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1 Introduction

Let I'={t e C:t=1t(s), 0 < s <{< oo} beasimple rectifiable curve with arc-length measure

v(t) = s. In the sequel we denote
I'(t,r):=TnNnB(t,r), tel, r>0, (1.1)

where B(t,r) ={z€C: |z —t| <r}.

Everywhere below we assume that I' is a Carleson curve. We remind that a curve is called
a Carleson curve (regular curve), if there exists a constant ¢y > 0 not depending on ¢ and r,
such that

v{T(t,r)} < cor- (1.2)

We consider — along Carleson curves I' — the following operators within the frameworks
of weighted spaces LPO) (I, w), w(t) = [[r_, |t — tx|?*, tx € I with variable exponent p(t) (see
definitions in Section 4): the maximal operator

1

Mf(t) = SUD ()} . |f(7)ldv(T) (1.3)
and the potential type operator
I“(')f(t) - M (1.4)

rlt— o’
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where it is supposed that

a_ =infa(t) >0, ay:=supat)<l1 (1.5)
tel tel’

(see for instance [1] on Riesz potentials with respect to an arbitrary measure or [2] in case of

homogeneous type spaces). By

1 |t —to|?
MPf(t = sup /
T8 =S98 DG Sy 7 — 1ol

we denote the weighted version of the maximal operator.

|f(r)|dv(7), (1.6)

The results we obtain here for these classical operators are valid not only on Carleson curves,
but also in a more general context of metric spaces or homogeneous type spaces (HTS) at least
under the condition u(B(z,7)) ~ r? (see [2] on maximal and potential operators over HTS in
case of constant p). However, in this paper we develop our results specially in the context of
Carleson curves because of applications to the singular operator

ser =~ [ 1 avir) (1.7
over Carleson curves and singular integral equations over such curves. For example, the follow-
ing boundedness result is valid, where w(t) = [[4_; [t — tx|?*, t; € T in the case I' is a finite
curve and w(t) = [t — zo|° [[p_, [t — tx|?*, tx €T, 20 ¢ I in the case it is infinite.

Theorem  Let
i) T be a simple Carleson curve;

i) p satisfy conditions

tel, 7€l t—71| <

)

N =

L<p_ <p(t)<py <oo, Ip(t) —p(r)| <

for some L > 0.
Then the singular operator St is bounded in the space LPC) (T, w) , if and only if

1 1
—— < < —, k=1,...,n, 1.9
win) < ) (19)
and also )
1 - 1
—— < [+ O < —— 1.10
P kgl g p’(oo) ( )

in the case I' is infinite.

This theorem will be proved in another paper. In the context of a general scheme of
investigation of Fredholmness of singular integral equations (see [3, Section 4]), it is clear that
the boundedness of the singular operator Sr immediately yields the Fredholmness statement
for an arbitrary Carleson curve in its sufficiency part and also in its necessity part for Carleson

curves without curling points. These questions will also be treated in another publication.
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2 Definitions

The theory of generalized Lebesgue spaces with variable exponent may be found for instance in
[4-7], where it was presented for the Euclidean case. This theory is known to develop rapidly
last years in connection with various applications, see for instance [8-10], where other references
may be also found. We give below the necessary definitions for the case of spaces on Carleson
curves.

Let p be a measurable function on I' such that p : T — (1,00). In what follows we assume
that p satisfies the conditions

1 <p_:=essinfp(t) <esssupp(t) =: py < o0, (2.1)
tel tel

. (2.2)

DN | =

A
|p(t) _p(T)‘ S 1 te F, T E F’ |t_T| S
n L
[t—7]
Definition 2.1 By & = Z(I") we denote the class of exponents p satisfying condition (2.1)
and by P =P(T) the class of those p for which the mazimal operator M is bounded in the space
LPON(T).
Observe that condition (2.2) may be also written in the form

2A
Ip(t) = p(M] < 57— t,7eTl, (2.3)

[t—7]

where / is the length of the curve.

The generalized Lebesgue space with variable exponent is defined via the modular

3 ()= [ 11O avtr

1 £llpc) = inf{A >0:3% (§> < 1}.

1£llpey = ILFI

by the norm

Observe that

}iﬁl»—‘

) (2.4)

a

for any 0 < a < inf p(?).
By LPO)(T, w) we denote the weighted Banach space of all measurable functions f : T' — C

such that

p(t)

. w(t) f(t
£l o) 0wy = llwfllpey = inf {/\ >0: /F % dv(t) < 1} < 0. (2.5)
We denote p'(t) = p(’;()tll.
From the Hoélder inequality for the LP()-spaces
1 1
u(T)v(r) dv(T)| < kl|ul| 7 V107 s —+ =1,
| [ue) )| < oo ol i+ o

it follows that

[0 av(0)] <l o 4 Vol 2.6
r

1
w
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and for the conjugate space [Lp(')(l"7 w)] " we have
[LPO(T, w)]* = LP' O (1, 1/w) (2.7)
which is an immediate consequence of the fact that [Lp(')(I‘)r = LP’O) (') under condition

(2.1), see [6-7].

The following value

izi/dl/_(t) yCT (2.8)

Py v(Y) Jy p(t)”
will be used, introduced for balls in R” by Diening [11]. Here v =T'(¢,r), t € T, r > 0, is any
portion of the curve I'.

By x(7) = {(1) Tglef\yv we denote the characteristic function of a portion vy of the curve I'.

3 The Main Statements

In the sequel we consider the power weights of the form

w(t) =[] [E—tsl®,  teel (3.1)
k=1
in the case of finite curve and the weights
n
w(t) = [t -zl [ It —tel®, — thel, 2¢T (3.2)
k=1

in the case of infinite curve.
3.1 Theorems on Maximal Operator

Theorem A  Let

i) T be a simple Carleson curve of a finite length;

il) p satisfy conditions (2.1)—(2.2).
Then the mazimal operator M is bounded in the space LPC) (T, w) with weight (3.1), if and only
if

1
<Bp<——, k=1,...,n 3.3
B < o (3.3)

1
~p(te)

Theorem B Let

i) T be an infinite simple Carleson curve;

ii) p satisfy conditions (2.1)—(2.2) and let there exist a circle B(0, R) such that p(t) = poo =
const fort € T\(I' N B(0, R)).
Then the mazimal operator M is bounded in the space LPC) (T, w), with weight (3.2), if and only
if

1

1 1 - 1
——— < fBp < —— and - — < 0B+ B < —. 3.4
pln) <= ) p SOH LI 34

The Euclidean space versions of Theorems A and B for variable exponents were proved in
[12] and [13], respectively.
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3.2 Theorems on Potential Operators

Theorem C  Let
i) T be a simple Carleson curve of a finite length;
ii) p satisfy conditions (2.1)—(2.2);
ili) «(t) satisfy assumptions (1.5) and the condition
sup a(t)p(t) < 1. (3.5)
tel

Then the operator 1) is bounded from the space LP)(T) into the space L) (T) with (t)
ﬁ—a(t). This statement remains valid for infinite Carleson curves if, in addition to conditions
i)-ii), p(t) = poo = const and a(t) = as = const outside some circle B(tog, R),to € T'.

The next theorem is a weighted generalization of Theorem C for finite curves.

Theorem D Under assumptions i)-iii) of Theorem C and the condition

A
at) —aty)| < ———, k=1,...,n,
o) = ol < T
the operator I1*) is bounded from the space LPC)(T',w) into the space L) (T, w) where o=
ﬁ — a(t), and w is the weight (3.1), if

Oé(tk)— <5k<1— k:17...,n. (36)

1 1
p(tr) p(tr)’

Corollary  Under the assumptions of Theorem D, the fractional mazximal operator

1
M1 10 = 8 S g, MO0

is bounded from the space LPC) (T, w) into the space L) (T, w).

4 Preliminaries

Lemma 4.1 Let T be a Carleson curve and let § = B(t) be a function defined on T'. If
sup B(t) < 1, then
ter
_ dv(T) _
1-5(t) _ O 1-5(t)
1 S/”) P < cor , (4.1)

where positive constants ¢1 and ca do not depend ont € I' and r > 0. For fized t, the condition

B(t) < 1 is necessary for the convergence of the integral.

Proof The proof is standard:

dv(T)
/r(w \t—Tlﬁ(t) Z/ |t — 7P

2— (k+1)7<\t rl<2—kr

(P(t 2" ))) 1—-B(t)oB(t) S 1 1-B(t)
SZWS 203 gy < ear'

where the property (1.2) has been used. Similarly, the lower bound in (4.1) and the necessity
of the condition ((t) < 1 are obtained. O

Similarly, the following statement is proved.



6 Kokilashvili, V. and Samko S.

Lemma 4.2 Let T' be a Carleson curve and let A = A(t) be a function defined on T'. If
infier A(t) > 1, then

eyl D) g/ L(T)? < cortTA®) (4.2)
e, |7 — A

with positive constants ¢1 and co not depending ont € I' and r > 0. For fized t, the condition

A(t) > 1 is necessary for the convergence of the integral in case T' is an infinite curve.

Proposition 4.3  Let p(t) satisfy condition (2.1) and the mazimal operator M be bounded in
LPCN(T). Then there exists a constant C > 0 such that

1
IXAllpey < Clv(]P forall  v=T(t,r)CL, (4.3)
where py is the mean value (2.8).

Proposition 4.3 was proved in [11], Lemma 3.4, for balls in the Euclidean space and remains
the same for arcs v on Carleson curves. For completeness of presentation we expose this proof

in the Appendix.
5 Auxiliary Statements

5.1 Estimation of fF(t N to|Pdv (1)

Lemma 5.1 Lettg €T and 0 < 8 < 1. Then

[t — tol? / dv(7)
t,to;r) = < Ad
AT 00, ) gy T to =5 o1

where ¢ > 0 does not depend on t,ty € I' and r > 0.
Proof 1) The case [t —to| > 2r. In this case |7 —to| > [t —to| — |7 —t] = [t —to| — 7 > [t —to].
Therefore,

28
Js(t,to;7) < dv(t) = 2P, (5.2)

— {1} Jren
2) The case |t —tg| < 2r. Observe that the ball B(t,r) is embedded into the ball B(tq, 3r).
Indeed, if |7 —¢| < r, then |7 — to| < |7 —t| + |t — to| < r+ 2r = 3r. Hence

— talB
Tolt tosr) < oo )

~v(l(t,r)) /r(t0,3r) |7 —tol?”

Making use of the right-hand side estimate in (4.1), we get

B ;

[t — to] T c2Pr
Js(t, to; < < < < 00.
3( Or)_c( AT c1 < 00

r (t,r)} — v{l(t,r)} —
5.2  An Auxiliary Statement on Maximal Functions
We will need the following technical lemma.

Lemma 5.2  Let T be a finite or infinite Carleson curve, p: T' — [1,00) be a bounded function
satisfying condition (2.2), v =T'(t,r) and p., be the mean value defined in (2.8). Then for any
bounded range of r, 0 <r < /{ < oo, there exists a constant C > 1 not dependent ont € I' and
r € (0,£] such that

_1_
é rp()

<O (5.3)

Ql=
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Proof The inequality in (5.3) is equivalent to

1 1
1 r\ PO Py
— < | = <C
01—(2z> =t

or

‘L—iln%gc, c=1nCh,
p(t) py| T
that is,
1 1 1 2
—/ (— - —) dv(T) ln—g <cg,
v(Y) Jre \p(t)  p(7) r
which is true since by (2.3) we have
1 20A 20A
- < t) — < — < —. O
77 | S0 ot < s =

6 Proof of Theorem A

6.1 General Remark

Remark 6.1 Tt suffices to prove Theorem A (as well as Theorems B, D, E and F) for a single
weight |t — to|® where ty € T in the case I is finite and ¢, may belong or not belong to I" when

I" is infinite.

Indeed, in the case of a finite curve let I' = UZ:1 I'y where I'y, contains the point t; in its

interior and does not contain ¢;, j # k in its closure. Then

n
Hf”LP(') (R ﬁ |t7tk|ﬁk> ~ Z ||fHLp(-)(Fk,|t—tk|ﬁk)a (61)
k=1 k=1
whenever 1 < p_ < p; < oo. This equivalence follows from the easily checked modular
equivalence
n
(70 1=l ) ~ 03, (0l - 0*).
k=1 k=1
since

e <\ fllpey S = e3 <T(f) <eq and Cy <TR(F) < Co = C3 < || fllpy < Cu (6.2)

).

1 1 1

with ¢z = min(c]™, 4"), cs = max(ch~, ch"),C3 = min(C;~ ,C{" ) and Cy = max(Cy~,Cy

f

Similarly, in the case of an infinite curve

171l ~ o =0ty + 2 IF oo (b femta o) (6.3)
k=1

LP(')<F,|t7zo|5 ﬁ |t7tk|[’k>

k=1 -

where I', is a portion of the curve outside some large circle, so that I', does not contain the
points tx, k=1,...,n.

Then, because of (6.1) and (6.3), the statement of Remark 6.1 is obtained by introduction

of the standard partition of unity 1 = >_,_, ax(t), where a;(t) are smooth functions equal to

1 in a neighborhood I'(¢x,€) of the point ¢; and equal to 0 outside its neighborhood I'(t, 2¢)
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(and similarly in a neighborhood of infinity in the case I is infinite), so that a ()|t —t;|*% =0
in a neighborhood of the point g, if k& # j.
6.2 A pointwise estimate for the weighted means

We follow the main ideas in [12]. First we prove the following auxiliary result on a pointwise

estimate for the weighted means

A 21 [t = ol ’ )| dv(T
s = [ (=) o) (6.4

|7 — tol
We denote also M,.f(t) = MPf(t) |ﬁ o

Theorem 6.2  Let p(t) satisfy conditions (2.1)—(2.2). If0 < 8 < , then

p(t
MP P(®) c 1 NPT du(r .
) <17 [ 1roroane)) (6:5)

for all f € L®PCN(T) such that I fllpy < 1, where ¢ = c(p,3) is a constant not depending on
t,ito €' and r > 0.

Proof Since 8 < we conclude that there exists a d > 0 such that

p (t )’
By’ (t) <1 for all t € I'(ty,d) (6.6)

where we may assume that d < 1. Let

() = i
pr(t) B errrlégr)p(ﬂ

pv-l(t) . From (6.6) we see that

Bpl.(t) <1 if tel"(to,g> and O<r§g. (6.7)

1° ThecasetecT (tg, %) and0 <r < % (the main case). Applying the Holder inequality
with the exponents p,(¢) and p..(t) to the integral on the right-hand side of the equality

’Mr (%) o ”(“:rpc(t) ( /FW) % dV(T))pu)

and taking (6.7) into account, we get

M ) . p(t)< c pr(®) g % dv(T) p’)(—& 6.8
‘ r(| ' —to|ﬁ)( )= rP() (/F(t,r) 7 V(T)> .</F(t,r) |T—to|5”“t)) -(68)

By (6.7), estimate (5.1) is applicable which yields

p(t)

f( p(t) t— 4|~ Pp(t) Pr (D

‘”T(| _(t)a o <ot )P D dv(ry )
-t L(t,r)

ror(t)

/ PO du(r) < / dv(r) + / F@) P du(r),
T(t,r T(t,r) Tel(t,r):|f(7)|>1

since p, (t) < p(r

)
)
()@

Here

for 7 € B(t,r). Since p(t) is bounded, we see that

p(t) 4 =Bp(t) 2()
t t P 1 pr(t)
ca Ll L [ o)
T'(t,r)

rpr(t)




Maximal and Potential Operators 9

Since r < % < % and the second term in the brackets is also less than or equal to % , we arrive
at the estimate
c

MEFOPO < < [r+ / If(T)I”(T)dV(T)}
O] T'(t,r)

rPr(t)

r

pr(t)—p( 1
<5 e [ e ane).
T(t,r)

. pr(t)—p(t) pr(t)—p(t) 1 _
From here (6.5) follows, since r 7@ < c. Indeed, 7 »® = epr PH=Pr(B)]n

G , where
1
pr
with &, € I'(t,r), and then by (2.2),

9(0) (0] 2] < lot) = ) 1

since [t — &| <.
20 The case [t — to| > 2, 0 <r < 9. This case is trivial, because |7 —to| > [t—to|— |7 —t| >

44 —4d Thus |r—to|® > (%)ﬁ. Since [t — to|? < 7, it follows that

MP f(x) < eM, f(x),
and one may proceed as above for the case § = 0 (the condition |t — to| < % is not needed in
this case).

3% The case r > %. This case is also easy. It suffices to show that the left-hand side of (6.5)
is bounded. We have

P clP MVT MVT
MPf(t) < — Ur(tm%) du( )+/F\P(t07 dv(7)).

(4" T —to|? ) I —to®

5
Here the first integral is estimated via the Holder inequality with the exponents

pa = mian_t0|<%p(7') and qa = Py, which is possible since Gp/, < 1. The estimate of the
< 8 8
second integral is trivial since |t — to| > &.

Corollary Let0< 8 < m . If conditions (2.1)~(2.2) are satisfied, then

IMPF)PY < e+ eM|F()POI() (6.9)
for all f € LPOI(T) such that || f||,) <1 .
6.3 Proof of Theorem A Itself
We have to show that HMﬁpr(.) < ¢ in some ball ||f]|,(y < R, which is equivalent to the

inequality
F(MPf) < c for Hpr(_) <R

We observe that
|t — to|PP®) ~ |t — to]PPt0) (6.10)

since p(t) satisfies condition (2.2).
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I Sufficiency part By (6.10) we obtain

1@ N[
S Y e [C 2}
r |7 — to
Following the idea in [14-15], we represent this as
N . f r r(t)\ p—
W(MPF) < c/ (|t—to|ﬁ (to) M(h'(it)oﬁ (t) dt, (6.11)
. _

where r(t) = % . In the further estimations we distinguish the cases 5 < 0 and § > 0.
0 1
1 Thecase—m<ﬁ§0
Estimate (6.9) with 5 = 0 says that

M) < e(1+ ME"O)(2)) (6.12)

for all ¢ € L™O)(T) with |||,y < 1. For ¢(t) = 8- we have ||¢ ||,y < aol| llyy> a0 =

T |t—tolP
g|l3|7 where we took into account that 8 < 0. Hence Hz/JHT(‘) < ag - kaHp(l) < agkR. Therefore

we choose R = - . Then ||| ., < 1, so that (6.12) is applicable. From (6.11) we now get
()

a()k"
f@ N
jlfi(Mf’f)gc/ <|t—t0|f”“<t0> [1+M(‘— )D dv(7).
r
By property (6.10), this yields
(7) P—
e 4 (B(t) gty (O
(M f)gc/r{ﬁ to|7Pie +(|t to|”" M(|T_t0ﬁr(to) dt

"7’ — t0|5
<eto / A (£ ()FO) @)~ du(e),

where

B = Br(te) = 61;9(t0) :

As is known [16, p. 149, Corollary 5.3], the weighted maximal operator M5t on Carleson curves
is bounded in LP- with a constant p_ if —p% <p1 < p#, which is satisfied since —ﬁ < p<0.

Therefore,
PMOf) < et e / FOFOP= du(r)
= c+c/ ()P dr < e < 0.
T

0 1
2Y The case 0 < 3 < >lte)

We represent the functional J%(M? f) in the form
00 = [ (MO ol (613)
r

with r(t) = @ > 1, A > 1, where X\ will be chosen in the interval 1 < A < p_.
In (6.13), we wish to use the pointwise weighted estimate (6.9):

IMPFO" < e[L+M(FO)(8)]. (6.14)
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This estimate is applicable according to Corollary of Theorem if || f||,() < ¢ and § < Wlo)]’ .

The condition ||f[|,.y < c is satisfied since r(z) < p(t). Condition § < Wlo)]/ is fulfilled if
A < (1= PB)p(to). Therefore, under the choice

1< A< min(p_, (1 - B) p(to)),
we may apply (6.14) to (6.13). This yields

3?(A46f)f§c4—c]£|ﬂfﬂfV‘U(ﬂ\AdVU)

§c+c/ (LF(6)]7 D) du(t)
r
by the boundedness of the maximal operator M in L»(T), A > 1. Hence

(MPF) < c—|—c/ |f ()P dt < c.
r

IT Necessity Part Suppose that M” is bounded in LP()(I"). Then, given a function f(z)
such that
Th(wf) < e, w(t) = [t —to], (6.15)

we have
F(wMf) <e. (6.16)

1) We choose f(t) = |t — to|* with > —f5 — ﬁ. Then

F(wf) §c—|—c/

|t — to\(ﬂJr“)P(t)dy(t) <c+ C/ |t — t0|(ﬁ+u)p(to)dl,(t)
FmB(toﬂ')

FﬂB(tO ,’I‘)

for some r > 0,where the integral converges by (4.2), so that we are in the situation (6.15).

However,
FlwMf)ze [ -t du)
TNB(to,r)
which diverges if 8p(t9) < —1 according to Lemma 4.1. Therefore, from (6.16) it follows that
B> — iy

2) To show the necessity of the right-hand side bound in (3.3), suppose that, on the contrary,
8> m. Let first 3 > ﬁ. We choose f(t) = It—ltol’ for which J%(wf) converges but M f
just does not exist. Let now 3 = > (1t0). ‘We choose

1 1 @ 1
t) = 1 tel’'NBlty,=].
1) n—m(“t—m>’ € (“Q

p—éo), but M f does not exist when 5; > —1. Thus,

taking a € ( -1, —ﬁ), we arrive at a contradiction.

Then 7 (wf) exists under the choice a < —

7 Proof of Theorem B

According to Remark 6.1 it suffices to prove Theorem B for a single power weight [t —to|® where
to belongs or does not belong to I'. The arguments below are given for ty € I', the case where

to ¢ T being easier.
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I Sufficiency Part
We have to show that I7.(wM f) < C < oo provided that [[wf]|,.) < 1, w = [t —to|".
Let

FRZFQB(to,R), FQR:FQB(to,QR) and F4R:FOB(t0,4R)
We split the function f as
f:f'XF2R+f'XF\FQR :SD+¢7

so that
F(wMf) < IR (wMe) + IR (wMp).

When estimating 3% (wM¢), we distinguish the cases ¢t € Ty and t € I'\T4p.
Let first t € T'yg. We find it convenient to introduce a notation for the maximal function

with respect to the portion I'yg of T', that is,

Moo S0) = sup sy [ I, reycT
For M f(t) = Mrf(t) we have
Mo(t) < CMr,, f(t), teT4g. (7.1)
Indeed,
Mip(t) = sup —— F(F)dv(r) < sup £ ldv(r).

r>0 V{T(&,7)} Jrrnran r>0 V{L(t,7)} Jr@mnrae
When r > 2R we have ['(t,7) = ['(t,r) N T4g, so that the right hand side above is M4z f(t)
and we get (7.1) with C' = 1; when r < 2R, we observe that v{I'(¢,7)} ~ v{T'(t,r)NT4r} ~ R
for t € Top and we get (7.1) with some C > 1.
Then by (7.1) and Theorem A,

/F () Mp®POdu(t) < C [ [w(t) My, FEPDdu(t) < C (7.2)

Fur
since [[wf|[zee)(r,q) < lwfllzoe @y < 1.
Let t € I\I'yg. If r < 2R, then I'(¢t,7) NTor = 0 and M, p(t) = 0, so we consider r > 2R.
It can be also easily seen then that whenever the set T'(¢,r) N T'ar is non-empty, we have
|t —to] < 2R+ r < 2r. Consequently

1 1
Miglt) = sy / o N < / )l

Hence M, ¢(t) < ‘t_C;O‘ [1+ [|wfllp(-)] and then

Mep(t) < for t € I\Iyp. (7.3)

|t — tol

Therefore,

/ [w(t) M) du(t) < C It —to| P~ DPodu(t) < Cy <00,  (7.4)
MT4r T\I'(t0,4R)
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. Combining (7.2) and (7.4),

we get

I (wMp) < C < . (7.5)

Now we pass to the function ¢. Let first ¢ € T'g. If » < R, then T'(¢,7) NT'\I'sg = 0 and
M, (t) = 0,t € T'g. Therefore, we have to consider only » > R and then

()i (r) < ——r

r¢( ) m T'(t,r)Nl2p

V{F (t,r)} / tr)ﬂFzR L+ 1@ dvr).

Hence

M, (t) = (+1) < C < 0.

-
()}
Thus, My(t) < C for t € I'p and then

[ woauerOa <c [ uworae

I'r

=C [w(t)]PO =P [y (£)]PE) dus(t)
I'r

<C [ |t —to|PPt)du(t) < C < oo, (7.6)
'r

where we have taken into account the property (6.10) and the fact that § > — p(to)

It remains to estimate
/ o (8) M (DO du(t) = / () M ()P ().
\T'r Mg

To this end, it suffices to make use of the known boundedness of the maximal operator in
the Lebesgue space with constant po, > 1 (the fact valid in general for maximal functions on
weighted spaces of homogeneous type, in particular, on Carleson curves, see [2, Theorem 2.3.1]);
and the power function w(t) = [t—to|? on an infinite curve I'\T'ag, tg ¢ T'\I'2r, is a Muckenhoupt
weight for g € ( L ), see [16, p. 32].

Poo’ Pl
Therefore,

/ Lo Mp@POdu(t) < C [ fwltyp)P=du(t) <C/ OPOdv(t) < C,
M\I'r

M\I'g
which together with (7.6) yields
Jp(My) <C < oo

and proves the “if part” of the theorem.

IT Necessity Part
Suppose that the maximal operator M is bounded in Lp(')(I‘,w). Necessity of the conditions
_p(lTo) <pB< m follows from Theorem A. The necessity of the condition

is a consequence of their necessity for the boundedness of the maximal operator in the case of

constant exponent p. Indeed, the boundedness

W(wf) < 1= IR(wMf)<C
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implies the boundedness

/F\F [w(@) f(B)[P>dv(t)) < 1= [w(t)M f()[P=dv(t)) < C

T2k
with constant exponent. For the latter, as is known, it is necessary that the weight w satisfies
the Muckenhoupt condition ([2, Theorem 2.3.1]) and the power function w(t) = |t — to|® on an
infinite curve I'\I'ag, tg ¢ I'\I'ag, is a Muckenhoupt weight if and only if 8 € (—p%.o, p; ).
Anyhow, to make the presentation more self-contained, we independently prove the necessity

of the condition 8 < p,l

in Appendix 2.

8 Proof of Theorem C

We have to show that
(IO f) < ¢ < oo, (8.1)

when || f[|,.y < 1. We simultaneously treat the cases of finite or infinite curve and use some
ideas of the proof of the corresponding theorem for the Euclidean space in [11]. For f €
LPON(T), f(t) > 0, with [lfllpcy <1 we prove the following pointwise estimate

(10 F(E)® < COMF@F® +1), (32)

valid independently of the fact whether the curve is finite or infinite, and give its improvement

Xr\m—m(t)) (8.3)

[Ia(-)f(t)}q(t) < C([Mf(t)]p(t) + Xr(to,2r) () + it
ol?

when T is an infinite curve. The required statement (8.1) will follow from (8.2), (8.3).
Proof of (8.2) We make use of the standard splitting
Ia(.)f(t) B /F(t,r) % * /F\l"(t,r) % - A”‘(t) - Br(t)7 (84)
where 0 < r < 0o, and the well-known pointwise inequality
ro(®)
A(t) < Cme(t), tel, (8.5)
where C' > 0 does not depend on t and r, see [17, p. 54] for Euclidean spaces; since v(T'(¢t,7)) ~ r,

the proof for Carleson curves is the same under the condition inf,er at) > 0:

A(t) = i/ f(r)dv(T) < 200 al) i 20k N F (1),

ey [t = T[tmetd)

k=0 k=0
where i, (t) = T'(¢, 27 Fr)\['(t, 277 1r).
By (8.5) and the first condition in (1.5) we have
Ap(t) <er*OMf(t), tel (8.6)

with some absolute constant ¢ > 0 not depending on ¢ and r.

For the term B,.(t) we make use of the Holder inequality and obtain

t— 71O < e (D1E = 71O

B (t) < [[fllpe) lxrvec.r (1)
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the norm being taken with respect to 7. Then by (2.4)

XT\T(t,r) (T) telt
B, (t) < HL . (8.7)
=71 Na—amwe
Now we show that (r)
X\ (t,m)\T XU (t,r)
v L OM | =/ 8.8
e s on (s ) o (8)

where C' > 0 does not depend on ¢, 7 and r. Inequality (8.8) should be checked for 7 € T\T'(¢, 7).
Indeed, we have
XT(t,r) ) T (t,r)UT(7,8)} _ v{T(t,r)UT(r,d0)}
M| ——"—=])(r) >su >
(V(F(tﬂ“)) (r) = 30 V(L6 )T (r,0)) = v (6, r)w(T (7, 60))
with an arbitrary g > 0. We choose it so that 2|t — 7| < dg < 3|t — 7|. Then T'(¢,r) C I'(7,9)
and consequently v{T'(¢,7) UT(7,0)} = v{T'(¢t,r)} and then
XT(t,r) ) 1 c c/3
M) Noys 2 5 C s . reD\l({tr
() 02 s 2 5 2 A
which proves (8.8).
From (8.7) and (8.8) we obtain

1—a(t)

Br(t) < C[V(F( ) a(t)—1 HM (XF(t 7")) ||(1 a(Np' ()"
By the boundedness of the maximal operator in the space LPC )(I‘) provided by Theorem A, we

conclude that

a 1—a(t a(t)—
Br(t) < C[V(F( )) ®)= HXF(t T)H(l a()))p /() C[V(F(tu T))} ®-1 ’

By Proposition 4.3 we then obtain
B,(t) < ClAT(t,r)})] "7 (8.9)
Therefore, from (8.4), (8.6) and (8.9) we get
1O f(t) < Cr*OMf(t) + CAT(t, 1)} 7. (8.10)

P’

Observe that a(t) — pi is negative and sup,cp [a(t) - i} < 0 according to (3.5). Since

v{T'(t,r)} > 2r, we obtain "
IO ) < CroOMF@E) +0r*P7 . tel, 0<r< oo (8.11)
Observe that when a(t) = const and p(t) = const, estimate (8.11) with the standard choice
r = [Mf(t)]? yields the Hedberg-type pointwise estimate
*Of) <CIMf@))7,  ter (8.12)

for any Carleson curve, bounded or unbounded.
In view of (5.3), estimate (8.11) takes the form

1°Of@) < CroOMFE) + Cr*®O-50,  tel, 0<r<( (8.13)

for any finite £ < co. Let £ > 1. From (8.13) the required estimate in (8.2) follows. Indeed, for

those ¢t € T for which M f(t) > 1, we choose 7 = [M f(t)] () <1 < ¢ and obtain

10 f(t) < CIMFO]=OPO = CMFO)5F when Mf(H) 1.  (8.14)
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If Mf(t) < 1, we take r = 1 and from (8.13) get I*() f(t) < C which together with (8.14) gives
(8.2) for all t €T

2 Proof of (8.3) To prove (8.3), we proceed as follows. For t € T'(to,2R) in any case we have
estimate (8.2):
IO f)]7 < O(Mf)PY +1), ¢ €T(to,2R). (8.15)

Let now t € T'\I'(¢g, 2R). We put

f=rfo+fi, where fo=xru,rf and fi=xr\re.r)f
For 7 € I'(tp, R) and t € I'\I'(tg, 2R) we have

1
[t — 7| > 5|t—t0|~

Therefore, for t € I'\I'(o, 2R) we obtain

a(t)

o) L . ! )

(10 fo(1)) 5 < <t_to|1—a<t> /F(tmR)fo(f)d <t>) .
But

/ fo(®)du(t) < / 1A OP® + 1du(t) < C

I'(to,R)

I'(to,R)

since || f[[,(.y < 1. Consequently,

(IO fo(t)) 7~ < T Tam,g t € I'\I'(to, 2R). (8.16)
|f, - t0| P
Observe that ¢(t) = 175((:))1)(0 > 17;’(})1)_. We may assume that R > 1, so that |t —to| > 1 and

then from (8.16) we get

a(t)
(1" fo(t)) 7= < S <
It — to|er- [t —tol

. teT\I(t,2R). (8.17)

Passing to the function fi(¢), we observe that supp fi(t) C I'\I'({p, R) and in this set
p(t) = poo = const. Therefore, for
1O f(0)40 = [1°= fi()]%=,  t € T\I(to, 2R),
1 1

where 7o = po — Qoo = const. Then by the Hedberg pointwise estimate (8.12) for constant

exponents we have
(12O A @)7 < CIM A@)]P= = CIM [P, ¢ € T\I(to, 2R). (8.18)

Then from (8.17) and (8.18) it follows that
s < o

which together with (8.15) yields (8.3).
Proof of (8.1) Let T be a finite curve. Then by (8.2)

r r

- t)
M)
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which proves the theorem, since the maximal operator is bounded in Lp(')(I‘) according to the
non-weighted case of Theorem A. Let I' be infinite. Then by (8.3) we have

dv(t
[irororan < [ propoaw e [
r r M\[(to,2R) [t — tolP-
where it remains to refer to the non-weighted case of Theorem B and the fact that the last

integral is finite according to Lemma 4.2.
9 Proof of Theorem D

9.1 An Auxiliary Estimate

Lemma 9.1 Let ' be a bounded Carleson curve of the length £,0 <1 < {, t,to €', 0 > —1

and a bounded measurable function h(t) defined on T satisfy the conditions

sup |h(t)] ;== H < o0, (9.1
zel
sup[h(t) + 1] := —dp < 0, (9.2)
tel
and
sup[h(t) + 1+ 0] := —dy <O0. (9.3)
tel
Then

At to;r) ;:/ [t — 7" — 0|7 dv(r) < CrO+(r 4|t — to])7, tel, (9.4)
T\I'(¢,7)

where C > 0 does not depend on t and r.

Proof We consider separately the cases [t — to| < < |t —to] < 2r, |t —to| > 2r.

ror
20 2
The case [t —to| < 5. We have

-t -1 t—1 t—1
=t =t tlt=tl |, t=to _,

|7 —¢ — |7 — ¢t r

and similarly

[T — 1ol >1- |t —to > 1
|7 — ¢t r 2
Hence % < ||TT_ft°|‘ < 2 and therefore, (%)” < 2lel. Then
Al to; ) < 2171 / [t — MO+ ().
T\T'(¢,r)

It remains to make use of Lemma 4.2, applicable by condition (9.3), which yields

r
At tg;r) < phOFo+1 [t —to] < 5. (9.5)
The case § < |t —to| < 2r. We split the integration in A(t,%o;7) as follows:

Ator)= | = O —tol” du(r)
r<|T—t|<2p

+/ |t —7|"O)r —to|7 dv(1) = : Ty + Ja,
T\T'(t,2p)
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where we denote p = |t — to| for brevity. Since h(t) < 0, for the integral J; we have

3, < rh® |7 —to]” dr.
TED
r<|T—t|<2p

Observe that

[T—t|>r = |r—to| <|t—t|+[t—to| < |7 —t|+2r < 3|7 -1t

Consequently,
3y < rh® / |7 —to]” dv(T) < Th(t)/ |7 —tol” dv(T)
‘77\;;‘2;2::“ [T—to|<6p
and Lemma 4.1 yields
Alt, to;r) < CrO)t — tolo L, g < |t —to| < 2r, (9.6)

the application of Lemma 4.1 being possible by condition (9.2).

As regards the integral Jo, this is nothing else, but A(t,to,2p), p = |t —to| and its estimate
is contained in (9.5) under r = 2|t — to.

The case p > 2r, p = |t — tg|. We have

A(t,to;T) o
r<|7—t\<%p

=:TJ3 4+ Jy4.

It —7|"D|r — 0|7 dv(r) + / It — 7|"D|r — to|7 dv(T)
\I'(t,3p)

For the term Js we have 2p < |7 — to| < 2p, so that |7 — to|7 < 2191p7. Therefore,

TET
r<|r—t|<ip

J3 < 2'”'/)"/ [t —7|"® du(r)

and condition (9.2) and Lemma 4.2 yield
At tg;r) < Cr®OF e — o], It —to| > 2r. (9.7)
Gathering estimates (9.5), (9.6) and (9.7), we arrive at (9.4). O
9.2 Estimation of the Norms ngs . ,(t,7)
Let x,(p) = {é iﬁ gz: and let
gs(t,7,7) = |t = 7°xp (|t = 7]), (9-8)
where §(t) in future will be chosen as §(t) = «a(t) — 1.

We are interested in estimation of the weighted norms

16,50 (1) = 1198 (6 T 7)o (1, g 0 (9.9)
(taken with respect to 7) as r — 0, where we suppose that to € I' and »(7) is some variable
exponent. Later, in the proof of Theorem D, we will need this norm with p(-) replaced by p’(+)
and s(t) chosen as »(t) = —0p/(t).
Theorem 9.2  Let T be a bounded Carleson curve, tg € T, p satisfy conditions (2.1)—(2.2),
2 € L™(T) and 6 € L*°(T") and also 3(t) satisfy the logarithmic condition at the point to
A 1

|2¢(7) — 2(to)| < T Tel, |T—ty < B (9.10)
) P
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and let »(to)p(to) > —1. If

ilelllg[é(t)p(t) +1]:=—dy <0, (9.11)
31611? {14 1[6(t) + (t)|p(t)} := —dy <0, (9.12)

and
ilellli) {14 [0(¢) + s(to)]p(t)} := —da2 < 0, (9.13)

then
N e p(t, ) < C’ré(tHﬁ(r + [t — to])*, (9.14)

forallt €T, 0 <r < {, where C' > 0 does not depend on t and r.
Proof For the norm ns .., = N p(t,7) as defined in (9.9) we have

8O | — g\ P
/ ) <|T il > dr =1 (9.15)
TE

T6,5¢,p

|7 —t|>r
by definition (2.5).
1st step: Values ns . p(t,7) > 1 are only of interest. First we observe that the right-hand

side of (9.14) is bounded from below:
inf D5 (r 4 |t — to])*® == ¢1 > 0. (9.16)
0ree

To verify (9.16), suppose first that s(t) > 0. Then by (9.12)

1 1 _s@®Wp@®) 4= (®)p(t)+1] _ls@®)p(t) o (t)p(t)+1]
PP OF5@ (r 4 |t — to)*® > PO R 0 = #(0) > ¢ #(0) .

The right hand side here is bounded from below since |6(t)p(t):a()t)p(t)+ll € L>*(T'). When
»#(t) <0, we observe that

PO R (1 — ) 3 50 sy et) 30+ | )

where (9.11) was taken into account. The right hand side here is also bounded from below.

From (9.16) we conclude that to prove (9.14), we may suppose that
N e,p(t,7) > 1.

2nd step: Small values of v are only of interest. We assume that r is small enough, 0 <
r < g9. To show that this assumption is possible, we have to check that the right-hand side of
(9.14) is bounded from below and ns .., (¢, 7) is bounded from above when r > ¢g. The former
is obvious; to verify the latter, we observe that from (9.15) it follows that

| < |7 — t|@OP(T) |7 — ¢4 |(T)p(7)

dv(T)

Ter n
|[T—t]|>eq 5’%’1)

whence
N0 p(t, 1) < / |7 — 2P | — g |7C0PC0) gyt o (T) du(T),
I'\I(t,e0)

where u(t,7) = |7 — t|?OPO=PO] and v(7) = |1 — to|*(P()—>to)p(to) . By direct estimation

of Inwu(t,7) and Inwv(7) we obtain that

e 2AB <yt 1) < 4B, t,rel (9.17)
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where £ and A are the constants from (2.3) and B = sup,cp |6(t)], and
e < |1 — to|F (NPT =x(to)p(to)y < oo, t,rel (9.18)

with some constant ¢ > 0 (one may take ¢ = 2max{As, {sup,cr |>(t)p(t)|}, where Ay is the
constant from (9.10)).
Therefore,

N p(t,r) < e“T2AB / |7 — ¢[2OP®) |7 — g |(tIP(to) gy (r)
T\I'(t,e0)

< eCJrMABEaBp+ / | — t0|"(t0)p(t°)dzj(r) = const
r
which proves the boundedness of ngs .. ,(t, ) from above.
The value of ¢y will be chosen later.
3rd step: A rough estimate. First, we derive a weaker estimate
15,50,p (1 7) < OO (9.19)

which will be used later to obtain the final estimate (9.14). To this end, we note that always
NP(T) < \IREP(T) 4 \supp(7) 50 that from (9.15) and (9.18) we have

S(t)\ P S\ P
1</ |:<T—t| ()> N <T—t ()) +] |T_t0|%(t0)p(t0) (7).
I N§,5¢,p 15,5¢,p

Since |7 — t| > r and §(t) < 0, we obtain

6(t) \ P- 8(t) \ P+
1< [( . ) + < - > ]/ |7 — to|*(t0)Ptto) gy (7).
3, 3¢,p NG, 5¢,p Tel

5(t) 5(t)

)P= + (£—)P+ > ¢ which yields =— > C and we arrive at the estimate in
Mo e Mo e,

RIO)

Hence (w%,p

(9.19).

4rd step. We split integration in (9.15) as follows

5(t)\ P(7)
1= </ / / ) <T t > Ir — t0|%(7)17(‘r) dv(T)
Fl 80 I's 80) F\F t Eo ns 1 2,P

=S + S+ H3, (9.20)

where

|T—t|6(t)
1“1(50):{761“: r<|T—1 <50,—>1},
N§,5ep

|7 —t|°®
F2(€0)—{T€FZ r<|7—t<50,n—<1}.

8,5¢,p

5th step: Estimation of #1. We have

— ¢]9(®) ®
Iy = (—|T | ) 7 — toTPT) w, (¢, 7) du(7), (9.21)
T'1(e0) 18,5¢,p

|7_ _t|5(t) p(T)_p(t)
)= (B0
1§,5¢,p

where
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The estimate
e 2 < (t,T) < 24 (9.22)

is valid. In its proof below we follow a similar estimation in [18, p. 266]. We have

| —¢]2®

In (—né%p )
In w,.(t,7)| < A 2|
[t—7]
_5()
Since |Tnt—|f > 1, we obtain
5,5¢,p

[7—1]
20 —
[t—7]

S(H)In = — In ngs,. 5(t)ln —
e < A0 o 160)
n

where B = sup,r |6(t)| (without loss of generality we may assume that 2¢ > 1). Hence (9.22)

follows.
By (9.22) and (9.18) we obtain from (9.21)
C
I < W/ = t|5(t)p(t) T — t0|%(to)p(t0) dv(T)
8,5,p Fl(é‘o)
¢ 5(1)p(t) s<(t0)p(to)
g, I\

Now we make use of the estimate obtained in (9.4) which gives

C
S <
nP®
§,5¢,p
The validity of conditions (9.1)—(9.3) under which the estimate (9.4) was obtained, follows from

assumptions of our theorem.

FO@®p()+1 (r+ |t — t0|)%(to)1’(to)_ (9.24)

6th step: Estimation of S5 and the choice of €g. In the integral %5 we have
— 8@\ P=o®)
Iy < C (—|T | ) |7 — to]<t0IP(to) (), (9.25)
T2 (c0) 16,5¢,p
where

Peo(t) = min p(7)
|T—t|<eo

and (9.18) was taken into account. Then

C
7y < p—@)/ (7 — 4500 (®) [ _ g 2t)p(to) (1)
n;o T2(e0)
»26,P
and consequently
C
S < p—(t)/ |7 — 2P0 |7 g <(toIp(to) gy (7). (9.26)
o) JI\N(E)

We wish to apply estimate (9.4), but to this end we have to guarantee the validity of conditions
(9.1)—(9.3). This may be achieved by a choice of ¢, sufficiently small so that

O(to)pey(to) +1 < =01 <0 and  6(t)pe,(t) + 1+ 3(to) < =2 <0
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which is easily derived from conditions (9.11)—(9.13) and continuity of p(¢) (compare with
Lemma 1.7 from [18]). Conditions (9.1)—(9.3) being satisfied, we make use of (9.4) and get
C
Fy <

— Peg (t)
8,5¢,p

r5(t)pao(t)+l(r + )t — to\)"(tO)p(tO), (9.27)

where C' does not depend on x and r.

Tth step: Estimation of #3. We have

C
Sy <=L, = ) = fr = 47RO o< (),
8,2¢,p \T:fe\l;so
The integral .#4(t) is a bounded function of ¢. Indeed, by (9.17)—(9.18) we obtain

Ity <C |7 — t|9OP) |7 — ¢o|<(toIp(to) gy (1)
T\TI'(t,e0)

< C’/ |7 — t|0OPO) |7 — g |(0)P(o) gy (1)
\I'(¢,e0)
which is bounded by (9.4). Therefore,

C
F3 < o
s 5¢,p

(9.28)

8th step. Gathering estimates (9.4), (9.27) and (9.28), we have from (9.20)

5(t)p(t)+1 8(t)peq (t)+1
1< Co o (r 4 [t = to)topt0) . T2 (g |)<(t0p(t0) (9.29)
p(t) DPeq (1) n
8,2¢,p 8,5¢,p b,5e,p
with a certain constant Cy not depending on ¢ and r. We may assume that
wptr) > (55 ) = :
nipltn) = (35) = (9.30)

because for those ¢ and r where ng .. ,(¢,7) < C; there is nothing to prove, the right-hand side
of (9.14) being bounded from below according to (9.16). In the situation (9.30) we derive from
(9.29) the inequality
(ré(t)p<t>+1 0(Opeg (D41
1< Gy

nP® T Peg (£)
6,2,p n&,%,p

)(r + |t — to)*(tolplto), (9.31)

Since 15 . (t,) > 1 we observe that (5 =0 (®) < (—L_)P(t) and (;;i)?”ao(t) <C(2yp(®)
by (9.19). Hence,

n§,5,p N, ,p ,7,D n§,5,p

rS®peg(F1 L8(8)p(t)+1

<
P® =)
8,5¢,p 8,2¢,p

Therefore, from (9.31) we derive the estimate
LS(p(t)+1

p(t)
d,%¢,p

(r+ |t — t0|)%(to)P(to) >C,

where C' > 0 does not depend on ¢ and r, which yields (9.14), because

p(tg)
e < (r |t —to]) TN < e (9.32)
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with C > 0 not depending on t and r. Inequality (9.32) is easily obtained by the direct

1—5¢(to) 20D

t
estimation of In (r + [t — to]) »®  and taking (9.10) into account. O

9.3 Proof of Theorem D Itself

Basing on Remark 6.1, we consider the case of a single power weight |t — ¢o|%, o € T

The case 8 >0 The starting point is the same as in the proof of Theorem C: we base ourselves
on (8.4) and (8.5). By (8.4) and the first condition in (1.5) we have

An(t) < er*OMf(t) (9.33)

with some absolute constant ¢ > 0 not depending on ¢ and r.
Let f(t) >0 and || f|l zoc)r o) < 1, p° = [t — to]. Applying the Holder inequality (2.6) in
the integral B,(t), we obtain

1Br()] < k15,50 p(6 ) fll Loy (r,00) < 126,50 5(E, 7)) (9.34)
where
St)=a(t)—1 and  x(t) = —Bp'(t).
We make use of our estimate (9.14) and obtain
B ()| < C ™70 (r + [t — to]) 7, (9.35)

the assumptions of Theorem 9.2 being satisfied by (1.5) and the fact that 8 > 0. From (9.35)
we obtain
|B,(£)] < C [t —to| 7 17w, (9.36)
since 3 > 0.
Therefore, taking into account (9.33) and (9.36) in (8.4), we arrive at

19O F(t) < CLroOMF(t) + [t — to] % r~ a0 }. (9.37)
It remains to choose the value of r which minimizes the right-hand side. A direct calculation
provides
1 p(t) —p(t)
= |———= t—to|PMf(t .
sem] (- ws0)

Substituting this into (9.37), after easy evaluations we get

r(t)
q

1°Of(t) < Ot — to| POPONL f(2)] a0

Hence,

/ (It — to]?1°0 ()10 du(t) < © / (It — ol |MF(E))P du(t). (9.38)
I T

It remains to make use of Theorem A. Condition (3.3) of that theorem is satisfied by
(3.6). By Theorem A we have [[Mf| o) i—so) < CIfllnee) @ ji—tosy < C- Then also

Jr(jt = t0|5|Mf(t)|)p(t) dv(t) < C. Consequently, by (9.38) we obtain that

/ (It — to]?17°0 £ (1) )1® du(t) < C



24 Kokilashvili, V. and Samko S.

for all f € LPOV(T, |t — to|?) with | £l e (r,jt—to)5) < 1 which completes the proof in the case
p=0.

The case f <0 This case is reduced to the previous one by the duality arguments. First we

observe that the operator conjugate to I*() has the form

(Ia('))*g( ) =TJa(g(t / |t—7- |1 - T)) / \t—T |1 a(t) _Ia(-)g(t), (9.39)

where the equivalence

Cilt =)' < |t = 1)[120) < Gyft — )1

follows from the logarithmic condition for «(t).
We pass to the duality statement in Theorem A. We take it as already proved with 8 > 0 to
arrive at the statement with negative exponent. By (9.39) we obtain from the already proved

part of the theorem with non-negative bt(ty) that

HIOC(')QH(Lp(->(r,|t_t0\ﬁ)* < C||g||(Lq(->(r7|t_t0|ﬂ)*'
In view of (2.7) this yields

HIQ(')QHLP’(')(F,|t7tO\*5) < Cligllpar oy o=t -5y (9.40)

where the the exponent —( is already positive. Now it makes sense to redenote —(3 =:
B, q'(t) =: p1(t) so that the Sobolev exponent for pi(t) is qi(t) = 7 p;;?(t) = p/(t) and
then (9.40) takes the form

HIQ(.)QHLQN-)(p,|t_t0\ﬁ1) < CHgHLp1(-)(F7\t_tO|61)' (9'41)
Since ) -1
p(t) —
1— ot t) = >c>0
Op0) = S =1+ ) -
and
1 1
0<B8<—— <= qaty)) ———= < <0
=~ ﬂ p’(to) ( 0) pl(tO) /61 >

the estimate in (9.41) is nothing else but our Theorem A for the negative subinterval of possible

values of the exponent.

Proof of Corollary to Theorem D It suffices to refer to the well-known pointwise estimate

Moy f(t) < cI*Of[(t), (9.42)

where ¢ does not depend on f and t. The proof of (9.42) on Carleson curves is the same as in
the case of functions in R™ (see for instance [19, p. 909]): for any ¢t € T' there exists an r = ry

such that
2

Moty (0) < e || Ll avte)

and on the other hand

a() f(r) dv(r) c ,
IOz [ G 2 TR o, 090
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10 Appendices

10.1  Appendix 1: Proof of Proposition 4.3
Let f(7) = X.Y(T)[I/(’y)]iﬁ, v =TI(t,r), so that || f||,.) = 1. For all z € v we have

CMf(z

) dv(r e )/v[u(v)]‘p(b dv(t)  forany y=T(t,r). (10.1)

Since the function <I>(:1:) =a~",x € RL, is convex for any a > 0, by Jensen’s inequality

o (o5 [relae) < o5 [ (102)

CMf(2) > ()] 55 = ()], zev=pH) 7.

Hence ||x7(z)[v(7)]_ﬁ llpy < CIM fl|,(.) and by the boundedness of the maximal operator we
1
obtain that ||x~(2)[¥(7)] # [lp() < C, which yields (4.3).

we obtain

To show the necessity of the condition 8 < , , we choose fo(t) = xr,5(t). Then fo € LPO(T, w)
according to Lemma 4.1 since § > Wlo)' By the boundedness of the maximal operator we
have

I (wM fo) < oo. (10.3)

On the other hand,
C

|t —to|’

Mfo(t) > te F\FQR (104)

with C' > 0 not depending on ¢. Indeed, to prove (10.4), observe that since v{I'(t,r)} < cr, we

have o
Mh0 = v (r) (10.5)
F(t T)mFQR

r
for any r > 0. We choose r = 2|t — tg|. Then for 7 € I'y3g and t € T'\I'sp we have |7 — t| <
|7 —to| + [t —to] < 2R+ |t — to] < 2/t — t0| = r, that is, I'(¢t,r) N Ty = I'yg for r = 2|t — to|
and then from (10.5) we obtain M fy(t) > v(7), which is (10.4).
In view of (10.4) we get
Fwdf) = [ wOMpEOPa) = [ o=l dne)
F\FQR

F\FQR

Tt—to] t0| fF?R

Since the condition (8 — 1)p < —1 is necessary for the convergence of the last integral, see
Lemma 4.2, we conclude that (10.3) i

References

[1] Maz’ya, V. G.: Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985

[2] Genebashvili, I., Gogatishvili, A., Kokilashvili, V., Krbec, M.: Weight theory for integral transforms on
spaces of homogeneous type, Pitman Monographs and Surveys, Pure and Applied mathematics: Longman
Scientific and Technical, 1998, 422

[3] Kokilashvili, V., Samko, S.: Singular Integral Equations in the Lebesgue Spaces with Variable Exponent.
Proc. A. Razmadze Math. Inst., 131, 61-78 (2003)



Kokilashvili, V. and Samko S.

Fan, X.: Amemiya norm equals Orlicz norm in Musielak—Orlicz spaces. Acta Mathematica Sinica, English
Series, 23(2), 281-288 (2007)

Fan, X., Zhao, D: On the spaces LP(*)(Q) and W™ P(*)(Q). J. Math. Anal. Appl., 263(2), 424-446 (2001)
Kovaéeik, O., Rékosnik, J.: On spaces LP(*) and W¥P(®) . Czechoslovak Math. J., 41(116), 592-618 (1991)
Samko, S. G.: Differentiation and integration of variable order and the spaces L?(®@) Proceed. of Intern.
Conference ”Operator Theory and Complex and Hypercomplex Analysis”, 12—17 December 1994, Mexico
City, Mexico, Contemp. Math., Vol. 212, 203-219, 1998

Fan, X.: The regularity of Lagrangians f(z,£) = |¢|*(*) with Holder exponents «(z). Acta Mathematica
Sinica, New Series, 12(3), 254261 (1996)

Ruzicka, M.: Electroreological Fluids: Modeling and Mathematical Theory, Springer, Lecture Notes in
Math., 2000, vol. 1748, 176

Zhikov, V. V.: On some variational problems. Russian J. Math. Phys., 5(1), 105-116 (1997)

Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces LP() and
Wk2(). Mathem. Nachrichten, 268, 31-43 (2004)

Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted Lr(@) spaces. Revista Matematica
Iberoamericana, 20(2), 495-517 (2004)

Khabazi, M.: Maximal operators in weighted LP(*) spaces. Proc. A. Razmadze Math. Inst., 135, 143-144,
(2004)

Diening, L.: Maximal functions on generalized Lebesgue spaces LP(®) Preprint Mathematische Fakultit,
Albert-Ludwigs-Universitat Freiburg, (02/2002, 16.01.2002), 1-6, 2002

Diening, L.: Maximal function on generalized Lebesgue spaces LP(). Math. Inequal. Appl., 7(2), 245-253
(2004)

Bottcher, A., Karlovich, Yu.: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Basel,
Boston, Berlin: Birkhauser Verlag, 1997, 397

Adams, R. A., Hedberg, L. I.: Function Spaces and Potential Theory, Springer, 1996

Samko, S. G.: Convolution and potential type operators in LP(*). Integr. Transf. and Special Funct.,
7(3-4), 261-284 (1998)

Kokilashvili, V., Samko, S.: On Sobolev Theorem for the Riesz type Potentials in Lebesgue Spaces with
Variable Exponent. Zeit. Anal. Anwend., 22(4), 899-910 (2003)



