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Abstract

We prove the Hardy inequality
∥∥∥∥∥∥
xα(x)+µ(x)−1

x∫

0

f(y) dy

yα(y)

∥∥∥∥∥∥
Lq(·)(R1

+)

≤ C ‖f‖Lp(·)(R1
+)

and a similar inequality for the dual Hardy operator for variable exponent Lebesgue
spaces, where0 ≤ µ(0) < 1

p(0) , 0 ≤ µ(∞) < 1
p(∞) ,

1
q(0) = 1

p(0) − µ(0), 1
q(∞) =

1
p(∞) − µ(∞), andα(0) < 1

p′(0) , α(∞) < 1
p′(∞) , β(0) > − 1

p(0) , β(∞) >

− 1
p(∞) , not requiring local log-condition onR1

+, but supposing that this condition
holds forα(x), µ(x) andp(x) only at the pointsx = 0 andx = ∞.

These Hardy inequalities are proved by means of the general result of indepen-
dent interest stating that any convolution operator onRn with the kernelk(x− y)
admitting the estimate|k(x)| ≤ c(1 + |x|)−ν with ν > n

(
1− 1

p(∞) + 1
q(∞)

)
,

is bounded inLp(·)(Rn) without local log-condition onp(·), only under the decay
log-condition at infinity.
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1. Introduction

The classical Hardy inequalities have the form
∥∥∥∥∥∥
xα+µ−1

x∫

0

ϕ(y) dy

yα

∥∥∥∥∥∥
Lq(R1

+)

≤ C ‖f‖Lp(R1
+) (1.1)

and ∥∥∥∥∥∥
xβ+µ

∞∫

x

ϕ(y) dy

yβ+1

∥∥∥∥∥∥
Lq(R1

+)

≤ C ‖f‖Lp(R1
+) , (1.2)

where1 ≤ p ≤ q < ∞ and 1
p + 1

p′ = 1. They hold if and only if

0 ≤ µ <
1
p

and
1
q

=
1
p
− µ

and

α <
1
p′

and β > −1
p
,

respectively, see for instance, [16], p. 6, [20], Ch.5, Lemma 3.14.
In the rapidly developing field of ”variable exponent spaces” there have al-

ready been made an essential progress in studying classical integral operators, such
as maximal and singular operators, Riesz potentials and Hardy operators, we refer
for example to the papers [3], [4], [5], [6], [7], [13], [14], [17] and surveys [9],
[12], [18], the specifics of these spaces being in the fact that they are not invariant
neither with respect to translations, nor with respect to dilations.

In particular, a Hardy inequality of type (1.1) over a finite interval[0, `] with
µ = 0 was proved in [14] for variablep(x) under the following assumptions on
p(x) and the exponentα:

i) 1 ≤ p(x) ≤ p+ < ∞ on [0, `],
ii) p(x) is log-continuous on[0, δ] for some smallδ > 0 and p(0) > 1,
iii) − 1

p(0) < α < 1
p′(0) .

It was also shown in [14] that in the case wherep(0) ≤ p(x), x ∈ [0, δ], the
log-condition on the whole neighborhood[0, δ] may be replaced by a weaker log-
condition holding only at the pointx = 0. In the case0 ≤ α < 1

p′(0) , in [10] it
was proved that Hardy inequality of type (1.1) on a finite interval holds without
the assumptionp(0) ≤ p(x), x ∈ [0, δ] and with the log-condition forp(x) at the
pointx = 0 in the limsupform.
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Meanwhile a natural hypothesis was that Hardy inequality (1.1) should be
valid under assumptions onp(x) and the exponentsα much weaker than stated
in i)-iii) .

HYPOTHESIS. Let

1 ≤ p(x) ≤ p+ < ∞, x ∈ R1
+, (1.3)

|p(x)− p(0)| ≤ A

|ln x| , 0 < x ≤ 1
2
, (1.4)

|p(x)− p(∞)| ≤ A

ln x
. x > 2, (1.5)

Then (1.1) holds, if and only if

α < min
{

1
p′(0)

,
1

p′(∞)

}
, (1.6)

while (1.2) holds, if and only if

β > max
{
− 1

p(0)
,− 1

p(∞)

}
. (1.7)

We prove in this paper that this hypothesis is true. The proof will be based
on a certain result on boundedness of convolution operators in the spacesLp(·).
This result, given in Theorem 4.6 and its corollary for convolutions whose kernels
are better than just integrable, is of interest by itself, because it does not assume
thatp(·) satisfies the log-condition. Theorem 4.6 paves the way to various applica-
tions, because many concrete convolution operators in analysis have rather ”nice”
kernels, see for instance example (4.12).

2.1. Variable exponent Lebesgue spaces

We refer to [19] and [15] for basic properties of the variable exponentLp(·)-
spaces. We only remind thatp(x) is assumed to be a measurable bounded function
with values in[1,∞) and the spaceLp(·)(Ω), whereΩ ⊆ Rn, is introduced as the
space of all measurable functionsf(x) onΩ which have finite modular

Ip(f) :=
∫

Ω

|f(x)|p(x)dx < ∞
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and the norm inLp(·)(Ω) is introduced as

‖f‖Ω = inf
{

λ > 0 : Ip

(
f

λ

)
≤ 1

}
.

DEFINITION 2.1.
I. In the caseΩ = Rn, by M∞(Rn) we denote the set of all measurable

bounded functionsp : Rn → R1
+ which satisfy the following conditions:

i) 0 ≤ p− ≤ p(x) ≤ p+ < ∞, x ∈ Rn,
ii) there existsp(∞) = lim

x→∞ p(x) and

|p(x)− p(∞)| ≤ A

ln (2 + |x|) , x ∈ Rn. (2.1)

By P∞(Rn) we denote the subset ofM∞(Rn) of measurable bounded func-
tionsp : Rn → [1,∞).

II. In the caseΩ = R1
+, byM0,∞(R1

+) we denote the set of all measurable
bounded functionsp(x) : R1

+ → R1
+ which satisfy the following conditions:

i) 0 ≤ p− ≤ p(x) ≤ p+ < ∞, x ∈ R1
+,

ii0) there existsp(0) = lim
x→0

p(x) and |p(x)− p(0)| ≤ A
ln 1

x

, 0 < x ≤ 1
2 ,

ii∞) there existsµ(∞) = lim
x→∞ p(x) and |p(x)− p(∞)| ≤ A

ln x , x ≥ 2.

By P0,∞ = P0,∞(R1
+) we denote the subset of functionsp(x) ∈ M0,∞(R1

+)
with inf

x∈R1
+

p(x) ≥ 1.

Observe that

c1x
µ(0)≤xµ(x)≤c2x

µ(0), 0 < x ≤ 1, and c1x
µ(∞)≤xµ(x)≤c2x

µ(∞), x ≥ 1

for everyµ ∈M0,∞ and consequently,

c1x
µ(0) ≤ xµ(x) ≤ c2x

µ(0) (2.2)

for µ ∈M0,∞ with µ(0) = µ(∞).

2.2. On kernels homogeneous of degree−1

The operators

Hαf(x) = xα−1

x∫

0

f(y)
yα

dy and Hβf(x) = xβ

∞∫

x

ϕ(y) dy

yβ+1
(2.3)
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have the kernels

kα(x, y) =
1
x

(
x

y

)α

θ+(x− y) and kβ(x, y) =
1
y

(
x

y

)β

θ+(y − x), (2.4)

respectively, whereθ+(x) = 1
2(1 + signx). They are examples of integral opera-

tors with kernels homogeneous of degree−1:

k(λx, λy) = λ−1k(x, y), x, y ∈ R1
+, λ > 0;

we refer to [8] for such operators, see also [11], p. 51S. As is known, any operator

Kϕ(x) =

∞∫

0

k(x, y)ϕ(y)dy

on the half-lineR1
+ with a homogeneous kernelk(x, y) may be reduced to con-

volution operator on the whole lineR1 by means of the exponential change of
variables. In the case of constantp and order of homogeneity−1, the mapping

(Wpf)(t) = e
− t

p f(e−t) , −∞ < t < ∞ (2.5)

realizes an isometry ofLp(R1
+) ontoLp(R1) : ‖Wpf‖Lp(R1) = ‖f‖Lp(R1

+), and

WpKW−1
p = H (2.6)

where

Hϕ =
∫

R1

h(t− τ)ϕ(τ)dτ , h(t) = e
t
p′ k(1, et), t ∈ R1

and‖h‖L1(Rn) =
∞∫
0

y
− 1

p |k(1, y)|dy.

3. Main statements

The following statements are valid, the proofs of which are given in Sections
5 and 6.

THEOREM 3.1. Let p ∈ P0,∞. Then the operatorsHα andHβ are bounded
in the spaceLp(·)(R1

+) if and only if conditions (1.6) and (1.7) are fulfilled, respec-
tively.
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REMARK 3.2. One may takeα andβ variable, and deal with the operators

Hα(·)f(x) = xα(x)−1

x∫

0

f(y)
yα(y)

dy and Hβ(·)f(x) = xβ(x)

∞∫

x

ϕ(y) dy

yβ(y)+1
,

(3.1)
whereα(x) is an arbitrary bounded function log-continuous at the origin and in-
finity: |α(x) − α(0)| ≤ A

|ln x| , 0 < x ≤ 1
2 , |α(x) − α(∞)| ≤ A

ln x , x ≥ 2,
and similarly forβ(x). Then Theorem 3.1 remains valid with conditions (1.6) and
(1.7) replaced by

α(0) <
1

p′(0)
, α(∞) <

1
p′(∞)

(3.2)

and

β(0) > − 1
p(0)

, β(∞) > − 1
p(∞)

. (3.3)

The following theorem is a generalization of Theorem 3.1 covering the Hardy
inequalities (1.1)-(1.2).

THEOREM 3.3. Let p ∈ P0,∞ andµ ∈M0,∞ and

0 ≤ µ(0) <
1

p(0)
and 0 ≤ µ(∞) <

1
p(∞)

.

Let alsoq(x) be any function inP0,∞ such that

1
q(0)

=
1

p(0)
− µ(0) and

1
q(∞)

=
1

p(∞)
− µ(∞). (3.4)

Then the Hardy-type inequalities
∥∥∥∥∥∥
xα+µ(x)−1

x∫

0

f(y) dy

yα

∥∥∥∥∥∥
Lq(·)(R1

+)

≤ C ‖f‖Lp(·)(R1
+) (3.5)

and ∥∥∥∥∥∥
xβ+µ(x)

∞∫

x

f(y) dy

yβ+1

∥∥∥∥∥∥
Lq(·)(R1

+)

≤ C ‖f‖Lp(·)(R1
+) , (3.6)

are valid, if and only ifα andβ satisfy conditions (1.6) and (1.7).

REMARK 3.4. Theorem 3.1 is a particular case of Theorem 3.3, but we prefer
to give separately their formulations and proofs.
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4. On convolutions inLp(·)(Rn)
with kernels in L1

⋂
Lr

As is well known, see [20], if a kernelk(x) has a non-increasing radial domi-
nant inL1(Rn), the convolutionk ∗ f(x) is pointwise estimated via the maximal
functionMf(x). Therefore, for such kernels the boundedness of the convolution
operator in the spaceLp(·)(Rn) follows immediately from that of the maximal
operator. However, in terms of sufficient conditions this in fact requires the log-
condition to be satisfied on the whole Euclidean spaceRn. Meanwhile, for rather
”nice” kernels, this everywhere log-continuity seems to be an extra requirement
and it is natural to suppose that for such kernels the log-condition is needed only
at the infinite point, that is, the decay condition. Theorem 4.6 below gives a suf-
ficient condition of such a kind for convolution operators. To prove Theorem 4.6,
we need the following embedding theorem from [5]. In Theorem 4.1 and in the
sequel we use the conventionexp(−K/0) := 0.

THEOREM 4.1. Let p, q be bounded exponents onRn. Then

Lp(·)(Rn) ↪→ Lq(·)(Rn)

if and only if p(·) ≥ q(·) almost everywhere and there existsK > 0 such that
∫

Rn

exp
( −K

| 1
q(x) − 1

p(x) |

)
dx < ∞.

P r o o f. The theorem is just a reformulation of Lemma 2.2 of [5] withλ =
exp(−K).

REMARK 4.2. For every functionp ∈ P∞(Rn) there existsK > 0 such that
∫

Rn

exp
( −K

| 1
p(x) − 1

p(∞) |

)
dx < ∞. (4.1)

Indeed, forK := 2nA, whereA = sup
x∈Rn

∣∣∣ 1
p(x) − 1

p(∞)

∣∣∣ ln(2 + |x|), we have

∫

Rn

exp
( −K

| 1
p(x) − 1

p(∞) |

)
dx ≤

∫

Rn

exp
(− 2n ln(2 + |x|)) dx < ∞.

COROLLARY 4.3. Let p ∈ P∞(Rn), λ = const andλ ≥ p(∞). Then

Lp(·)(Rn) ↪→ Lmin{p(·),λ}(Rn) (4.2)



8 L. Diening, S. Samko

unconditionally whenλ > p(∞) and under the decay condition(2.1)or its weaker
form (4.1)whenλ = p(∞).

REMARK 4.4. Let the exponentsp1, p2, p3 satisfy (1.3) andp1(x) ≤ p2(x) ≤
p3(x) almost everywhere onRn. Then

Lp1(·)(Rn) ∩ Lp3(·)(Rn) ↪→ Lp2(·)(Rn). (4.3)

This follows directly fromtp2 ≤ tp1 + tp3 .

LEMMA 4.5. Let a bounded exponentp onRn with 1 ≤ p− ≤ p+ < ∞
either satisfy(2.1)or its weaker form(4.1). Then

Lp(·)(Rn) ∩ Lp+(Rn) ∼= Lp(∞)(Rn) ∩ Lp+(Rn) (4.4)

and

Lp(·)(Rn) ∩ Lp−(Rn) ↪→ Lp(∞)(Rn) + Lp−(Rn). (4.5)

Moreover,

Lp(·)(Rn) ↪→ Lp−(Rn) + Lp(∞)(Rn). (4.6)

P r o o f. For simplicity we will drop theRn in the calculations. Due to (2.1),
Theorem 4.1, and (4.3) it follows that

Lp(·) ∩ Lp+ ↪→ Lmin {p(·),p(∞)} ∩ Lp+ by Theorem 4.1

↪→ Lp(∞) ∩ Lp+ by (4.3)

↪→ Lmax {p(·),p(∞)} ∩ Lp+ by (4.3)

↪→ Lp(·) ∩ Lp+ by Theorem 4.1.

This proves (4.4). Analogously, by Theorem 4.1,

Lp(·) ∩ Lp− ↪→ Lmin {p(·),p(∞)} ∩ Lp−

↪→ Lp(∞) + Lp− ,

where we have used in the last step thattmin {p(·),p(∞)} ≤ tp(∞) + tp− . Thus (4.5)
is proved. To prove (4.6), definef0 := f χ{|f |≤1} andf1 := f χ{|f |>1} so that
f = f0 + f1. We have

|f0(x)|p(x) + |f0(x)|p+ ≤ 2 |f0(x)|p(x),

|f1(x)|p(x) + |f0(x)|p− ≤ 2 |f1(x)|p(x).
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Thus
Lp(·) ↪→ (Lp(·) ∩ Lp+) + (Lp(·) ∩ Lp−)

and then by (4.4)-(4.5)

Lp(·) ↪→ (Lp(∞) ∩ Lp+) + (Lp(∞) + Lp−) ↪→ Lp(∞) + Lp− .

THEOREM 4.6. Let p andq be bounded exponents onRn with 1 ≤ p− ≤
p+ < ∞, 1 ≤ q− ≤ q+ < ∞ andq(∞) ≥ p(∞), which satisfy either(2.1)or its
weaker form(4.1). Let r0, s0 ∈ [1,∞) be defined by

1
r0

= 1− 1
p(∞)

+
1

q(∞)
,

1
s0

= 1− 1
p−

+
1
q+

, r0 ≤ s0. (4.7)

Then the convolution operator∗ satisfies

∗ :Lp(·) × (Lr ∩ Ls) → Lq(·) ∩ Lq+
, r ≤ r0 ≤ s0 ≤ s.

In particular, under the choiceq(x) ≡ p(x) andr = 1,

∗ : Lp(·) × (L1 ∩ Ls0) → Lp(·) ∩ Lp+
. (4.8)

P r o o f. Besides (4.7), define

1
r1

= 1− 1
p−

+
1

q(∞)
,

1
s1

= 1− 1
p(∞)

+
1
q+

.

Then

1 ≤ r ≤ r0 ≤ min {r1, s1} ≤ max {r1, s1} ≤ s0 ≤ s ≤ ∞. (4.9)

By classical Young’s inequality the convolution operator∗ satisfies

∗ : Lp− × Ls0 → Lq+ ,

∗ : Lp− × Lr1 → Lq(∞),

∗ : Lp(∞) × Ls1 → Lq+ ,

∗ : Lp(∞) × Lr0 → Lq(∞).

Therefore,

∗ :Lp− × (Lr1 ∩ Ls0) → Lq(∞) ∩ Lq+ ,

∗ :Lp(∞) × (Lr0 ∩ Ls1) → Lq(∞) ∩ Lq+ .
(4.10)
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Moreover, from (4.9) we deduce

Lr ∩ Ls ↪→ Lr1 ∩ Ls0 , Lr ∩ Ls ↪→ Lr0 ∩ Ls1 .

This and (4.10) implies

∗ : (Lp− + Lp(∞))× (Lr ∩ Ls) → Lq(∞) ∩ Lq+
.

Thus embeddings (4.6) and (4.4) imply

∗ :Lp(·) × (Lr ∩ Ls) → Lq(·) ∩ Lq+
.

This proves the theorem.

COROLLARY 4.7. Let k(y) satisfy the estimate

|k(y)| ≤ C

(1 + |y|)ν
, y ∈ Rn (4.11)

for someν > n
(
1− 1

p(∞) + 1
q(∞)

)
. Then the convolution operator

Af(x) =
∫

Rn

k(y)f(x− y)dy

is bounded from the spaceLp(·)(Rn) to the spaceLq(·)(Rn) under the only as-
sumption thatp, q ∈ P∞(Rn) andq(∞) ≥ p(∞).

P r o o f. The assumption onν impliesk ∈ ∪r≥r0L
r with r0 given by (4.7).

Now, use Theorem 4.6.

As an important immediate application of the above boundedness of convolu-
tion operators, consider theBessel potential operator

Bαf(x) =
∫

Rn

Gα(x− y) f(y) dy, α > 0 (4.12)

with
Gα(x) = c(α, n) |x|α−n

2 Kn−α
2

(|x|),
which is well known in the theory of Sobolev type spaces of fractional smoothness.
According to Theorem 4.6 in the case

1
p−

− 1
p+

<
α

n
, (4.13)
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this operator is bounded in the spaceLp(·)(Rn) under the only assumption that
p(·) satisfies the decay condition, that is,p ∈ P∞(Rn). The boundedness of
the operatorBα in the spaceLp(·)(Rn) was earlier shown in [2], [1] without the
condition (4.13) on the variation of1p(x) , but under the assumption that besides the
decay condition,p satisfies everywhere the local log-condition.

5. Proof of Theorem 3.1

We will follow the idea of reducing operators with homogeneous kernels to
convolutions, presented in (2.5)-(2.6), and introduce the mapping

(Wpf)(t) = e
− t

p(0) f(e−t) , t ∈ R1. (5.1)

5.1. Auxiliary lemmas

We need the following simple lemmas.

LEMMA 5.1. Let p(x) ∈ P(R1
+) andp(0) = p(∞). Then the operator

Wp maps isomorphically the spaceLp(·)(R1
+) onto the spaceLp∗(·)(R1), where

p∗(t) = p
(
e−t

)
andp∗(−∞) = p∗(+∞) and

|p∗(t)− p∗(∞)| ≤ A

|t|+ 1
, t ∈ R1. (5.2)

P r o o f. We have

∫

R1

∣∣∣∣
Wpf(t)

λ

∣∣∣∣
p∗(t)

dt =
∫

R1

∣∣∣∣∣
e
− t

p(0) f
(
e−t

)

λ

∣∣∣∣∣

p∗(t)

dt =
∫

R1
+

x
p(x)
p(0)

−1

∣∣∣∣
f (x)

λ

∣∣∣∣
p(x)

dx.

(5.3)
By (2.2) we have the equivalence

x
1

p(x) ∼ x
1

p(0) (5.4)

on the whole half-axisR1
+. Therefore, the boundedness

‖Wpf‖Lp∗(·)(R1) ≤ C‖f‖Lp(·)(R1
+)

follows from (5.3) in view of equivalence (5.4). Similarly, the boundedness

‖W−1
p ψ‖Lp(·)(R1

+) ≤ C‖ψ‖Lp∗(·)(R1)

no of the inverse operator

W−1
p ψ(x) = x

− 1
p(0) ψ(− ln x)

is checked.
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LEMMA 5.2. For the Hardy operatorsHα andHβ the following relations are
valid

(WpH
αW−1

p )ψ(t) =
∫

R1

h−(t− τ)ψ(τ)dτ, (5.5)

and

(WpHβW−1
p ψ(t) =

∫

R1

h+(t− τ)ψ(τ)dτ, (5.6)

where

h−(t) = e

�
1

p′(0)−α
�
t
θ−(t) and h+(t) = e

−
�

1
p(0)

+β
�
t
θ+(t) (5.7)

andθ−(t) = 1− θ+(t).

P r o o f. The proof is a matter of direct verification.

5.2. The proof of Theorem 3.1 itself

I. Sufficiency
10. The casep(0) = p(∞).

We first assume that
p(0) = p(∞). (5.8)

By Lemmas 5.1 and 5.2 the boundedness of the Hardy operatorsHα andHβ

in the spaceLp(·)(R1
+) is equivalent to that of the convolution operators with the

exponential kernelsh−(t) andh+(t), respectively, in the spaceLp∗(·)(R1) . Under
the conditions 1

p′(0) −α > 0 and 1
p(0) +β > 0, the convolutionsh− ∗ψ andh+ ∗ψ

are bounded operators inLp∗(·)(R1) according to Corollary 4.7, and consequently,
the Hardy operatorsHα andHβ are bounded in the spaceLp(·)(R1

+)

20. The casep(0) 6= p(∞).

Let 0 < δ < N < ∞ and letχE(x) denote the characteristic function of a
setE ⊂ R1

+. (Note that the idea of the following splitting and extension of the
exponentp(·) was suggested by E. Shargorodsky in the discussion of the proof of
Hardy inequalities with the second author). We have :

Hαf(x) =
(
χ[0,δ] + χ[δ,N ] + χ[N,∞)

)
Hα

(
χ[0,δ] + χ[δ,N ] + χ[N,∞)

)
f(x)

= χ[0,δ](x)
(
Hαχ[0,δ]f

)
(x) + χ[δ,∞)(x)

(
Hαχ[0,N ]f

)
(x) (5.9)

+χ[N,∞)(x)
(
Hαχ[N,∞)f

)
(x) =: V1(x) + V2(x) + V3(x).
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It suffices to estimate separately the modularsIp(Vk), k = 1, 2, 3, supposing that
‖f‖Lp(·)(R1

+) ≤ 1.

For Ip(V1) we obtain

Ip(V1) =

δ∫

0

∣∣∣∣∣∣

x∫

0

xα−1

yβ
f(y)dy

∣∣∣∣∣∣

p(x)

dx

≤
∞∫

0




x∫

0

xα−1

yβ
|f(y)|dy




p1(x)

dx = Ip1(H
αf), (5.10)

wherep1(x) is any extension ofp(x) from [0, δ] to the whole half-axisR1
+ which

satisfies conditions (1.3)-(1.5) and for whichp1(0) = p1(∞). Such an extension
is always possible, see Appendix in Section 7. Then from (5.10) we obtain

Ip(V1) ≤ C < ∞ whenever ‖f‖Lp(·)(R1
+) ≤ 1

according to the item10 of the proof.
The estimation ofIp(V3) is quite similar to that ofIp(V1) with the only change

that the corresponding extension ofp(x) must be made from[N,∞) toR1
+.

Finally, the estimation of the termV2(x) is evident:

Ip(V2) ≤
∞∫

δ

∣∣∣∣∣∣
xα−1

N∫

0

f(y)
yα

dy

∣∣∣∣∣∣

p(x)

dx, (5.11)

where it suffices to apply the Ḧolder inequality inLp(·)(R1
+) when we integrate in

y with α < 1
p′(0) taken into account, and make use of the fact thatα < 1

p′(∞) when
we integrate inx.

Similarly the case of the operatorHβ is considered (or alternatively, one can
use the duality arguments, but the latter should be modified by considering sepa-
rately the spaces on[0, δ] and[N,∞), because we admitp(x) = 1 in between).

II. Necessity

The necessity of condition (1.6) follows from the simple arguments: the bound-
edness of the operatorHα in Lp(·)(R1

+) implies thatHα is well defined on all the
functions inLp(·)(R1

+), in particular, on the function

f0(x) =
χ[0, 1

2 ]
(x)

x
1

p(0) ln 1
x

∈ Lp(·)(R1
+) (5.12)



14 L. Diening, S. Samko

so that the existence the integral

Hαf0(x) = xα−1

x∫

0

dy

y
α+ 1

p(0) ln 1
y

dy, 0 < x <
1
2

implies the conditionα < 1
p′(0) .

To show the necessity of the conditionα < 1
p′(∞) , it suffices to choose

f∞(x) =
χ[2,∞)(x)

xλ
∈ Lp(·)(R1

+), λ > max(1, 1− α). (5.13)

For x ≥ 3 we have Hαf∞(x) = xα−1
x∫
2

dy
yα+λ ≥ xα−1

3∫
2

dy
yα+λ = cxα−1 which

belongs toLp(·)(R1
+) only if (1− α)p(∞) > 1, that is,α < 1

p′(∞) .

Similarly the necessity of condition (1.7) is considered.

6. Proof of Theorem 3.3

6.1. Preliminaries

As in Section 5, we shall consider first the case wherep(0) = p(∞) and
suppose thatµ(0) = µ(∞) as well.

Similarly to (5.1), we use the mappings

(Wpf)(t) = e
− t

p(0) f(e−t) and (Wqf)(t) = e
− t

q(0) f(e−t), t ∈ R1, (6.1)

where 1
q(0) = 1

p(0) − µ(0). As a generalization of Lemma 5.2, we have the follow-
ing statement for the operators

Hα,µf(x) = xα+µ(0)−1

x∫

0

f(y) dy

yα
, Hβ,µf(x) = xβ+µ(0)

∞∫

x

f(y) dy

yβ+1
. (6.2)

LEMMA 6.1. For the Hardy operatorsHα,µ andHβ,µ the following relations
hold

(WqH
α,µW−1

p )ψ(t) =
∫

R1

h−(t− τ)ψ(τ)dτ, (6.3)

and

(WqHβ,µW−1
p ψ(t) =

∫

R1

h+(t− τ)ψ(τ)dτ, (6.4)

where 1
q(0) = 1

p(0) − µ(0) andh−(t) andh+(t) are the same kernels as in (5.7).

P r o o f. The proof is direct.
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6.2. The proof of Theorem 3.3 itself

10. The casep(0) = p(∞) and µ(0) = µ(∞).
By Lemma 5.1 we have

‖Wpf‖Lp∗(·)(R1) ∼ ‖f‖Lp(·)(R1
+) and ‖W−1

q ψ‖Lq(·)(R1
+) ∼ ‖ψ‖Lq∗(·)(R1), (6.5)

wherep∗(t) = p(e−t), q∗(t) = q(e−t). Therefore, theLp(·)(R1) → Lq(·)(R1)
boundedness of the operatorsHα,µ andHβ,µ follows from theLp∗(·)(R1) →
Lq∗(·)(R1) boundedness of the convolution operators onR1 with the kernelsh+(t)
andh−(t), respectively.

Since 1
p′(0) − α > 0 and 1

p(0) + β > 0, the convolutionsh− ∗ ψ andh+ ∗ ψ

are bounded operators fromLp∗(·)(R1) to Lq∗(·)(R1) in view of Corollary 4.7.
Consequently, the Hardy operatorsHα,µ andHβ,µ are bounded fromLp(·)(R1

+) to
Lq(·)(R1

+). Then we get at (3.5)-(3.6) since

xµ(x) ∼ xµ(0) on R1
+

by (2.2).
20. The general case.
The proof follows the same lines as in (5.9)-(5.11). For example, instead of

(5.10), we will have

Iq(V1)=

δ∫

0

∣∣∣∣∣∣

x∫

0

xα+µ(x)−1

yβ
f(y)dy

∣∣∣∣∣∣

q(x)

dx≤
∞∫

0




x∫

0

xα+µ1(x)−1

yβ
|f(y)|dy


q1(x)dx,

(6.6)
and analogously forIq(V3). That is, we have to arrange the corresponding exten-
sion ofp(x), q(x) andµ(x), which is possible, see Lemma 7.1.

Similarly, the estimation

Iq(V2) ≤ C

∞∫

δ

∣∣∣∣∣∣
xα+µ(∞)−1

N∫

0

f(y)
yα

dy

∣∣∣∣∣∣

q(x)

dx ≤ C < ∞

is easily obtained.
Finally, it suffices to observe that the counterexamples for the necessity in

Theorem 3.3 are the same as in (5.12) and (5.13.)
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7. Appendix

LEMMA 7.1. Given a functionp(x) ∈ P0,∞(R1
+), there exists its extension

p1(x) ∈ P0,∞(R1
+) from an interval[0, δ], δ > 0, toR1

+ such that
i) p1(x) ≡ p(x), x ∈ [0, δ], and
ii) p1(0) = p1(∞).

P r o o f. The possibility of such an extension is obvious, but we give a direct
constriction for the completeness of the presentation.

A functionp1(x) may be taken in the form

p1(x) = ω(x) p(x) + (1− ω(x)) p(∞),

whereω ∈ C∞([0,∞)) has compact support andω(x) = 1 for x ∈ [0, δ]. Then
both log-conditions in (1.4)-(1.5) are satisfied forp1(x). Moreover,

1 ≤ min {(p0)−, p(∞)} ≤ (p1)− and (p1)+ ≤ max {(p0)+, p(∞)} < ∞.
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