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1 Introduction

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ ` ≤ ∞} be a simple rectifiable curve with arc-length measure

ν(t) = s. In the sequel we denote

Γ(t, r) := Γ ∩B(t, r), t ∈ Γ, r > 0, (1.1)

where B(t, r) = {z ∈ C : |z − t| < r}.

Everywhere below we assume that Γ is a Carleson curve. We remind that a curve is called

a Carleson curve (regular curve), if there exists a constant c0 > 0 not depending on t and r,

such that

ν{Γ(t, r)} ≤ c0r. (1.2)

We consider — along Carleson curves Γ — the following operators within the frameworks

of weighted spaces Lp(·)(Γ, w), w(t) =
∏n

k=1 |t− tk|
βk , tk ∈ Γ with variable exponent p(t) (see

definitions in Section 4): the maximal operator

Mf(t) = sup
r>0

1

ν{Γ(t, r)}

∫

Γ(t,r)

|f(τ)|dν(τ) (1.3)

and the potential type operator

Iα(·)f(t) =

∫

Γ

f(τ) dν(τ)

|t− τ |1−α(t)
, (1.4)
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where it is supposed that

α− := inf
t∈Γ

α(t) > 0, α+ := sup
t∈Γ

α(t) < 1 (1.5)

(see for instance [1] on Riesz potentials with respect to an arbitrary measure or [2] in case of

homogeneous type spaces). By

Mβf(t) = sup
r>0

1

ν{Γ(t, r)}

∫

Γ(t,r)

|t− t0|
β

|τ − t0|β
|f(τ)|dν(τ), (1.6)

we denote the weighted version of the maximal operator.

The results we obtain here for these classical operators are valid not only on Carleson curves,

but also in a more general context of metric spaces or homogeneous type spaces (HTS) at least

under the condition µ(B(x, r)) ∼ rd (see [2] on maximal and potential operators over HTS in

case of constant p). However, in this paper we develop our results specially in the context of

Carleson curves because of applications to the singular operator

SΓf(t) =
1

πi

∫

Γ

f(τ)

τ − t
dν(τ) (1.7)

over Carleson curves and singular integral equations over such curves. For example, the follow-

ing boundedness result is valid, where w(t) =
∏n

k=1 |t − tk|
βk , tk ∈ Γ in the case Γ is a finite

curve and w(t) = |t− z0|
β

∏n
k=1 |t− tk|

βk , tk ∈ Γ, z0 /∈ Γ in the case it is infinite.

Theorem Let

i) Γ be a simple Carleson curve;

ii) p satisfy conditions

1 < p− ≤ p(t) ≤ p+ <∞, |p(t) − p(τ)| ≤
A

ln 1
|t−τ |

, t ∈ Γ, τ ∈ Γ, |t− τ | ≤
1

2
;

iii) In the case Γ is an infinite curve, let p also satisfy the following condition at infinity

|p(t) − p(τ)| ≤
A∞

ln 1

| 1t −
1
τ |

,

∣

∣

∣

∣

1

t
−

1

τ

∣

∣

∣

∣

≤
1

2
, |t| ≥ L, |τ | ≥ L (1.8)

for some L > 0.

Then the singular operator SΓ is bounded in the space Lp(·)(Γ, w) , if and only if

−
1

p(tk)
< βk <

1

p′(tk)
, k = 1, . . . , n, (1.9)

and also

−
1

p∞
< β +

n
∑

k=1

βk <
1

p′(∞)
(1.10)

in the case Γ is infinite.

This theorem will be proved in another paper. In the context of a general scheme of

investigation of Fredholmness of singular integral equations (see [3, Section 4]), it is clear that

the boundedness of the singular operator SΓ immediately yields the Fredholmness statement

for an arbitrary Carleson curve in its sufficiency part and also in its necessity part for Carleson

curves without curling points. These questions will also be treated in another publication.
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2 Definitions

The theory of generalized Lebesgue spaces with variable exponent may be found for instance in

[4–7], where it was presented for the Euclidean case. This theory is known to develop rapidly

last years in connection with various applications, see for instance [8–10], where other references

may be also found. We give below the necessary definitions for the case of spaces on Carleson

curves.

Let p be a measurable function on Γ such that p : Γ → (1,∞). In what follows we assume

that p satisfies the conditions

1 < p− := ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) =: p+ <∞, (2.1)

|p(t) − p(τ)| ≤
A

ln 1
|t−τ |

, t ∈ Γ, τ ∈ Γ, |t− τ | ≤
1

2
. (2.2)

Definition 2.1 By P = P(Γ) we denote the class of exponents p satisfying condition (2.1)

and by P = P(Γ) the class of those p for which the maximal operator M is bounded in the space

Lp(·)(Γ).

Observe that condition (2.2) may be also written in the form

|p(t) − p(τ)| ≤
2`A

ln 2`
|t−τ |

, t, τ ∈ Γ, (2.3)

where ` is the length of the curve.

The generalized Lebesgue space with variable exponent is defined via the modular

I
p
Γ (f) :=

∫

Γ

|f(t)|p(t) dν(t)

by the norm

‖f‖p(·) = inf

{

λ > 0 : I
p
Γ

(

f

λ

)

≤ 1

}

.

Observe that

‖f‖p(·) = ‖fa‖
1
a
p(·)

a

(2.4)

for any 0 < a ≤ inf p(t).

By Lp(·)(Γ, w) we denote the weighted Banach space of all measurable functions f : Γ → C

such that

‖f‖Lp(·)(Γ,w) := ‖wf‖p(·) = inf

{

λ > 0 :

∫

Γ

∣

∣

∣

∣

w(t)f(t)

λ

∣

∣

∣

∣

p(t)

dν(t) ≤ 1

}

<∞. (2.5)

We denote p′(t) = p(t)
p(t)−1 .

From the Hölder inequality for the Lp(·)-spaces
∣

∣

∣

∣

∫

Γ

u(τ)v(τ) dν(τ)

∣

∣

∣

∣

≤ k‖u‖Lp(·)(Γ)‖v‖Lp′(·)(Γ),
1

p(τ)
+

1

p′(τ)
≡ 1,

it follows that
∣

∣

∣

∣

∫

Γ

u(t)v(t) dν(t)

∣

∣

∣

∣

≤ k‖u‖
Lp′(Γ, 1

w )‖v‖Lp(Γ,w), (2.6)



4 Kokilashvili, V. and Samko S.

and for the conjugate space
[

Lp(·)(Γ, w)
]∗

we have

[Lp(·)(Γ, w)]∗ = Lp′(·) (Γ, 1/w) (2.7)

which is an immediate consequence of the fact that
[

Lp(·)(Γ)
]∗

= Lp′(·) (Γ) under condition

(2.1), see [6–7].

The following value
1

pγ

=
1

ν(γ)

∫

γ

dν(t)

p(t)
, γ ⊂ Γ (2.8)

will be used, introduced for balls in R
n by Diening [11]. Here γ = Γ(t, r), t ∈ Γ, r > 0, is any

portion of the curve Γ.

By χγ(τ) =
{

1, τ∈γ

0, τ∈Γ\γ we denote the characteristic function of a portion γ of the curve Γ.

3 The Main Statements

In the sequel we consider the power weights of the form

w(t) =

n
∏

k=1

|t− tk|
βk , tk ∈ Γ (3.1)

in the case of finite curve and the weights

w(t) = |t− z0|
β

n
∏

k=1

|t− tk|
βk , tk ∈ Γ, z0 /∈ Γ (3.2)

in the case of infinite curve.

3.1 Theorems on Maximal Operator

Theorem A Let

i) Γ be a simple Carleson curve of a finite length;

ii) p satisfy conditions (2.1)–(2.2).

Then the maximal operator M is bounded in the space Lp(·)(Γ, w) with weight (3.1), if and only

if

−
1

p(tk)
< βk <

1

p′(tk)
, k = 1, . . . , n. (3.3)

Theorem B Let

i) Γ be an infinite simple Carleson curve;

ii) p satisfy conditions (2.1)–(2.2) and let there exist a circle B(0, R) such that p(t) ≡ p∞ =

const for t ∈ Γ\(Γ ∩B(0, R)).

Then the maximal operator M is bounded in the space Lp(·)(Γ, w), with weight (3.2), if and only

if

−
1

p(tk)
< βk <

1

p′(tk)
and −

1

p∞
< β +

n
∑

k=1

βk <
1

p′∞
. (3.4)

The Euclidean space versions of Theorems A and B for variable exponents were proved in

[12] and [13], respectively.
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3.2 Theorems on Potential Operators

Theorem C Let

i) Γ be a simple Carleson curve of a finite length;

ii) p satisfy conditions (2.1)–(2.2);

iii) α(t) satisfy assumptions (1.5) and the condition

sup
t∈Γ

α(t)p(t) < 1. (3.5)

Then the operator Iα(·) is bounded from the space Lp(·)(Γ) into the space Lq(·)(Γ) with 1
q(t) =

1
p(t)−α(t). This statement remains valid for infinite Carleson curves if, in addition to conditions

i)–iii), p(t) = p∞ = const and α(t) = α∞ = const outside some circle B(t0, R), t0 ∈ Γ.

The next theorem is a weighted generalization of Theorem C for finite curves.

Theorem D Under assumptions i)–iii) of Theorem C and the condition

|α(t) − α(tk)| ≤
A

| ln |t− tk||
, k = 1, . . . , n,

the operator Iα(·) is bounded from the space Lp(·)(Γ, w) into the space Lq(·)(Γ, w) where 1
q(t) =

1
p(t) − α(t), and w is the weight (3.1), if

α(tk) −
1

p(tk)
< βk < 1 −

1

p(tk)
, k = 1, . . . , n. (3.6)

Corollary Under the assumptions of Theorem D, the fractional maximal operator

Mα(·)f(t) = sup
r>0

1

ν{Γ(t, r)}n−α(t)

∫

Γ(t,r)

|f(τ)| dν(τ)

is bounded from the space Lp(·)(Γ, w) into the space Lq(·)(Γ, w).

4 Preliminaries

Lemma 4.1 Let Γ be a Carleson curve and let β = β(t) be a function defined on Γ. If

sup
t∈Γ

β(t) < 1, then

c1r
1−β(t) ≤

∫

Γ(t,r)

dν(τ)

|τ − t|β(t)
≤ c2r

1−β(t), (4.1)

where positive constants c1 and c2 do not depend on t ∈ Γ and r > 0. For fixed t, the condition

β(t) < 1 is necessary for the convergence of the integral.

Proof The proof is standard:
∫

Γ(t,r)

dν(τ)

|t− τ |β(t)
=

∞
∑

k=0

∫

τ∈Γ:

2−(k+1)r<|t−τ|<2−kr

dν(τ)

|t− τ |β(t)

≤
∞
∑

k=0

ν
(

Γ(t, 2−kr)
)

)
(

2−(k+1)r
)β(t)

≤ cr1−β(t)2β(t)
∞
∑

k=0

1

2k[1−β(t)]
≤ c2r

1−β(t),

where the property (1.2) has been used. Similarly, the lower bound in (4.1) and the necessity

of the condition β(t) < 1 are obtained. �

Similarly, the following statement is proved.
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Lemma 4.2 Let Γ be a Carleson curve and let λ = λ(t) be a function defined on Γ. If

inft∈Γ λ(t) > 1, then

c1r
1−λ(t) ≤

∫

Γ\Γ(t,r)

dν(τ)

|τ − t|λ(t)
≤ c2r

1−λ(t) (4.2)

with positive constants c1 and c2 not depending on t ∈ Γ and r > 0. For fixed t, the condition

λ(t) > 1 is necessary for the convergence of the integral in case Γ is an infinite curve.

Proposition 4.3 Let p(t) satisfy condition (2.1) and the maximal operator M be bounded in

Lp(·)(Γ). Then there exists a constant C > 0 such that

‖χγ‖p(·) ≤ C[ν(γ)]
1

pγ for all γ = Γ(t, r) ⊂ Γ, (4.3)

where pγ is the mean value (2.8).

Proposition 4.3 was proved in [11], Lemma 3.4, for balls in the Euclidean space and remains

the same for arcs γ on Carleson curves. For completeness of presentation we expose this proof

in the Appendix.

5 Auxiliary Statements

5.1 Estimation of
∫

Γ(t,r)
|τ − t0|

−βdν(τ)

Lemma 5.1 Let t0 ∈ Γ and 0 ≤ β < 1. Then

Jβ(t, t0; r) :=
|t− t0|

β

ν(Γ(t, r))

∫

Γ(t,r)

dν(τ)

|τ − t0|β
≤ c <∞, (5.1)

where c > 0 does not depend on t, t0 ∈ Γ and r > 0.

Proof 1) The case |t− t0| ≥ 2r. In this case |τ − t0| ≥ |t− t0|− |τ − t| ≥ |t− t0|− r ≥
1
2 |t− t0|.

Therefore,

Jβ(t, t0; r) ≤
2β

ν{Γ(t, r)}

∫

Γ(t,r)

dν(τ) = 2β . (5.2)

2) The case |t− t0| ≤ 2r. Observe that the ball B(t, r) is embedded into the ball B(t0, 3r).

Indeed, if |τ − t| < r, then |τ − t0| ≤ |τ − t| + |t− t0| < r + 2r = 3r. Hence

Jβ(t, t0; r) ≤
|t− t0|

β

ν(Γ(t, r))

∫

Γ(t0,3r)

dν(τ)

|τ − t0|β
.

Making use of the right-hand side estimate in (4.1), we get

Jβ(t, t0; r) ≤ c

(

|t− t0|

r

)β
r

ν{Γ(t, r)}
≤

c2βr

ν{Γ(t, r)}
≤ c1 <∞.

5.2 An Auxiliary Statement on Maximal Functions

We will need the following technical lemma.

Lemma 5.2 Let Γ be a finite or infinite Carleson curve, p : Γ → [1,∞) be a bounded function

satisfying condition (2.2), γ = Γ(t, r) and pγ be the mean value defined in (2.8). Then for any

bounded range of r, 0 < r ≤ ` <∞, there exists a constant C > 1 not dependent on t ∈ Γ and

r ∈ (0, `] such that
1

C
≤ r

1
p(t)

− 1
pγ ≤ C. (5.3)
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Proof The inequality in (5.3) is equivalent to

1

C1
≤

(

r

2`

)
1

p(t)
− 1

pγ

≤ C1

or
∣

∣

∣

∣

1

p(t)
−

1

pγ

∣

∣

∣

∣

ln
2`

r
≤ c, c = lnC1,

that is,
∣

∣

∣

∣

1

ν(γ)

∫

Γ(t,r)

(

1

p(t)
−

1

p(τ)

)

dν(τ)

∣

∣

∣

∣

ln
2`

r
≤ c,

which is true since by (2.3) we have
∣

∣

∣

∣

1

p(t)
−

1

p(τ)

∣

∣

∣

∣

≤ c|p(t) − p(τ)| ≤
2`A

ln 2`
|t−τ |

≤
2`A

ln 2`
r

. �

6 Proof of Theorem A

6.1 General Remark

Remark 6.1 It suffices to prove Theorem A (as well as Theorems B, D, E and F) for a single

weight |t− t0|
β where t0 ∈ Γ in the case Γ is finite and t0 may belong or not belong to Γ when

Γ is infinite.

Indeed, in the case of a finite curve let Γ =
⋃n

k=1 Γk where Γk contains the point tk in its

interior and does not contain tj , j 6= k in its closure. Then

‖f‖
Lp(·)

(

Γ,
n
∏

k=1

|t−tk|
βk

) ∼
n

∑

k=1

‖f‖
Lp(·)(Γk,|t−tk|

βk), (6.1)

whenever 1 ≤ p− ≤ p+ < ∞. This equivalence follows from the easily checked modular

equivalence

I
p
Γ

(

f(t)

n
∏

k=1

|t− tk|
βk

)

∼
∑

k=1

I
p
Γk

(

f(t)|t− tk|
βk

)

,

since

c1 ≤ ‖f‖p(·) ≤ c2 =⇒ c3 ≤ I
p
Γ (f) ≤ c4 and C1 ≤ I

p
Γ (f) ≤ C2 =⇒ C3 ≤ ‖f‖p(·) ≤ C4 (6.2)

with c3 = min(c
p−

1 , c
p+

1 ), c4 = max(c
p−

2 , c
p+

2 ), C3 = min(C
1

p−

1 , C
1

p+

1 ) and C4 = max(C
1

p−

2 , C
1

p+

2 ).

Similarly, in the case of an infinite curve

‖f‖
Lp(·)

(

Γ,|t−z0|β
n
∏

k=1

|t−tk|
βk

) ∼ ‖f‖Lp(·)(Γ∞,|t−z0|β) +
∑

k=1

‖f‖
Lp(·)(Γk,|t−tk|

βk), (6.3)

where Γ∞ is a portion of the curve outside some large circle, so that Γ∞ does not contain the

points tk, k = 1, . . . , n.

Then, because of (6.1) and (6.3), the statement of Remark 6.1 is obtained by introduction

of the standard partition of unity 1 =
∑n

k=1 ak(t), where ak(t) are smooth functions equal to

1 in a neighborhood Γ(tk, ε) of the point tk and equal to 0 outside its neighborhood Γ(tk, 2ε)
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(and similarly in a neighborhood of infinity in the case Γ is infinite), so that ak(t)|t− tj|
±βj ≡ 0

in a neighborhood of the point tk, if k 6= j.

6.2 A pointwise estimate for the weighted means

We follow the main ideas in [12]. First we prove the following auxiliary result on a pointwise

estimate for the weighted means

Mβ
r f(t) =

1

r

∫

Γ(t,r)

(

|t− t0|

|τ − t0|

)β

|f(τ)| dν(τ). (6.4)

We denote also Mrf(t) = Mβ
r f(t)

∣

∣

β=0
.

Theorem 6.2 Let p(t) satisfy conditions (2.1)–(2.2). If 0 ≤ β < 1
p′(t0)

, then

[

Mβ
r f(t)

]p(t)
≤ c

(

1 +
1

r

∫

Γ(t,r)

|f(τ)|p(τ) dν(τ)

)

(6.5)

for all f ∈ L(p(·)(Γ) such that ‖f‖p(·) ≤ 1, where c = c(p, β) is a constant not depending on

t, t0 ∈ Γ and r > 0.

Proof Since β < 1
p′(t0)

, we conclude that there exists a d > 0 such that

βp′(t) < 1 for all t ∈ Γ(t0, d) (6.6)

where we may assume that d ≤ 1. Let

pr(t) = min
τ∈Γ(t,r)

p(τ)

and 1
p′

r(t) = 1 − 1
pr(t) . From (6.6) we see that

βp′r(t) < 1 if t ∈ Γ

(

t0,
d

2

)

and 0 < r ≤
d

4
. (6.7)

10 The case t ∈ Γ
(

t0,
d
2

)

and 0 < r ≤ d
4

(the main case). Applying the Hölder inequality

with the exponents pr(t) and p′r(t) to the integral on the right-hand side of the equality
∣

∣

∣

∣

Mr

(

f(·)

| · −t0|β

)

(t)

∣

∣

∣

∣

p(t)

=
c

rp(t)

(
∫

Γ(t,r)

|f(τ)|

|τ − t0|β
dν(τ)

)p(t)

and taking (6.7) into account, we get

∣

∣

∣

∣

Mr

(

f(·)

| · −t0|β

)

(t)

∣

∣

∣

∣

p(t)

≤
c

rp(t)

(
∫

Γ(t,r)

|f(τ)|pr(t) dν(τ)

)

p(t)
pr(t)

·

(
∫

Γ(t,r)

dν(τ)

|τ − t0|βp′
r(t)

)

p(t)

p′
r(t)

. (6.8)

By (6.7), estimate (5.1) is applicable which yields

∣

∣

∣

∣

Mr

(

f(·)

| · −t0|β

)

(t)

∣

∣

∣

∣

p(t)

≤ c
|t− t0|

−βp(t)

r
p(t)

pr(t)

(
∫

Γ(t,r)

|f(τ)|pr(t) dν(τ)

)

p(t)
pr(t)

.

Here
∫

Γ(t,r)

|f(τ)|pr(t) dν(τ) ≤

∫

Γ(t,r)

dν(τ) +

∫

τ∈Γ(t,r):|f(τ)|≥1

|f(τ)|p(τ) dν(τ),

since pr(t) ≤ p(τ) for τ ∈ B(t, r). Since p(t) is bounded, we see that

∣

∣

∣

∣

Mr

(

f(·))

| · −t0|β

)

(t)

∣

∣

∣

∣

p(t)

≤ c1
|t− t0|

−βp(t)

r
p(t)

pr(t)

[

r +
1

2

∫

Γ(t,r)

|f(τ)|p(τ) dν(τ)

]

p(t)
pr(t)

.
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Since r ≤ d
2 ≤ 1

2 and the second term in the brackets is also less than or equal to 1
2 , we arrive

at the estimate

|Mβ
r f(t)|p(t) ≤

c

r
p(t)

pr(t)

[

r +

∫

Γ(t,r)

|f(τ)|p(τ) dν(τ)

]

≤ c r
pr(t)−p(t)

pr(t)

[

1 +
1

r

∫

Γ(t,r)

|f(τ)|p(τ) dν(τ)

]

.

From here (6.5) follows, since r
pr(t)−p(t)

pr(t) ≤ c. Indeed, r
pr(t)−p(t)

pr(t) = e
1

pr
[p(t)−pr(t)] ln 1

r , where
∣

∣

∣

∣

1

pr

[p(t) − pr(t)] ln
1

r

∣

∣

∣

∣

≤ |p(t) − p(ξr)| ln
1

r

with ξr ∈ Γ(t, r), and then by (2.2),
∣

∣

∣

∣

1

pr

[p(t) − pr(t)] ln
1

r

∣

∣

∣

∣

≤ A
ln 1

r

ln 1
|t−ξr |

≤ A,

since |t− ξr| ≤ r.

20 The case |t − t0| ≥
d
2
, 0 < r ≤ d

4
. This case is trivial, because |τ− t0| ≥ |t− t0|−|τ− t| ≥

d
2 − d

4 = d
4 . Thus |τ − t0|

β ≥
(

d
4

)β
. Since |t− t0|

β ≤ `β , it follows that

Mβ
r f(x) ≤ cMrf(x),

and one may proceed as above for the case β = 0 (the condition |t − t0| ≤
d
2 is not needed in

this case).

30 The case r ≥ d
4
. This case is also easy. It suffices to show that the left-hand side of (6.5)

is bounded. We have

Mβ
r f(t) ≤

c`β
(

d
4

)n

[
∫

Γ(t0, d
8 )

|f(τ)|

|τ − t0|β
dν(τ) +

∫

Γ\Γ(t0, d
8 )

|f(τ)|

|τ − t0|β
dν(τ)

]

.

Here the first integral is estimated via the Hölder inequality with the exponents

p d
8

= min|τ−t0|≤
d
8
p(τ) and q d

8
= p′d

8

, which is possible since βp′d
8

< 1. The estimate of the

second integral is trivial since |t− t0| ≥
d
8 .

Corollary Let 0 ≤ β < 1
p′(t0)

. If conditions (2.1)–(2.2) are satisfied, then

|Mβf(t)|p(t) ≤ c+ cM [|f(·)|p(·)](t) (6.9)

for all f ∈ Lp(·)(Γ) such that ‖f‖p(·) ≤ 1 .

6.3 Proof of Theorem A Itself

We have to show that
∥

∥Mβf
∥

∥

p(·)
≤ c in some ball ‖f‖p(·) ≤ R, which is equivalent to the

inequality

I
p
Γ(Mβf) ≤ c for

∥

∥f
∥

∥

p(·)
≤ R.

We observe that

|t− t0|
βp(t) ∼ |t− t0|

βp(t0) (6.10)

since p(t) satisfies condition (2.2).
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I Sufficiency part By (6.10) we obtain

I
p
Γ(Mβf) ≤ c

∫

Γ

|t− t0|
βp(t0)

∣

∣

∣

∣

M

(

f(τ)

|τ − t0|β

)

(t)

∣

∣

∣

∣

p(t)

dν(t).

Following the idea in [14–15], we represent this as

I
p
Γ(Mβf) ≤ c

∫

Γ

(

|t− t0|
βr(t0)

∣

∣

∣

∣

M

(

f(τ)

|τ − t0|β

)

(t)

∣

∣

∣

∣

r(t))p−

dt, (6.11)

where r(t) = p(t)
p−

. In the further estimations we distinguish the cases β ≤ 0 and β ≥ 0.

10 The case − 1
p(t0) < β ≤ 0

Estimate (6.9) with β = 0 says that

|Mψ(t)|r(t) ≤ c(1 +M [ψr(·)](t)) (6.12)

for all ψ ∈ Lr(·)(Γ) with ‖ψ‖r(·) ≤ 1. For ψ(t) = f(t)
|t−t0|β

we have
∥

∥ψ
∥

∥

r(·) ≤ a0

∥

∥ f
∥

∥

r(·)
, a0 =

`|β|, where we took into account that β ≤ 0. Hence
∥

∥ψ
∥

∥

r(·)
≤ a0 · k

∥

∥f
∥

∥

p(·)
≤ a0kR. Therefore

we choose R = 1
a0k

. Then ‖ψ‖r(·) ≤ 1, so that (6.12) is applicable. From (6.11) we now get

I
p
Γ(Mβf) ≤ c

∫

Γ

(

|t− t0|
βr(t0)

[

1 +M

(
∣

∣

∣

∣

f(τ)

|τ − t0|β

∣

∣

∣

∣

r(τ))])p−

dν(τ).

By property (6.10), this yields

I
p
Γ(Mβf) ≤ c

∫

Γ

{

|t− t0|
βp(t0) +

(

|t− t0|
βr(t0)M

(

f(τ)|r(τ)

|τ − t0|βr(t0)

))p−
}

dt

≤ c+ c

∫

Γ

(Mβ1(|f(·)|r(·))(t))p− dν(t),

where

β1 = βr(t0) =
βp(t0)

p−
.

As is known [16, p. 149, Corollary 5.3], the weighted maximal operator M β1 on Carleson curves

is bounded in Lp− with a constant p− if − 1
p−

< β1 <
1

p′
−

, which is satisfied since − 1
p(t0)

< β ≤ 0.

Therefore,

I
p
Γ(Mβf) ≤ c+ c

∫

Γ

|f(τ)|r(τ)·p− dν(τ)

= c+ c

∫

Γ

|f(τ)|p(τ) dτ ≤ c1 <∞.

20 The case 0 ≤ β < 1
p′(t0) .

We represent the functional I
p
Γ(Mβf) in the form

I
p
Γ(Mβf) =

∫

Γ

(|Mβf(t)|r(t))λ dν(t) (6.13)

with r(t) = p(t)
λ

> 1, λ > 1, where λ will be chosen in the interval 1 < λ < p−.

In (6.13), we wish to use the pointwise weighted estimate (6.9):

|Mβf(t)|r(t) ≤ c
[

1 +M(f r(·))(t)
]

. (6.14)
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This estimate is applicable according to Corollary of Theorem if ‖f‖r(·) ≤ c and β < 1
[r(t0)]′

.

The condition ‖f‖r(·) ≤ c is satisfied since r(x) ≤ p(t). Condition β < 1
[r(t0)]′

is fulfilled if

λ < (1 − β) p(t0). Therefore, under the choice

1 < λ < min(p−, (1 − β) p(t0)),

we may apply (6.14) to (6.13). This yields

I
p
Γ(Mβf) ≤ c+ c

∫

Γ

∣

∣M(|f |r(·))(t)
∣

∣

λ
dν(t)

≤ c+ c

∫

Γ

(

|f(t)|r(t)
)λ
dν(t)

by the boundedness of the maximal operator M in Lλ(Γ), λ > 1. Hence

I
p
Γ(Mβf) ≤ c+ c

∫

Γ

|f(x)|p(t) dt ≤ c.

II Necessity Part Suppose that Mβ is bounded in Lp(·)(Γ). Then, given a function f(x)

such that

I
p
Γ(wf) ≤ c1, w(t) = |t− t0|

β , (6.15)

we have

I
p
Γ(wMf) ≤ c. (6.16)

1) We choose f(t) = |t− t0|
µ with µ > −β − 1

p(t0) . Then

I
p
Γ(wf) ≤ c+ c

∫

Γ∩B(t0,r)

|t− t0|
(β+µ)p(t)dν(t) ≤ c+ c

∫

Γ∩B(t0,r)

|t− t0|
(β+µ)p(t0)dν(t)

for some r > 0,where the integral converges by (4.2), so that we are in the situation (6.15).

However,

I
p
Γ(wMf) ≥ c

∫

Γ∩B(t0,r)

|t− t0|
βp(t0)dν(t) ,

which diverges if βp(t0) < −1 according to Lemma 4.1. Therefore, from (6.16) it follows that

β > − 1
p(t0)

.

2) To show the necessity of the right-hand side bound in (3.3), suppose that, on the contrary,

β ≥ 1
p′(t0)

. Let first β > 1
p′(t0)

. We choose f(t) = 1
|t−t0|

, for which I
p
Γ(wf) converges but Mf

just does not exist. Let now β = 1
p′(t0)

. We choose

f(t) =
1

|t− t0|

(

ln
1

|t− t0|

)a

, t ∈ Γ ∩B

(

t0,
1

2

)

.

Then I
p
Γ(wf) exists under the choice a < − 1

p(t0)
, but Mf does not exist when β1 > −1. Thus,

taking a ∈
(

− 1,− 1
p(t0)

)

, we arrive at a contradiction.

7 Proof of Theorem B

According to Remark 6.1 it suffices to prove Theorem B for a single power weight |t−t0|
β where

t0 belongs or does not belong to Γ. The arguments below are given for t0 ∈ Γ, the case where

t0 /∈ Γ being easier.
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I Sufficiency Part

We have to show that I
p
Γ(wMf) ≤ C <∞ provided that ‖wf‖p(·) ≤ 1, w = |t− t0|

β .

Let

ΓR = Γ ∩B(t0, R), Γ2R = Γ ∩B(t0, 2R) and Γ4R = Γ ∩B(t0, 4R).

We split the function f as

f = f · χΓ2R
+ f · χΓ\Γ2R

= ϕ+ ψ,

so that

I
p
Γ(wMf) ≤ I

p
Γ(wMϕ) + I

p
Γ(wMψ).

When estimating I
p
Γ(wMϕ), we distinguish the cases t ∈ Γ4R and t ∈ Γ\Γ4R.

Let first t ∈ Γ4R. We find it convenient to introduce a notation for the maximal function

with respect to the portion Γ4R of Γ, that is,

MΓ4R
f(t) = sup

r>0

1

ν{Γ(t, r) ∩ Γ4R}

∫

Γ(t,r)∩Γ4R

|f(τ)|dν(τ), t ∈ γ ⊆ Γ.

For Mf(t) = MΓf(t) we have

Mϕ(t) ≤ CMΓ4R
f(t), t ∈ Γ4R. (7.1)

Indeed,

Mϕ(t) = sup
r>0

1

ν{Γ(t, r)}

∫

Γ(t,r)∩Γ2R

|f(τ)|dν(τ) ≤ sup
r>0

1

ν{Γ(t, r)}

∫

Γ(t,r)∩Γ4R

|f(τ)|dν(τ).

When r ≥ 2R we have Γ(t, r) = Γ(t, r) ∩ Γ4R, so that the right hand side above is MΓ4Rf(t)

and we get (7.1) with C = 1; when r ≤ 2R, we observe that ν{Γ(t, r)} ∼ ν{Γ(t, r)∩Γ4R} ∼ R

for t ∈ Γ2R and we get (7.1) with some C > 1.

Then by (7.1) and Theorem A,
∫

Γ4R

[w(t)Mϕ(t)]p(t)dν(t) ≤ C

∫

Γ4R

[w(t)MΓ4R
f(t)]p(t)dν(t) ≤ C (7.2)

since ‖wf‖Lp(·)(Γ4R) ≤ ‖wf‖Lp(·)(Γ) ≤ 1.

Let t ∈ Γ\Γ4R. If r < 2R, then Γ(t, r) ∩ Γ2R = ∅ and Mrϕ(t) = 0, so we consider r ≥ 2R.

It can be also easily seen then that whenever the set Γ(t, r) ∩ Γ2R is non-empty, we have

|t− t0| ≤ 2R+ r ≤ 2r. Consequently

Mrϕ(t) =
1

ν{Γ(t, r)}

∫

Γ(t,r)

|ϕ(τ)|dν(τ) ≤
1

ν{Γ(t, |t−t0|
2 )}

∫

Γ2R

|f(τ)|dν(τ).

Hence Mrϕ(t) ≤ C
|t−t0|

[

1 + ‖wf‖p(τ)

]

and then

Mϕ(t) ≤
C

|t− t0|
for t ∈ Γ\Γ4R. (7.3)

Therefore,
∫

Γ\Γ4R

[w(t)Mϕ(t)]
p(t)

dν(t) ≤ C

∫

Γ\Γ(t0,4R)

|t− t0|
(β−1)p∞dν(t) ≤ C1 <∞, (7.4)
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where we have made use of Lemma 4.2 and the fact that β < 1
p′
∞

. Combining (7.2) and (7.4),

we get

I
p
Γ (wMϕ) ≤ C <∞. (7.5)

Now we pass to the function ψ. Let first t ∈ ΓR. If r < R, then Γ(t, r) ∩ Γ\Γ2R = ∅ and

Mrψ(t) = 0, t ∈ ΓR. Therefore, we have to consider only r ≥ R and then

Mrψ(t) =
1

ν{Γ(t, r)}

∫

Γ(t,r)∩Γ2R

|f(τ)|dν(τ) ≤
1

ν{Γ(t, r)}

∫

Γ(t,r)∩Γ2R

(1 + |f(τ)|p∞) dν(τ).

Hence

Mrψ(t) =
1

ν{Γ(t, r)}
(+1) ≤ C <∞.

Thus, Mψ(t) ≤ C for t ∈ ΓR and then
∫

ΓR

[w(t)Mψ(t)]p(t)dν(t) ≤ C

∫

ΓR

[w(t)]p(t)dν(t)

= C

∫

ΓR

[w(t)]p(t)−p(t0)[w(t)]p(t0)dν(t)

≤ C

∫

ΓR

|t− t0|
βp(t0)dν(t) ≤ C <∞, (7.6)

where we have taken into account the property (6.10) and the fact that β > − 1
p(t0) .

It remains to estimate
∫

Γ\ΓR

[w(t)Mψ(t)]p(t)dν(t) =

∫

Γ\ΓR

[w(t)Mψ(t)]p∞dν(t).

To this end, it suffices to make use of the known boundedness of the maximal operator in

the Lebesgue space with constant p∞ > 1 (the fact valid in general for maximal functions on

weighted spaces of homogeneous type, in particular, on Carleson curves, see [2, Theorem 2.3.1]);

and the power function w(t) = |t−t0|
β on an infinite curve Γ\Γ2R, t0 /∈ Γ\Γ2R, is a Muckenhoupt

weight for β ∈
(

− 1
p∞
, 1

p′
∞

)

, see [16, p. 32].

Therefore,
∫

Γ\ΓR

[w(t)Mψ(t)]p(t)dν(t) ≤ C

∫

Γ\ΓR

[w(t)ψ(t)]p∞dν(t) ≤ C

∫

Γ

[w(t)f(t)]p(t)dν(t) ≤ C,

which together with (7.6) yields

I
p
Γ(Mψ) ≤ C <∞

and proves the “if part” of the theorem.

II Necessity Part

Suppose that the maximal operator M is bounded in Lp(·)(Γ, w). Necessity of the conditions

− 1
p(t0)

< β < 1
p′(t0)

follows from Theorem A. The necessity of the conditions − 1
p∞

< β < 1
p′
∞

is a consequence of their necessity for the boundedness of the maximal operator in the case of

constant exponent p. Indeed, the boundedness

I
p
Γ(wf) ≤ 1 =⇒ I

p
Γ(wMf) ≤ C
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implies the boundedness
∫

Γ\Γ2R

|w(t)f(t)|p∞dν(t)) ≤ 1 =⇒

∫

Γ\Γ2R

|w(t)Mf(t)|p∞dν(t)) ≤ C

with constant exponent. For the latter, as is known, it is necessary that the weight w satisfies

the Muckenhoupt condition ([2, Theorem 2.3.1]) and the power function w(t) = |t− t0|
β on an

infinite curve Γ\Γ2R, t0 /∈ Γ\Γ2R, is a Muckenhoupt weight if and only if β ∈ (− 1
p∞
, 1

p′
∞

).

Anyhow, to make the presentation more self-contained, we independently prove the necessity

of the condition β < 1
p′
∞

in Appendix 2.

8 Proof of Theorem C

We have to show that

I
p
Γ(Iα(·)f) ≤ c <∞, (8.1)

when ‖f‖p(·) ≤ 1. We simultaneously treat the cases of finite or infinite curve and use some

ideas of the proof of the corresponding theorem for the Euclidean space in [11]. For f ∈

Lp(·)(Γ), f(t) ≥ 0, with ‖f‖p(·) ≤ 1 we prove the following pointwise estimate

[Iα(·)f(t)]q(t) ≤ C([Mf(t)]p(t) + 1), (8.2)

valid independently of the fact whether the curve is finite or infinite, and give its improvement

[Iα(·)f(t)]q(t) ≤ C

(

[Mf(t)]p(t) + χΓ(t0,2R)(t) +
χΓ\Γ(t0,2R)(t)

|t− t0|p−

)

, (8.3)

when Γ is an infinite curve. The required statement (8.1) will follow from (8.2), (8.3).

Proof of (8.2) We make use of the standard splitting

Iα(·)f(t) =

∫

Γ(t,r)

f(τ) dτ

|t− τ |1−α(t)
+

∫

Γ\Γ(t,r)

f(τ) dτ

|t− τ |1−α(t)
=: Ar(t) +Br(t), (8.4)

where 0 < r <∞, and the well-known pointwise inequality

Ar(t) ≤ C
rα(t)

2α(t) − 1
Mf(t), t ∈ Γ, (8.5)

where C > 0 does not depend on t and r, see [17, p. 54] for Euclidean spaces; since ν(Γ(t, r)) ∼ r,

the proof for Carleson curves is the same under the condition inf t∈Γ α(t) > 0:

Ar(t) =

∞
∑

k=0

∫

γk(t)

f(τ) dν(τ)

|t− τ |1−α(t)
≤ C2α(t)rα(t)

∞
∑

k=0

2−α(t)kMf(t),

where γk(t) = Γ(t, 2−kr)\Γ(t, 2−k−1r).

By (8.5) and the first condition in (1.5) we have

Ar(t) ≤ crα(t)Mf(t), t ∈ Γ (8.6)

with some absolute constant c > 0 not depending on t and r.

For the term Br(t) we make use of the Hölder inequality and obtain

Br(t) ≤ ‖f‖p(·)‖χΓ\Γ(t,r)(τ)|t− τ |α(t)−1‖p′(·) ≤ ‖χΓ\Γ(t,r)(τ)|t− τ |α(t)−1‖p′(·)
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the norm being taken with respect to τ . Then by (2.4)

Br(t) ≤

∥

∥

∥

∥

χΓ\Γ(t,r)(τ)

|t− τ |

∥

∥

∥

∥

1−α(t)

(1−α(·))p′(·)

. (8.7)

Now we show that
χΓ\Γ(t,r)(τ)

|t− τ |
≤ CM

(

χΓ(t,r)

ν(Γ(t, r))

)

(τ), (8.8)

where C > 0 does not depend on t, τ and r. Inequality (8.8) should be checked for τ ∈ Γ\Γ(t, r).

Indeed, we have

M

(

χΓ(t,r)

ν(Γ(t, r))

)

(τ) ≥ sup
δ>0

ν{Γ(t, r) ∪ Γ(τ, δ)}

ν(Γ(t, r))ν(Γ(τ, δ))
≥
ν{Γ(t, r) ∪ Γ(τ, δ0)}

ν(Γ(t, r))ν(Γ(τ, δ0))

with an arbitrary δ0 > 0. We choose it so that 2|t − τ | ≤ δ0 ≤ 3|t − τ |. Then Γ(t, r) ⊆ Γ(τ, δ)

and consequently ν{Γ(t, r) ∪ Γ(τ, δ)} = ν{Γ(t, r)} and then

M

(

χΓ(t,r)

ν(Γ(t, r))

)

(τ) ≥
1

ν(Γ(τ, δ0))
≥

c

δ0
≥

c/3

|t− τ |
, τ ∈ Γ\Γ(t, r)

which proves (8.8).

From (8.7) and (8.8) we obtain

Br(t) ≤ C[ν(Γ(t, r))]α(t)−1
∥

∥M
(

χΓ(t,r)

)∥

∥

1−α(t)

(1−α(·))p′(·)
.

By the boundedness of the maximal operator in the space Lp(·)(Γ) provided by Theorem A, we

conclude that

Br(t) ≤ C[ν(Γ(t, r))]α(t)−1
∥

∥χΓ(t,r)

∥

∥

1−α(t)

(1−α(·))p′(·)
= C[ν(Γ(t, r))]α(t)−1

∥

∥χΓ(t,r)

∥

∥

p′(·)
.

By Proposition 4.3 we then obtain

Br(t) ≤ C[ν{Γ(t, r)})]
α(t)− 1

pγ . (8.9)

Therefore, from (8.4), (8.6) and (8.9) we get

Iα(·)f(t) ≤ Crα(t)Mf(t) + C[ν{Γ(t, r)}]
α(t)− 1

pγ . (8.10)

Observe that α(t) − 1
pγ

is negative and supt∈Γ

[

α(t) − 1
pγ

]

< 0 according to (3.5). Since

ν{Γ(t, r)} ≥ 2r, we obtain

Iα(·)f(t) ≤ Crα(t)Mf(t) + Cr
α(t)− 1

pγ , t ∈ Γ, 0 < r <∞. (8.11)

Observe that when α(t) = const and p(t) = const, estimate (8.11) with the standard choice

r = [Mf(t)]−p yields the Hedberg-type pointwise estimate

Iα(·)f(t) ≤ C[Mf(t)]
p
q , t ∈ Γ (8.12)

for any Carleson curve, bounded or unbounded.

In view of (5.3), estimate (8.11) takes the form

Iα(·)f(t) ≤ Crα(t)Mf(t) + Crα(t)− 1
p(t) , t ∈ Γ, 0 < r ≤ ` (8.13)

for any finite ` <∞. Let ` ≥ 1. From (8.13) the required estimate in (8.2) follows. Indeed, for

those t ∈ Γ for which Mf(t) ≥ 1, we choose r = [Mf(t)]−p(t) ≤ 1 ≤ ` and obtain

Iα(·)f(t) ≤ C[Mf(t)]1−α(t)p(t) = C[Mf(t)]
p(t)
q(t) when Mf(t) ≥ 1. (8.14)
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If Mf(t) < 1, we take r = 1 and from (8.13) get Iα(·)f(t) ≤ C which together with (8.14) gives

(8.2) for all t ∈ Γ.

2 Proof of (8.3) To prove (8.3), we proceed as follows. For t ∈ Γ(t0, 2R) in any case we have

estimate (8.2):

[Iα(·)f(t)]q(t) ≤ C([Mf(t)]p(t) + 1), t ∈ Γ(t0, 2R). (8.15)

Let now t ∈ Γ\Γ(t0, 2R). We put

f = f0 + f1, where f0 = χΓ(t0,R)f and f1 = χΓ\Γ(t0,R)f.

For τ ∈ Γ(t0, R) and t ∈ Γ\Γ(t0, 2R) we have

|t− τ | ≥
1

2
|t− t0|.

Therefore, for t ∈ Γ\Γ(t0, 2R) we obtain

(Iα(·)f0(t))
q(t)
p− ≤ c

(

1

|t− t0|1−α(t)

∫

Γ(t0,R)

f0(t)dν(t)

)

q(t)
p−

.

But
∫

Γ(t0,R)

f0(t)dν(t) ≤

∫

Γ(t0,R)

[|f(t)|p(t) + 1]dν(t) ≤ C

since ‖f‖p(·) ≤ 1. Consequently,

(Iα(·)f0(t))
q(t)
p− ≤

c

|t− t0|
1−α(t)

p−
q(t)

, t ∈ Γ\Γ(t0, 2R). (8.16)

Observe that q(t) = p(t)
1−α(t)p(t) ≥ p−

1−α(t)p−
. We may assume that R ≥ 1, so that |t− t0| ≥ 1 and

then from (8.16) we get

(Iα(·)f0(t))
q(t)
p− ≤

c

|t− t0|
1−α(t)

1−α(t)p−

≤
c

|t− t0|
, t ∈ Γ\Γ(t0, 2R). (8.17)

Passing to the function f1(t), we observe that supp f1(t) ⊆ Γ\Γ(t0, R) and in this set

p(t) = p∞ = const. Therefore, for

[Iα(·)f1(t)]
q(t) = [Iα∞f1(t)]

q∞ , t ∈ Γ\Γ(t0, 2R),

where 1
q∞

= 1
p∞

− α∞ = const. Then by the Hedberg pointwise estimate (8.12) for constant

exponents we have

[Iα(·)f1(t)]
q(t) ≤ C[Mf1(t)]

p∞ = C[Mf1(t)]
p(t), t ∈ Γ\Γ(t0, 2R). (8.18)

Then from (8.17) and (8.18) it follows that

[Iα(·)f(t)]q(t) ≤ C

(

1

|t− t0|p−
+ [Mf(t]p(t)

)

which together with (8.15) yields (8.3).

Proof of (8.1) Let Γ be a finite curve. Then by (8.2)
∫

Γ

|Iα(·)f(t)|q(t) dν(t) ≤

∫

Γ

|Mf(t)|p(t) dν(t) + C,
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which proves the theorem, since the maximal operator is bounded in Lp(·)(Γ) according to the

non-weighted case of Theorem A. Let Γ be infinite. Then by (8.3) we have
∫

Γ

|Iα(·)f(t)|q(t) dν(t) ≤

∫

Γ

|Mf(t)|p(t) dν(t) + C +

∫

Γ\Γ(t0,2R)

dν(t)

|t− t0|p−

where it remains to refer to the non-weighted case of Theorem B and the fact that the last

integral is finite according to Lemma 4.2.

9 Proof of Theorem D

9.1 An Auxiliary Estimate

Lemma 9.1 Let Γ be a bounded Carleson curve of the length `, 0 < r < `, t, t0 ∈ Γ, σ > −1

and a bounded measurable function h(t) defined on Γ satisfy the conditions

sup
x∈Γ

|h(t)| := H <∞, (9.1)

sup
t∈Γ

[h(t) + 1] := −d0 < 0, (9.2)

and

sup
t∈Γ

[h(t) + 1 + σ] := −d1 < 0. (9.3)

Then

A(t, t0; r) :=

∫

Γ\Γ(t,r)

|t− τ |h(t)|τ − t0|
σ dν(τ) ≤ Crh(t)+1(r + |t− t0|)

σ, t ∈ Γ, (9.4)

where C > 0 does not depend on t and r.

Proof We consider separately the cases |t− t0| ≤
r
2 ,

r
2 ≤ |t− t0| ≤ 2r, |t− t0| ≥ 2r.

The case |t− t0| ≤
r
2 . We have

|τ − t0|

|τ − t|
≤

|τ − t| + |t− t0|

|τ − t|
≤ 1 +

t− t0
r

≤ 2

and similarly
|τ − t0|

|τ − t|
≥ 1 −

|t− t0|

r
≥

1

2
.

Hence 1
2 ≤ |τ−t0|

|τ−t| ≤ 2 and therefore, ( |τ−t0|
|τ−t| )σ ≤ 2|σ|. Then

A(t, t0; r) ≤ 2|σ|
∫

Γ\Γ(t,r)

|t− τ |h(t)+σ dν(τ).

It remains to make use of Lemma 4.2, applicable by condition (9.3), which yields

A(t, t0; r) ≤ rh(t)+σ+1, |t− t0| ≤
r

2
. (9.5)

The case r
2 ≤ |t− t0| ≤ 2r. We split the integration in A(t, t0; r) as follows:

A(t, t0; r) =

∫

τ∈Γ
r<|τ−t|<2ρ

|t− τ |h(t)|τ − t0|
σ dν(τ)

+

∫

Γ\Γ(t,2ρ)

|t− τ |h(t)|τ − t0|
σ dν(τ) = : I1 + I2,
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where we denote ρ = |t− t0| for brevity. Since h(t) < 0, for the integral I1 we have

I1 ≤ rh(t)

∫

τ∈Γ
r<|τ−t|<2ρ

|τ − t0|
σ dτ.

Observe that

|τ − t| > r =⇒ |τ − t0| ≤ |τ − t| + |t− t0| ≤ |τ − t| + 2r ≤ 3|τ − t|.

Consequently,

I1 ≤ rh(t)

∫

|τ−t|<2ρ

|τ−t0|≤3|τ−t|

|τ − t0|
σ dν(τ) ≤ rh(t)

∫

|τ−t0|<6ρ

|τ − t0|
σ dν(τ)

and Lemma 4.1 yields

A(t, t0; r) ≤ Crh(t)|t− t0|
σ+1,

r

2
≤ |t− t0| ≤ 2r, (9.6)

the application of Lemma 4.1 being possible by condition (9.2).

As regards the integral I2, this is nothing else, but A(t, t0, 2ρ), ρ = |t− t0| and its estimate

is contained in (9.5) under r = 2|t− t0|.

The case ρ ≥ 2r, ρ = |t− t0|. We have

A(t, t0; r) =

∫

τ∈Γ

r<|τ−t|< 1
2

ρ

|t− τ |h(t)|τ − t0|
σ dν(τ) +

∫

Γ\Γ(t, 1
2 ρ)

|t− τ |h(t)|τ − t0|
σ dν(τ)

=: I3 + I4.

For the term I3 we have 1
2ρ ≤ |τ − t0| ≤ 2ρ, so that |τ − t0|

σ ≤ 2|σ|ρσ. Therefore,

I3 ≤ 2|σ|ρσ

∫

τ∈Γ

r<|τ−t|< 1
2

ρ

|t− τ |h(t) dν(τ)

and condition (9.2) and Lemma 4.2 yield

A(t, t0; r) ≤ Crh(t)+1|t− t0|
σ, |t− t0| ≥ 2r. (9.7)

Gathering estimates (9.5), (9.6) and (9.7), we arrive at (9.4). �

9.2 Estimation of the Norms nδ,κ,p(t, r)

Let χr(ρ) =
{

1, if ρ>r
0, if ρ<r and let

gδ(t, τ, r) = |t− τ |δ(t)χr(|t− τ |), (9.8)

where δ(t) in future will be chosen as δ(t) = α(t) − 1.

We are interested in estimation of the weighted norms

nδ,κ,p(t, r) = ‖gδ(t, τ, r)‖Lp(·)(Γ,|τ−t0|κ(τ)) (9.9)

(taken with respect to τ) as r → 0, where we suppose that t0 ∈ Γ and κ(τ) is some variable

exponent. Later, in the proof of Theorem D, we will need this norm with p(·) replaced by p′(·)

and κ(t) chosen as κ(t) = −βp′(t).

Theorem 9.2 Let Γ be a bounded Carleson curve, t0 ∈ Γ, p satisfy conditions (2.1)–(2.2),

κ ∈ L∞(Γ) and δ ∈ L∞(Γ) and also κ(t) satisfy the logarithmic condition at the point t0

|κ(τ) − κ(t0)| ≤
A2

ln 1
|τ−t0|

, τ ∈ Γ, |τ − t0| ≤
1

2
(9.10)
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and let κ(t0)p(t0) > −1. If

sup
t∈Γ

[δ(t)p(t) + 1] := −d0 < 0, (9.11)

sup
t∈Γ

{1 + [δ(t) + κ(t)]p(t)} := −d1 < 0, (9.12)

and

sup
t∈Γ

{1 + [δ(t) + κ(t0)]p(t)} := −d2 < 0, (9.13)

then

nδ,κ,p(t, r) ≤ Crδ(t)+ 1
p(t) (r + |t− t0|)

κ(t), (9.14)

for all t ∈ Γ, 0 < r < `, where C > 0 does not depend on t and r.

Proof For the norm nδ,κ,p = nδ,κ,p(t, r) as defined in (9.9) we have

∫

τ∈Γ
|τ−t|>r

(

|τ − t|δ(t)|τ − t0|
κ(τ)

nδ,κ,p

)p(τ)

dτ = 1 (9.15)

by definition (2.5).

1st step: Values nδ,κ,p(t, r) ≥ 1 are only of interest. First we observe that the right-hand

side of (9.14) is bounded from below:

inf
t∈Γ

0<r<`

rδ(t)+ 1
p(t) (r + |t− t0|)

κ(t) := c1 > 0. (9.16)

To verify (9.16), suppose first that κ(t) ≥ 0. Then by (9.12)

rδ(t)+ 1
p(t) (r + |t− t0|)

κ(t) ≥ rδ(t)+ 1
p(t)

+κ(t) = r−
|δ(t)p(t)+κ(t)p(t)+1|

p(t) ≥ `−
|δ(t)p(t)+κ(t)p(t)+1|

p(t) .

The right hand side here is bounded from below since |δ(t)p(t)+κ(t)p(t)+1|
p(t) ∈ L∞(Γ). When

κ(t) ≤ 0, we observe that

rδ(t)+ 1
p(t) (r + |t− t0|)

κ(t) ≥ rδ(t)+ 1
p(t) `κ(t) = r−|δ(t)+

1
p(t) |`κ(t),

where (9.11) was taken into account. The right hand side here is also bounded from below.

From (9.16) we conclude that to prove (9.14), we may suppose that

nδ,κ,p(t, r) ≥ 1.

2nd step: Small values of r are only of interest. We assume that r is small enough, 0 <

r < ε0. To show that this assumption is possible, we have to check that the right-hand side of

(9.14) is bounded from below and nδ,κ,p(t, r) is bounded from above when r ≥ ε0. The former

is obvious; to verify the latter, we observe that from (9.15) it follows that

1 ≤

∫

τ∈Γ
|τ−t|>ε0

|τ − t|δ(t)p(τ)|τ − t0|
κ(τ)p(τ)

nδ,κ,p

dν(τ)

whence

nδ,κ,p(t, r) ≤

∫

Γ\Γ(t,ε0)

|τ − t|δ(t)p(t) |τ − t0|
κ(t0)p(t0)u(t, τ)v(τ) dν(τ),

where u(t, τ) = |τ − t|δ(t)[p(τ)−p(t)] and v(τ) = |τ − t0|
κ(τ)p(τ)−κ(t0)p(t0). By direct estimation

of ln u(t, τ) and ln v(τ) we obtain that

e−2`AB ≤ u(t, τ) ≤ e2`AB , t, τ ∈ Γ (9.17)



20 Kokilashvili, V. and Samko S.

where ` and A are the constants from (2.3) and B = supt∈Γ |δ(t)|, and

e−c ≤ |τ − t0|
κ(τ)p(τ)−κ(t0)p(t0)) ≤ ec, t, τ ∈ Γ (9.18)

with some constant c > 0 (one may take c = 2 max{A2, ` supt∈Γ |κ(t)p(t)|}, where A2 is the

constant from (9.10)).

Therefore,

nδ,κ,p(t, r) ≤ ec+2`AB

∫

Γ\Γ(t,ε0)

|τ − t|δ(t)p(t) |τ − t0|
κ(t0)p(t0) dν(τ)

≤ ec+2`ABε
−Bp+

0

∫

Γ

|τ − t0|
κ(t0)p(t0)dν(τ) = const

which proves the boundedness of nδ,κ,p(t, r) from above.

The value of ε0 will be chosen later.

3rd step: A rough estimate. First, we derive a weaker estimate

nδ,κ,p(t, r) ≤ Crδ(t) (9.19)

which will be used later to obtain the final estimate (9.14). To this end, we note that always

λp(τ) ≤ λinf p(τ) + λsup p(τ), so that from (9.15) and (9.18) we have

1 ≤

∫

Γ\Γ(t,r)

[(

|τ − t|δ(t)

nδ,κ,p

)p−

+

(

|τ − t|δ(t)

nδ,κ,p

)p+
]

|τ − t0|
κ(t0)p(t0) dν(τ).

Since |τ − t| > r and δ(t) < 0, we obtain

1 ≤

[(

rδ(t)

nδ,κ,p

)p−

+

(

rδ(t)

nδ,κ,p

)p+
]

∫

τ∈Γ

|τ − t0|
κ(t0)p(t0) dν(τ).

Hence ( rδ(t)

nδ,κ,p
)p− + ( rδ(t)

nδ,κ,p
)p+ ≥ c which yields rδ(t)

nδ,κ,p
≥ C and we arrive at the estimate in

(9.19).

4rd step. We split integration in (9.15) as follows

1 =

(
∫

Γ1(ε0)

+

∫

Γ2(ε0)

+

∫

Γ\Γ(t,ε0)

)(

|τ − t|δ(t)

nδ,κ,p

)p(τ)

|τ − t0|
κ(τ)p(τ) dν(τ)

:= I1 + I2 + I3, (9.20)

where

Γ1(ε0) =

{

τ ∈ Γ : r < |τ − t| < ε0,
|τ − t|δ(t)

nδ,κ,p

> 1

}

,

Γ2(ε0) =

{

τ ∈ Γ : r < |τ − t| < ε0,
|τ − t|δ(t)

nδ,κ,p

< 1

}

.

5th step: Estimation of I1. We have

I1 =

∫

Γ1(ε0)

(

|τ − t|δ(t)

nδ,κ,p

)p(t)

|τ − t0|
κ(τ)p(τ) ur(t, τ) dν(τ), (9.21)

where

ur(t, τ) =

(

|τ − t|δ(t)

nδ,κ,p

)p(τ)−p(t)

.
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The estimate

e−2`A ≤ ur(t, τ) ≤ e2`A (9.22)

is valid. In its proof below we follow a similar estimation in [18, p. 266]. We have

|ln ur(t, τ)| ≤ A

∣

∣

∣

∣

ln ( |τ−t|δ(t)

nδ,κ,p
)

ln 2`
|t−τ |

∣

∣

∣

∣

.

Since |τ−t|δ(t)

nδ,κ,p
≥ 1, we obtain

|ln ur(t, τ)| ≤ A
|δ(t)|ln 1

|τ−t| − ln nδ,κ,p

ln 2`
|t−τ |

≤ A
|δ(t)|ln 1

|τ−t|

ln 2`
|t−τ |

≤ AB,

where B = supt∈Γ |δ(t)| (without loss of generality we may assume that 2` ≥ 1). Hence (9.22)

follows.

By (9.22) and (9.18) we obtain from (9.21)

I1 ≤
C

n
p(t)
δ,κ,p

∫

Γ1(ε0)

|τ − t|δ(t)p(t) |τ − t0|
κ(t0)p(t0) dν(τ)

≤
C

n
p(t)
δ,κ,p

∫

Γ\Γ(t,r)

|τ − t|δ(t)p(t) |τ − t0|
κ(t0)p(t0) dν(τ). (9.23)

Now we make use of the estimate obtained in (9.4) which gives

I1 ≤
C

n
p(t)
δ,κ,p

rδ(t)p(t)+1(r + |t− t0|)
κ(t0)p(t0). (9.24)

The validity of conditions (9.1)–(9.3) under which the estimate (9.4) was obtained, follows from

assumptions of our theorem.

6th step: Estimation of I2 and the choice of ε0. In the integral I2 we have

I2 ≤ C

∫

Γ2(ε0)

(

|τ − t|δ(t)

nδ,κ,p

)pε0
(t)

|τ − t0|
κ(t0)p(t0) dν(τ), (9.25)

where

pε0
(t) = min

|τ−t|<ε0

p(τ)

and (9.18) was taken into account. Then

I2 ≤
C

n
pε0

(t)

δ,κ,p

∫

Γ2(ε0)

|τ − t|δ(t)pε0
(t) |τ − t0|

κ(t0)p(t0) dν(τ)

and consequently

I2 ≤
C

n
pε0

(t)

δ,κ,p

∫

Γ\Γ(t,r)

|τ − t|δ(t)pε0
(t) |τ − t0|

κ(t0)p(t0) dν(τ). (9.26)

We wish to apply estimate (9.4), but to this end we have to guarantee the validity of conditions

(9.1)–(9.3). This may be achieved by a choice of ε0 sufficiently small so that

δ(t0)pε0
(t0) + 1 ≤ −δ1 < 0 and δ(t)pε0

(t) + 1 + κ(t0) ≤ −δ2 < 0
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which is easily derived from conditions (9.11)–(9.13) and continuity of p(t) (compare with

Lemma 1.7 from [18]). Conditions (9.1)–(9.3) being satisfied, we make use of (9.4) and get

I2 ≤
C

n
pε0

(t)

δ,κ,p

rδ(t)pε0
(t)+1(r + |t− t0|)

κ(t0)p(t0), (9.27)

where C does not depend on x and r.

7th step: Estimation of I3. We have

I3 ≤
C

n
p−

δ,κ,p

I4, I4 = I4(t) =

∫

τ∈Γ
|τ−t|>ε0

|τ − t|δ(t)p(τ)|τ − t0|
κ(τ)p(τ) dν(τ).

The integral I4(t) is a bounded function of t. Indeed, by (9.17)–(9.18) we obtain

I4(t) ≤ C

∫

Γ\Γ(t,ε0)

|τ − t|δ(t)p(τ)|τ − t0|
κ(t0)p(t0) dν(τ)

≤ C

∫

Γ\Γ(t,ε0)

|τ − t|δ(t)p(t)|τ − t0|
κ(t0)p(t0) dν(τ)

which is bounded by (9.4). Therefore,

I3 ≤
C

n
p−

δ,κ,p

. (9.28)

8th step. Gathering estimates (9.4), (9.27) and (9.28), we have from (9.20)

1 ≤ C0

(

rδ(t)p(t)+1

n
p(t)
δ,κ,p

(r + |t− t0|)
κ(t0)p(t0) +

rδ(t)pε0
(t)+1

n
pε0

(t)

δ,κ,p

(r + |t− t0|)
κ(t0)p(t0) +

1

n
p−

δ,κ,p

)

(9.29)

with a certain constant C0 not depending on t and r. We may assume that

nδ,κ,p(t, r) ≥

(

1

2C0

)
1

p−

:= C1 (9.30)

because for those t and r where nδ,κ,p(t, r) ≤ C1 there is nothing to prove, the right-hand side

of (9.14) being bounded from below according to (9.16). In the situation (9.30) we derive from

(9.29) the inequality

1 ≤ C0

(

rδ(t)p(t)+1

n
p(t)
δ,κ,p

+
rδ(t)pε0

(t)+1

n
pε0

(t)

δ,κ,p

)

(r + |t− t0|)
κ(t0)p(t0). (9.31)

Since nδ,κ,p(t, r) ≥ 1 we observe that ( 1
nδ,κ,p

)pε0
(x) ≤ ( 1

nδ,κ,p
)p(t) and ( rδ(t)

nδ,κ,p
)pε0

(t)≤C( rδ(t)

nδ,κ,p
)p(t)

by (9.19). Hence,
rδ(t)pε0

(t)+1

n
pε0

(t)

δ,κ,p

≤
rδ(t)p(t)+1

n
p(t)
δ,κ,p

.

Therefore, from (9.31) we derive the estimate

rδ(t)p(t)+1

n
p(t)
δ,κ,p

(r + |t− t0|)
κ(t0)p(t0) ≥ C,

where C > 0 does not depend on t and r, which yields (9.14), because

e−c ≤ (r + |t− t0|)
1−κ(t0)

p(t0)

p(t) ≤ eC (9.32)
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with C > 0 not depending on t and r. Inequality (9.32) is easily obtained by the direct

estimation of ln (r + |t− t0|)
1−κ(t0)

p(t0)

p(t) and taking (9.10) into account. �

9.3 Proof of Theorem D Itself

Basing on Remark 6.1, we consider the case of a single power weight |t− t0|
β , t0 ∈ Γ.

The case β ≥ 0 The starting point is the same as in the proof of Theorem C: we base ourselves

on (8.4) and (8.5). By (8.4) and the first condition in (1.5) we have

Ar(t) ≤ crα(t)Mf(t) (9.33)

with some absolute constant c > 0 not depending on t and r.

Let f(t) ≥ 0 and ‖f‖Lp(·)(Γ,ρβ) ≤ 1, ρβ = |t− t0|
β . Applying the Hölder inequality (2.6) in

the integral Br(t), we obtain

|Br(t)| ≤ k nδ,κ,p(t, r)‖f‖Lp(·)(Γ,ρβ) ≤ nδ,κ,p(t, r), (9.34)

where

δ(t) = α(t) − 1 and κ(t) = −βp′(t).

We make use of our estimate (9.14) and obtain

|Br(t)| ≤ C r−
1

q(t) (r + |t− t0|)
−β , (9.35)

the assumptions of Theorem 9.2 being satisfied by (1.5) and the fact that β ≥ 0. From (9.35)

we obtain

|Br(t)| ≤ C |t− t0|
−β r−

1
q(t) , (9.36)

since β ≥ 0.

Therefore, taking into account (9.33) and (9.36) in (8.4), we arrive at

Iα(·)f(t) ≤ C{rα(t)Mf(t) + |t− t0|
−β r−

1
q(t) }. (9.37)

It remains to choose the value of r which minimizes the right-hand side. A direct calculation

provides

r =

[

1

q(t)α(t)

]p(t)
(

|t− t0|
βMf(t)

)−p(t)
.

Substituting this into (9.37), after easy evaluations we get

Iα(·)f(t) ≤ C|t− t0|
−βα(t)p(t)[Mf(t)]

p(t)
q(t) .

Hence,
∫

Γ

(|t− t0|
β |Iα(·)f(t)|)q(t) dν(t) ≤ C

∫

Γ

(|t− t0|
β |Mf(t)|)p(t) dν(t). (9.38)

It remains to make use of Theorem A. Condition (3.3) of that theorem is satisfied by

(3.6). By Theorem A we have ‖Mf‖Lp(·)(Γ,|t−t0|β) ≤ C ‖f‖Lp(·)(Γ,|t−t0|β) ≤ C. Then also
∫

Γ

(

|t− t0|
β |Mf(t)|

)p(t)
dν(t) ≤ C. Consequently, by (9.38) we obtain that

∫

Γ

(|t− t0|
β |Iα(·)f(t)|)q(t) dν(t) ≤ C
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for all f ∈ Lp(·)(Γ, |t − t0|
β) with |f‖Lp(·)(Γ,|t−t0|β) ≤ 1 which completes the proof in the case

β ≥ 0 .

The case β < 0 This case is reduced to the previous one by the duality arguments. First we

observe that the operator conjugate to Iα(·) has the form

(Iα(·))∗g(t) = Iα(·)g(t) : =

∫

Γ

g(τ) dν(τ)

|t− τ)|1−α(τ))
∼

∫

Γ

g(τ)) dν(τ)

|t− τ)|1−α(t)
= Iα(·)g(t), (9.39)

where the equivalence

C1|t− τ)|1−α(t) ≤ |t− τ)|1−α(τ) ≤ C2|t− τ)|1−α(t)

follows from the logarithmic condition for α(t).

We pass to the duality statement in Theorem A. We take it as already proved with β ≥ 0 to

arrive at the statement with negative exponent. By (9.39) we obtain from the already proved

part of the theorem with non-negative bt(t0) that

‖Iα(·)g‖(Lp(·)(Γ,|t−t0|β)∗ ≤ C‖g‖(Lq(·)(Γ,|t−t0|β)∗ .

In view of (2.7) this yields

‖Iα(·)g‖Lp′(·)(Γ,|t−t0|−β) ≤ C‖g‖Lq′(·)(Γ,|t−t0|−β), (9.40)

where the the exponent −β is already positive. Now it makes sense to redenote −β =:

β1, q′(t) =: p1(t) so that the Sobolev exponent for p1(t) is q1(t) = p1(t)
1−αp1(t) = p′(t) and

then (9.40) takes the form

‖Iα(·)g‖
Lq1(·)(Γ,|t−t0|β1) ≤ C‖g‖

Lp1(·)(Γ,|t−t0|β1). (9.41)

Since

1 − α(t)p1(t) =
p(t) − 1

p(t) − 1 + α(t)p(t)
≥ c > 0

and

0 ≤ β <
1

p′(t0)
⇐⇒ α(t0) −

1

p1(t0)
< β1 ≤ 0

the estimate in (9.41) is nothing else but our Theorem A for the negative subinterval of possible

values of the exponent.

Proof of Corollary to Theorem D It suffices to refer to the well-known pointwise estimate

Mα(·)f(t) ≤ cIα(·)|f |(t), (9.42)

where c does not depend on f and t. The proof of (9.42) on Carleson curves is the same as in

the case of functions in Rn (see for instance [19, p. 909]): for any t ∈ Γ there exists an r = rt

such that

Mα(·)f(t) ≤
2

ν{Γ(t, rt)}1−α(t)

∫

Γ(t,rt)

|f(τ)| dν(τ)

and on the other hand

Iα(·)f(t) ≥

∫

Γ(t,rt)

f(τ) dν(τ)

|t− τ |n−α(t)
≥

c

ν{B(t, rt)}1−α(t)

∫

Γ(t,rt)

|f(τ | dν(τ).



Maximal and Potential Operators 25

10 Appendices

10.1 Appendix 1: Proof of Proposition 4.3

Let f(τ) = χγ(τ)[ν(γ)]−
1

p(τ) , γ = Γ(t, r), so that ‖f‖p(·) = 1. For all z ∈ γ we have

CMf(z) ≥
1

ν(γ)

∫

γ

f(τ) dν(τ) =
1

ν(γ)

∫

γ

[ν(γ)]−
1

p(τ) dν(τ) for any γ = Γ(t, r). (10.1)

Since the function Φ(x) = a−x, x ∈ R1
+, is convex for any a > 0, by Jensen’s inequality

Φ

(

1

ν(γ)

∫

γ

|f(τ)|dν(τ)

)

≤
1

ν(γ)

∫

γ

Φ(|f(τ)|) dν(τ), (10.2)

we obtain

CMf(z) ≥ [ν(γ)]−
1

ν(γ)

∫

γ

dν(τ)
p(τ) = [ν(γ)]

− 1
pγ , z ∈ γ = [ν(γ)]

− 1
pγ .

Hence ‖χγ(z)[ν(γ)]
− 1

pγ ‖p(·) ≤ C‖Mf‖p(·) and by the boundedness of the maximal operator we

obtain that ‖χγ(z)[ν(γ)]
− 1

pγ ‖p(·) ≤ C, which yields (4.3).

10.2 Appendix 2: Proof of the Necessity of the Condition β < 1
p′
∞

of Theorem B

To show the necessity of the condition β < 1
p′
∞

, we choose f0(t) = χΓ2R
(t). Then f0 ∈ Lp(·)(Γ, w)

according to Lemma 4.1 since β > − 1
p(t0)

. By the boundedness of the maximal operator we

have

I
p
Γ(wMf0) <∞. (10.3)

On the other hand,

Mf0(t) ≥
C

|t− t0|
, t ∈ Γ\Γ2R (10.4)

with C > 0 not depending on t. Indeed, to prove (10.4), observe that since ν{Γ(t, r)} ≤ cr, we

have

Mf0(t) ≥
C

r

∫

Γ(t,r)∩Γ2R

dν(τ) (10.5)

for any r > 0. We choose r = 2|t − t0|. Then for τ ∈ Γ2R and t ∈ Γ\Γ2R we have |τ − t| ≤

|τ − t0| + |t − t0| ≤ 2R + |t − t0| ≤ 2|t − t0| = r, that is, Γ(t, r) ∩ Γ2R = Γ2R for r = 2|t − t0|

and then from (10.5) we obtain Mf0(t) ≥
C

|t−t0|

∫

Γ2R
dν(τ), which is (10.4).

In view of (10.4) we get

I
p
Γ(wMf0) ≥

∫

Γ\Γ2R

[w(t)Mf0(t)]
p∞dν(t) ≥

∫

Γ\Γ2R

|t− t0|
(β−1)p∞dν(t).

Since the condition (β − 1)p∞ < −1 is necessary for the convergence of the last integral, see

Lemma 4.2, we conclude that (10.3) implies the condition β < 1
p′
∞

.

References

[1] Maz’ya, V. G.: Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985

[2] Genebashvili, I., Gogatishvili, A., Kokilashvili, V., Krbec, M.: Weight theory for integral transforms on

spaces of homogeneous type, Pitman Monographs and Surveys, Pure and Applied mathematics: Longman

Scientific and Technical, 1998, 422

[3] Kokilashvili, V., Samko, S.: Singular Integral Equations in the Lebesgue Spaces with Variable Exponent.

Proc. A. Razmadze Math. Inst.,131, 61–78 (2003)



26 Kokilashvili, V. and Samko S.

[4] Fan, X.: Amemiya norm equals Orlicz norm in Musielak–Orlicz spaces. Acta Mathematica Sinica, English

Series, 23(2), 281–288 (2007)

[5] Fan, X., Zhao, D: On the spaces Lp(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl., 263(2), 424–446 (2001)
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