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Abstract

We study the boundedness of the maximal operator in the weighted sga¢és) over
a bounded open s&tin the Euclidean spadR™ or a Carleson curvE in a complex plane.
The weight function may belong to a certain version of a general Muckenhoupt-type con-
dition, which is narrower than the expected Muckenhoupt condition for variable exponent,
but coincides with the usual Muckenhoupt clagsin the case of constapt In the case
of Carleson curves there is also considered another class of weights of radial type of the
form p(t) = [[j-, wk(|t — tk]), tx € T', wherew;, has the property tha:v#k)wk(r) € o9,
where®! is a certain Zygmund-Bari-Stechkin-type class. It is assumed that the exponent
p(t) satisfies the Dini—Lipschitz condition. For such radial type weights the final statement
on the boundedness is given in terms of the index numbers of the funatjofsmilar in
a sense to the Boyd indices for the Young functions defining Orlich spaces).
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1 Introduction

Within the frameworks of variable exponent spaté&s (), the boundedness of maximal oper-
ators was proved in L. Diening [7] for bounded domain®&ihand in D.Cruz-Uribe, A.Fiorenza

and C.J. Neugebauer [6] and A.Nekvinda [22], [21] for unbounded domains. The weighted
boundedness with power weights was proved in V.Kokilashviliand S.Samko [11] in the case of
bounded domains. We refer also to L.Diening [8] and D.Cruz-Uribe, A.Fiorenza, J.M.Martell,
and C.Perez [5] for problems of boundedness of maximal operators in variable exponent spaces.

In [11] the power weight$z — x| were considered and one of the main points in the
result obtained in [11] was that in condition gronly the values op(z) at the pointz, are of
importance:—% << ﬁ (under the usual log-condition griz)).

However, an explicit description in terms of Muckenhoupt-type condition of general weights
for which the maximal operator is bounded in the spagés still remains an open problem.

A certain subclass of general weights was considered in [10], where for the case of bounded
domains(? in the Euclidean space, the boundedness of the maximal operator in the spaces
LP0)(Q, p) was proved. This subclass may be characterized as a class of radial type weights
which satisfy the Zygmund-Bari-Stechkin condition. Radial weighis this class are almost
increasing or almost decreasing and may oscillate between two power functions with different
exponents and have non-coinciding upper and lower indicgsnd M, (of the type of Boyd
indices). In comparison with the approach in [11], the main problems arising are related to the
situation when the indices.,, andM,, do not coincide, in particular when,, is negative while
M, is positive.

In this paper, because of applications to weighted boundedness of singular integral operator
along Carleson curves, we prove similar results for the maximal operator along Carleson curves.
This extension from the Euclidean space to the case of Carleson curves required an essential
modification of certain means used in [10]. To obtain this result, we first prove a certain general
theorem with a certain version of the Muckenhoupt-type condition.

The weighted results obtained for the maximal operator pave the way to the study of Fred-
holmness of singular integral equations on Carleson curves in case of more general weights. In
fact the main Theorems A,’A&and B may be rewritten in terms on function spaces defined on
metric spaces. However, because of application to the theory of singular integral equations, we
prefer to present the results in the context of Carleson curves.

The paper is organized as follows. In Section 2 we formulate the main results - Theorems
A,A" and B - on the weighted boundedness of the maximal operator. In Section 4 we recall the
notion of the upper and lower indices of almost increasing non-negative functions and develop
some properties of weights in the Zygmund-Bari-Stechkin class, which we need to prove the
main result. In Sections 5 and 6 we give the proof of Theorems'Aané B.

Notation

a.d. =almost decreasing=- f(x)
a.i. =almost increasing—- f(z)
function onRY ;

I is an arbitrary bounded Carleson curve on the complex plane, closed or open;

>Cf(y)forz <y,C >0,
< Cf(y) forx < y,C > 0; wheref is a non-negative



~ denotes an arbitrary portion of

vwt)y={rel: |t—t|<r};

dv(t) = ds denotes the arc measure bn

Q2 is a bounded open setkr’;

B(z,r)is a ball inR™ centered at: of radiusr;

|v| is the arc length of;; |2 is the Euclidean measure Of

X~ Is the characteristic function of;

f~g <= thereexistC; > 0andC, > 0 such thalC, f(t) < g(t) < Caf(1).

a() =24 1<p() <oo, b+ =1;

e = p(X) = inf p(t), p* = p*(X) = supp(t), whereX =T or X = Q;
teX tex

. = inf g(t) = 2 ¢* = ) = Px_-
¢ = inf q(t) = ;7. ¢ stlellpﬂ) P

C, c may denote different positive constants.

In what follows, X will always denote either a bounded open Qein R", or a bounded
Carleson curvé'. The variable exponeni-) defined onX is supposed to satisfy the conditions

L<p. <pt)<p'<oo, teX (1.1)
and
A 1
Ip(lf)—p(T)ISl —, t=1]<5, t,TeX. (1.2)
n|t—r\ 2

By L) (X, p), wherep(t) > 0, we denote the weighted Banach space of measurable func-
tions f : X — C such that

o = Iy = {A o- [[0s0
X

wheredp(t) stands for the arc-length measuhe(t) in caseX = I" anddu(t) = dt in case
X =Q.

p(t)
du(t) < 1} < 00. (1.3)

2 Statement of the Main Results

We use the notationm”? both for

o E(r) — sup PP /()]
M) =B / Pl 2.1)
e ® [ 1)
p — sup 2 N av(r .
MIO =051 | o @0 @2

We write M = M?| _,.



The boundedness of the operatoft” was proved in the case of the power weight) =
|z — 20]%, 20 € Qin [11] andp( ) = |t — toyﬁ to € T'in [12] under the following (necessary
and sufficient) condition- —"—~ ( 5 < I} < ) or

1

o) = dy 23)
respectively. We prove two main results given in Theorems A and B. In Theorem A stated
below we consider some general Muckenhoupt type weights, the proof being the same both for
Carleson curves and domaingRfi. In Theorem B, in the case of Carleson curves we deal with
a special class of radial type weights in the Zygmund-Bari-Stechkin class. Such a result for the
Euclidean case was earlier obtained in [10]. The proof for the case of Carleson curves required
an essential modification of the technique used.

The class of weights in Theorem A is narrower than the naturally expected Muckenhoupt
classA,., should be. However, it coincides with the Muckenhoupt clési casep is constant.
Theorem B is proved by means of Theorem A, but it is not contained in Theorem A, being more
general in its range of applicability.

We introduce the following "ersatz”of the Muckenhoupt condition
px—1
1
sup

1 dy
= | W)Yy | | 57— / — <00,  (2.4)
z€Q,r>0 |B($a T)| / |B(l’, T’)| |p(y) p*(f)l
B(z,r) B(z,r)

which coincides with the Muckenhoupt condition in the cage) = p. is constant, as well as
its version
px—1

su L NP du(r L dv(r) 00 2
S m(mé PP T / par=y B

for Carleson curves in the complex plane.

Observe that the class of weights satisfying condition (2.4)-(2.5) is evidently narrower that
what we expect from the "real” Muckenhoupt cla$§() Thus, in the case of power weights
|z — x0/?, condition (2.4) ylelds— < B < L with ¢y = ”(IO which is narrower than

p(zo) q
the mterval—m < f < (xo) where the boundedness of the maX|maI operator holds [11].
Obviously conditions (2.4)-(2.5) are sharp on those power functions which are "fixed” to a point

at which the minimum of(-) is reached.

[}

Theorem A. Let the exponeni(t) satisfy conditions (1.1), (1.2) and the weightulfill
condition (2.4). Then the operatav! is bounded in.>")(Q, p).

Theorem A'. Let the exponeni(t) satisfy conditions (1.1), (1.2) and the weightulfill
condition (2.5). Then the operatav! is bounded i) (T, p).

In the next theorem, we deal with weights of the form

= [[we(lt = tel),te €T, (2.6)

k=1



wherewy(xz) may oscillate agz — 0+ between two power functions (radial Zygmund-Bari-
Stechkin type weights).

The Zygmund-Bari-Stechkin clads of weights and the upper and lower indices of weights
(of the type of the Boyd indices) used in the theorem below are defined in Section 4. Note
that various non-trivial examples of functions in Zygmund-Bari-Stechkini-type classes with
coinciding indices may be found in [23], Section Il; [24], Section 2.1, and with non-coinciding
indices in [26].

Theorem B. LetI" be a bounded Carleson curve ap(t) satisfy conditions (1.1), (1.2)
onI'. The operatorM is bounded inL?")(T', p) with the weight (2.6), wherey,(r) are such
functions thavﬁk)wk(r) € @Y, if

1 1
< My, < My, < ——, k=1,2,...,m. 2.7

A similar statement for bounded domaingRf was proved in [10].

3 Some basics for variable exponent spaces

The weighted space”") (T, p) was introduced in (1.3). We write?")(T", 1) = LPU)(T) in the
casep(t) = 1.

We recall some basic facts for the variable exponent spagesl’) and refer e.g. to [14]
for detalils.

The Holder inequality holds in the form

/ £Oa(e) dvtt) < k|l - ol @)

with & = -~ + --. The modulad,,( f |f(t) v(t) and the nornj| f||,., are simultane-

oo T My =

ously greater than one and simultaneously less Ihdthi(.) < L(f)<|f
1 andHszz) <L <fIF  f Hpr(_) > 1. Hence

a<|fllp<c = e <IKf)<c (3.2)

and
Ci<IN(f)<Co = C5< | fll, £ Cy (3.3)

with ¢; = min <c’f*,czf> ,C4 = Max (cg ch ) C3 = min (Cll/p*,C’ll/p*> andCy = max (C’zl/p*,C;/p*) .

Lemma 3.1.LetI" be a bounded Carleson curve, the exponeseatisfy condition (1.2) and
let w be any function such that there exist exponentsc R! and the constants; > 0 and
co > 0'such thate;7? < w(r) < epr=®, 0 < r < ¢ = diam(T). Then

1 p(to
oLt =t DIPE < fw(ft — to )" < Cluw(|t — to )™, (3.4)
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whereC > 1 does not depend ant, € T.

Proof. Let
g(t, to) = [w(|t — to])p®) Pl
To show thatt < g(t,t) < C, thatis,|In g(t,ty)] < Cy, Cy =In C, we

In w(|t—t
g0, 10)] = p(8) — p(o) - [ (e — 1o < el 2L 20}

[t—tol

which is bounded by the condition an O

4 Preliminaries on Zygmund-Bari-Stechkin classes.

4.1 Index numbersm,, and M, of non-negative a. i. functions

Let
W ={w e C([0,4]) : w(0) =0, w(z) >0 for = >0, w(z) isa.i}. (4.1)
The numbers
In <lim inf w(hw)) In { limsup w(h,f ) In { limsup w(h}f )
h—0 w(h) h—0 w(h) . h—0 w(h)
m,, = sup = sup = lim
a>1 Inx 0<z<1 Inx z—0 Inx
and
: w(hzx) . w(hz)
In (hrlrllj(l)lp w () ) In (hr}r;sgp W) )
M, = sup = lim
z>1 Inz z—00 Inz

(see [23], [26], [25]), will be referred to a&be lower and upper indicesf the functionw(z)
(compare these indices with the Matuszewska-Orlicz indices, see [18], p. 20; they are of the
type of the Boyd indices, see [15], p. 75; [16], or [3], p. 149 about the Boyd indices). We have
0<my, <M, <oo forweWW.

The indicesm,, and M,, may be also well defined for functions(x) positive forz > 0
which do not necessarily belongi, for example, if there exists ane R! such thatw,(z) :=
xw(z) is in W. Obviously,

My, = 0+ My, My, =a+ M,.
So we also introduce the class

W ={w: z"w(r) €W forsome ac R'}.



4.2 The Zygmund-Bari-Stechkin classp!

Letd > 0. The following classp! was introduced and studied in [2] (with integ8r there are
also known "two-parametrical” classéﬁ,o < [ < < oo, see [20], [19], [28] and [27], p.
253).

Definition 4.1. ([2]) The Zygmund-Bari-Stechkin type cla€8, 0 < § < oo, is defined as
®Y .= Z°N Z;, whereZ is the class of functions € 1V satisfying the condition

h
/ de < cw(h) (Z°)
0 x
andZ; is the class of functions € W satisfying the condition
‘w(z) w(h)
/h Wdﬂf < €5 (Zs)

wherec = ¢(w) > 0 does not depend aine (0, /.

In the sequel we refer to the above conditionsZty-(and ¢;)-conditions.

The following statement is valid, see [23],[26] fdor= 1 and [9] for an arbitrary > 0.

Theorem 4.2.Letw € W. Thenw € Z° if and only ifm,, > 0, andw € Z;, § > 0, if and
only if M,, < 9, so that
w e Y = 0<m, <M, <. (4.2)

Besides this, fow € 9 and any= > 0 there exist constants = ¢;(¢) > 0 andcy = c3(g) > 0
such that
eyt <w(x) < cpr™E, 0<z <V (4.3)

The following properties are also valid
my = sup{p € R': o7 w(x) isa.il, (4.4)

M, =inf{r e R": 27%w(z) isa.d}. (4.5)

Statements (4.3)-(4.5) remain valid for the case whén or m,, may be non-positive.
Namely, the following corollary from Theorem 4.2 is valid.

Corollary 4.3. Letw(z),0 < = < ¢, be such a function thdtw(t) € Z° for somea € R!.
Then formula (4.4) remains valid and for any- 0 there existg; > 0 such that

w(z) < cpa™eTE. (4.6)
Similarly, if z*w(x) € Z;5, then (4.5) is valid and for any > 0 there existg, > 0 such that
w(x) > cor?vre, 4.7)
Remark 4.4.1f w € W andm,, > 0, thenw € W.
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Indeed, let: € R! be such thatv,(x) = zw(z) € W. Then according to (4.4) the function
—al)_js a.i. for everys > 0. Butm,, = m,, + a, S0 that-2“. is a.i. for every: > 0. Since

rMw —€

m, > 0, then the functionv itself is a.i., which means that it is .

Remark 4.5. Every functionw € W with M, < oo satisfies the doubling condition
w(2r) < Cw(r), 0<r</{ (4.8)

which follows from the fact that the functio?fj!(f—) with . > M, is a.d. according to (4.5).

4.3 On examples of functions infbg.

Power and power-logarithmic functions(z) = 2#, 2# (In 1)%, z# (In In 1) etc, are ind)
in the casé < 1 < v and have coinciding indices(w) = M (w) = u.
Apart from this trivial examples, observe that the condition
th
hig(l) % =t pu = const, 4.9
is sufficient forw(z) to have coinciding indices. The functiom(z) = 2#*&=+ =, a > 1, and
more generallyw(z) = 2**) wherep(x) satisfies the Dini conditiofy:(z + h) — pu(z)| =

o<ﬁ> , fulfills condition (4.9) ande*(™) € Y if 0 < 1(0) < .

Examples of non-equilibrated characteristics are much less trivial. An example of such a
functionw with different indicesn(w) and M (w) was given in [1]; in the context of submul-
tiplicative convex functions another example of functions with non-coinciding Matuszewska-
Orlicz indices was given in [17], the latter example been also exposed in [18], p.93. In [26]
there was explicitly constructed a family of functions with different indices belonging to the
class®?.

4.4  Auxiliary lemmas

Lemma 4.6. Letw € W([0,€]),0 < ¢ < oo, and —co < m,, < M, < oo, let A > 0 and
MM, < &, where§ > 0. Then[L c 20, that s,

w(t)]*

20 Nz rd
| R < O 0< < (410

where the constar’ > 0 does not depend ane [0, ¢]; it does not depend also dn< A < d
whered > 0 is arbitrary if M, < 0andd < M% if M, > 0.

Proof. The functionw; (z) = ﬁ is almost increasing, because the functigffl is

almost decreasing Whe§1 > M, according to formula (4.5), the validity of which follows
from Corollary 4.3. Thereforay; € W. By the definition of the lower index, we easily obtain
thatm,,, = § — AM,,. Hencem,,, > 0 and consequenthy; € Z° by Theorem 4.2.
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In order to show that the constafitin (4.10) does not depend on the appropriate choice of

A, we proceed as follows
/T:E‘sld:p B 1 / w(r) aMete A (MytoX g
[w(x)]/\ B [w(r)]/\ w(x) rMuwte 2 (Mw+e)A 15"
0 0

The function xﬁ’,@ is almost decreasing for eveey > 0 by Corollary 4.3. Therefore, the
expression in the brackets is bounded from above. Sined), we get

[ 25 ldy p(MutoN 7 dx C 7o Cyr?
| o = T / PO = 5N, ) )P [P

under the choice of sufficiently small:0 < ¢ < g — M,,. a

Lemma 4.7. LetI" be a bounded Carleson curvi(t) > 0 onI" and A := sup \(¢). Let

alsow € W([0,4]), ¢ = || and—o0 < my, < M,, < +. Then

/[(d”(T) <o—" (4.11)

w(lt = PO = Tu(Po

'Yr(t)
whereC' > 0 does not depend ane T" andr € [0, ¢].

w(a:

Proof. Lety < m,, andw,(z) = so thatw,(z) is an a.i. function according to (4.4)
and Corollary 4.3. We proceed as foIIows

- it — 7|7 dy(7)
¥ A= 2/ =P #32

7 (t)

where Ly(t,r) = {r € ' : 275 1r < |t — 7| < 27%r}. Since the functiony, is almost
increasing, andt — 7|~ < C (27%r) W for 7 € Ly(t,r), we obtain

_ ) lM(t)|L( 00 _

<oy b e <O (4.13
k=0 k=0

The inequality
92—k

27k dz
e <€ | G (49

2—k—1

is valid, which follows from the direct estimation similar to the above arguments:

92—k 2—k
dx C Cc2k
> Ay >
| o 2 o | 70 2
2—k—1 2—k—1
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By (4.14) from (4.13) we get

1

00 2k dr dx / dx
J< CTZ / W = CT/W =cC [w(l’)]/\(t) < O[w(r)]k(t%

k=027k71 0 0

where in the last inequality we used Lemma 4.6 with 1. O

5 Proof of Theorems A and A.

5.1 Proof of Theorem A.

To Prove Theorem A, we have to show that
L(MPf) < e for |[f]| ., < R.

Following the idea in [7], we represeff(M? f) as

PFY — p1(z) @ pl(w))p* v
L(Mef) / ([p(ar)] M(f) @) v, 61
where
p(z) = p;f)
We make use of the known estimate
M) < o1+ M0 (@) (5.2)

(see [7], valid for for alky € L) (Q) with |||, ) < C.
We intend to choose (y) = % with f € LP()(Q) in (5.2). This is possible because

i

for all f € LPO with ||f||, < c. Estimate (5.3) is obtained by means of the usualder
inequality with the constant exponenisandq, = p%l taking into account thaf d—yp(y) <

p(y)
P

Sy <, (5.3)

Q [p(y)]P==1
0o, the latter following from condition (2.4). Y
In view of (5.3), we may apply estimate (5.2). Then (5.1) implies
@)\ 17
nten <e [ipr |1 (|22 .
p(y)
Q
Since [[p(z)]P®dx < oo by (2.4), we obtain
Q
LM < ete [ [MPIFOPO) @] da (5.4)
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under notation (2.1) with, () = [p(x)]®).
As is known [29], p. 201, the weighted maximal operatar is bounded inZP- with a
constanp, > 1, if the weight[p(z)]P*®) is in A4,,, which is nothing else but condition (2.4).
Therefore, by the boundedness of the weighted opeyetorin L, , from (5.4) we get

MMWSOH/V@W@%w:%QﬂMW@@<w (5.5)
Q Q

Hence, by (3.2)-(3.3) we conclude thatM f||;»0) ) < C forall f € LPO(Q, p) with

£l e ) < 1. SinceM is sublinear, this yields its boundedness in the sgAEY (2, p).

5.2 Proof of Theorem A.

The proof of Theorem Ais essentially the same. We only mention that an analogue of the
pointwise estimate (5.2) for Carleson curves is also known, see Theorem 3.3 in [13] and Sub-
section 4.2 in [12], and the boundedness of the maximal operator along Carleson curves with
Muckenhoupt weights satisfying th&,-condition ¢ = const)

p—1

! Pdv(r ! T)| v (T 00
32%35@1QWﬂd” |MM4MU]dU <o, (56)

is also known, see [4], p.149.

6 Proof of Theorem B

It suffices to prove Theorem B for a single weight|t — to|), to € T, tﬁmw(t) € ®?, which
may be shown by standard arguments, we refer for instance to [10], Subsection 5.1, where the
Euclidean case was considered.

6.1 On condition (2.5) for weights iniv.

Lemma 6.1. Let T be a bounded Carleson curve and lete W ([0,¢]), ¢ = |I'| and —co <
m, < M, < 1. Then the inequality

vy wllt—tl) [ v
M= =) /mv4m§ (61)

r(t)

holds withc > 0 not depending off < r < ¢ and¢ € T, if either m,, > 0 or |t — to| > 2r. In
the casdt — ty| < 2r, the estimate

7”
|’Yr t | |7—_t0|

<ec. (6.2)

11



also holds.

Proof.1° The casgt — t,| > 2r. We have
1
|T—750|Z|t—t0|—|7'—t|Z|t—to|—7“25|t—to|- (6.3)

As in the proof of Lemma 4.7, lgt < m,, andw,(z) = “&) is an a.i. function,
we havew,, (|7 — to|) > cw, (1|t — to|). Taking also into account the doubling property (4.8),
we obtain

wy (|7 = to]) = cw, ([t —to]).
Then we have
_ _ 14
(1) < ot =t [ _dv(m) _dtml/ dv(r)

rw (t—to)) J -t r 7 — tol
¥r(t) Yr(t)

If > 0, we use (6.3) again and obtain (6.1) ulk 0, then

1

m =|r— t0|lu| <C (’T _ t|\u\ + |t — to‘lul)

< C (4 |t —to|M) < Oyt — to| ¥,

whence (6.1) again follows.
2°. The case|t — t3| < 2r. Observe that in this casgt,r) C ~(to,3r), since|r — t| <
r = |T—t <|t—t|+ |t —to| < 3r.Hence

M;U(l)gw(]t—td)/ (dy(T)

[7- ()] w(lT = to])
'737‘(t0)
and then by Lemma 4.7 (with(¢) = 0) and Remark 4.5 we get

w(|t = tol)
w(r)

M (1) < (6.4)

This gives (6.2). In the case,, > 0 the functionw(z) is almost increasing and then (6.4) yields
(6.1). O

Corollary 6.2. Letw € W([O,E]), (=
I" satisfying condition (1.2). Then

(t) be a bounded non-negative function on

1
p(to)

/ — to)) PV dr(r) < Clw(©)P™), if m, > — (6.5)

|7r ’

and

. 1
I%« | / |7'—t0| 7= (e )]p(to)’ M, < (o) (6.6)

r(t)



where§ = max(r, |t — to]).

Proof. By Lemma 3.1, the exponeptr) on the left-hand side of (6.5) and (6.6) may
be replaced by(t,) from the very beginning. It easily seen thek,, ) = p(to) M, and
My, (y-vt0) = p(to)m,. Then (6.5)-(6.6) follow directly from (6.1)-(6.2). O

Theorem 6.3. Let w(z) € W(0,¢),¢ = || andt, € T. A functionp(t) = w(|t — t,|)
satisfies condition (2.5) if

L < My < M, < i, (6.7)
p(to) o
_ pe—l
where;, = 55 < fig-
Proof. By Corollary 6.2, we have
[ Wl = P ante) < o)
T
and
px—1
1 / dv(T) < C
|7 (8)] 2 = [w(g]ptr)
just under condition (6.7), which yields the validity of (2.5). O

6.2 Proof itself of Theorem B.

1° The case (6.7)This case is covered by Theorem Because in the case (6.7) the weight
w(|t — to|) satisfies condition (2.5) by Theorem 6.3.

2% The remaining case To get rid of the right-hand side bound in (6.7), we may split
integration ovell into two parts, one over a small neighborhogd= ~;(¢¢) of the pointt,
and another over its exteridSY\%, and to choosé sufficiently small so that the numb%

is arbitrarily close to”(to— ——. To this end we put
MY = XM x5 + XWM XT\rs T XT\1s M X5 + XD\ M X\ (6.8)
=: M} + My + My + M.
Since the weight is strictly positive beyond any neighborhood of the pgimte have
MY f(t) < CMF(2). (6.9)

For MY we have

w i e XD\ys(io) () w(lt =tol) 1o v ir
METE) =0 = ) (t)m/m wlr—to N
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Here|t — to| > r > |7 — to|. Observe that the function.(t) = 722 is a.d. for any= > 0
according to (4.5). Therefore

w(lt —to]) _ we(lt —to]) |t — to] M+ |t — to|Mwte
w(lT —tol)  we(lT —to]) |7 —to|Mete T T [r — to[Murte”
Hence
MY () < CMM¥ (1) (6.10)

where M™M= f(t) is the weighted maximal function with the power weight to|*=*<. Sim-
ilarly we conclude that
M3 f(t) < CM™ = f(1). (6.11)

Thus from (6.8) according to (6.9), (6.10) and (6.11) we have
MUF(t) < XMy f(E) + M () + M2 F () 4 M™ T2 f(2). (6.12)

Here the operatorsA, M™«+ and M™=~¢ are bounded in the spade¢)(I'), because the
boundedness condition (2.3) is satisfied foe= M, + ¢ and3 = m,, — ¢ under a choice of
sufficiently small.

It remains to prove the boundedness of the first term on the right-hand side of (6.12). This
is nothing else but the boundedness of the same opetdtoover a small sef's = ~5(to) N T.
According to the previous case, this boundedness holds if

1
— <My < My, < — (6.13)
p(to) s
_ pu(Tg)-1 o . N
whereg; = £ ) andp,(Ts) = ?g%r;p(t). Let us show that, given the conditien ;- <
My < M, < Wlo) one can always choosesufficiently small such that (6.13) holds. Given

M, < -2, we have to chooséso thatM,, < + < -, We have
q(to) 45 q(to)

1 1 1
% = m —a(d), where a(d)= (i)

[p(to) — p«(T's)] .

By the continuity ofp(¢) we can choosé so thata(J) < @ — M, Then% > M,, and

condition (6.13) is fulfilled. Then the operatav* is bounded in the spacg”")(v;s) which
completes the proof.
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