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1. INTRODUCTION

We prove a certain p(-) — g(+)-version of Rubio de Francia’s extrapolation theorem [7]
within the frameworks of weighted spaces Lz(') on metric measure spaces. By means of
this extrapolation theorem and known theorems on the boundedness with Muckenhoupt
weights in the case of constant p, we obtain results on weighted p(-) — ¢(-)- or p(-) — p(-)-
boundedness - in the case of variable exponent p(x) - of the following operators: potential
type operators, Fourier multipliers, multipliers of trigonometric Fourier series, singular
integral operators on Carleson curves and some others.

2. DEFINITIONS AND PRELIMINARIES

In the sequel, (X,d,pu) denotes a metric space with the (quasi)metric d and non-
negative measure u, 2 is an open set in X. The following conditions are assumed to
be satisfied: 1) all the balls B(z,r) are measurable, 2) the space C(X) of uniformly
continuous functions on X is dense in L'(u). In most of the statements we also suppose
that 3) the measure p satisfies the doubling condition: pB(z,2r) < CuB(z,r), where
C > 0 does not depend on r > 0 and = € X.

For a locally p-integrable function f: X — R! we consider the maximal function

Mf(z) = |f ()] dps(y).

1 /
sup ———
r>0 p(B(x,7))
B(x,r)
By As = As(X), where 1 < s < 0o, we denote the class of weights w : X — R which
satisfy the Muckenhoupt condition

sup <H13!w(y)du(y)> <:B!w_ﬁ(y)du(y)>s_l < oo

in the case 1 < s < oo, and the condition Mw(z) < Cw(z) with a constant C' > 0,
not depending on z € X, in the case s = 1. As is known, the weighted boundedness
JMf(@)*w(z)du(z) < C [ |f(z)|*w(z)du(z) holds, if and only if w € As.

X X
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Definition 2.1. A p-measurable function p : © — R! is said to belong to the class
P(Q), if
1<p_ <py <oo, 1)
where p_ = p_(Q) = esseigfp(m) and py = p4(Q) = esssupp(z). It is said to belong to
x z€eN
the class WL(Q) (weak Lipshitz), if

, T, Y EQ, 2)

N | =

A
lp(@) —pW)| < —=—, d(z,y) <
In
d(z,y)
where A > 0 does not depend on x and y.

Definition 2.2. By Lz(')(ﬂ) we denote the weighted Banach function space of u-
measurable functions f: Q — ]R'f, such that

p(z)

171> = lefllocy = inf{)\ >0: / ‘M du(z) < 1} <oo. (3
Q

Definition 2.3. We say that a weight o belongs to the class 20,y (), if the maximal
operator M is bounded in the space L5’ ().

For lower and upper local dimensions of X at a point x, we use an approach different
from known in the fractal geometry and used in the variable exponent analysis on metric
measure spaces in [3]. To this end, we use Matuzewska-Orlicz indices of measures of
balls. This idea to introduce local dimensions in terms of these indices by the following
definition was borrowed from [9].

Definition 2.4. The numbers

. pB(z,rh) T puB(z,rh)
In (}};mo LEERT) i (T S5ETT)
oim(X; z) = sup

r>1 In r

(4)

, D'Tl(X;z):ir;fl N
T nr

will be referred to as local lower and upper dimensions.

The “dimension” 2im(X;z) may be also rewritten in terms of the upper limit as well:

T pB(z,rh)
| n (i 5525
dim(X;x)= sup —M =
0<r<1 In r

: : _ T uB(x,rh)
Since the function po(z,r) = }}Lmo SBER)
such functions we obtain that 2im(X; z) < 9im(X; z) and we may rewrite these dimensions
also in the form

(5)

is semimultiplicative in r, by properties of

n uo (, 7)

lll)l, r, T
Dilll(X; 1) = lim 70( ’ )
In 7

, oim(X;z) = lim
r—0 In r r—00

(6)
For lower local dimensions we also introduce their lower bound
2im(2) := ess inf 2im(Q; x).
zeX

In case where Q2 is unbounded, we will also need similar dimensions connected in a

sense with the influence of infinity. Let poo(z,7) = lim #B@.rh) \ye introduce the
h—o0 uB(xz,h)

numbers

. . In T, T — . In T, T
aim(X) = lim A2 T () = gy BT, ™)

As shown in [9], these limits do not depend on the “starting” point z. It is easy to see that
they are non-negative. In the sequel, we always assume that 2im(Q2), dim__ (), dime () €
(0, 00).



We consider, in particular, the weights

N
o(z) = [1 +d(mo,x)}ﬁ°° H [d(x,a:k)}’gk, z, €X, k=0,1,...,N, (8)
k=1
where 8o = 0 in the case where X is bounded. Let II = {zo,z1,...,2Nn} be a given

finite set of points in X. We take d(z,y) = |z — y| in all the cases where X = R™.

Definition 2.5. A weight function of form (8) is said to belong to the class V,(.(£2,II),
where p(-) € C(Q), if

2im(2) im(Q2)
- 3 S 9)
p(zy) P’ (k)
and, in the case 2 is infinite,
dim (9 X dimes (2
_%()<ﬁ°°+zﬁk<moo(ﬂ)_p7()' (10)

Note that when the metric space X has a constant dimension s in the sense that
c1r® < uB(z,r) < cor® with the constants ¢; > 0 and ¢z > 0, not depending on z € X
and r > 0, the inequalities in (9), (10) and (16) turn respectively into

N
s s
- <,3k</7, *7<ﬁoo+zﬁk</7 (11)
p(xk) P (zk) Poo = Poo
and s
— <m(w) <Mw) < ——, k=12,...,N. (12)
p(zy) P’ (k)
We admit also a more general class of weights
N
o(z) = wo[1 + d(zo, )] H wy, [d(z, zy)] (13)
k=1
with “radial” weights, where the functions wg,k = 0,1,..., N, belong to a class of

Zygmund-Bary-Stechkin type with possible oscillation between two power functions with
different exponents.

By U = U([0,£]) we denote the class of functions u € C([0,¢]), 0 < £ < oo, such that
u(0) = 0, u(t) > 0 for ¢ > 0 and u is an almost increasing function on [0,4. By U we
denote the class of function w, such that t®u(t) € U for some a € R!. Recall that a
function v € U is said to belong to the Zygmund-Bary-Stechkin class @g, if

h I3

/ @dt <cv(h) and / v(®) dt < cv(h),

t1+§ h5

0 h

where ¢ = ¢(v) > 0 does not depend on h € (0,£]. It is known (see [8]) that v € ®J, if
and only if 0 < m(v) < M(v) < 4, where

i w(ht) - w(ht)
n (—,}‘fg o)) In (T 5
m(w) =sup———— and M(w)=sup—— .
t>1 Int t>1 Int

(14)

For functions w defined in the neighborhood of infinity and such that w (22) S

7
U([0, £]), we introduce also

. w(xh
In [h_mh_,oo w((h))

o [ )
Moo (W) = su[; -
>

, Mo(w) = inf (15)

In z

Generalizing Definition 2.5, we introduce also the following notion.
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Definition 2.6. A weight function ¢ of form (13) is said to belong to the class
Vp"(s')c(Q,H)7 where p(-) € C(), if

~ M Q . Q
wi(r) € U([0,4)), ¢ = diamQ and — 2m(S) < m(wg) < M(wg) < D%l( ), (16)
p(zk) P (zg)
k=1,2,...,N, and (in the case Q is infinite) wg (%) € U([0, 8]) for some § > 0, and
. N N .
Q Q
S () < Mao(wp) < 22 a0 )
Poo k=0 k=0 Poo

Tim oo (D) —2im ()

Poo

where Ay =

Observe that in the case 2 = X = R"” conditions (16) and (17) take the form

wk(r)eﬁ(Ri_):: {w: w(r),w(%) 6(7([0,1])} (18)
and n n
™ ) <) S MO < s
n N N n (19)
—— <> meo(wy) <Y Moo (wy) < ——.
Poo 120 k=0 00

Remark 2.7. For every po € (1,p—) there hold the implications ¢ € V,,(.)(Q2,1I) =

0770 € Vi (1(Q 1) and 0 € VS (QTT) = 0770 € V253, (Q,T1), where p(z) = Bz)

Theorem 2.8. Let X be a metric space with doubling measure and let Q0 be bounded.
Ifpe P NWL(Q) and ¢ € Vpc’(f)c(ﬂ, II), then M is bounded in the space LZ(')(Q).

Theorem 2.9. Let X be a metric space with doubling measure and let 2 be unbounded.
Let p € P(2) N WL(Q) and let there exist R > 0 such that p(x) = poo = const for

z € Q\B(zo,R). If 0 € Vp"(?)C(Q,H), then M is bounded in the space Lg(')(ﬂ).

The Euclidean version of Theorems 2.8 and 2.9 was proved in [4], [5]; in [5] there were
also proved the corresponding versions of these theorems for the maximal operator on
Carleson curves.

Theorem 2.10. Let Q be a bounded open set in a doubling measure metric space
X, let the exponent p(x) satisfy conditions (1), (2). Then the operator M is bounded in
Ly0(9), if

@)™ € A,_(Q).

We refer to [6] for Theorem 2.9, its detailed proof for the case where X is a Carleson
curve is given in [5], the proof for a doubling measure metric space being in fact the same.

3. EXTRAPOLATION THEOREM ON METRIC MEASURE SPACES

In the sequel F = F(2) denotes a family of ordered pairs (f,g) of non-negative pu-
measurable functions, defined on an open set 2 C X. When saying that there holds an
inequality of type (2) for all pairs (f, g) € F and weights w € A1, we always mean that
it is valid for all the pairs, for which the left-hand side is finite, and that the constant ¢
depends only on pg, go and the Aj-constant of the weight. In the sequel, the numbers pg
and g are arbitrary such that

1 1 1
O0<po<g<oo, po<p- and — — — << —. (1)
po P+ q0
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We use the notation p(z) = zgfg:) , qlz) =

a(@)
a0

Remark 3.1. The extrapolation Theorem 3.2 with variable exponents in the non-
weighted case g(z) = 1 and in the Euclidean setting was proved in [1].
Observe that the measure p in Theorem 3.2 is not assumed to be doubling.

Theorem 3.2. Let X be a metric measure space and 2 an open set in X. Assume
that for some po and qo, satisfying conditions (1) and every weight w € A1(Q2) there
holds the inequality

( JEE <m)w(x>du(x>) " ey ( / gm(m[w(m)}%du(ao)) g @)
Q Q

for all f, g in a given family F. Let the variable exponent q(x) be defined by ﬁx) = ﬁ -

(% - %), let the exponent p(x) and the weight o(z) satisfy the conditions

pEP() and o € Q((a)/(ﬂ). 3)
Then for all (f,g) € F with f € Lg(')(ﬂ) the inequality
710> < Cllglpoo (4)
is valid with a constant C > 0, not depending on f and g.

4. APPLICATION TO PROBLEMS OF THE BOUNDEDNESS IN LI;() OF CLASSICAL OPERATORS
OF HARMONIC ANALYSIS

Let
d
19 f(z) = / fyduly) )
uB(x, d(z,y)) =7
X
where 0 < v < 1. We suppose that
there exists a point xg € X such that p(zo) =0 (2)
and
w(B(zo)\B(zo,7)) >0 forall 0<r<R< oo. 3)

By means of the known results for constant po,qo ([2], p. 412) and extrapolation
Theorem 3.2 we obtain the following statement.

Theorem 4.1. Let X be a metric measure space with doubling measure satisfying
conditions (2)—(3), uX = oo, letp € P, 0 <y <1 and p4 < % The weighted estimate

HI;’(fHLZ(.) < C”f”Lg(') with the limiting exponent q(-) defined by ﬁx) = p(lac) -,

holds if o790 € 91(

p_

)/(X) under any choice of qo > ———.

aC)
a0
Remark 4.2. With the help of Theorems 2.8 and 2.9, one can write down the cor-
responding statements on the validity of the Sobolev inequality in terms of the weights
used in Theorems 2.8 and 2.9. For potential operators in the case £ = R" one can find
more general statements of such a kind in [11] and [10] for power weights of the class
Vp(y (R™, II) and for radial oscillating weights of the class Vpc’(f)C(R", II), respectively.

The following theorems on multipliers are direct consequences of Theorem 4.1 and
may be given for weights of the class \/'p"(‘f’)c(ﬂ7 II), but for simplicity of formulation we

give the theorems of this subsection for power type weights of the class V() (€2, II).
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Theorem 4.3. Let a function m(z) be continuous everywhere in R™, except for prob-
9"m
T1T2Tn

ably the origin, have the mized distributional derivative 5 and the derivatives

Dem = %, a=(a1,...,an) of orders |a] = a1 + -+ an <n—1 contin-
Oz “xy %z

uous beyond the origin and |z||*!|Dm(z)| < C, |a| < n — 1, where the constant C' > 0

does not depend on x. Then under conditions (3) and (1) with Q = R™, m is a Fourier

multiplier in Lg(‘) (R"™).
Corollary 4.4. Let m satisfy the assumptions of Theorem 4.3 and let the exponent p

and the weight ¢ satisfy the assumptions p € P(R™) N WL(R™), p(z) = peo = const for
|z| > R with some R >0, g € Vp"(?)c(R”,H),H ={z1,...,zy} CR™

Corollary 4.5. Let a function m : R — R satisfy the assumptions of Theorem
4.3 and let p and p satisfy conditions i) and ii) of Corollary 4.4. Then m is a Fourier
multiplier in Lg(') (R™).

Let A; = A; = [27,27F1 ] or A; = [-29F1, 2], j € Z. By Tim, we denote the

operator defined on the Schwartz space by Ty, f = mf. We obtain a generalization of
theorems on Marcinkiewicz multipliers and Littlewood-Paley decompositions for trigono-
metric Fourier series to the case of weighted spaces with variable exponent. Let T = [r, 7]

and f(z) ~ 42 + Y (ay cos kx + bysinkz).
k=0

Theorem 4.6. Let a sequence \i satisfy the conditions |A\;| < A and Z?:_Q;—l Ak —
Aet1| < A, where A > 0 does not depend on k and j. Suppose that

p€P(T) and o P €A (T), where p(-)= & (4)
po
with some po € (1,p—(T)). Then there exists a function F(x) € LI;(')(T) such that

o0
the series ’\0% + > Xk(ag cos kx + by sin kx) is Fourier series for F and ||F||Lp(,) <
k=0 e
cA||f||Lp(A)7 where ¢ > 0 does not depend on f € LZ(')(’]I‘).
e

Corollary 4.7. The statement of Theorem 4.6 remains valid in particular, if (4) is
replaced by the assumption that p € P(T) N WL(T) and

N
o@) =[] we(lz —2xl), zx €T (5)
k=1
where
~ 1
wi € U([0,27]) and — —— <m(wg) < M(wg) < ——. (6)
p(zk) P (zk)
Theorem 4.8. Let Ay(x) = apcoskx + bysinkz, k =0,1,2,..., Ay—1 = 0. Under
conditions (4) there exist constants ¢1 > 0 and cz2 > 0 such that
oo 271 2 %
il fll o < (Z T A ) < allfll - ™
¢ §=0"g=2i—1 Lr®) ¢

In particular, inequalities (7) hold for p € P(T) N W L(T) and weights o of form (5)—(6).

k
Let S«(f) = S«(f,z) = sup [Sk(f, )|, where S(f,2) = > Aj(=).
E>0 j=0
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Theorem 4.9. Under conditions (4), ||S« (f)||Lp(.> < cllfll pe)- In particular, this
e o
inequality is valid, if p € P(T) N WL(T) and o has form (5)—(6).

Let now I' be a simple finite Carleson curve and v the arc length and Spf(t) =
1 f f(r)dv(r)
T P T—t :

Theorem 4.10. Let p € P(I') and 07P0 € A/ (1), where p(-) = p(—(;). Then the

operator St is bounded in the space Lz(‘)(lﬂ)‘ In particular, Sr is bounded, if p €
P) NWL(T) and o(t) = [[o—, wi(|t — ti]), tx € T, where

_ 1
w € U([0,v(D)]) and — p(t) <mlwg) < M{wy) < P (tk)

Let [b,T]f(x) = b(x)T f(xz) — T(bf)(x), © € R™ be the commutator, generated by the
operator Tf(z) = [ K(z,y)f(y)dy and a function b € BMO(R").
RTL

(®)

Theorem 4.11. Let the kernel K (z,y) fulfill assumptions: 3 lirrb S K(z,y)dy
e
yeQ:|z—y|>e

’ (e
and T is bounded in L?(Q), |K(z',y) — K(z,y)| < C%, |2/ — x| < %|$ —

I
ol |K(@y) - K(@,y)l < Oty —yl < 3o —yl, a >0 and leth €

BMO(R™). Then under the conditions
n —Po _ n . ~r N p()
pePR") and o P €Ay (R™) with p() = o ©)
0

the commutator [b,T| is bounded in the space L’é(')(R”). In particular, the commutator
is bounded, if p € P(R™) N WL(R™) and p(z) = poc = const outside some ball |z| < R,
and the weight ¢ has the form o(z) = wo(l + |z|)H;€V:1 wi(|lz — zk]), xr € R™, with
the factors wy, satisfying conditions (18)—(19).

Let fp = ﬁgf(x) dz and M# f(z) = sup &

p ﬁ J |f(z) — fB|dz be the Fefferman-
BeX B

Stein maximal function.

Theorem 4.12. Under condition (9), the inequality

Ml <cmEf| (10)

Lz(A)(R”) Lz(A)(R")

s valid. In particular, inequality (10) is valid, if p € P(R™")NW L(R") and p(z) = peo =

const outside some ball |z| < R, o € V;’é‘;(R",H).

Let f= (f1, -+, fx, -+ ), where f; : R® — R! are locally integrable functions.

Theorem 4.13. Let 0 < 0 < co. Under conditions (9), the inequality

’(;:Z(ij)@)é - c’ (i_oj |fj|9>$

s valid. In particular, inequality (11) is valid, if p € P(R™")NW L(R"™) and p(z) = peo =

const outside some ball |z| < R, o € V;’(S“;(Q,H)‘

(11)

Lz(‘)(R" Lg(‘)(R")
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