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Abstract

We study the boundedness of the maximal operator in the weighted spacesLp(·)(ρ) over
a bounded open setΩ in the Euclidean spaceRn or a Carleson curveΓ in a complex plane.
The weight function may belong to a certain version of a general Muckenhoupt-type con-
dition, which is narrower than the expected Muckenhoupt condition for variable exponent,
but coincides with the usual Muckenhoupt classAp in the case of constantp. In the case
of Carleson curves there is also considered another class of weights of radial type of the

form ρ(t) =
∏m

k=1 wk(|t− tk|), tk ∈ Γ, wherewk has the property thatr
1

p(tk) wk(r) ∈ Φ0
1,

whereΦ0
1 is a certain Zygmund-Bari-Stechkin-type class. It is assumed that the exponent

p(t) satisfies the Dini–Lipschitz condition. For such radial type weights the final statement
on the boundedness is given in terms of the index numbers of the functionswk (similar in
a sense to the Boyd indices for the Young functions defining Orlich spaces).

Key Words and Phrases: maximal functions, weighted Lebesgue spaces, variable exponent,
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1 Introduction

Within the frameworks of variable exponent spacesLp(·)(Ω), the boundedness of maximal oper-
ators was proved in L. Diening [7] for bounded domains inRn and in D.Cruz-Uribe, A.Fiorenza
and C.J. Neugebauer [6] and A.Nekvinda [22], [21] for unbounded domains. The weighted
boundedness with power weights was proved in V.Kokilashvili and S.Samko [11] in the case of
bounded domains. We refer also to L.Diening [8] and D.Cruz-Uribe, A.Fiorenza, J.M.Martell,
and C.Perez [5] for problems of boundedness of maximal operators in variable exponent spaces.

In [11] the power weights|x − x0|γ were considered and one of the main points in the
result obtained in [11] was that in condition onγ only the values ofp(x) at the pointx0 are of
importance:− n

p(x0)
< γ < n

q(x0)
(under the usual log-condition onp(x)).

However, an explicit description in terms of Muckenhoupt-type condition of general weights
for which the maximal operator is bounded in the spacesLp(·) still remains an open problem.

A certain subclass of general weights was considered in [10], where for the case of bounded
domainsΩ in the Euclidean space, the boundedness of the maximal operator in the spaces
Lp(·)(Ω, ρ) was proved. This subclass may be characterized as a class of radial type weights
which satisfy the Zygmund-Bari-Stechkin condition. Radial weightsw in this class are almost
increasing or almost decreasing and may oscillate between two power functions with different
exponents and have non-coinciding upper and lower indicesmw andMw (of the type of Boyd
indices). In comparison with the approach in [11], the main problems arising are related to the
situation when the indicesmw andMw do not coincide, in particular whenmw is negative while
Mw is positive.

In this paper, because of applications to weighted boundedness of singular integral operator
along Carleson curves, we prove similar results for the maximal operator along Carleson curves.
This extension from the Euclidean space to the case of Carleson curves required an essential
modification of certain means used in [10]. To obtain this result, we first prove a certain general
theorem with a certain version of the Muckenhoupt-type condition.

The weighted results obtained for the maximal operator pave the way to the study of Fred-
holmness of singular integral equations on Carleson curves in case of more general weights. In
fact the main Theorems A, A′ and B may be rewritten in terms on function spaces defined on
metric spaces. However, because of application to the theory of singular integral equations, we
prefer to present the results in the context of Carleson curves.

The paper is organized as follows. In Section 2 we formulate the main results - Theorems
A,A ′ and B - on the weighted boundedness of the maximal operator. In Section 4 we recall the
notion of the upper and lower indices of almost increasing non-negative functions and develop
some properties of weights in the Zygmund-Bari-Stechkin class, which we need to prove the
main result. In Sections 5 and 6 we give the proof of Theorems A, A′ and B.

Notation

a.d. =almost decreasing⇐⇒ f(x) ≥ Cf(y) for x ≤ y, C > 0,
a.i. =almost increasing⇐⇒ f(x) ≤ Cf(y) for x ≤ y, C > 0; wheref is a non-negative
function onR1

+;
Γ is an arbitrary bounded Carleson curve on the complex plane, closed or open;
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γ denotes an arbitrary portion ofΓ;
γr(t) = {τ ∈ Γ : |τ − t| < r};
dν(t) = ds denotes the arc measure onΓ;
Ω is a bounded open set inRn;
B(x, r) is a ball inRn centered atx of radiusr;
|γ| is the arc length ofγ; |Ω| is the Euclidean measure ofΩ;
χγ is the characteristic function ofγ;
f ∼ g ⇐⇒ there existC1 > 0 andC2 > 0 such thatC1f(t) ≤ g(t) ≤ C2f(t).
q(·) = p(·)

p(·)−1
, 1 < p(·) < ∞, 1

p(·) + 1
q(·) ≡ 1 ;

p∗ = p∗(X) = inf
t∈X

p(t), p∗ = p∗(X) = sup
t∈X

p(t), whereX = Γ or X = Ω;

q∗ = inf
x∈Ω

q(t) = p∗
p∗−1

, q∗ = sup
t∈Γ

q(t) = p∗
p∗−1

;

C, c may denote different positive constants.

In what follows,X will always denote either a bounded open setΩ in Rn, or a bounded
Carleson curveΓ. The variable exponentp(·) defined onX is supposed to satisfy the conditions

1 < p∗ ≤ p(t) ≤ p∗ < ∞, t ∈ X (1.1)

and

|p(t)− p(τ)| ≤ A

ln 1
|t−τ |

, |t− τ | ≤ 1

2
, t, τ ∈ X. (1.2)

By Lp(·)(X, ρ), whereρ(t) ≥ 0, we denote the weighted Banach space of measurable func-
tionsf : X → C such that

‖f‖Lp(·)(X,ρ) := ‖ρf‖p(·) = inf



λ > 0 :

∫

X

∣∣∣∣
ρ(t)f(t)

λ

∣∣∣∣
p(t)

dµ(t) ≤ 1



 < ∞. (1.3)

wheredµ(t) stands for the arc-length measuredν(t) in caseX = Γ anddµ(t) = dt in case
X = Ω.

2 Statement of the Main Results

We use the notationMρ both for

Mρf(x) = sup
r>0

ρ(x)

|B(x, r)|
∫

B(x,r)

|f(y)|
ρ(y)

dy (2.1)

and

Mρf(t) = sup
r>0

ρ(t)

|γr(t)|
∫

γr(t)

|f(τ)|
ρ(τ)

dν(τ) (2.2)

We writeM = Mρ|ρ≡1.
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The boundedness of the operatorMρ was proved in the case of the power weightρ(x) =
|x − x0|β, x0 ∈ Ω in [11] andρ(t) = |t − t0|β, t0 ∈ Γ in [12] under the following (necessary
and sufficient) condition− n

p(x0)
< β < n

q(x0)
or

− 1

p(t0)
< β <

1

q(t0)
, (2.3)

respectively. We prove two main results given in Theorems A and B. In Theorem A stated
below we consider some general Muckenhoupt type weights, the proof being the same both for
Carleson curves and domains inRn. In Theorem B, in the case of Carleson curves we deal with
a special class of radial type weights in the Zygmund-Bari-Stechkin class. Such a result for the
Euclidean case was earlier obtained in [10]. The proof for the case of Carleson curves required
an essential modification of the technique used.

The class of weights in Theorem A is narrower than the naturally expected Muckenhoupt
classAp(·) should be. However, it coincides with the Muckenhoupt classAp in casep is constant.
Theorem B is proved by means of Theorem A, but it is not contained in Theorem A, being more
general in its range of applicability.

We introduce the following ”ersatz”of the Muckenhoupt condition

sup
x∈Ω,r>0


 1

|B(x, r)|
∫

B(x,r)

|ρ(y)|p(y)dy





 1

|B(x, r)|
∫

B(x,r)

dy

|ρ(y)| p(y)
p∗−1




p∗−1

< ∞, (2.4)

which coincides with the Muckenhoupt condition in the casep(x) ≡ p∗ is constant, as well as
its version

sup
t∈Γ,r>0


 1

|γr(t)|
∫

γr(t)

|ρ(τ)|p(τ)dν(τ)





 1

|γr(t)|
∫

γr(t))

dν(τ)

|ρ(τ)| p(τ)
p∗−1




p∗−1

< ∞ (2.5)

for Carleson curves in the complex plane.
Observe that the class of weights satisfying condition (2.4)-(2.5) is evidently narrower that

what we expect from the ”real” Muckenhoupt classAp(·). Thus, in the case of power weights
|x − x0|β, condition (2.4) yields− 1

p(x0)
< β < 1

q0
with q0 = p(x0)

p∗−1
which is narrower than

the interval− 1
p(x0)

< β < 1
q(x0)

, where the boundedness of the maximal operator holds [11].
Obviously conditions (2.4)-(2.5) are sharp on those power functions which are ”fixed” to a point
at which the minimum ofp(·) is reached.

Theorem A. Let the exponentp(t) satisfy conditions (1.1), (1.2) and the weightρ fulfill
condition (2.4). Then the operatorM is bounded inLp(·)(Ω, ρ).

Theorem A′. Let the exponentp(t) satisfy conditions (1.1), (1.2) and the weightρ fulfill
condition (2.5). Then the operatorM is bounded inLp(·)(Γ, ρ).

In the next theorem, we deal with weights of the form

ρ(t) =
m∏

k=1

wk(|t− tk|), tk ∈ Γ, (2.6)
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wherewk(x) may oscillate asx → 0+ between two power functions (radial Zygmund-Bari-
Stechkin type weights).

The Zygmund-Bari-Stechkin classΦ0
1 of weights and the upper and lower indices of weights

(of the type of the Boyd indices) used in the theorem below are defined in Section 4. Note
that various non-trivial examples of functions in Zygmund-Bari-Stechkini-type classes with
coinciding indices may be found in [23], Section II; [24], Section 2.1, and with non-coinciding
indices in [26].

Theorem B. Let Γ be a bounded Carleson curve andp(t) satisfy conditions (1.1), (1.2)
on Γ. The operatorM is bounded inLp(·)(Γ, ρ) with the weight (2.6), wherewk(r) are such

functions thatr
1

p(tk) wk(r) ∈ Φ0
1, if

− 1

p(tk)
< mwk

≤ Mwk
<

1

q(tk)
, k = 1, 2, ..., m. (2.7)

A similar statement for bounded domains inRn was proved in [10].

3 Some basics for variable exponent spaces

The weighted spaceLp(·)(Γ, ρ) was introduced in (1.3). We writeLp(·)(Γ, 1) = Lp(·)(Γ) in the
caseρ(t) ≡ 1.

We recall some basic facts for the variable exponent spacesLp(·)(Γ) and refer e.g. to [14]
for details.

The Hölder inequality holds in the form
∫

Γ

|f(t)g(t)| dν(t) ≤ k
∥∥f

∥∥
p(·) ·

∥∥g
∥∥

q(·) (3.1)

with k = 1
p∗

+ 1
q∗

. The modularIp(f) =
∫
Γ

|f(t)|p(t) dν(t) and the norm‖f‖p(·) are simultane-

ously greater than one and simultaneously less than1:
∥∥f

∥∥p∗

p(·) ≤ Ip(f) ≤
∥∥f

∥∥p∗
p(·) if

∥∥f
∥∥

p(·) ≤
1 and

∥∥f
∥∥p∗

p(·) ≤ Ip(f) ≤
∥∥f

∥∥p∗

p(·) if
∥∥f

∥∥
p(·) ≥ 1. Hence

c1 ≤ ‖f‖p ≤ c2 =⇒ c3 ≤ Ip
Γ(f) ≤ c4 (3.2)

and
C1 ≤ Ip

Γ(f) ≤ C2 =⇒ C3 ≤ ‖f‖p ≤ C4 (3.3)

with c3 = min
(
cp∗
1 , cp∗

1

)
, c4 = max

(
cp∗
2 , cp∗

2

)
, C3 = min

(
C

1/p∗
1 , C

1/p∗
1

)
andC4 = max

(
C

1/p∗
2 , C

1/p∗
2

)
.

Lemma 3.1.LetΓ be a bounded Carleson curve, the exponentp satisfy condition (1.2) and
let w be any function such that there exist exponentsa, b ∈ R1 and the constantsc1 > 0 and
c2 > 0 such thatc1r

a ≤ w(r) ≤ c2r
−b, 0 ≤ r ≤ ` = diam(Γ). Then

1

C
[w(|t− t0|)]p(t0) ≤ [w(|t− t0|)]p(t) ≤ C[w(|t− t0|)]p(t0), (3.4)
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whereC > 1 does not depend ont, t0 ∈ Γ.

Proof. Let
g(t, t0) = [w(|t− t0|)]p(t)−p(t0).

To show that1
C
≤ g(t, t0) ≤ C, that is,| ln g(t, t0)| ≤ C1, C1 = ln C, we

| ln g(t, t0)| = |p(t)− p(t0)| · |ln w(|t− t0|)| ≤ A`
| ln w(|t− t0|)|

ln 2`
|t−t0|

which is bounded by the condition onw. 2

4 Preliminaries on Zygmund-Bari-Stechkin classes.

4.1 Index numbersmw and Mw of non-negative a. i. functions

Let
W = {w ∈ C([0, `]) : w(0) = 0, w(x) > 0 for x > 0, w(x) is a.i.}. (4.1)

The numbers

mw = sup
x>1

ln
(
lim inf

h→0

w(hx)
w(h)

)

ln x
= sup

0<x<1

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x
= lim

x→0

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x

and

Mw = sup
x>1

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x
= lim

x→∞

ln

(
lim sup

h→0

w(hx)
w(h)

)

ln x

(see [23], [26], [25]), will be referred to asthe lower and upper indicesof the functionw(x)
(compare these indices with the Matuszewska-Orlicz indices, see [18], p. 20; they are of the
type of the Boyd indices, see [15], p. 75; [16], or [3], p. 149 about the Boyd indices). We have
0 ≤ mw ≤ Mw ≤ ∞ for w ∈ W .

The indicesmω andMω may be also well defined for functionsw(x) positive forx > 0
which do not necessarily belong toW , for example, if there exists ana ∈ R1 such thatwa(x) :=
xaw(x) is in W . Obviously,

mwa = a + mw, Mwa = a + Mw.

So we also introduce the class

W̃ = {w : xaw(x) ∈ W for some a ∈ R1}.

6



4.2 The Zygmund-Bari-Stechkin classΦ0
γ

Let δ > 0. The following classΦ0
δ was introduced and studied in [2] (with integerδ); there are

also known ”two-parametrical” classesΦβ
δ , 0 ≤ β < δ < ∞, see [20], [19], [28] and [27], p.

253).

Definition 4.1. ([2]) The Zygmund-Bari-Stechkin type classΦ0
δ , 0 < δ < ∞, is defined as

Φ0
δ := Z0 ∩ Zδ, whereZ0 is the class of functionsw ∈ W satisfying the condition

∫ h

0

w(x)

x
dx ≤ cw(h) (Z0)

andZδ is the class of functionsw ∈ W satisfying the condition

∫ `

h

w(x)

x1+δ
dx ≤ c

w(h)

hδ
, (Zδ)

wherec = c(w) > 0 does not depend onh ∈ (0, `].

In the sequel we refer to the above conditions as (Z0)- and (Zδ)-conditions.

The following statement is valid, see [23],[26] forδ = 1 and [9] for an arbitraryδ > 0.

Theorem 4.2.Letw ∈ W . Thenw ∈ Z0 if and only ifmw > 0, andw ∈ Zδ, δ > 0, if and
only if Mw < δ, so that

w ∈ Φ0
δ ⇐⇒ 0 < mw ≤ Mw < δ. (4.2)

Besides this, forw ∈ Φ0
δ and anyε > 0 there exist constantsc1 = c1(ε) > 0 andc2 = c2(ε) > 0

such that
c1x

Mw+ε ≤ w(x) ≤ c2x
mw−ε, 0 ≤ x ≤ `. (4.3)

The following properties are also valid

mw = sup{µ ∈ R1 : x−µw(x) is a.i.}, (4.4)

Mw = inf{ν ∈ R1 : x−νw(x) is a.d.}. (4.5)

Statements (4.3)-(4.5) remain valid for the case whenMw or mw may be non-positive.
Namely, the following corollary from Theorem 4.2 is valid.

Corollary 4.3. Letw(x), 0 < x ≤ `, be such a function thattaw(t) ∈ Z0 for somea ∈ R1.
Then formula (4.4) remains valid and for anyε > 0 there existsc1 > 0 such that

w(x) ≤ c1x
mw−ε. (4.6)

Similarly, if xaw(x) ∈ Zδ, then (4.5) is valid and for anyε > 0 there existsc2 > 0 such that

w(x) ≥ c2x
Mw+ε. (4.7)

Remark 4.4. If w ∈ W̃ andmω > 0, thenw ∈ W .
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Indeed, leta ∈ R1 be such thatwa(x) = xaw(x) ∈ W . Then according to (4.4) the function
wa(x)

xmwa−ε is a.i. for everyε > 0. But mwa = mw + a, so that w(x)
xmw−ε is a.i. for everyε > 0. Since

mw > 0, then the functionw itself is a.i., which means that it is inW .

Remark 4.5. Every functionw ∈ W̃ with Mw < ∞ satisfies the doubling condition

w(2r) ≤ Cw(r), 0 ≤ r ≤ ` (4.8)

which follows from the fact that the functionw(r)
rν with µ > Mw is a.d. according to (4.5).

4.3 On examples of functions inΦ0
γ.

Power and power-logarithmic functionsw(x) = xµ, xµ
(
ln 1

x

)α
, xµ

(
ln ln 1

x

)α
etc, are inΦ0

γ

in the case0 < µ < γ and have coinciding indicesm(w) = M(w) = µ.
Apart from this trivial examples, observe that the condition

lim
h→0

w(th)

w(h)
= tµ, µ = const, (4.9)

is sufficient forw(x) to have coinciding indices. The functionw(x) = xµ+ c
lnα x , α ≥ 1, and

more generallyw(x) = xµ(x) whereµ(x) satisfies the Dini condition|µ(x + h) − µ(x)| =

o

(
1

| ln |h| |

)
, fulfills condition (4.9) andxµ(x) ∈ Φ0

γ if 0 < µ(0) < γ.

Examples of non-equilibrated characteristics are much less trivial. An example of such a
functionw with different indicesm(w) andM(w) was given in [1]; in the context of submul-
tiplicative convex functions another example of functions with non-coinciding Matuszewska-
Orlicz indices was given in [17], the latter example been also exposed in [18], p.93. In [26]
there was explicitly constructed a family of functions with different indices belonging to the
classΦ0

γ.

4.4 Auxiliary lemmas

Lemma 4.6. Let w ∈ W̃ ([0, `]), 0 < ` < ∞, and−∞ < mw ≤ Mw < ∞, let λ ≥ 0 and
λMw < δ, whereδ > 0. Then tδ

[w(t)]λ
∈ Z0, that is,

r∫

0

xδ−1dx

[w(x)]λ
≤ C

rδ

[w(r)]λ
, 0 < r ≤ `, (4.10)

where the constantC > 0 does not depend onr ∈ [0, `]; it does not depend also on0 ≤ λ ≤ d
whered > 0 is arbitrary if Mw ≤ 0 andd < δ

Mω
, if Mw > 0.

Proof. The functionw1(x) = xδ

[w(x)]λ
is almost increasing, because the functionw(x)

xδ/λ is

almost decreasing whenδ
λ

> Mω, according to formula (4.5), the validity of which follows
from Corollary 4.3. Therefore,w1 ∈ W . By the definition of the lower index, we easily obtain
thatmw1 = δ − λMw. Hencemw1 > 0 and consequentlyw1 ∈ Z0 by Theorem 4.2.
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In order to show that the constantC in (4.10) does not depend on the appropriate choice of
λ, we proceed as follows

r∫

0

xδ−1dx

[w(x)]λ
=

1

[w(r)]λ

r∫

0

[
w(r)

w(x)
· xMw+ε

rMw+ε

]λ
r(Mw+ε)λ dx

x(Mw+ε)λ+1−δ
.

The function w(x)
xMw+ε is almost decreasing for everyε > 0 by Corollary 4.3. Therefore, the

expression in the brackets is bounded from above. Sinceλ ≥ 0, we get

r∫

0

xδ−1dx

[w(x)]λ
≤ C

r(Mw+ε)λ

[w(r)]λ

r∫

0

dx

x(Mw+ε)λ+1−δ
=

C

δ − λ(Mw + ε)
· rδ

[w(r)]λ
≤ C1r

δ

[w(r)]λ

under the choice ofε sufficiently small:0 < ε < δ
d
−Mw. 2

Lemma 4.7. Let Γ be a bounded Carleson curve,λ(t) ≥ 0 on Γ andΛ := sup
t∈Γ

λ(t). Let

alsow ∈ W̃ ([0, `]), ` = |Γ| and−∞ < mw ≤ Mw < 1
Λ

. Then

∫

γr(t)

dν(τ)

[w(|t− τ |)]λ(t)
≤ C

r

[w(r)]λ(t)
(4.11)

whereC > 0 does not depend ont ∈ Γ andr ∈ [0, `].

Proof. Letµ < mw andwµ(x) = w(x)
xµ so thatwµ(x) is an a.i. function according to (4.4)

and Corollary 4.3. We proceed as follows:

J :=

∫

γr(t)

dν(τ)

[w(|t− τ |)]λ(t)
=

∞∑

k=0

∫

Lk(t,r)

|t− τ |−µλ(t)dν(τ)

[wµ(|t− τ |)]λ(t)
(4.12)

whereLk(t, r) = {τ ∈ Γ : 2−k−1r < |t − τ | < 2−kr}. Since the functionwµ is almost

increasing, and|t− τ |−µλ(t) ≤ C
(
2−kr

)−µλ(t)
for τ ∈ Lk(t, r), we obtain

J ≤ C

∞∑

k=0

(
2−kr

)−µλ(t) |L(k, r)|
[wµ(2−k−1r)]λ(t)

≤ C

∞∑

k=0

2−kr

[w(2−k−1r)]λ(t)
. (4.13)

The inequality

2−k

[w(2−k−1r)]λ(t)
≤ C

2−k∫

2−k−1

dx

[w(xr)]λ(t)
(4.14)

is valid, which follows from the direct estimation similar to the above arguments:

2−k∫

2−k−1

dx

[w(xr)]λ(t)
≥ C

[wµ(2−kr)]λ(t)

2−k∫

2−k−1

(xr)−µλ(t)dx ≥ C2−k

[w(2−kr)]λ(t)
.
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By (4.14) from (4.13) we get

J ≤ Cr

∞∑

k=0

2−k∫

2−k−1

dx

[w(xr)]λ(t)
= Cr

1∫

0

dx

[w(xr)]λ(t)
= c

r∫

0

dx

[w(x)]λ(t)
≤ C

r

[w(r)]λ(t)
,

where in the last inequality we used Lemma 4.6 withδ = 1. 2

5 Proof of Theorems A and A′.

5.1 Proof of Theorem A.

To Prove Theorem A, we have to show that

Ip(Mρf) ≤ c for
∥∥f

∥∥
p(·) ≤ R.

Following the idea in [7], we representIp(Mρf) as

Ip(Mρf) =

∫

Ω

(
[ρ(x)]p1(x)

∣∣∣∣M
(

f(y)

ρ(y)

)
(x)

∣∣∣∣
p1(x)

)p∗

dν(t), (5.1)

where

p1(x) =
p(x)

p∗
.

We make use of the known estimate

|Mψ(x)|p1(x) ≤ c
(
1 +M[

ψp1(·)](x)
)

(5.2)

(see [7], valid for for allψ ∈ Lp1(·)(Ω) with ‖ψ‖p1(·) ≤ C.
We intend to chooseψ(y) = f(y)

ρ(y)
with f ∈ Lp(·)(Ω) in (5.2). This is possible because

∫

Ω

∣∣∣∣
f(y)

ρ(y)

∣∣∣∣
p(y)
p∗

dy ≤ C, (5.3)

for all f ∈ Lp(·) with ‖f‖p ≤ c. Estimate (5.3) is obtained by means of the usual Hölder
inequality with the constant exponentsp∗ andq∗ = p∗

p∗−1
, taking into account that

∫
Ω

dy

[ρ(y)]
p(y)
p∗−1

<

∞, the latter following from condition (2.4).
In view of (5.3), we may apply estimate (5.2). Then (5.1) implies

Ip(Mρf) ≤ c

∫

Ω

[ρ(x)]p(x)

[
1 +M

(∣∣∣∣
f(y)

ρ(y)

∣∣∣∣
p1(y)

)]p∗

dx.

Since
∫
Ω

[ρ(x)]p(x)dx < ∞ by (2.4), we obtain

Ip(Mρf) ≤ c + c

∫

Ω

[Mρ1(|f(·)|p1(·))(x)
]p∗

dx (5.4)
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under notation (2.1) withρ1(x) = [ρ(x)]p1(x).
As is known [29], p. 201, the weighted maximal operatorMρ1 is bounded inLp∗ with a

constantp∗ > 1, if the weight[ρ(x)]p1(x) is in Ap∗, which is nothing else but condition (2.4).
Therefore, by the boundedness of the weighted operatorMρ1 in Lp∗ , from (5.4) we get

Ip(Mρf) ≤ c + c

∫

Ω

|f(y)|p1(y)·p∗ dy = c + c

∫

Ω

|f(y)|p(y) dy < ∞. (5.5)

Hence, by (3.2)-(3.3) we conclude that‖Mf‖Lp(·)(Ω,ρ) ≤ C for all f ∈ Lp(·)(Ω, ρ) with
‖f‖Lp(·)(Ω,ρ) ≤ 1. SinceM is sublinear, this yields its boundedness in the spaceLp(·)(Ω, ρ).

5.2 Proof of Theorem A′.

The proof of Theorem A′ is essentially the same. We only mention that an analogue of the
pointwise estimate (5.2) for Carleson curves is also known, see Theorem 3.3 in [13] and Sub-
section 4.2 in [12], and the boundedness of the maximal operator along Carleson curves with
Muckenhoupt weights satisfying theAp-condition (p ≡ const)

sup
t∈Γ

sup
r>0


 1

|γr(t)|
∫

γr(t)

[ρ(τ)]pdν(τ)





 1

|γr(t)|
∫

γr(t)

[ρ(τ)]−qdν(τ)




p−1

< ∞, (5.6)

is also known, see [4], p.149.

6 Proof of Theorem B

It suffices to prove Theorem B for a single weightw(|t − t0|), t0 ∈ Γ, t
1

p(t0) w(t) ∈ Φ0
1, which

may be shown by standard arguments, we refer for instance to [10], Subsection 5.1, where the
Euclidean case was considered.

6.1 On condition (2.5) for weights inW̃ .

Lemma 6.1. Let Γ be a bounded Carleson curve and letw ∈ W̃ ([0, `]), ` = |Γ| and−∞ <
mw ≤ Mw < 1. Then the inequality

Mw
r (1) :=

w(|t− t0|)
|γr(t)|

∫

γr(t)

dν(τ)

w(|τ − t0|) ≤ c (6.1)

holds withc > 0 not depending on0 < r < ` andt ∈ Γ, if either mω > 0 or |t− t0| ≥ 2r. In
the case|t− t0| ≤ 2r, the estimate

w(r)

|γr(t)|
∫

γr(t)

dν(τ)

w(|τ − t0|) ≤ c. (6.2)
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also holds.

Proof.10. The case|t− t0| ≥ 2r. We have

|τ − t0| ≥ |t− t0| − |τ − t| ≥ |t− t0| − r ≥ 1

2
|t− t0|. (6.3)

As in the proof of Lemma 4.7, letµ < mw andwµ(x) = w(x)
xµ . Sincewµ is an a.i. function,

we havewµ(|τ − t0|) ≥ cwµ

(
1
2
|t− t0|

)
. Taking also into account the doubling property (4.8),

we obtain
wµ(|τ − t0|) ≥ cwµ(|t− t0|).

Then we have

Mw
r (1) ≤ C

w(|t− t0|)
rwµ(|t− t0|)

∫

γr(t)

dν(τ)

|τ − t0|µ = C
|t− t0|

r

µ ∫

γr(t)

dν(τ)

|τ − t0|µ

If µ ≥ 0, we use (6.3) again and obtain (6.1). Ifµ < 0, then

1

|τ − t0|µ = |τ − t0||µ| ≤ C
(|τ − t||µ| + |t− t0||µ|

)

≤ C
(
r|µ| + |t− t0||µ|

) ≤ C1|t− t0||µ|,
whence (6.1) again follows.

20. The case|t − t0| ≤ 2r. Observe that in this caseγ(t, r) ⊂ γ(t0, 3r), since|τ − t| <
r =⇒ |τ − t0| ≤ |τ − t|+ |t− t0| < 3r. Hence

Mw
r (1) ≤ w(|t− t0|)

|γr(t)|
∫

γ3r(t0)

dν(τ)

w(|τ − t0|)

and then by Lemma 4.7 (withλ(t) ≡ 0) and Remark 4.5 we get

Mw
r (1) ≤ w(|t− t0|)

w(r)
. (6.4)

This gives (6.2). In the casemω > 0 the functionw(x) is almost increasing and then (6.4) yields
(6.1). 2

Corollary 6.2. Letw ∈ W̃ ([0, `]), ` = |Γ|, andp(t) be a bounded non-negative function on
Γ satisfying condition (1.2). Then

1

|γr(t)|
∫

γr(t)

[w(|τ − t0|)]p(τ)dν(τ) ≤ C[w(ξ)]p(t0), if mω > − 1

p(t0)
(6.5)

and
1

|γr(t)|
∫

γr(t)

dν(τ)

[w(|τ − t0|)]p(τ)
≤ C

[w(ξ)]p(t0)
, if Mω <

1

p(t0)
(6.6)
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whereξ = max(r, |t− t0|).
Proof. By Lemma 3.1, the exponentp(τ) on the left-hand side of (6.5) and (6.6) may

be replaced byp(t0) from the very beginning. It easily seen thatM[w(·)]p(t0) = p(t0)Mw and
M[w(·)]−p(t0) = p(t0)mw. Then (6.5)-(6.6) follow directly from (6.1)-(6.2). 2

Theorem 6.3. Let w(x) ∈ W̃ (0, `), ` = |Γ| and t0 ∈ Γ. A functionρ(t) = w(|t − t0|)
satisfies condition (2.5) if

− 1

p(t0)
< mw ≤ Mw <

1

q0

, (6.7)

where 1
q0

= p∗−1
p(t0)

≤ 1
q(t0)

.

Proof. By Corollary 6.2, we have

1

|γr(t)|
∫

γr(t)

[w(|τ − t0|)]p(τ)dν(τ) ≤ C[w(ξ)]p(t0)

and 
 1

|γr(t)|
∫

γr(t))

dν(τ)

[w(|τ − t0|]
p(τ)
p∗−1




p∗−1

≤ C

[w(ξ)]p(t0)

just under condition (6.7), which yields the validity of (2.5). 2

6.2 Proof itself of Theorem B.

10 The case (6.7).This case is covered by Theorem A′, because in the case (6.7) the weight
w(|t− t0|) satisfies condition (2.5) by Theorem 6.3.

20 The remaining case. To get rid of the right-hand side bound in (6.7), we may split
integration overΓ into two parts, one over a small neighborhoodγδ = γδ(t0) of the pointt0,
and another over its exteriorΓ\γδ, and to chooseδ sufficiently small so that the numberp∗(γδ)−1

p(t0)

is arbitrarily close top(t0)−1
p(t0)

= 1
q(t0)

. To this end we put

Mw = χγδ
Mwχγδ

+ χγδ
MwχΓ\γδ

+ χΓ\γδ
Mwχγδ

+ χΓ\γδ
MwχΓ\γδ

(6.8)

= : Mw
1 +Mw

2 +Mw
3 +Mw

4 .

Since the weight is strictly positive beyond any neighborhood of the pointt0, we have

Mw
4 f(t) ≤ CMf(t). (6.9)

ForMω
3 we have

Mw
3 f(t) = sup

r>0

χΓ\γδ(t0)(t)

|γr(t)|
∫

γr(t)∩γδ(t0)∩Γ

w(|t− t0|)
w(|τ − t0|) |f(τ)| dν(τ).
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Here|t − t0| > r > |τ − t0|. Observe that the functionwε(t) = w(t)
tMw+ε is a.d. for anyε > 0

according to (4.5). Therefore

w(|t− t0|)
w(|τ − t0|) =

wε(|t− t0|)
wε(|τ − t0|) ·

|t− t0|Mw+ε

|τ − t0|Mw+ε
≤ C

|t− t0|Mw+ε

|τ − t0|Mw+ε
.

Hence
Mw

3 f(t) ≤ CMMw+εf(t) (6.10)

whereMMw+εf(t) is the weighted maximal function with the power weight|t− t0|Mw+ε. Sim-
ilarly we conclude that

Mw
2 f(t) ≤ CMmw−εf(t). (6.11)

Thus from (6.8) according to (6.9), (6.10) and (6.11) we have

Mwf(t) ≤ χγδ
Mwχγδ

f(t) +Mf(t) +MMw+εf(t) +Mmw−εf(t). (6.12)

Here the operatorsM,MMw+ε andMmw−ε are bounded in the spaceLp(·)(Γ), because the
boundedness condition (2.3) is satisfied forβ = Mw + ε andβ = mω − ε under a choice ofε
sufficiently small.

It remains to prove the boundedness of the first term on the right-hand side of (6.12). This
is nothing else but the boundedness of the same operatorMw over a small setΓδ = γδ(t0) ∩ Γ.
According to the previous case, this boundedness holds if

− 1

p(t0)
< mw ≤ Mw <

1

qδ

(6.13)

whereqδ = p∗(Γδ)−1
p(t0)

andp∗(Γδ) = min
t∈Γδ

p(t). Let us show that, given the condition− 1
p(t0)

<

mw ≤ Mw < 1
q(t0)

, one can always chooseδ sufficiently small such that (6.13) holds. Given

Mw < n
q(t0)

, we have to chooseδ so thatMw < 1
qδ
≤ n

q(t0)
. We have

1

qδ

=
1

q(t0)
− a(δ), where a(δ) =

1

p(t0)
[p(t0)− p∗(Γδ)] .

By the continuity ofp(t) we can chooseδ so thata(δ) < 1
q(t0)

− Mw. Then 1
qδ

> Mw and

condition (6.13) is fulfilled. Then the operatorMw is bounded in the spaceLp(·)(γδ) which
completes the proof.
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