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During the past decade, there has been a substantial
increase of interest in various classes of linear operators
on generalized Lebesgue spaces with variable indices
(see surveys [1, 7, 6] and the references therein) and on
Sobolev spaces of variable order (see, e.g., [4]).

The Lebesgue spaces with variable indices play an
important role in applications, in particular, in studying
electrorheological fields [6], and the Sobolev spaces of
variable order are very important for studying general
boundary value problems on compact manifolds [3].

In this paper, we state a theorem about the bounded-
ness of pseudodifferential operators (PDOs) from the

Hormander class OPS?’ 5, Where 0 <3 < 1, in the Leb-

esgue spaces [/ (R") with variable indices, which fol-
lows from a more general theorem about the bounded-
ness of integral operators with Calderon—Zygmund-
type kernels in the spaces L/ (R”). The boundedness of
PDOs in the spaces I’ (R”) implies the boundedness of

PDOs of class OPS?y 5 in the Sobolev spaces H*"-PO(R™)

with variable smoothness s and variable Lebesgue
index (degree of integrability) p.

We also obtain a criterion for PDOs of class OPS| 5
with symbols slowly oscillating at infinity to be Fred-
holm in the spaces H*">PO(R"). This criterion implies,
in particular, that the essential spectrum of a PDO
Op(a) € OPSY 5 with m > 0 acting from H*"-PO(R")
in H*©-mrO(R") does not depend on the variable
smoothness s and the variable index p.

Finally, we consider PDOs whose symbols can be
extended in the momentum variable over some tubular
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domain in C". We give a criterion for such PDOs acting
on the spaces H*"-PO(R"™") with exponential weights w
to be Fredholm and describe their essential spectra,
which does not depend on the functions s and p but
essentially depends on the weight w.

The Fredholm theory of PDOs in classes OPS}
with symbols slowly oscillating at infinity on the Sobo-
lev spaces H*(R") was first constructed in [2]. The Fred-
holmness of PDOs belonging to OP S, on the Sobolev

spaces was studied in [5, Chapter 4] by using the
method of limit operators.

PDOs in the spaces L7O(R") and H*"-PO(R"). Let
p: R" — (1, =) be a measurable function. The general-
ized Lebesgue space with variable index p consists of
measurable functions for which

I(f) = [IF ol Vdx < oo,
R’l
The norm on I/ (R") is defined by

LA o ey = inf{x >0: 1”&) <1 } (1)

Hereafter, we assume that the variable index p satisfies
the conditions

1 < inf p(x) < sup p(x) < oo,

xeR" xeR"
Ip(x) = p(y) < A(=Injx -y},
x,ye R", |x—y|£l,

2
Ip(x) = p(=o) SA(=In(1 +|x]))”", xeR".

Consider the integral operator

Au(x) = [ka(x x=y)u(y)dy

R
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with kernel k4(x, z) € C'(R" X (R™N0). We suppose that

M(A) :=sup  sup 2" 9% (x, z)| <o, (2)
lod =1, ;) R"xR"
M(A)=sup  sup 7" T0%(x, ) <. (3)

lod =1, ;) R"xR"

Theorem 1. Suppose that A is an operator of weak
(1, 1)-type, i.e., for any function f € L'(R"),

mes{x e R": |Af(x)| >} < ‘@ _[ lF(oldx,  (4)
o

and the kernel k, of the operator A satisfies condi-
tions (2) and (3).
Then, A is bounded in the space [ (R") and

< c(n, p)(Ai(A) + Ay(A) + V(A)), (5)

”A" LM')(R") —)LP(A)(R”)

where the constant c(n, p) depends only on the dimen-
sion n and the variable index p.

We say that a symbol a belongs to the Hérmander
class S 5, where0<3<p<landd<1,ifae C(R"x
R") and

|a|ll,lz = z sup|agBEa(x7 E_,)| <§>7m+p\0q,5‘m o
ol <1y, Bl <1, 58

for all nonnegative integers /;, [,. The class of PDOs of
the form

1

Op(a)u(x) = p
(2m)

Jde [ atx &yue™ay,
R" R’

ue C(RY
with symbols belonging to Sy 5 is denoted by OPSj 5.

Theorem 2. The PDO Op(a) € OPS) 5, where 0 <
d < 1, is bounded in the space L") (R"), and there exists
a constant L= W({lal, .}, <y, <n) such that

||0p(a)|| LPOR™ — 7O (R") <Cu({ |a|r, t}rgN, ng)a

where C does not depend on the symbol a.

Theorem 2 follows from Theorem 1 and well-
known estimates for kernels of PDOs of class OPS| 5
(see, e.g., [8, p. 241]), which imply that A,(Op(a)),
M (Op(a)) depend on finitely many seminorms |a|; , .

Moreover, the operator Op(a) € OPS?’ s 1s operator of
weak (1, 1)-type (see, e.g., [8, pp. 16-23, 250]), and the
constant V(Op(a)) also depends on finitely many semi-
norms laf; ; .

We set A(s(-), ) = Op((EP + g2y for s € C; (RY),
where g > 0 and s is a real-valued function from the
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space C, (R") of functions bounded together with all of
their derivatives. It is easy to show that A(s(-), g¢) =

Op(E? + ¢>)*™?) e OPSif s, where s, = sup s (x) and
xeR"

4 > 0 is arbitrary. Moreover, A(s(-), ¢) is a hypoelliptic

PDO, which depends on the parameter ¢ > 0 and is con-

tinuous on the Schwartz spaces S(R”) and S'(R"). As is

known (see, e.g., [9]), for some g > 0, there exists an

inverse PDO A7l(s(-), q) € OPSSI:S, where s =
inf s (x). In what follows, we assume that, for the func-

xe R"

tion s under consideration, the parameter ¢ is chosen so
that there exists an inverse operator. Consider the space
H5O-PO(R™) defined as the closure in the norm

””"Hs(-)-p(-)(Rn) = ulA(s(), Q)"L”("(R”)
of the space S(R"). Obviously, the operator A(s(-), g):
HO-PO(R") — [P0 (R") is an isometric isomorphism.

Theorem 3. If s, — s_< 1, then the PDO OPS7 5,

where 0 < 8 < 1, is bounded from H*“>PO(R") to
H©O=mpPO) (R"), and there exists a constant | =

u({lal,l, lz}l, <w. zzszv) such that
lOpa) HOPOR s 5O PO R < CH({M;,, 12}11 <N, zng)’
where C > 0 does not depend on a.
Theorem 3 follows from Theorem 2 and the fact that
A(s() = m, ¢)Op(@)A™ (s(-), q)
= Op(b)e OPSY s, 0<8<1,
provided that s, —s_< 1.
We say that a function a € C, (R") slowly oscillates
at infinity if limd, a(x, & =0forj=1, ..., n We
denote the clxa:sm of slowly oscillating functions by

SO(R™). In turn, we say that a symbol S 5 slowly oscil-

lates at infinity if, for any multi-indices o and [, we
have

0¢98a(x, &)| < Cyp(x) (&)™ 0,

where lim Cyg(x) = 0 if B # 0. We denote the class of
X — oo

symbols slowly oscillating at infinity by SO} 5 and the
corresponding class of PDOs by OPSOY' ;.

Theorem 4. If s € SOR") and s, — s_< 1, then the

PDO Op(a) € OPSOY 5 is a Fredholm operator from
H*O-PO (R") to HO=mPO (R") if and only if

lirgl infla(x, £)|(E)™ > 0.
(x,§) > o0
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Remark. The sufficiency of the condition that the
operator Op(a) is Fredholm is proved in a fairly stan-
dard way by using composition formulas for PDOs,
while the proof of necessity involves essential difficul-
ties; the usual proof technique in the spaces L7 (R")
with constant index p, which is based on the possibility
of mapping any compact set into a given neighborhood
of any point x € R” by isometric operators of translation
and homothety, does not apply to the spaces I7V(R")
with variable index, because the translation and homo-
thety operators are not generally bounded in the spaces
LPOR?).

Let A: X — Y be a bounded linear operator, and let
Y < X. We say that A € Cis a point of essential spectrum
of A: X — Y if the operator A — Al: X — Y is not Fred-
holm. We denote the essential spectrum of A: X — Y by
SPess(A: X = Y). The following theorem, which is a cor-
ollary of Theorem 4, describes the essential spectrum of

the operator Op(a) € OPSOY 5, where m 2 0.

Theorem 5. If A = Op(a) € OPS 0’1'2 5, Wwhere m 20,
then

>

|a|11,12 = sup

xe R E+ine R"+iB lof <1, 1Bl <1,

As above, we assign a pseudodifferential operator to
each symbol a € SY 5(B) and denote the class of such
operators by OPS'I", s (B). By R(B) we denote the class
of positive weight functions w such that (i) w = expv;
where axj ve C,RY foralj=1,2,.. nand
lim 97, v(x) = 0 forall i,j = 1,2, ..., n; (ii) Vv(x) € B
Eo_r) :my xe R

The following proposition plays a key role in study-
ing PDOs in weight spaces.

Proposition 1. Suppose that Op(a) € OPSOY 5(B)
(:=OPSY 5(B)NOPSO 5) and w € R(B).
Then, wOp(a)w™' € OPSOY 5 and
wOp(@w™ = Op(a(x, &+iVv(x)) + Op(t(x, £)).(8)
where the symbol t satisfies the estimates
[958 1(x, &) < Cup(x) ()" P,

in which
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Spess(A: HS(')’ P()(R”) N Hs(')*ma P()(R”))

= U {7“ e C: kli_l)nm(a(xk, E,sk) - X)(&kym = 0}, (6)

(6 &)

where the union is over all sequences (x;, §;) —> oo for
which the limit on the right-hand side of (6) exists.
Example 1. Consider the Schrodinger operator —A +
@] with real potential @ € SO(R"). The operator —A +
@/ belongs to OPS Oi o and, therefore, is bounded from

HO-PO (R") to H*O~mr0) (R™). Using Theorem 5, we
obtain

SPes (A + ®I: H'POR") - HO T PO(RY)
= [D, ), ()
where ®_= lim iololf D(x).
PDOs Witlxl_)analytic symbols. Let B be a convex
bounded open domain in R” containing the origin. By

ST 5(B) we denote the subclass in S} 5 consisting of

those symbols a(x, &) which can be extended analyti-
cally in the variable & over a tubular domain R" + iB
and, for any numbers /, and /,, satisfy the condition

[0g0%a(x, & + m)l¢&) " <o

lim Cyg(x) = 0

X —> 00

Sfor all multi-indices o. and .
Note that Op(t) is a compact operator from
HO-POR™M) to HO-PO(RM).

Let H*O-PO(R”, w) denote the weight space with
norm

" M" HOPOR™ ) = " W“” HOPORY

The following theorem is a corollary of Proposition 1
and Theorems 3 and 4.

Theorem 6. If Op(a) € OPSO? 5(B), where 0<8< 1,
a weight w belongs to R(B), and s € SOR"), then
Op(a): H*O-POR", w) — HO-mr0 (R", w) is a Fred-
holm operator if and only if

lim infla(x, & + iV v(x))|(E) ™ > 0.

(%,8) >

Theorem 6 has the following corollary, which
describes the essential spectrum of a uniformly elliptic
PDO in a weight space.
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Theorem 7. Suppose that Op(a) € OPSOY 5(B),

0<9d<1,aweightw belongs to R(B), s € SOR"), and
the operator Op(a) is uniformly elliptic, i.e.,

lim inf |a(x, &)[(E)™" > 0.
reole]> r

Then,
. psCh () pn s()=m, p(:) 1
SPess(Op(a): H R, w)—>H (R, w))

= U{rAe C: A =q,(E+in,),Ec R},

where the union is over all sequences g = {x;,} — oo for
which the limits a, & + in,) = khflf’ (x & + iVv(xy)

exist.

Thus, the essential spectrum of a PDO does not
depend on the functions s and p, but it essentially
depends on the exponential weight. However, if

lim Vv(x) = 0, as in the case of the power weight
k— oo

w(x) = (x) = exp(pln{x)), p € R, then the essential
spectrum does not depend on the weight.

REFERENCES

1. L. Diening, P. Hdsto, and A. Nekvlinda, in Proceedings

of the Milovy Conference, Milovy, Czech, 2005 (Milovy,
2005), pp. 38-58.

. V. V. Grushin, Funkts. Anal. Ego Prilozh. 4 (3), 37-50

(1970).

. G. 1. Eskin, Boundary Value Problems for Elliptic

Pseudodifferential Operators (Am. Math. Soc., Provi-
dence, R.1., 1989).

. H.-G. Leopold and E. Schrohe, Math. Nachr. 156, 7-23

(1982).

. V. Rabinovich, S. Roch, and B. Silbermann, Limit Oper-

ators and Their Applications in Operator Theory
(Birkhduser, Basel, 2004).

. M. Ruzicka, Electrorheological Fluids: Modeling and

Mathematical Theory (Springer-Verlag, Berlin, 2000).

. S. G. Samko, Integral Transform. Spec. Funct. 16 (5/6),

461-482 (2005).

. E. M. Stein, Harmonic Analysis: Real-Variable Meth-

ods, Orthogonality and Oscillation Integrals (Princeton
Univ. Press, Princeton, N.J., 1993).

. M. A. Shubin, Pseudodifferential Operators and Spec-

tral Theory, 2nd ed. (Springer-Verlag, Berlin, 2001).

DOKLADY MATHEMATICS  Vol. 76 No. 3 2007




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


