such that

lim
m→∞

a(hm, ξm) = 0. (6.27)
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Note that ξm can not tend to infinity because in this case (6.27) contradicts to the
above proved condition (6.2). Choose a subsequence (hmk

, ξmk
) of the sequence

(hm, ξm) such that a(hmk
, ξ) converges uniformly with respect to ξ on compact

sets in Rn to the limit function ah(ξ). Suppose that ξmk
→ ξ0 ∈ Rn. (In the

contrary case we can pass to a subsequence again). Then

ah(ξ0) = lim
k→∞

a(hmk
, ξmk

) = 0

and we obtain the contradiction with (6.26). �

6.3. Fredholmness of pseudodifferential operators in Hs,p(·)(Rn)

The result on Fredholmness of pseudodifferential operators in the spacesHs,p(·)(Rn)
is given by the following theorem.

Theorem 6.6. Let the variable exponent p satisfy conditions (2.2)–(2.4). Let
Op(a) ∈ OPSOm. Then

Op(a) : Hs,p(·)(Rn) → Hs−m,p(·)(Rn)

is a Fredholm operator if and only if

lim
R→∞

inf
|x|+|ξ|≥R

∣∣∣a(x, ξ) 〈ξ〉−m
∣∣∣ > 0. (6.28)

Proof. The operator A : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is Fredholm if and only if
the operator B = 〈D〉s−m

Op(a) 〈D〉−s is Fredholm in Lp(·)(Rn). The operator
B = Op(b) ∈ OPSO0 and we can apply Theorems 6.1, 6.2, and 6.5. From Propo-
sition 4.6 it follows that b(x, ξ) = a(x, ξ) 〈ξ〉−m + t(x, ξ), where t ∈ SO0

0. That is,
lim(x,ξ)→∞ t(x, ξ) = 0. Hence the condition

lim
R→∞

inf
|x|+|ξ|≥R

|b(x, ξ| > 0

is equivalent to condition (6.28). �

7. Pseudodifferential operators with analytical symbols in
Hs,p(·)(Rn)

Let B be an open convex domain in Rn containing the origin. We denote by
Sm

1,0(B) a subclass of Sm
1,0(R

n) consisting of symbols a(x, ξ) which have an analytic
extension with respect to the variable ξ to the tube domain Rn

ξ + iB, and such
that for all l1, l2 ∈ N∪0

|a|l1,l2,B = sup
x∈Rn,ξ∈Rn

ξ ,η∈B
〈ξ〉−m+|α| ∑

|α|≤l1,|β|≤l2

∣∣∂β
x∂

α
ξ a(x, ξ + iη)

∣∣ <∞.

As above, with a symbol a ∈ Sm
1,0 (B) we associate a pseudodifferential op-

erator. The class of such pseudodifferential operators is denoted by OPSm
1,0 (B).
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Definition 7.1. We denote by R(B) a class of positive weights w such that:

1) logw ∈ C∞(Rn), and

Nl(logw) = sup
x

∑
|β|≤l

∣∣∂β∇ (logw(x))
∣∣ <∞

for all l;
2) ∇ (logw(x)) ∈ B for every x ∈ Rn.

A weight w(x) ∈ R(B) is called slowly oscillating if:

3) limx→∞
∂∇(log w(x))

∂xj
= 0, j = 1, . . . , n.

We denote the class of slowly oscillating weights by Rsl(B).

Let

gw(x, y) =

1∫
0

(∇ logw)(x− t(x− y))dt.

It is easy to check that for all l1, l2 ∈ N ∪ 0

sup
x,y

∑
|α|≤l1,|β|≤l2

∣∣∂α
x ∂

β
y gw(x, y)

∣∣ ≤ C sup
x∈Rn,1≤|β|≤l1+l2

∣∣∂β logw(x)
∣∣ <∞.

Moreover, condition 2) implies that gw(x, y) ∈ B for every (x, y) ∈ Rn × Rn.
The following Proposition is a key result for the study of pseudodifferential

operators in exponential weighted spaces.

Proposition 7.2. (see [40], p. 243–247). Let

A = Op(a(x, ξ)) ∈ OPSm
1,0(Rn, B); w(x) ∈ R(B).

Then the operator wOp(p)w−1 ∈ OPSm
1,0,0(Rn), and

wOp(a)w−1 = Opd(a(x, ξ + igw(x, y)).

Proposition 7.3. (see [40], p. 243–247). Let

A = Op(a(x, ξ)) ∈ OPSOm(B) = OPSOm ∩OPSm
1,0(B),

and a weight w ∈ Rsl(B). Then

wAw−1I = Op(a(x, ξ + i∇ logw(x))) +Op(t(x, ξ)), (7.1)

where t(x, ξ) ∈ SOm−1
0 (Rn).

By Hs,p(·)
w (Rn) we denote the weighted space with norm

‖u‖
H

s,p(·)
w (Rn)

= ‖wu‖Hs,p(·)(Rn) .

pagebreak
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Theorem 7.4. Let the variable exponent satisfy conditions (2.2)–(2.4), Op(a) ∈
OPSm

1,0(B), w(x) ∈ R(B). Then

Op(a) : Hs,p(·)
w (Rn) → Hs−m,p(·)

w (Rn)

is a bounded operator.

Proof. Proof immediately follows from Proposition 7.2 and Theorem 5.2. �

Theorem 7.5. Let the variable exponent satisfy conditions (2.2)–(2.4). Let Op(a) ∈
OPSOm ∩OPSm

1,0(B) and w ∈ Rsl(B). Then

Op(a) : Hs,p(·)
w (Rn) → Hs−m,p(·)

w (Rn)

is a Fredholm operator if and only if

lim
R→∞

inf
|x|+|ξ>R|

a(x, ξ + i∇ logw(x)) 〈ξ〉−m
> 0. (7.2)

Proof. Proof follows directly from Proposition 7.3, and Theorems 6.1–6.5. �

Theorem 7.5 has the following important corollary, in which spess(A : X →
X) stands for the essential spectrum of a bounded operator A : X → X ( λ ∈ C
is said to be a point of the essential spectrum of A, if A − λI is not Fredholm
operator).

Theorem 7.6. Let the variable exponent satisfy conditions (2.2)–(2.4). Let Op(a) ∈
OPSO0 ∩OPS0

1,0(Rn, B) be a uniformly elliptic pseudodifferential operator at ev-
ery point x ∈ Rn, w ∈ Rsl(B). Then

spess(Op(a) : Hs,p(·)
w (Rn) →Hs,p(·)

w (Rn))

=
⋃

h∈Ω(a,w)

{λ ∈ C : λ = ah(ξ + iwh), ξ ∈ Rn}

where Ω(a,w) is the set of all sequences hm →∞ such that the limit

ah(ξ + iwh) = lim
hm→∞

a(hm, ξ + i (∇ logw) (hm)) (7.3)

is uniform on every compact set in Rn.

Theorem 7.6 shows that the essential spectrum of pseudodifferential opera-
tor does not depend on s, p, but it essentially depends on the weight w. General
speaking, the essential spectrum of Op(a) ∈ OPSO0 ∩ OPS0

1,0(Rn, B) acting in

H
s,p(·)
w (Rn) is a massive set in the complex plane C, and massivity of this set

depends on oscillations of symbol with respect to x, and oscillations of the char-
acteristic ∇ (logw) of the weight w.
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Theorem 7.7 (Phragmen-Lindelöf principle). Let the variable exponent satisfy con-
ditions (2.2)–(2.4). Let Op(a) ∈ OPSOm ∩OPSm

1,0(B) be an elliptic pseudodiffer-
ential operator at every point x ∈ Rn, w ∈ Rsl(B), limx→∞ w(x) = ∞, and the
domain B be symmetric with respect to the origin. Let

lim
R→∞

inf
|x|>R,ξ+iη∈Rn+iB

|a(x, ξ + iη)| 〈ξ〉−m
> 0. (7.4)

Then

u ∈ Hs,p(·)
w−1 (Rn), Op(a)u ∈ Hs−m,p(·)

w (Rn) =⇒ u ∈ Hs,p(·)
w (Rn).

Proof. In view of Proposition 7.3, the operator wθOp(a)w−θ, θ ∈ [−1, 1] can be
written as

wθOp(a)w−θI = Op(a(x, ξ + iθ∇ logw(x)) +Op(tθ(x, ξ)),

where tθ(x, ξ) belongs to SOm−1
0 (Rn). By Theorem 7.5 and condition (7.4), the

operator wθOp(a)w−θI : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is a Fredholm operator for
all θ ∈ [−1, 1] .

We will prove that the index of wθOp(a)w−θI does not depend on the pa-
rameter θ. Applying Proposition 4.2 we prove that the mapping [−1, 1] 3 θ →
wθOp(a)w−θI : Hs(Rn) → Hs−m(Rn) is continuous. Theorem 5.2 implies that
the family wθOp(a)w−θI : Hs,p(·)(Rn) → Hs−m,p(·)(Rn) is uniformly bounded.
Hence in light of the Proposition 2.1 the family wθOp(a)w−θI : Hs,p(·)(Rn) →
Hs−m,p(·)(Rn) is continuous. Hence,

Index (wθOp(a)w−θI : Hs,p(·)(Rn) → Hs−m,p(·)(Rn))

does not depend on θ ∈ [−1, 1]. This yields that

Index(Op(a) : Hs,p(·)
w (Rn) → Hs−m,p(·)

w (Rn)

= Index(Op(a) : Hs,p(·)
w−1 (Rn) → H

s−m,p(·)
w−1 (Rn).

Moreover, the conditions limx→∞ w(x) = ∞ imply that Hs,p(·)
w (Rn) ⊂ H

s,p(·)
w−1 (Rn),

and the last imbedding is dense.
Then (see [11], p. 308)

kerOp(a) : Hs,p(·)
w−1 (Rn) → H

s−m,p(·)
w−1 (Rn)

coincides with kerOp(a) : Hs,p(·)
w (Rn) → H

s−m,p(·)
w (Rn) . Moreover, if the equa-

tion Op(a)u = f, where f ∈ H
s−m,p(·)
w (Rn) is solvable in H

s,p(·)
w−1 (Rn), then u ∈

H
s,p(·)
w (Rn). �
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8. Appendix. Proof of Lemma 3.9

In view of (3.4) we have∫
E

|Af(x)|sdx = s

∞∫
0

λs−1|{x ∈ E : |Af(x)| > λ}dλ

≤ s

∞∫
0

λs−1 min
(
|E|, ν(A)

λ
‖f‖1

)
dλ

= s

ν(A)‖f‖1
|E|∫
0

λs−1|E|dλ+ s

∞∫
ν(A)‖f‖1

|E|

λs−2ν(A)‖f‖1dλ

= (ν(A)‖f‖1)s |E|1−s +
s

1− s
(ν(A)‖f‖1)s |E|1−s

=
1

1− s
|E|1−s (ν(A)‖f‖1)s

.
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[14] L. Hörmander. The analysis of linear partial differential operators. III, volume 274 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences]. Springer-Verlag, Berlin, 1985. Pseudodifferential operators.
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