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During the past decade, there has been a substantial
increase of interest in various classes of linear operators
on generalized Lebesgue spaces with variable indices
(see surveys [1, 7, 6] and the references therein) and on
Sobolev spaces of variable order (see, e.g., [4]).

The Lebesgue spaces with variable indices play an
important role in applications, in particular, in studying
electrorheological fields [6], and the Sobolev spaces of
variable order are very important for studying general
boundary value problems on compact manifolds [3].

In this paper, we state a theorem about the bounded-
ness of pseudodifferential operators (PDOs) from the

Hörmander class 

 

OP

 

,
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≤
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 < 1, in the Leb-
esgue spaces 
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p
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·
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n

 

)

 

 with variable indices, which fol-
lows from a more general theorem about the bounded-
ness of integral operators with Calderon–Zygmund–
type kernels in the spaces 
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. The boundedness of
PDOs in the spaces 
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 implies the boundedness of

PDOs of class 
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with variable smoothness 

 

s

 

 and variable Lebesgue
index (degree of integrability) 

 

p

 

.

We also obtain a criterion for PDOs of class 

 

OP

 

with symbols slowly oscillating at infinity to be Fred-
holm in the spaces 
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(
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p
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. This criterion implies,
in particular, that the essential spectrum of a PDO
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 does not depend on the variable
smoothness 

 

s

 

 and the variable index 

 

p

 

.
Finally, we consider PDOs whose symbols can be

extended in the momentum variable over some tubular
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S1 δ,
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domain in 

 

C

 

n

 

. We give a criterion for such PDOs acting
on the spaces 

 

H

 

s

 

(
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p
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)

 

 with exponential weights 

 

w

 

to be Fredholm and describe their essential spectra,
which does not depend on the functions 

 

s

 

 and 

 

p

 

 but
essentially depends on the weight 

 

w

 

.

The Fredholm theory of PDOs in classes 

 

OP

 

with symbols slowly oscillating at infinity on the Sobo-
lev spaces 

 

H

 

s

 

(

 

R

 

n

 

)

 

 was first constructed in [2]. The Fred-

holmness of PDOs belonging to 

 

OP

 

 on the Sobolev
spaces was studied in [5, Chapter 4] by using the
method of limit operators.
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 Let

 

p
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n

 

 

 

→

 

 (1, 

 

∞
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 be a measurable function. The general-
ized Lebesgue space with variable index 

 

p

 

 consists of
measurable functions for which

The norm on 

 

L

 

p

 

(

 

·

 

)

 

 (

 

R

 

n

 

)

 

 is defined by

 

(1)

 

Hereafter, we assume that the variable index 

 

p

 

 satisfies
the conditions

Consider the integral operator
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with kernel kA(x, z) ∈ C1(Rn × (Rn\0). We suppose that

(2)

(3)

Theorem 1. Suppose that A is an operator of weak
(1, 1)-type, i.e., for any function f ∈ L1(Rn),

(4)

and the kernel kA of the operator A satisfies condi-
tions (2) and (3).

Then, A is bounded in the space Lp(·) (Rn) and

(5)

where the constant c(n, p) depends only on the dimen-
sion n and the variable index p.

We say that a symbol a belongs to the Hörmander

class , where 0 ≤ δ ≤ ρ ≤ 1 and δ < 1, if a ∈ C∞(Rn ×
Rn) and

for all nonnegative integers l1, l2. The class of PDOs of
the form

with symbols belonging to  is denoted by OP .

Theorem 2. The PDO Op(a) ∈ OP , where 0 ≤
δ < 1, is bounded in the space Lp(·) (Rn), and there exists
a constant µ = µ( ) such that

where C does not depend on the symbol a.
Theorem 2 follows from Theorem 1 and well-

known estimates for kernels of PDOs of class OP
(see, e.g., [8, p. 241]), which imply that λ1(Op(a)),
λ2(Op(a)) depend on finitely many seminorms |a .

Moreover, the operator Op(a) ∈ OP  is operator of
weak (1, 1)-type (see, e.g., [8, pp. 16–23, 250]), and the
constant ν(Op(a)) also depends on finitely many semi-
norms |a .

We set Λ(s(·), q) = Op((|ξ|2 + q2)s(x)/2) for s ∈ (Rn),
where q > 0 and s is a real-valued function from the
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S1 δ,
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Cb
∞

space (Rn) of functions bounded together with all of
their derivatives. It is easy to show that Λ(s(·), q) =

Op(|ξ|2 + q2)s(x)/2) ∈ OP , where s+ = (x) and

δ > 0 is arbitrary. Moreover, Λ(s(·), q) is a hypoelliptic
PDO, which depends on the parameter q > 0 and is con-
tinuous on the Schwartz spaces S(Rn) and S'(Rn). As is
known (see, e.g., [9]), for some q > 0, there exists an

inverse PDO Λ–1(s(·), q) ∈ OP , where s– =

(x). In what follows, we assume that, for the func-

tion s under consideration, the parameter q is chosen so
that there exists an inverse operator. Consider the space
Hs(·), p(·)(Rn) defined as the closure in the norm

of the space S(Rn). Obviously, the operator Λ(s(·), q):
Hs(·), p(·)(Rn) → Lp(·) (Rn) is an isometric isomorphism.

Theorem 3. If s+ – s– < 1, then the PDO OP ,
where 0 ≤ δ < 1, is bounded from Hs(·), p(·)(Rn) to
Hs(·) − m, p(·) (Rn), and there exists a constant µ =
µ( ) such that

where C > 0 does not depend on a.
Theorem 3 follows from Theorem 2 and the fact that

provided that s+ – s– < 1.

We say that a function a ∈ (Rn) slowly oscillates

at infinity if a(x, ξ) = 0 for j = 1, …, n. We

denote the class of slowly oscillating functions by

SO(Rn). In turn, we say that a symbol  slowly oscil-
lates at infinity if, for any multi-indices α and β, we
have

where (x) = 0 if β ≠ 0. We denote the class of

symbols slowly oscillating at infinity by S  and the

corresponding class of PDOs by OPS .

Theorem 4. If s ∈ SO(Rn) and s+ – s– < 1, then the

PDO Op(a) ∈ OPS  is a Fredholm operator from
Hs(·), p(·) (Rn) to Hs(·) – m, p(·) (Rn) if and only if

Cb
∞
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Remark. The sufficiency of the condition that the
operator Op(a) is Fredholm is proved in a fairly stan-
dard way by using composition formulas for PDOs,
while the proof of necessity involves essential difficul-
ties; the usual proof technique in the spaces Lp (Rn)
with constant index p, which is based on the possibility
of mapping any compact set into a given neighborhood
of any point x ∈ Rn by isometric operators of translation
and homothety, does not apply to the spaces Lp(·)(Rn)
with variable index, because the translation and homo-
thety operators are not generally bounded in the spaces
Lp(·)(Rn).

Let A: X → Y be a bounded linear operator, and let
Y ⊆ X. We say that λ ∈ C is a point of essential spectrum
of A: X → Y if the operator A – λI: X → Y is not Fred-
holm. We denote the essential spectrum of A: X → Y by
spess(A: X → Y). The following theorem, which is a cor-
ollary of Theorem 4, describes the essential spectrum of

the operator Op(a) ∈ OPS , where m ≥ 0.

Theorem 5. If A = Op(a) ∈ OPS , where m ≥ 0,
then

(6)

where the union is over all sequences (xk, ξk) → ∞ for
which the limit on the right-hand side of (6) exists.

Example 1. Consider the Schrödinger operator –∆ +
ΦI with real potential Φ ∈ SO(Rn). The operator –∆ +

ΦI belongs to OPS  and, therefore, is bounded from
Hs(·), p(·) (Rn) to Hs(·) – m, p(·) (Rn). Using Theorem 5, we
obtain

(7)

where Φ– = Φ(x).

PDOs with analytic symbols. Let B be a convex
bounded open domain in Rn containing the origin. By

(B) we denote the subclass in  consisting of
those symbols a(x, ξ) which can be extended analyti-
cally in the variable ξ over a tubular domain Rn + iB
and, for any numbers l1 and l2, satisfy the condition

As above, we assign a pseudodifferential operator to

each symbol a ∈ (B) and denote the class of such

operators by OP (B). By �(B) we denote the class
of positive weight functions w such that (i) w = expv,

where v ∈ (Rn) for all j = 1, 2, …, n and

v(x) = 0 for all i, j = 1, 2, …, n; (ii) ∇v(x) ∈ B

for any x ∈ Rn.
The following proposition plays a key role in study-

ing PDOs in weight spaces.

Proposition 1. Suppose that Op(a) ∈ OPS (B)

(:= OP (B) ∩ OPS ) and w ∈ �(B).

Then, wOp(a)w–1 ∈ OPS  and

(8)

where the symbol t satisfies the estimates

in which

for all multi-indices α and β.

Note that Op(t) is a compact operator from
Hs(·), p(·)(Rn) to Hs(·), p(·)(Rn).

Let Hs(·), p(·)(Rn, w) denote the weight space with
norm

The following theorem is a corollary of Proposition 1
and Theorems 3 and 4.

Theorem 6. If Op(a) ∈ OPS (B), where 0 ≤ δ < 1,
a weight w belongs to �(B), and s ∈ SO(Rn), then
Op(a): Hs(·), p(·)(Rn, w) → Hs(·) – m, p(·) (Rn, w) is a Fred-
holm operator if and only if

Theorem 6 has the following corollary, which
describes the essential spectrum of a uniformly elliptic
PDO in a weight space.
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Theorem 7. Suppose that Op(a) ∈ OPS (B),
0 ≤ δ < 1, a weight w belongs to �(B), s ∈ SO(Rn), and
the operator Op(a) is uniformly elliptic, i.e.,

Then,

where the union is over all sequences g = {xk} → ∞ for
which the limits ag(ξ + iµg) = (xk, ξ + i∇v(xk))

exist.
Thus, the essential spectrum of a PDO does not

depend on the functions s and p, but it essentially
depends on the exponential weight. However, if

v(x) = 0, as in the case of the power weight

w(x) = 〈x〉ρ = exp(ρln〈x〉), ρ ∈ R, then the essential
spectrum does not depend on the weight.
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