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1. Introduction

We study the boundedness of the maximal operator

Mf(x) = sup
r>0

1

μ(B(x, r))

∫
B(x,r)

|f(y)| dμ(y)

in weighted spaces Lp(·)(X, �) with variable exponent p(x) on a metric measure space X.
The classical operators of harmonic analysis in variable Lebesgue spaces in the Eu-

clidean setting were extensively studied dulring last decade, see surveying papers [2],
[10], [22] and references therein. A study of these operators in the setting of measure
metric spaces began several years ago. In [11], [12], [16], [17] there were proved results
on the boundedness, including certain weighted cases, of maximal, singular and potential
operators on an arbitrary Carleson curve, which is a typical example of Ahlfors-regular
measure metric space with constant dimension. The non-weighted boundedness of the
maximal operator on a bounded measure metric space was proved in [6] and [9], see also
[3] for an extension to the case where p satisfies a condition weaker than the standard
log-condition. We refer also to [5], where Sobolev-type theorem for potential operators
on bounded metric spaces in R

n with variable dimension was obtained and to [19], where
continuity of Sobolev functions on metric spaces in the limiting case was studied.

In this paper we obtain weighted estimates for the maximal operator on a measure
metric space (X, d, μ) with doubling condition. In the case where X is bounded, the
weight function belongs to a certain version of a general Muckenhoupt-type condition,
which is narrower than the expected Muckenhoupt condition for variable exponent, but
coincides with the usual Muckenhoupt class Ap in the case of constant p.

We also specially consider the case of radial-type weights w(d(x0, x)), namely in the
case X is bounded, we admit the weights of form �(x) =

∏n
k=1 wk(d(x, xk)), xk ∈ X,

where wk(r) belong to a certain class of almost monotonic functions, and show that in
this case the condition of weighted boundedness of the maximal operator may be written
in natural terms of relations between certain index numbers of the weight w(r) and of
the function μB(x, r):

−m(μB)

p(xk)
< m(w) ≤ M(w) <

m(μB)

p′(xk)
,

where m(μB) is the infinum with respect to x ∈ X of the lower index of μB(x, ·). In the
case of unbounded X we admit also weights of the type w0[1+d(x0, x)]

∏m
k=1 wk[d(xk, x)].
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Some of the results are new even in the case of constant p.

2. Preliminaries

1.1. Definitions related to homogeneous spaces. Let (X, d, μ) be a homo-
geneous space, that is, measure space with quasimetric d and a non-negative measure μ
satisfying the doubling condition μ(B(x, 2r)) ≤ CμB(x, r), where B(x, r) = BX(x, r) =
{y ∈ X : d(x, y) < r}; 1Ω will denote the characteristic function of a set Ω ⊆ X and
� = diam X.

Following ideas of papers [20]–[21], we make use of the so called index numbers of
monotonic function to measure the local (variable) dimensions of the space (X, d, μ) at
the point x ∈ X:
1) the local lower and upper dimensions

m(μBx) = sup
t>1

ln

(
lim inf

r→0

μB(x,rt)
μB(x,r)

)
ln t

, M(μBx) = sup
t>1

ln

(
lim sup

r→0

μB(x,rt)
μB(x,r)

)
ln t

,

2) similar dimensions ”influenced” by infinity :

m∞(μBx) = sup
t>1

ln
(
lim inf
r→∞

μB(x,rt)
μB(x,r)

)
ln t

, M∞(μBx) = sup
t>1

ln

(
lim sup
r→∞

μB(x,rt)
μB(x,r)

)
ln t

the latter appearing only in the case of unbounded X (In a different form local dimensions
were considered in [5], [6], [7]).

In the sequel we will use the bounds

m(μB) = inf
x∈X

m(μBx) and m∞(μB) = inf
x∈X

m∞(μBx), M∞(μB) = sup
x∈X

M∞(μBx).

We suppose that

0 < m(μB) < ∞, 0 < m∞(μB) < ∞ and 0 < M∞(μB) < ∞. (1)

Observe that for an arbitrarily small ε > 0 we have c1rM(μBx)+ε ≤ μB(x, r) ≤
c1rm(μBx)−ε, 0 < r ≤ R < ∞ and c3rm∞(μBx)−ε ≤ μB(x, r) ≤ c4rM∞(μBx)+ε, r0 ≤
r < ∞, where ci, i = 1, 2, 3, 4, depend on ε > 0, but do not depend on r; under conditions
(1) they also do not depend on x.

1.2. Spaces Lp(·)(X, �). By Lp(·)(X, �), where �(x) ≥ 0, we denote the weighted
Banach space of measurable functions f : X → C such that

‖f‖Lp(·)(X,�) := ‖�f‖p(·) = inf

{
λ > 0 :

∫
X

∣∣∣∣ �(x)f(x)

λ

∣∣∣∣p(x)

dμ(x) ≤ 1

}
< ∞.

We write Lp(·)(X, 1) = Lp(·)(X) and ‖f‖Lp(·)(X) = ‖f‖p(·) in the case �(t) ≡ 1. The

variable exponent p(x) : X → (1,∞) is supposed to satisfy the conditions

p− = p−(X) = inf
x∈X

p(x) > 1, p+ = p+(X) = sup
x∈X

p(x) < ∞ (2)

and

|p(x) − p(y)| ≤ A

ln 1
d(x,y)

, d(x, y) ≤ 1

2
, x, y ∈ X. (3)

The generalized Lebesgue spaces Lp(·)(X) with variable exponent on metric measure
spaces have been considered in [3], [5], [6], [9], see also references there.
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1.3. Index numbers of almost monotonic functions. Let 0 < � < ∞ and

W ([0, �]) = {w ∈ C([0, �]) : w(t) > 0 for t > 0, w(t) is almost increasing }
and

W̃ ([0, �]) = {ϕ : ∃a = a(ϕ) ∈ R
1 such that xaϕ(x) ∈ W ([0, �])}.

Similarly we introduce W ([�,∞)) = {w ∈ C([�,∞) : w(t) > 0 for t ≥ �, w(t) is
almost increasing} and

W̃ ([�,∞)) = {ϕ : ∃a = a(ϕ) ∈ R
1 such that xaϕ(x) ∈ W ([�,∞)}.

For functions w ∈ W̃ ([0, �]) the numbers

m(w)=sup
t>1

ln

(
lim inf

h→0

w(ht)
w(h)

)
ln t

= sup
0<t<1

ln

(
lim sup

h→0

w(ht)
w(h)

)
ln t

= lim
t→0

ln

(
lim sup

h→0

w(ht)
w(h)

)
ln t

and

M(w) = sup
t>1

ln

(
lim sup

h→0

w(ht)
w(h)

)
ln t

= lim
t→∞

ln

(
lim sup

h→0

w(ht)
w(h)

)
ln t

are well defined (see [20]–[21]) and 0 ≤ m(w) ≤ M(w) ≤ ∞ in the case w ∈ W .
The indices m∞(w) and M∞(w) responsible for the behavior of functions w at infinity

are introduced in a similar way:

m∞(w) = sup
x>1

ln
[
limh→∞

w(xh)
w(h)

]
ln x

, M∞(w) = inf
x>1

ln
[
limh→∞

w(xh)
w(h)

]
ln x

.

3. The main statements

Let Ap(·)(X) be the class of weights � for which the maximal operator is bounded

in the space Lp(·)(X, �). For Theorem A we introduce the Ãp(·)(X) of weights, which
satisfy the condition

sup
x∈X,r>0

(
1

μB(x, r)

∫
B(x,r)

|�(y)|p(y)dμ(y)

)
×

×
(

1

μB(x, r)

∫
B(x,r)

dμ(y)

|�(y)|
p(y)

p−−1

)p−−1

< ∞. (4)

This class Ãp(·)(X) used in Theorem A is narrower than the naturally expected Muck-
enhoupt class Ap(·). This may be seen on power weights, see conditions of Theorem B.
However, it coincides with the Muckenhoupt class Ap in case p is constant.

In Theorem A, under log-condition on p and doubling condition on the measure we
show that

Ãp(·)(X) ⊂ Ap(·)(X).

In Theorem B we deal with a special class of radial type weights in the Zygmund-Bari-
Stechkin class and arrive at the necessity to relate the properties of the weight to those
of the measure μB(x, r). Such a result for the Euclidean case was earlier obtained in
[13]. Theorem B is proved by means of Theorem A, but it is not contained in Theorem
A, being more general in its range of applicability.

Theorem A. Let X be a bounded doubling measure metric space, let the exponent
p(x) satisfy conditions (2), (3) and the weight � fulfill condition (3). Then the operator

M is bounded in Lp(·)(X, �).
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When X is bounded, we consider weights of the form

�(x) =
N∏

k=1

wk(d(x, xk)), xk ∈ X, (5)

where xk are distinct points and wk(r) may oscillate between two power functions as
r → 0+ (radial Zygmund-Bari-Stechkin type weights), and when X is unbounded, we
deal with similar weights of the form

�(x) = w0[1 + d(x0, x)]
N∏

k=1

wk[d(x, xk)], xk ∈ X, k = 0, 1, . . . , N. (6)

Theorem B. Let X be a bounded doubling measure metric space, let p(x) satisfy

conditions (2), (3) on X. The operator M is bounded in Lp(·)(X, �) with weight (5), if

wk ∈ W̃ ([0, �]), � = diam X, and

−m(μB)

p(xk)
< m(w) ≤ M(w) <

m(μB)

p′(xk)
, k = 1, 2, . . . , N. (7)

In the case where X is a bounded open set in Rn, Theorem B was proved in [13] for
weights in Zygmund-Bary-Stechkin type class and in [15] for power weights.

Theorem C. Let
i) X be an unbounded metric measure space satisfying the doubling condition;

ii) p satisfy conditions (2)–(3) and let there exist a ball B(x0, R), x0 ∈ X such that
p(x) ≡ p∞ = const for x ∈ X\B(x0, R).

Then the maximal operator M is bounded in the space Lp(·)(X, w) with weight (6),

if wk ∈ W̃ (R1
+) and

−m(μB)

p(xk)
< m(wk) ≤ M(wk) <

m(μB)

p′(xk)
, k = 1, . . . , N, (8)

−m∞(μB)

p∞
<

N∑
k=0

m∞(wk) ≤
N∑

k=0

M∞(wk) <
m∞(μB)

p′∞
− Δp∞ , (9)

where Δp∞ =
M∞(μB)−m∞(μB)

p∞ .

In particular, for the power type weight �(x) = (1 + d(x0, x))β0
N∏

k=1
[d(x, xk)]βk , xk ∈

X, k = 0, 1, . . . , N, conditions (8)–(9) take the form

−m(μB)

p(xk)
< βk <

m(μB)

p′(xk)
, k = 1, . . . , N, (10)

and

−m∞(μB)

p∞
<

N∑
k=0

βk <
m∞(μB)

p′∞
− Δp∞ . (11)

In the case where X has a constant dimension d > 0 in the sense that C1rd ≤
μB(x, r) ≤ C2rd, conditions (10)–(11) take the form

− d

p(xk)
< βk <

d

p′(xk)
, k = 1, . . . , N, − d

p∞
<

N∑
k=0

βk <
d

p′∞
. (12)

In the case of constant p ∈ (1,∞) the boundedness of the maximal operator in
Lp(X, �) on measure metric spaces is known for Muckenhoupt weights � ∈ Ap, see [1] and
[18]. In the case of variable exponents p(·) statements on the non-weighted boundedness
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of the maximal operator were obtained in [6] and [9]. Weighted boundedness in the case
of variable exponents was earlier obtained in the cases where X is a bounded open set
Ω ⊂ Rn or a Carleson curve on the complex plane in [14], [15] for power type weights
and in [12], [13], [17] for radial weights of the Zygmund-Bary-Stechkin type class.

4. Tools used in the proofs

The proof of Theorem A is based n the following pointwise weighted estimate.
Theorem 1. Let μ(X) < ∞, p(x) satisfy conditions (2) and (3), x0 ∈ X and let

�(x) = [d(x0, x)]β . If 0 ≤ β < m(μB)
p′(x0)

, then

[
�(x)

μB(x, r)

∫
Br(x)

|f(y)|
�(y)

dy

]p(x)

≤ C

(
1 +

1

μB(x, r)

∫
B(x,r)

|f(y)|p(y) dy

)

for all f ∈ Lp(·)(Ω) such that ‖f‖p(·) ≤ c < ∞, where C = C(c, p, β) < ∞ is a constant
not depending on x, r and x0.

When dealing with radial weights we use properties of weights belonging to the
Zygmund-Bary-Stechkin class Φα

β defined as Φα
β := Zα ∩ Zβ , where Zα is the class

of functions w ∈ W̃ satisfying the condition (Zα) :
∫ h
0

w(t)

t1+α dt ≤ c w(h)
hα and Zβ is the

class of functions w ∈ W̃ satisfying the condition (Zβ) :
∫ �
h

w(t)

t1+β d(t) ≤ c w(h)

hβ , where

c = c(w) > 0 does not depend on h ∈ (0, �], −∞ < α < β < ∞.

Similarly, let Ψβ
α := Ẑβ ∩ Ẑα, where Ẑβ =

{
w ∈ W̃ ([�,∞)) :

∫ ∞
r

(
r
t

)β w(t) dt
t

≤
cw(r), as r → ∞}

and Ẑα =
{
w ∈ W̃ ([�,∞)) :

∫ r
�

(
r
t

)α w(t) dt
t

≤ cw(r), r →
∞}

, � > 0. In particular, the following statement, proved in [20],[21] for α = 0, β = 1

and [8] for the general case: Let w ∈ W̃ ([0, �]), 0 < � < ∞. Then w ∈ Zα if and only if
α < m(w) < ∞, and w ∈ Zβ , β > 0, if and only if −∞ < M(w) < β, so that

w ∈ Φα
β ⇐⇒ α < m(w) ≤ M(w) < β.

Besides this, for w ∈ Φα
β and any ε > 0 there exist constants c1 = c1(ε) > 0 and

c2 = c2(ε) > 0 such that c1tM(w)+ε ≤ w(t) ≤ c2tm(w)−ε, 0 ≤ t ≤ �.
The role of the indices m(wk), M(wk) of weights involved in (5) and (6) and of similar

indices related to the measure μ may be seen from the following lemmas.

Lemma 1. Let X be an unbounded doubling metric measure space and let α >
M∞(μB). Then for every 0 < ε < α − M∞(μB) there exists a constant C = C(ε), not
depending on x and r such that∫

X\B(x,r)

dμ(y)

[d(x, y)]α
≤ C(x)rM∞(μB)−α+ε, 0 < r0 ≤ r < ∞,

Lemma 2. Let X be a doubling metric measure space, � a weight of form (5) and
let p(·) satisfy conditions (2), (3). Then

−m(μB)

p(xk)
< m(wk), k = 1, 2, . . . , N, =⇒ � ∈ L

p(·)
loc (X).

M(wk) <
m(μB)

p′(xk)
, k = 1, 2, . . . , N, =⇒ 1

�
∈ L

p′(·)
loc (X).

The following statement also holds.
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Lemma 3. Let X be a metric measure space with doubling condition and let w ∈
W̃ ([0, �]), � = diam X. Then the inequality

w(d(x, x0))

μB(x, r)

∫
B(x,r)

dμ(y)

w(d(y, x0))
≤ c

holds with c > 0 not depending on 0 < r < � and x ∈ X, in one of the following cases:
i) d(x, x0) ≥ Nr for some N ∈ R1

+,

ii) m(w) > 0 when � < ∞, and min{m(w), m∞(w)} > 0 when � = ∞.
In the case d(x, x0) ≤ Nr, there also holds the estimate

w(r)

μB(x, r)

∫
B(x,r)

dμ(y)

w(d(y, x0))
≤ c.

Theorem 2. Let w ∈ W̃ ([0, �]), � = diam X, let p(x) satisfy conditions (2)–(3), let
x0 ∈ X and the measure μ satisfy the doubling condition. If the function w and the
measure μ satisfy the conditions

r∫
0

μB(x, t)[w(t)]p(x0)

t
dt ≤ CμB(x, r)[w(r)]p(x0), (13)

r∫
0

μB(x, t)

t[w(t)]q0
dt ≤ C

μB(x, r)

[w(r)]q0
with q0 =

p(x0)

p− − 1
, (14)

then the function �(x) = w(d(x, x0)) belongs to Ãp(·)(X) if either � < ∞, or � = ∞ and
p = const.

Corollary. Let w ∈ W̃ ([0, �]), � = diam X and the measure μ satisfy the dou-
bling condition, let x0 ∈ X and p(x) = p = const. Then under conditions (13)–(14)
w[d(x,x0)] ∈ Ap(X), 1 < p < ∞.

Note that known examples of weights on doubling metric spaces X belonging to Ap(X)
even for constant p were powers [μB(x0, d(x0, x))]α of the measure, see [4], p.42.

The following statement was also proved.

Theorem 3. Let w ∈ W̃ ([0, �]), let p(x) satisfy conditions (2)–(3) and let x0 ∈ X.
I) � = diam X < ∞; if

−m(μB)

p(x0)
< m(w) ≤ M(w) <

m(μB)

q0
,

where q0 = p(x0)
p−−1

, then the function �(x) = w(d(x, x0)) satisfies condition (3).

II) � = diamX = ∞; if p = const, 1 < p < ∞ and

−m(μB)

p
< m(w) ≤ M(w) <

m(μB)

p′

and

−m∞(μB)

p
< m∞(w) ≤ M∞(w) <

m∞(μB)

p′
,

1

p
+

1

p′
= 1,

then w(d(x, x0)) ∈ Ap(X).
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