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Abstract

For the Riesz potential operator Iα there are proved weighted estimates∥∥Iαf
∥∥
Lq(·)(Ω,w

q
p )

� C‖f ‖Lp(·)(Ω,w), Ω ⊆ R
n,

1

q(x)
≡ 1

p(x)
− α

n

within the framework of weighted Lebesgue spaces Lp(·)(Ω,w) with variable exponent. In case Ω is a
bounded domain, the order α = α(x) is allowed to be variable as well. The weight functions are radial type
functions “fixed” to a finite point and/or to infinity and have a typical feature of Muckenhoupt–Wheeden
weights: they may oscillate between two power functions. Conditions on weights are given in terms of
their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential
operators on the unit sphere S

n ⊂ R
n.
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1. Introduction

Last years harmonic analysis in variable exponent spaces attracts enormous interest of re-
searchers due to both mathematical curiosity caused by the difficulties of investigation in variable
exponent spaces and also by various applications. We refer in particular to papers [12,22] on the
spaces Lp(·) and papers [4,5,10,11,16] on the recent progress in operator theory and harmonic
analysis in Lp(·), the theory of these spaces and the corresponding Sobolev spaces Wm,p(·) with
variable exponent being at present rapidly developing, influenced by applications given in [17],
see also references therein. The main progress concerns in particular non-weighted theorems on
p(·) → p(·)-boundedness of the Hardy–Littlewood maximal operator

Mf (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

∣∣f (y)
∣∣dy (1.1)

and p(·) → q(·)-boundedness of the Riesz potential operator

Iαf (x) = 1

γn(α)

∫
Rn

f (y) dy

|x − y|n−α
, 0 < α < n. (1.2)

There are various challenging open problems in this topic; we refer to the existing surveys
[6,8] and [20], one of those problems being related to the weighted theory: to find an analog of
the Muckenhoupt condition for the maximal operator and the Muckenhoupt–Wheeden condition
[15] for the Riesz potential operator.

In this paper we deal with the weighted estimates for the Riesz potential operator.
A non-weighted Sobolev-type p(·) → q(·)-theorem for variable exponents was first obtained

in [21] for bounded domains Ω ⊂ R
n under the assumption that the maximal operator is bounded

in Lp(·)(Ω), which became unconditional statement after L. Diening’s result [5] on the bound-
edness of the maximal operator. For unbounded domains the Sobolev theorem was proved in by
C. Capone, D. Cruz-Uribe and A. Fiorenza [2] and D. Cruz-Uribe, A. Fiorenza, J.M. Martell and
C. Perez [3], a weaker version being given in V. Kokilashvili and S. Samko [10].

In the weighted theory, Sobolev embeddings were obtained for power weights. First, for
bounded domains there was obtained the weighted p(·) → p(·)-boundedness in V. Koki-
lashvili and S. Samko [11] and the p(·) → q(·)-inequality with the limiting exponent q(·) in
S. Samko [26]. As is known, the case of unbounded domains is more difficult (when p(·) is al-
lowed to be variable up to infinity). A generalization of the Stein–Weiss inequality [26], that is,
Sobolev embedding with power weight on unbounded domains for variable exponents was con-
sidered in [24], where this generalization was obtained with a certain additional restriction on
the parameters involved. This restriction was withdrawn in [25]. The progress in [24,25] became
possible under the log-condition on the variable exponent at infinity, a little bit stronger than the
decay condition.

Up to now, for variable exponents no Stein–Weiss-type inequality with weights more general
than power ones was obtained. A characterization of general weights admissible for the Sobolev
embedding is still unknown. In the case of variable exponents, one may easily try to write down
an analogue of the Muckenhoupt–Wheeden condition in terms of the corresponding norms, but
whether this guarantees the weighted boundedness of the Riesz potential, remains an open prob-
lem. The generalization to the case of more general weights encountered essential difficulties,
caused both by the general reasons—non-invariance of the variable exponent spaces with respect
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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to translations and dilations—and by the absence of results for the maximal operator with general
weights.

In this paper we partially fill in the existing gap. The main novelty of the results obtained in
this paper is admission of a certain class of general weights w(|x − x0|), x0 ∈ Ω , of radial-type
(in the case of unbounded domains we admit radial type weights “fixed” also to infinity). We
generalize results obtained in [24,25] to the case of general “radial-type” weights by admittong
weights which have a typical feature of Muckenhoupt–Wheeden weights: they may oscillate
between two power functions. The class of admissible weights may be considered as a kind of
Zygmund–Bary–Stechkin class. The idea to use the Zygmund–Bary–Stechkin class of weights is
based on the observation that the integral constructions involved in the Muckenhoupt condition
for radial weights (in the case of constant p) are exactly those which appear in the Zygmund
conditions.

A new point is that the conditions for the validity of the p(·) → q(·)-estimate (with the
limiting exponent) are given in terms of the so called index numbers m(w) and M(w) of the
weights w(r) (similar in a sense to the Boyd indices). These conditions are obtained in the form
of the natural numerical intervals

αp(x0) − n < m(w) � M(w) < n
[
p(x0) − 1

]
(1.3)

“localized” to the points x0 to which the radial weights w(|x − x0|) are fixed. The sufficiency
of this condition in terms of the numbers m(w) and M(w) is a new result even in the case of
constant p. As is known, even in the case of constant p the verification of the Muckenhoupt–
Wheeden condition for a concrete weight may be an uneasy task. Therefore, independently of
finding an analogue of the Muckenhoupt–Wheeden condition for variable exponents, it is always
of importance to find easy to check sufficient conditions for weight functions, as for instance
in (1.3).

As a corollary to the weighted result for the Riesz potential operator in R
n we also obtain a

similar theorem for the spherical analogue

(
Kαf

)
(x) =

∫
Sn

f (σ )

|x − σ |n−α
dσ, x ∈ S

n, 0 < α < n, (1.4)

of the Riesz potential in the weighted spaces Lp(·)(Sn, ρ) on the unit sphere S
n in R

n+1.
The main results of the paper are given in Theorems A–C, see Section 3. Theorem A contains

a weighted result for bounded domains and in this case the order α = α(x) of the Riesz potential
may be also variable. Theorem B provides the weighted result for the whole space R

n in case of
constant α. Finally, Theorem C contains a similar result for spherical Riesz potentials. Section 2
contains necessary preliminaries. In Section 4 we prove a crucial lemma on estimation of norms
of truncated weight functions. The proof of Theorems A–C is given in Sections 5–7, respectively.

Notation.

B(x, r) = {y ∈ R
n: |y − x| < r};

S
n is the unit sphere in R

n+1, en+1 = (0,0,0, . . . ,0,1);
p0 = infx∈Ω p(x), P = supx∈Ω p(x), p′(x) = p(x)

p(x)−1 ;

P(Ω), see (2.2)–(2.3);

W , see (2.9);
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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W̃ , see (2.10);

Φ
β
γ , see Definition 2.2;

Ψ
β
γ , see Definition 2.8;

by c or C we denote various positive absolute constants.

2. Preliminaries

2.1. On weighted Lebesgue spaces with variable exponent

We refer to [12,22] for details on the spaces Lp(·)(Ω), but give the basic definitions. Let Ω

be an open set in R
n, p : Ω → [1,∞) a measurable function on Ω and

Lp(·)(Ω,ρ) = {
f :

[
ρ(x)

] 1
p(x) f (x) ∈ Lp(·)(Ω)

}
, Lp(·)(Ω) := Lp(·)(Ω,1),

‖f ‖Lp(·)(Ω,ρ) = inf

{
λ > 0:

∫
Ω

ρ(x)

∣∣∣∣f (x)

λ

∣∣∣∣p(x)

dx � 1

}
, (2.1)

where ρ(x) will be of the form ρ(x) = w(|x − x0|) with x0 ∈ Ω .
By P(Ω) we denote the set of functions p : Ω → (1,∞) satisfying the conditions

1 < p0 � p(x) � P < ∞ on Ω, (2.2)∣∣p(x) − p(y)
∣∣ � A

ln 1
|x−y|

for all x, y ∈ Ω, with |x − y| � 1

2
, (2.3)

where A > 0 does not depend on x and y. In case of a bounded set Ω condition (2.3) may be
also written in the form∣∣p(x) − p(y)

∣∣ � NA

ln N
|x−y|

, x, y ∈ Ω, N = 2 diamΩ. (2.4)

Under condition (2.2) for the conjugate space [Lp(·)(Ω,ρ)]∗ we have[
Lp(·)(Ω,ρ)

]∗ = Lp′(·)(Ω,
[
ρ(x)

] 1
1−p(x)

)
,

1

p(x)
+ 1

p′(x)
= 1, (2.5)∣∣∣∣

∫
Ω

u(x)v(x) dx

∣∣∣∣ � k‖u‖
Lp′(·)(Ω,[ρ(x)]

1
1−p(x) )

‖v‖Lp(·)(Ω,ρ). (2.6)

We will also deal with a similar weighted space Lp(·)(Sn, ρ) with variable exponent on the
unit sphere S

n = {σ ∈ R
n+1: |σ | = 1}, defined by the norm

‖f ‖Lp(·)(Sn,ρ) =
{
λ > 0:

∫
Sn

ρ(σ )

∣∣∣∣f (σ )

λ

∣∣∣∣p(σ)

dσ � 1

}
.

Similarly to the Euclidean case, by P(Sn) we denote the set of exponents p(σ) on S
n which

satisfy the conditions 1 < p− � p(σ) � p+ < ∞, σ ∈ S
n,∣∣p(σ1) − p(σ2)

∣∣ � A

ln 3
|σ1−σ2|

, σ1 ∈ S
n, σ2 ∈ S

n.
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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2.2. On Zygmund–Bari–Stechkin classes Φ
β
γ and Ψ

β
γ

10. Classes Φ
β
γ = Φ

β
γ ([0, �]). By C+([0, �]), 0 < � < ∞, we denote the class of functions

w(t) on [0, �] continuous and positive at every point t ∈ (0, �] and having a finite or infinite
limit limt→0 w(t) =: w(0). A function ϕ ∈ C+([0, �]) is said to be almost increasing (or almost
decreasing) if there exists a constant C � 1 such that ϕ(x) � Cϕ(y) for all x � y (or x � y,
respectively).

Definition 2.1. Let −∞ < β < γ < ∞. We define the class Zβ = Zβ([0, �]) as the set of func-
tions in C+([0, �]) satisfying the condition

h∫
0

w(x)dx

x1+β
� c

w(h)

hβ
(2.7)

and the class Zγ = Zγ ([0, �]) as the set of functions w ∈ C+([0, �]) satisfying the condition

�∫
h

w(x)dx

x1+γ
� c

w(h)

hγ
, (2.8)

where c = c(w) > 0 does not depend on h ∈ (0, �].

Let

W0 = {
ϕ ∈ C+

([0, �]): ϕ(x) is almost increasing
}

(2.9)

and

W̃0 = {
ϕ ∈ C+

([0, �]): ∃a = a(ϕ) ∈ R
1 such that xaϕ(x) ∈ W0

}
. (2.10)

Definition 2.2. We define the Zygmund–Bari–Stechkin class Φ
β
γ , as

Φβ
γ = W̃0 ∩Zβ ∩Zγ , −∞ < β < γ < ∞. (2.11)

The class Φ
β
γ is a modification of the class Φ0

k , k = 0,1,2, . . . , introduced in [1], where
increasing functions w were considered. We deal with almost monotonic functions as in [18].
We refer in particular to [7] for properties of functions in Φ

β
γ . Observe that

Φβ1
γ1

⊆ Φβ2
γ2

⊆ Φ0
γ2

, 0 � β2 � β1 � γ1 � γ2. (2.12)

Definition 2.3. Let w ∈ C+([0, �]). The numbers

m(w) = sup
x>1

ln[ limh→0
w(xh)
w(h)

]
lnx

, M(w) = inf
x>1

ln[limh→0
w(xh)
w(h)

]
lnx

introduced in such a form in [18], will be referred to as the lower and upper index numbers of a
function w (they are close to the Matuszewska–Orlicz indices, see [13, p. 20]).
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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Observe that

m
[
xaw(x)

] = a + m(w) and M
[
xaw(x)

] = a + M(w) (2.13)

and

m

(
1

w

)
= −M(w), M

(
1

w

)
= −m(w). (2.14)

The following statement characterizes the class Φ
β
γ in terms of the indices m(w) and M(w),

see its proof in [18, p. 125] for the case β = 0, γ = 1 and in [7] for the case 0 � β < γ < ∞. The
validity of Theorem 2.4 for all −∞ < β < γ < ∞ follows from the possibility (2.13) to shift the
indices.

Theorem 2.4. Let −∞ < β < γ < ∞. Then

I. A function w(x) ∈ W̃0 is in the Bari–Stechkin class Φ
β
γ if and only if

β < m(w) � M(w) < γ. (2.15)

Besides this, the condition m(w) > β for w ∈ W̃0 is equivalent to inequality (2.7), while the
condition M(w) < γ is equivalent to (2.8).

II. For w ∈ Φ
β
γ and every ε > 0 there exist constants c1 = c1(w, ε) > 0 and c2 = c2(w, ε) > 0

such that

c1t
M(w)+ε � w(t) � c2t

m(w)−ε, 0 � t � �. (2.16)

III. If w ∈ W̃0 ∩Zβ , then w(t)

tδ1
is almost increasing for every δ1 < m(w); if w ∈ W̃0 ∩Zγ , then

w(t)

tδ2
is almost decreasing for every δ2 > M(w).

Corollary 2.5. Let 0 < γ < ∞. For every w ∈ Φ0
γ there exists a δ = δ(w) > 0 such that

w ∈ Φ0
γ−δ .

Proof. Indeed, from part I of Theorem 2.4 it follows that one may take any δ in the interval
0 < δ < γ − M(w). �
Lemma 2.6. Let a function ρ(t) ∈ C+([0, �]) have the property: there exist a, b ∈ R

1 such that
taρ(t) is almost increasing and tbρ(t) is almost decreasing. Then c1ρ(τ) � ρ(t) � c2ρ(τ) for
all t, τ ∈ [0, �] such that 1

2 � t
τ

� 2, where c1 and c2 do not depend on t, τ .

Proof. The proof is a matter of direct verification. �
The following lemma was proved in [9] (see Lemma 4.1 in [9]).

Lemma 2.7. Let Ω be an open bounded set, x0 ∈ Ω , let w ∈ Φ
β
γ , −∞ < β < γ < ∞, and let

p(x) be a bounded function on Ω satisfying the condition |p(x) − p(x0)| � C

ln N
|x−x0|

, x ∈ Ω ,

N = 2 = diamΩ. Then

c1
[
w

(|x − x0|
)]p(x0) �

[
w

(|x − x0|
)]p(x) � c2

[
w

(|x − x0|
)]p(x0), (2.17)

where c1 > 0 and c2 > 0 do not depend on x.
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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20. Classes Ψ
β
γ = Ψ

β
γ ([�,∞)). Let C+([�,∞)), 0 < � < ∞, be the class of functions w(t)

on [�,∞), continuous and positive at every point t ∈ [�,∞) and having a finite or infinite limit
limt→∞ w(t) =: w(∞). We also denote

W̃∞ = {
ϕ ∈ C+

([0, �]): ∃a ∈ R
1: xaϕ(x) is almost decreasing

}
. (2.18)

Definition 2.8. Let −∞ < γ < β < ∞. We define the class Ẑβ = Ẑβ([0, �]) as the set of func-
tions in C+([�,∞)) satisfying the condition

∞∫
r

(
r

t

)β
w(t) dt

t
� cw(r), r → ∞, (2.19)

and the class Ẑγ = Ẑγ ([�,∞)), 0 < � < ∞, as the set of functions w ∈ C+([�,∞)) satisfying
the condition

r∫
�

(
r

t

)γ
w(t) dt

t
� cw(r), r → ∞, (2.20)

where c = c(w) > 0 does not depend on r ∈ (0, �]. We define the class Ψ
β
γ , −∞ < β < γ < ∞,

as

Ψ β
γ = W̃∞ ∩ Ẑβ ∩ Ẑγ . (2.21)

The indices m(w) and M(w) responsible for the behavior of functions w at infinity are intro-
duced in the way similar to Definition 2.3:

m(w) = sup
x>1

ln[ limh→∞
w(xh)
w(h)

]
lnx

, M(w) = inf
x>1

ln[limh→∞ w(xh)
w(h)

]
lnx

.

One can easily reformulate properties of functions of the class Φ
β
γ near the origin, given in

Theorem 2.4 and Lemma 2.7 for the case of the corresponding behavior at infinity of functions
of the class Ψ

β
γ . This reformulation is an easy task since for w ∈ C+([�,∞)) one has w∗(t) :=

w( 1
t
) ∈ C+([0, 1

�
]) and the direct calculation shows that

m(w) = −M(w∗), M(w) = −m(w∗). (2.22)

Observe in particular that

w ∈ Ψ β
γ

([1,∞)
) ⇐⇒ w∗ ∈ Φ

−β
−γ

([0,1]) (2.23)

and the analogue of property (2.16) for functions in Ψ
β
γ ([1,∞)) takes the form

c1t
m(w)−ε � w(t) � c2t

M(w)+ε, t � �, w ∈ Ψ β
γ

([�,∞)
)
. (2.24)

2.3. On the maximal operator

The following statement was proved in [9].
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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Theorem 2.9. Let Ω be a bounded open set in R
n, � = diamΩ and let p ∈ P(Ω). The operator

M is bounded in the space Lp(x)(Ω,w) with the weight w(|x − x0|), x0 ∈ Ω , if

w(r) ∈ Φβ
γ

([0, �]) with β = −n and γ = n
[
p(x0) − 1

]
or equivalently

w ∈ W̃0 and −n < m(w) � M(w) < n
[
p(x0) − 1

]
. (2.25)

3. The main statements

In the case of bounded domain Ω we admit that the order α of the operator Iα may be also
variable, so we deal with the operator

Iα(·)f (x) =
∫
Ω

f (y)dy

|x − y|n−α(x)
, x ∈ Ω. (3.1)

We assume that the exponent α(x) in (3.1) satisfies the assumptions

inf
x∈Ω

α(x) > 0 and sup
x∈Ω

α(x)p(x) < n (3.2)

and the logarithmic condition

∣∣α(x) − α(y)
∣∣ � A1

ln 1
|x−y|

, x, y ∈ Ω, |x − y| � 1

2
. (3.3)

Everywhere in the sequel the exponent q(x) is defined by 1
q(x)

≡ 1
p(x)

− α(x)
n

.

In [23] the following statement for power weights was proved.

Theorem 3.1. Let Ω be an open bounded set in R
n and x0 ∈ Ω , let p ∈ P(Ω) and α satisfy

conditions (3.2)–(3.3). Then∥∥∥∥|x − x0|γ
∫
Ω

f (y)dy

|y − x0|γ |x − y|n−α(x)

∥∥∥∥
Lq(·)(Ω)

� C‖f ‖Lp(·)(Ω), (3.4)

if α(x0) − n
p(x0)

< γ < n
p′(x0)

.

We prove the following generalization of Theorem 3.1.

Theorem A. Let Ω be a bounded open set in R
n and x0 ∈ Ω , let p ∈ P(Ω) and α satisfy

conditions (3.2)–(3.3). Let also

w(r) ∈ Φβ
γ

([0, �]) with β = α(x0)p(x0) − n, γ = n
[
p(x0) − 1

]
, (3.5)

or equivalently

w ∈ W̃0 and α(x0)p(x0) − n < m(w) � M(w) < n
[
p(x0) − 1

]
. (3.6)

Then ∥∥Iα(·)f
∥∥

Lq(·)(Ω,w
q
p (|x−x0|))

� C‖f ‖Lp(·)(Ω,w(|x−x0|)). (3.7)
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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The proof of Theorem A will be based on a development—to the case of Zygmund–Bari–
Stechkin class—of the technique of weighted estimation of Lp(·)-norms of power functions of
distance truncated to exterior of a ball, used in [21] and [23], on properties of such weights
developed in [7,18,19] and on Theorem 2.9.

The above mentioned development of the technique from [21,23] is given in the next section.
Theorem A itself is proved in Section 5.

For the case of the whole space R
n we consider α(x) = α = const as in (1.2) and deal with

the weight is “fixed” to a finite point x0 = 0 and to infinity:

w(x) = w0
(|x|)w∞

(|x|), (3.8)

where w0(r) belongs to some Φ
β
γ -class on [0,1] and w∞(r) belongs to some Ψ

β
γ -class on [1,∞]

and both the weights are continued by constant to [0,∞):

w0(r) ≡ w0(1), 1 � r < ∞, and w∞(r) ≡ w∞(1), 0 < r � 1.

As in [25], we also need the following form of the log-condition at infinity:∣∣p∗(x) − p∗(y)
∣∣ � A∞

ln 1
|x−y|

, |x − y| � 1

2
, x, y ∈ R

n, (3.9)

where

p∗(x) = p

(
x

|x|2
)

.

Theorem B. Let 0 < α < n and let p ∈ P(Rn) satisfies assumption (3.9) and condition
supx∈Rn p(x) < n

α
. The operator Iα is bounded from Lp(·)(Rn,w) to Lq(·)(Rn,w

q
p ), where w(x)

is the weight of form (3.8) and

w
q
p (x) = [

w0
(|x|)] q(0)

p(0)
[
w∞

(|x|)] q(∞)
p(∞) , (3.10)

if

w0(r) ∈ Φβ0
γ0

([0,1]), w∞(r) ∈ Ψ β∞
γ∞

([1,∞)
)
, (3.11)

where β0 = αp(0)−n, γ0 = n[p(0)−1], β∞ = n[p(∞)−1], γ∞ = αp(∞)−n, or equivalently

w0 ∈ W̃
([0,1]), αp(0) − n < m(w0) � M(w0) < n

[
p(0) − 1

]
, (3.12)

and

w∞ ∈ W̃
([1,∞]), αp(∞) − n < m(w∞) � M(w∞) < n

[
p(∞) − 1

]
. (3.13)

For the spherical potential operator (1.4) a similar result runs as follows

Theorem C. Let p ∈ P(Sn) and supσ∈Sn p(σ ) < n
α
. Let a ∈ S

n and w = w(|σ − a|). The spheri-

cal potential operator Kα is bounded from the space Lp(·)(Sn,w) into the space Lq(·)(Sn,w
q(a)
p(a) ),

where 1
q(σ )

= 1
p(σ)

− α
n
, if

w ∈ Φβ
γ

([0,2]), (3.14)

with β = αp(a) − n and γ = n[p(a) − 1], or equivalently

w ∈ W̃ and αp(a) − n < m(w) � M(w) < n
[
p(a) − 1

]
. (3.15)
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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4. Estimation of ‖|x − y|−β(x)χr(x − y)‖Lp(·)(Ω,ρ)

In all the proofs in the sequel, when we pass to a neighborhood {x ∈ Ω: |x − x0| < δ} of the
point x0, in the case x0 ∈ ∂Ω we consider, whenever necessary, the function f (x) as continued
to the whole neighborhood {x ∈ R

n: |x − x0| < δ} as zero and the exponent p(x) continued with
conservation of the log-property, which is always possible.

4.1. A technical lemma

Let

A(x, r) :=
∫

y∈Ω
|y−x|>r

|y − x|−n−a(x)ρ
(|y − x0|

)
dy, x0 ∈ Ω. (4.1)

Lemma 4.1. Let d =: infx∈Ω a(x) > 0 and

ρ(t) ∈ Φ−n
d

([0, �]), � = diamΩ. (4.2)

Then the following estimate holds

A(x, r) � Cr−a(x)ρ(rx), rx = max
(
r, |x − x0|

)
, (4.3)

where C > 0 does not depend on x ∈ Ω and r ∈ (0, �].

Proof. We take x0 = 0 for simplicity and consider separately the cases |x| � r
2 , r

2 � |x| � 2r ,
|x| � 2r.

The case |x| � r
2 . We have |y|

|y−x| � |y−x|+|x|
|y−x| � 1 + x

r
� 2 and similarly |y|

|y−x| � 1 − |x|
r

� 1
2 .

Hence 1
2 � |y|

|y−x| � 2. Therefore, by Lemma 2.6 we have ρ(|y|) � Cρ(|x − y|). Consequently,

A(x, r) � C

∫
y∈Ω

|y−x|>r

|x − y|−n−a(x)ρ
(|x − y|)dy � C

�∫
r

t−1−a(x)ρ(t) dt.

The inequality
∫ �

r
t−1−a(x)ρ(t) dt � Cr−a(x)ρ(r) with C > 0 not depending on x and r , is valid.

Indeed, this is nothing else but the statement that ρ(t) ∈ Za(x) uniformly in x ∈ Ω , which holds
because condition (4.2) implies the validity of the uniform inclusion ρ(t) ∈ Za(x) by property
(2.12). Therefore,

A(x, r) � Cr−a(x)ρ(r). (4.4)

The case r
2 � |x| � 2r . We split the integration in A(x, r) as follows

A(x, r) =
∫

y∈Ω
r<|y−x|<2|x|

|y − x|−n−a(x)ρ
(|y|)dy +

∫
y∈Ω

|y−x|>2|x|

|x − y|−n−a(x)ρ
(|y|)dy

=: I1 + I2.
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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For I1 we have

I1 � r−n−a(x)

∫
y∈Ω

r<|y−x|<2|x|

ρ
(|y|)dy.

Observe that

|y − x| > r �⇒ |y| � |y − x| + |x| � |y − x| + 2r � 3|y − x|.
Consequently,

I1 � r−n−a(x)

∫
|y−x|<2|x|
|y|�3|y−x|

ρ
(|y|)dy � r−n−a(x)

∫
|y|<6|x|

ρ
(|y|)dy

= Cr−n−a(x)

6|x|∫
0

tn−1ρ(t) dt.

Since tnρ(t) ∈ Φ0
n+δ , we obtain I1 � Cr−a(x)ρ(6|x|) � Cr−a(x)ρ(|x|). The estimate for I2 =

A(x,2|x|) is contained in (4.4) with r = 2|x|.

The case |x| � 2r . We have

A(x, r) =
∫

y∈Ω

r<|y−x|< 1
2 |x|

|x − y|h(x)ρ
(|y|)dy +

∫
y∈Ω

|y−x|> 1
2 |x|

|x − y|−n−a(x)ρ
(|y|)dy

=: I3 + I4.

For the term I3 we have 1
2 |x| � |y| � 3

2 |x|, so that ρ(|y|) � Cρ(|x|) by Lemma 2.6. Therefore,

I3 � Cρ
(|x|)

|x|
2∫

r

t−1−a(x) dt � Cr−a(x)ρ
(|x|), |x| � 2r. (4.5)

The term I4, coincides with A(x,
|x|
2 ) and its estimate is contained in the preceding case r

2 �
|x| � 2r .

Gathering all the estimates, we arrive at (4.3). �
4.2. The principal estimate

Let

χr(x) =
{

1, if |x| > r,

0, if |x| < r

and ρ = ρ(|y − x0|). For the proof of Theorem A we need to estimate the norm

nβ,p,ρ(x, r) = ∥∥|x − y|−β(x)χr (x − y)
∥∥

Lp(·)(Ω,ρ)
(4.6)

as r → 0, the norm being taken with respect to y. (We will need it with β(x) = n − α(x) and
p(·) replaced by p′(·).)
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Theorem 4.2. Let Ω be a bounded open set in R
n, x0 ∈ Ω , and let p ∈ P(Ω) and β ∈ L∞(Ω).

If

ess inf
x∈Ω

β(x)p(x) > n, (4.7)

tnρ(t) ∈ Φ0
γ , with γ = ess inf

x∈Ω
β(x)p(x), (4.8)

then

nβ,p,ρ(x, r) � Cr
n

p(x)
−β(x)[

ρ(rx)
] 1

p(x) , rx = max
(
r, |x − x0|

)
(4.9)

for all x ∈ Ω , 0 < r < � = diamΩ , where C > 0 does not depend on x and r .

Proof. We follow ideas of the proof of similar estimation for the power weight in [23, Theo-
rem 4.2]; complications arising from the general weight are overcome by means of the properties
of Zygmund–Bari–Stechkin weights presented in Section 2.2. For simplicity we take x0 = 0. By
definition (2.1) of the norm we have∫

y∈Ω
|y−x|>r

( |y − x|−β(x)

nβ,p,ρ

)p(y)

ρ
(|y|)dy = 1. (4.10)

1st step. Values nβ,p,ρ(x, r) � 1 are only of interest. This follows from the fact that the right-
hand side of (4.9) is bounded from below:

inf
x∈Ω

0<r<diamΩ

rn−β(x)p(x)ρ(rx) := c1 > 0, rx = max
(
r, |x|). (4.11)

To verify (4.11), note that from the condition β(x)p(x) > n there follows that

rn−β(x)p(x)ρ(rx) � inf
{
rn−β(x)p(x)ρ(r), |x|n−β(x)p(x)ρ

(|x|)} � min
{
C, inf

0<r<1
rn−γ ρ(r)

}
and to arrive at (4.11), it remains to observe that rn−γ ρ(r) is bounded from below: from the
condition rnρ(r) ∈ Φ0

γ it follows that rnρ(r)
rγ is almost decreasing (see part III of Theorem 2.4)

and consequently bounded from below.
2nd step. Small values of r are only of interest. We assume that r is small enough, 0 < r < ε0.

To show that this assumption is possible, we have to check that the right-hand side of (4.9)
is bounded from below and nβ,ν,p(x, r) is bounded from above when r � ε0. The former was
proved at the step 1 even for all r > 0. To verify the latter for r � ε0, we observe that from (4.10)

and from the fact that nβ,p,ρ � 1 it follows that 1 �
∫
y∈Ω, |y−x|>ε0

|y−x|−β(x)p(y)

nβ,p,ρ
ρ(|y|) dy whence

nβ,p,ρ(x, r) �
∫

y∈Ω
|y−x|>ε0

|y − x|−β(x)p(x)ρ
(|y|)u(x, y) dy,

where u(x, y) = |y − x|−β(x)[p(y)−p(x)]. Estimating lnu(x, y), we obtain that e−NAB �
u(x, y) � eNAB, x, y ∈ Ω , where N and A are the constants from (2.4) and B = supx∈Ω β(x).
Therefore,

nβ,p,ρ(x, r) � C

∫
y∈Ω

ρ(|y|) dy

|y − x|β(x)p(x)
� Cε−BP

0

∫
Ω

ρ
(|y|)dy = const
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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since ρ ∈ L1(Ω) which is easily derived from condition (4.8). This proves the boundedness of
nβ,p,ρ(x, r) from above.

The value of ε0 will be chosen later.
3rd step. Rough estimate. First, we derive a weaker estimate

nβ,p,ρ(x, r) � Cr−β(x) (4.12)

which will be used later to obtain the final estimate (4.9). To this end, we note that always
λp(y) � λinfp(y) + λsupp(y), so that from (4.10) we have

1 �
∫

y∈Ω
|y−x|>r

[( |y − x|−β(x)

nβ,p,ρ

)p0

+
( |y − x|−β(x)

nβ,p,ρ

)P ]
ρ
(|y|)dy.

Since |y − x| > r , we obtain

1 �
[(

r−β(x)

nβ,p,ρ

)p0

+
(

r−β(x)

nβ,p,ρ

)P ] ∫
y∈Ω

ρ
(|y|)dy.

Hence(
r−β(x)

nβ,p,ρ

)p0

+
(

r−β(x)

nβ,p,ρ

)P

� c

which yields r−β(x)

nβ,p,ρ
� C and we arrive at the estimate in (4.12).

4th step. We split integration in (4.10) as follows

1 =
3∑

i=1

∫
Ωi(x,ε0)

( |y − x|−β(x)

nβ,p,ρ

)p(y)

ρ
(|y|)dy := I1 + I2 + I3, (4.13)

where

Ω1(x, ε0) =
{
y ∈ Ω: r < |y − x| < ε0,

|y − x|−β(x)

nβ,p,ρ

> 1

}
,

Ω2(x, ε0) =
{
y ∈ Ω: r < |y − x| < ε0,

|y − x|−β(x)

nβ,p,ρ

< 1

}
, and

Ω3(x, ε0) = {
y ∈ Ω: |y − x| > ε0

}
.

5th step. Estimation of I1. We have

I1 =
∫

Ω1(x,ε0)

( |y − x|−β(x)

nβ,p,ρ

)p(x)

ρ
(|y|)ur(x, y) dy, (4.14)

where

ur(x, y) =
( |y − x|−β(x)

nβ,p,ρ

)p(y)−p(x)

.

By direct estimations it may be shown that ur(x, y) is bounded from below and from above with
bounds not depending on x, y and r (see details in [23, p. 432]). Therefore,
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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I1 � C

n
p(x)
β,p,ρ

∫
y∈Ω

|y−x|>r

|y − x|−β(x)p(x)ρ
(|y|)dy. (4.15)

We may use here estimate (4.3), which is applicable by (4.8) and (4.7), and get

I1 � C

n
p(x)
β,p,ρ

rn−β(x)p(x)ρ(rx). (4.16)

6th step. Estimation of I2 and the choice of ε0. In the integral I2 we have

I2 � C

∫
Ω2(x,ε0)

( |y − x|−β(x)

nβ,ν,p

)pε0 (x)

ρ
(|y|)dy (4.17)

where pε0(x) = min|y−x|<ε0 p(y). Then

I2 � C

n
pε0 (x)

β,p,ρ

∫
y∈Ω

|y−x|>r

|y − x|−β(x)pε0 (x)ρ
(|y|)dy. (4.18)

To be able to apply estimate (4.3), we have to guarantee the validity of the corresponding
condition (4.2). To this end, we will have to choose ε0 sufficiently small. By conditions (4.8)
and (4.7) and Corollary 2.5, there exists a small δ ∈ (0, γ − n) such that tnρ(t) ∈ Φ0

γ−δ , γ =
infx∈Ω β(x)p(x). Since p(x) is continuous and β(x) is bounded, we may choose ε0 small enough
so that β(x)pε0(x) > γ − δ > n. Then condition (4.2) for a(x) = aε0(x) = β(x)pε0(x) − n are
satisfied and estimate (4.3) is applicable. It gives

I2 � C

n
pε0 (x)

β,p,ρ

rn−β(x)pε0 (x)ρ(rx), (4.19)

where C does not depend on x and r .
7th step. Estimation of I3. We have

I3 � C

n
p0
β,p,ρ

I4, I4 = I4(x) =
∫

y∈Ω
|y−x|>ε0

|y − x|−β(x)p(y)ρ
(|y|)dy.

The integral I4(x) is obviously a bounded function of x. Therefore, I3 � C

n
p0
β,p,ρ

.

8th step. Gathering the estimates for I1, I2 and I3, we have from (4.13)

1 � C0

(
r−β(x)p(x)+n

n
p(x)
β,p,ρ

ρ(rx) + r−β(x)pε0 (x)+n

n
pε0 (x)

β,p,ρ

ρ(rx) + 1

n
p0
β,p,ρ

)
, (4.20)

with a certain constant C0 not depending on x and r . We may assume that

nβ,p,ρ(x, r) �
(

1

2C0

) 1
p0 := C1, (4.21)

because for those x and r where nβ,p,ρ(x, r) � C1 there is nothing to prove, the right-hand side
of (4.9) being bounded from below according to (4.11). In the situation (4.21) we derive from
(4.20) the inequality
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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1 � 2C0

(
r−β(x)p(x)+n

n
p(x)
β,p,ρ

+ r−β(x)pε0 (x)+n

n
pε0 (x)

β,p,ρ

)
ρ(rx). (4.22)

Since Cr−β(x)

nβ,p,ρ
� 1 by (4.12) and pε0(x) � p(x), we have

r−β(x)pε0 (x)+n

n
pε0 (x)

β,p,ρ

� C
r−β(x)p(x)+n

n
p(x)
β,p,ρ

.

Therefore, from (4.22) we derive the estimate

r−β(x)p(x)+n

n
p(x)
β,p,ρ

ρ(rx) � C

which yields (4.9). �
5. Proof of Theorem A

We first observe that the equivalence of conditions (3.5) and (3.6) follows from Theorem 2.4.
We take x0 = 0 for simplicity.

By the direct application of Hedberg’s approach we can cover only the case when the indices
m(w) and M(w) of the weight w belong to an interval narrower than the interval given in (3.6).
Namely, this approach will work within the interval

−a < m(w) � M(w) < n
[
p(0) − 1

]
, (5.1)

where

a = [
p(0) − 1

]
inf
x∈Ω

n − α(x)p(x)

p(x) − 1
, −a � α(0)p(0) − n. (5.2)

Then, by duality arguments, we will cover the interval

α(0)p(0) − n < m(w) � M(w) < b, (5.3)

where

b = np(0)

q(0)
inf
x∈Ω

q(x)

p′(x)
, b � n

[
p(0) − 1

]
. (5.4)

The remaining case where α(0)p(0) − n < m(w) � a and b � M(w) < n[p(0) − 1] will be
separately treated, based on a possibility to reduce the problem to consideration of the Riesz
potential operator Iα on a small neighborhood of the point x0 = 0.

10. The case −a < m(w) � M(w) < n[p(0) − 1]. We have

Iα(·)f (x) =
∫

x∈Ω|x−y|<r

f (y) dy

|x − y|n−α(x)
+

∫
x∈Ω|x−y|<r

f (y) dy

|x − y|n−α(x)
:= Ar (x) + Br (x). (5.5)

We make use of the known inequality∣∣Ar (x)
∣∣ � crα(x)Mf (x), (5.6)
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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where C > 0 does not depend on r and x, which is known in the case of α(x) = const and
remains valid in case it is variable thanks to the first condition in (3.2). Let f (x) � 0 and
‖f ‖Lp(·)(Ω,w) � 1. By the Hölder inequality (2.6), we obtain∣∣Br (x)

∣∣ � knβ,p′,ρ(x, r)‖f ‖Lp(·)(Ω,w) � nβ,p′,ρ(x, r), (5.7)

where β(x) = α(x) − n and ρ(x) = [w(|x|)] 1
1−p(x) . By Lemma 2.7 we may take ρ(x) ≡

ρ0(|x|) := [w(|x|)] 1
1−p(0) . To make use of estimate (4.9) for nβ,p′,ρ0 , we have to check the validity

of condition (4.8) which is equivalent to m(tnρ0(t)) > 0 and M(tnρ0(t)) < min[n − α(x)]p′(x)

by Theorem 2.4. The latter holds since is the same as −a < m(w) � M(w) < n[p(0) − 1],
see (2.14).

We make use of estimate (4.9) and obtain∣∣Br (x)
∣∣ � Cr

− n
q(x) w

− 1
p(x) (rx) � Cr

− n
q(x) w

− 1
p(x)

(|x|), (5.8)

where we took into account that rx � |x| and the function w
− 1

p(x) (r) is almost decreasing in r

(which follows from the condition m(w) > 0 according to part III of Theorem 2.4); and[
w

(|x|)] 1
1−p(0) ∼ [

w
(|x|)] 1

1−p(x)

by Lemma 2.7.
Therefore, taking into account (5.6) and (5.8) in (5.5), we arrive at

Iα(·)f (x) � C
[
rα(x)Mf (x) + [

w
(|x|)]− 1

p(x) r
− n

q(x)
]
. (5.9)

It remains to choose the value of r which minimizes the right-hand side (up to a factor which is
bounded from below and above):

r = [
w

(|x|)]− 1
n
[
Mf (x)

]− p(x)
n .

Substituting this into (5.9), we get

Iα(·)f (x) � C
[
w

(|x|)]− α(x)
n

[
Mf (x)

] p(x)
q(x) .

Hence∫
Ω

[
w

(|x|)] q(x)
p(x)

∣∣Iα(·)f (x)
∣∣q(x)

dx � C

∫
Ω

w
(|x|)∣∣Mf (x)

∣∣p(x)
dx.

Finally we make use of Theorem 2.9 and obtain that∫
Ω

[
w

(|x|)] q(x)
p(x)

∣∣Iα(·)f (x)
∣∣q(x)

dx � C

for all f ∈ Lp(·)(Ω,w) with ‖f ‖Lp(·)(Ω,w) � 1 which is equivalent to (3.7).

20. The case α(0)p(0) − n < m(w) � M(w) < b. This case is reduced to the previous case by
the duality arguments. Observe that the operator conjugate to Iα(·) has the form(

Iα(·))∗
g(x) =

∫
Ω

g(y)dy

|x − y|n−α(y)
∼

∫
Ω

g(y)dy

|x − y|n−α(x)
= Iα(·)g(x) (5.10)

thanks to the logarithmic condition for α(x).
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We pass to the duality statement in Theorem A considering it already proved in the case
−a < m(w) � M(w) < n[p(0) − 1]. By (5.10) we obtain from (3.7) that∥∥Iα(·)g

∥∥
(Lp(·)(Ω,w))∗ � C‖g‖

(Lq(·)(Ω,w
q
p ))∗

.

In view of (2.5) and equivalence (2.17), this takes the form∥∥Iα(·)g
∥∥

Lp′(·)(Ω,w
1

1−p(0) )
� C‖g‖

Lq′(·)(Ω,w
− q′(0)

p(0) )

. (5.11)

Now we re-denote[
w

(|x|)]− q′(0)
p(0) = w1

(|x|), q ′(x) = p1(x).

For the exponent p1(x) we have

p1(x) = np(x)

n[p(x) − 1] + α(x)p(x)
and

n − α(x)p1(x) = n2[p(x) − 1]
n[p(x) − 1] + α(x)p(x)

� c > 0.

Its Sobolev exponent is

q1(x) = np1(x)

n − p1(x)α(x)
= p′(x).

Under this passage to the new exponent p1(x) and the new weight w1(|x|), the whole interval
α(0)p(0) − n < m(w) � M(w) < n[p(0) − 1] transforms into the exactly similar interval

α(0)p1(0) − n < m(w1) � M(w1) � n
[
p1(0) − 1

]
, (5.12)

which can be easily checked via relations (2.14). Besides this, the subinterval −a < m(w) �
M(w) < n[p(0)− 1] is transformed into the subinterval α(0)p1(0)−n < m(w1) � M(w1) < b1
where b1 = np1(0)

q1(0)
infx∈Ω

q1(x)

p′
1(x)

.

In the new notation, estimate (5.11) has the form∥∥Iα(·)g
∥∥

Lq1(·)(Ω,w

q
p
1 )

� C‖g‖Lp1(·)(Ω,w1)
(5.13)

which is nothing else but our Theorem A for the subinterval treated in this case 20.

30. The remaining case m(w) � −a and M(w) � b. The possibility to treat the remaining
case is based on a simple observation that the left-hand side bound −a in (5.1) coincides with
the natural left bound α(0)p(0) − n if the infimum in (5.2) is attained at the point x = 0 and
similarly the right-hand side bound b in (5.3) coincides with the natural right bound n[p(0) − 1]
if the infimum in (5.4) is attained at the same point. This leads to the idea to reduce the estimates
to those in a small neighborhood of the point x = 0.

We find it more convenient to pass to the weighted Riesz potential

Iα,wf (x) =
∫ [

w(|x|)
w(|y|)

] 1
p(0) f (y) dy

|x − y|n−α(x)
(5.14)
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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and we take f � 0. With Lemma 2.7 in mind, we have to prove in the considered case that∥∥Iα,wf
∥∥

Lq(·) � C‖f ‖Lp(·) . (5.15)

We split integration over Ω in (5.14) into two parts, one over a small neighborhood Bδ =
{y: |y| < δ} of the point x0 = 0, and another over its exterior Ω\Bδ , with the aim to make an
appropriated choice of δ later. We have

Iα,w = χBδ I
α,wχBδ + χBδ I

α,wχΩ\Bδ + χΩ\Bδ I
α,wχBδ + χΩ\Bδ I

α,wχΩ\Bδ

=: Iα,w
1 + I

α,w
2 + I

α,w
3 + I

α,w
4 . (5.16)

Since the weight w(|x|) is bounded from below and from above beyond every neighborhood of
the point x0 = 0, we have

I
α,w
4 f (x) � CIαf (x). (5.17)

For I
α,w
3 we have

I
α,w
3 f (x) = χΩ\Bδ(x0)(x)

∫
Bδ∩Ω

[
w(|x|)
w(|y|)

] 1
p(0) |f (y)|dy

|x − y|n−α(x)
.

Here |x| > δ > |y|. Observe that the function wε(t) = w(t)

tM(w)+ε is almost decreasing for every
ε > 0 according to part III of Theorem 2.4. Therefore

w(|x|)
w(|y|) = wε(|x|)

wε(|y|)
|x|M(w)+ε

|y|M(w)+ε
� C

|x|M(w)+ε

|y|M(w)+ε
.

Denoting

Iα
λ f (x) =

∫
Ω

( |x|
|y|

)λ
f (y) dy

|x − y|n−α(x)
,

we obtain

I
α,w
3 f (x) � CIα

λ1
f (x), λ1 = M(w) + ε

p(0)
. (5.18)

Similarly we conclude that

I
α,w
2 f (x) � CIα

λ2
f (x), λ2 = m(w) − ε

p(0)
. (5.19)

Thus, from (5.16) according to (5.17), (5.18) and (5.19) we have

Iα
wf (x) � χBδ I

α
wχBδf (x) + Iαf (x) + Iα

λ1
f (x) + Iα

λ1
f (x). (5.20)

The operator Iα is known to be bounded from Lp(·)(Ω) to Lq(·)(Ω), see for instance The-
orem 3.1, the case γ = 0. The operators Iα

λ1
and Iα

λ2
are p(·) → q(·)-bounded by the same

Theorem 3.1, if

λ1, λ2 ∈
(

α(0) − n

p(0)
,

n

p′(0)

)
,

that is, α(0)p(0)−n < m(w)−ε < n[p(0)−1], α(0)p(0)−n < M(w)+ε < n[p(0)−1] which
is satisfied by (3.6) with ε sufficiently small.
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It remains to prove the boundedness of the first term on the right-hand side of (5.20). This
boundedness is nothing else but the boundedness of the same operator Iα

w over a small set Ωδ =
Bδ ∩ Ω . According to the preceding parts 10 and 20, this boundedness holds if

−aδ < m(w) � M(w) < bδ, (5.21)

where

aδ = np(0)

p′(0)
inf|x|<δ

p′(x)

q(x)
, bδ = np(0)

q(0)
inf|x|<δ

q(x)

p′(x)
.

For m(w),M(w) satisfying the condition in (3.5), that is,

−a0 < m(w) � M(w) < b0, with a0 = n − α(0)p(0), b0 = n
[
p(0) − 1

]
, (5.22)

we can choose δ sufficiently small so that m(w) and M(w) prove to be in the interval (5.21).
This follows from the following easily derived estimates

0 � a0 − aδ � A sup
|x|<δ

∣∣p(x) − p(0)
∣∣ + sup

|x|<δ

∣∣α(x)p(x) − α(0)p(0)
∣∣,

0 � b0 − bδ � n sup
|x|<δ

∣∣p(x) − p(0)
∣∣ + B sup

|x|<δ

∣∣α(x)p(x) − α(0)p(0)
∣∣,

where

A = sup
x∈Ω

n − α(x)p(x)

p(x) − 1
and B = sup

x∈Ω

p(x) − 1

n − α(x)p(x)
,

and from the continuity of the functions p(x) and α(x). Condition (5.21) having been satisfied,
the theorem in the remaining case is proved.

6. Proof of Theorem B

Proof. We follow ideas of [25] where Theorem B was proved for power weights. Let

Ap
w(f ) =

∫
Rn

w(x)
∣∣f (x)

∣∣p(x)
dx.

We have to show that A
q

w1(I
αϕ) � c < ∞ for all ϕ with A

p
w(ϕ) � 1, where c > 0 does not

depend on ϕ, and we denoted

w1(x) = [
w(x)

] q(x)
p(x) ∼ [

w0
(|x|)] q(0)

p(0)
[
w∞

(|x|)] q(∞)
p(∞) ,

the latter equivalence following from Lemma 2.7.
Let B+ = {x ∈ R

n: |x| < 1} and B− = {x ∈ R
n: |x| > 1}. We have

A
q

w1

(
Iαϕ

)
� c(A++ + A+− + A−+ + A−−), (6.1)

where

A++ =
∫
B+

w1
0

(|x|)∣∣∣∣
∫

B+

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx,

A+− =
∫

w1
0

(|x|)∣∣∣∣
∫

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx,
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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and

A−+ =
∫
B−

w1∞
(|x|)∣∣∣∣

∫
B+

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx,

A−− =
∫
B−

w1∞
(|x|)∣∣∣∣

∫
B−

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx

with

w1
0

(|x|) = [
w0

(|x|)] q(0)
p(0) , w1∞

(|x|) = [
w∞

(|x|)] q(∞)
p(∞) .

The term A++. This term is covered by Theorem A, condition (3.7) of Theorem A being ful-
filled by (3.12).

The term A−−. The estimation of A−− is reduced to that of A++ by means of the simultaneous
change of variables (inversion):

x = u

|u|2 , dx = du

|u|2n
, y = v

|v|2 , dy = dv

|v|2n
. (6.2)

As a result, we obtain

A−− =
∫
B+

|x|−2n

[
w∞

(
1

|x|
)] q(∞)

p(∞)
∣∣∣∣
∫
B+

ϕ(y∗) dy

|y|2n|x∗ − y∗|n−α

∣∣∣∣q∗(x)

dx,

where x∗ = x

|x|2 and q∗(x) = q(x∗) = q( x

|x|2 ). It is easy to check that |x∗ − y∗| = |x−y|
|x|·|y| . Since

p∗(x) satisfies the log-condition (3.9), then q∗(x) does the same, so that

|x|(n−α)q∗(x) � c|x|(n−α)q∗(0) = c|x|(n−α)q(∞)

and we get

A−− � C

∫
B+

[
w2(x)

] q∗(0)
p∗(0)

∣∣∣∣
∫
B+

ψ(y)dy

|x − y|n−α

∣∣∣∣q∗(x)

dx, (6.3)

where

w2
(|x|) = |x|(n+α)p∗(0)−2nw∞

(
1

|x|
)

and ψ(y) = |y|−n−αϕ

(
y

|y|2
)

. (6.4)

It is easily checked that∫
B+

w2
(|x|)∣∣ψ(x)

∣∣p∗(x)
dx � C

∫
B−

w∞
(|x|)∣∣ϕ(x)

∣∣p(x)
dx < ∞. (6.5)

Therefore, the boundedness of the right-hand side of (6.3) is nothing else but the boundedness
of the Riesz potential operator over the ball B+ from the weighted space Lp∗(·)(B+,w2) to the

space Lq∗(·)(B+, [w2]
q(∞)
p(∞) ). According to Theorem A, this boundedness holds if

αp∗(0) − n < m(w2) � M(w2) < n
[
p∗(0) − 1

]
. (6.6)

In view of (2.22) this coincides with the given condition (3.13). Consequently, A−− � C < ∞
by Theorem A.
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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The term A−+. We split A−+ as A−+ = A1 + A2, where

A1 =
∫

1<|x|<2

w1∞
(|x|)∣∣∣∣

∫
|y|<1

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx,

A2 =
∫

|x|>2

w1∞
(|x|)∣∣∣∣

∫
|y|<1

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx.

Since the weight functions w1
0(|x|), w1∞(|x|) are bounded from below and from above in the

layer 1 � |x| � 2, we get

A1 � C

∫
1<|x|<2

w1
0

(|x|)∣∣∣∣
∫

|y|<1

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx

� C

∫
|x|<2

[
w0

(|x|)] q(0)
p(0)

∣∣∣∣
∫

|y|<2

f (y)dy

|x − y|n−α

∣∣∣∣q(x)

dx

so that A1 � C < ∞ by Theorem A. For the term A2 we have |x−y| � |x|−|y| � |x|
2 . Therefore,

A2 � C

∫
|x|>2

|x|(α−n)q(x)w1∞
(|x|)( ∫

|y|<1

∣∣ϕ(y)
∣∣dy

)q(x)

dx.

Since |q(x) − q(∞)| � C
ln |x| , |x| � 2, we have

A2 � C

∫
|x|>2

|x|(α−n)q(∞)w1∞
(|x|)( ∫

|y|<1

∣∣ϕ(y)
∣∣dy

)q(x)

dx. (6.7)

Denote g(y) = [w(y)]− 1
p(y) ; by the Hölder inequality for variable Lp(·)-spaces we get∫

|y|<1

∣∣ϕ(y)
∣∣dy � k‖g‖

Lp′(·)
∥∥w

1
p ϕ

∥∥
Lp(·) = k‖g‖

Lp′(·)‖ϕ‖Lp(·)(Rn,w). (6.8)

We have∫
|y|<1

∣∣g(y)
∣∣p′(y)

dy � C

∫
|y|<1

[
w0

(|y|)] 1
1−p(0) dy � C

∫
|y|<1

|y|
m(w0)−ε

1−p(0) dy

for arbitrarily small ε > 0 according to (2.16). The last integral is finite because m(w0)−ε
1−p(0)

> −n

under the choice of sufficiently small ε. Then from (6.7)

A2 � C

∫
|x|>2

|x|(α−n)q(∞)w1∞
(|x|)dx. (6.9)

The convergence of the last integral is verified by means of property (2.24):

|x|(α−n)q(∞)w1∞
(|x|) = |x|(α−n)q(∞)

[
w∞

(|x|)] q(∞)
p(∞) � C|x|(α−n)q(∞)+[M(w∞)+ε] q(∞)

p(∞)

= C|x|−n−δ,
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
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where

δ = q(∞)

p(∞)

{
n
[
p(∞) − 1

] − M(w∞) − ε
}

is positive for small ε > 0. Therefore, A2 � C < ∞.

The term A+−. This term is estimated similarly to A−+: we split A+− as A+− = A3 + A4,

where

A3 =
∫

|x|<1

w1
0

(|x|)∣∣∣∣
∫

1<|y|<2

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx,

A4 =
∫

|x|<1

w1
0

(|x|)∣∣∣∣
∫

|y|>2

ϕ(y)dy

|x − y|n−α

∣∣∣∣q(x)

dx.

The term A3 is covered by Theorem A similarly to the term A1 above. For the term A4, we have
|x − y| � |y| − |x| � |y|

2 . Then∣∣∣∣
∫

|y|>2

ϕ(y)dy

|x − y|n−α

∣∣∣∣ � C

∫
|y|>2

|ϕ(y)|dy

|y|n−α
= C

∫
|y|>2

|ϕ0(y)|dy

|y|n−α[w∞(|y|)] 1
p(y)

,

where

ϕ0(y) = [
w∞

(|y|)] 1
p(∞) ϕ(y) ∈ Lp(·)(

R
n\B(0,2)

)
,

since [ρ(y)] 1
p(y) ϕ(y) ∈ Lp(·)(Rn) and [ρ(y)] 1

p(y) ∼ |y| γ∞
p(∞) for |y| � 2 under the log-condition at

infinity. Then∣∣∣∣
∫

|y|>2

ϕ(y)dy

|x − y|n−α

∣∣∣∣ � C1‖ϕ0‖Lp(·)(Rn\B(0,2))

∥∥|y|α−n
[
w∞

(|y|)]− 1
p(y)

∥∥
Lp′(·)(Rn\B(0,2))

.

Hence∣∣∣∣
∫

|y|>2

ϕ(y)dy

|x − y|n−α

∣∣∣∣ � C‖ϕ‖Lp(·)(Rn,w)Np � CNp,

where the norm

Np = ∥∥|y|α−n
[
w∞

(|y|)]− 1
p(y)

∥∥
Lp′(·)(Rn\B(0,2))

is finite under the condition αp(∞) − n < m(w∞). Therefore, A4 � C < ∞ which completes
the proof. �
7. Proof of Theorem C

The statement of Theorem C is derived from Theorem B by means of the stereographic pro-
jection similarly to the case of power weights [25], so we omit details pointing out only the
principal points, referring to [25] for more technical details.

Since Theorem B was proved for the product case of two weights, one fixed to a finite point,
another fixed to infinity, it will be technically more convenient for us to obtain Theorem C for
Please cite this article in press as: N.G. Samko et al., Weighted Sobolev theorem in Lebesgue spaces
with variable exponent, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2007.01.091
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the weight of the form w = w1(|σ − a|)w2(|σ − b|), where a and b, a �= b, are two arbitrary
points of the sphere (one may always take w2 ≡ 1). Without loss of generality we may take
a = en+1 = (0,0, . . . ,0,1) and b = −en+1.

We recall that the stereographic projection (see, for instance, [14, p. 36]) of the sphere S
n

onto the space R
n = {x ∈ R

n+1: xn+1 = 0} is the mapping generated by the following change of
variables in R

n+1: ξ = s(x) = {s1(x), s2(x), . . . , sn+1(x)} where

sk(x) = 2xk

1 + |x|2 , k = 1,2, . . . , n, and sn+1(x) = |x|2 − 1

|x|2 + 1
.

Via the known formulas

|x| = |ξ + en+1|
|ξ − en+1| ,

√
1 + |x|2 = 2

|ξ − en+1| , |x − y| = 2|σ − ξ |
|σ − en+1| · |ξ − en+1| ,

dy = 2n dσ

|σ − en+1|2n
,

where ξ = s(x), σ = s(y), x, y ∈ R
n+1, we obtain the relation∫

Rn

ϕ(y) dy

|x − y|n−α
= 2α

∫
Sn

ψ(σ )dσ

|ξ − σ |n−α
, (7.1)

where ψ(σ) = ϕ[s−1(σ )]
|σ−en+1|n+α . The following modular equivalence holds∫

Sn

w1
(∣∣σ − en+1

∣∣) · w2
(|σ + en+1|

) · |ψ(σ)|p(σ) dσ ∼
∫
Rn

w0
(|x|)w∞

(|x|)∣∣ϕ(x)
∣∣p̃(x)

dx

(7.2)

where p̃(x) = p[s(x)], w0(r) = w2(r), if 0 < r � 1, w0(r) = w2(1), if r � 1, and w∞(r) =
w1(

1
r
)r(n+α)p(∞)−2n, if r � 1, w∞(r) = w1(1), if 0 < r � 1.

Relation (7.2) is verified directly via the inverse formulas

|ξ − en+1| = 2√
1 + |x|2 , |ξ + en+1| = 2|x|√

1 + |x|2 ,

|ξ − σ | = 2|x − y|√
1 + |x|2√1 + |y|2 , dσ = 2n dy

(1 + |y|2)n
with the property wk(cr) ∼ wk(r), k = 1,2, of our weights taken into account.

In view of relation (7.1) and equivalence (7.2), the statement of Theorem C follows from
Theorem B. Indeed, conditions (3.15) of Theorem C for the exponent p(σ) and the point
a = en+1 and similar conditions for the point b = −en+1 after recalculation coincide with
the corresponding conditions (3.12) and (3.13) of Theorem B for the exponent p̃(x) for the
points 0 and ∞, if we take into account that m(w0) = m(w2), M(w0) = M(w2) and m(w∞) =
(n + α)p(∞) − 2n − M(w1), M(w∞) = (n + α)p(∞) − 2n − m(w1).
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