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Boundedness in Lebesgue Spaces with
Variable Exponent of the Cauchy Singular
Operator on Carleson Curves
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Abstract. We prove the boundedness of the singular integral operator Sr in
the spaces Lp(‘)(l",p) with variable exponent p(t) and power weight p on
an arbitrary Carleson curve under the assumptions that p(t) satisfy the log-
condition on I'. The curve I' may be finite or infinite.

We also prove that if the singular operator is bounded in the space
LPO)(T), then T is necessarily a Carleson curve.
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1. Introduction
Let T ={t € C:t=1t(s), 0 < s < ¢ < oo} be a simple rectifiable curve with
arc-length measure v(t) = s. In the sequel we denote
v, r) =T NB(tr), tel, r>0, (1.1)
where B(t,r) = {z € C: |z — t| < r}. We also denote for brevity
V(7)) = ().
Everywhere below we assume that I' is a Carleson curve. We remind that a

curve is called Carleson curve (regular curve), if there exists a constant ¢y > 0 not
depending on t and r, such that

[y(t, )| < cor (1.2)
We consider the singular integral operator
1 T

sef) = ~ [ LD aur) (1.3)

) T—1
r
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on Carleson curves I' and prove that the operator S is bounded in weighted spaces
n
LPO(T,w), w(t) = ] [t—tx|?, tx € T with variable exponent p(t) (see definitions
k=1
in Section 2), under the assumption that p(t) satisfies the standard log-condition.
The curve I' may be finite or infinite. On the latter case we assume also that p(t)
satisfies the log-condition at infinity.

2. Definitions

Let p be a measurable function on I such that p : T' — (1, 00). In what follows we
assume that p satisfies the conditions

1< p_ :=essinfp(t) <esssupp(t) =: py < o0, (2.1)
tel tel
A 1
Ip(t) — p(7)] < —, tel,7el, [t—7 < <. (2.2)
In = 2

Observe that condition (2.1) may be also written in the form

20A

20
InF=5

Ip(t) —p(7)| < t,reL, (2:3)

where / is the length of the curve.
In the case where I' is an infinite curve, we also assume that p satisfies the
following condition at infinity

1
S ML= (24

Ip(t) —p(1)| <

for some L > 0.

By P = P(T') we denote the class of exponents p satisfying condition (2.1)
and by P = P(T") the class of those p for which the maximal operator M is bounded
in the space LP)(T).

The generalized Lebesgue space with variable exponent is defined via the
modular

12 (f) = / FOPO du(r)

T inf{A S0 <§) . 1}_

1 llo¢y = 174l

by the norm

Observe that
) (2.5)

a

S Rl

for any 0 < a < inf p(t).



Singular Operator on Carleson Curves 169

By LPO)(T', w) we denote the weighted Banach space of all measurable func-
tions f : I' — C such that

' wlt f ¢ p(t)
||f||Lp(.)(F,w) = [lwfllpey =inf § A >0 / ’% dv(t) <13 < 0.
r
(2.6)
We denote p/(t) = %.
From the Holder inequality for the LP()-spaces
1 1
d <k p(- p’ (- ) N =1,
J i) dvto)| < Ko lollvomy, o+ 2
_ 1 1 1 1 .
wherek71+p—7+wfl+p—775 < 2, it follows that
[ u000) av(0)] < e 4 Pl 2.7
and for the conjugate space [Lp(')(F, w)] " we have
[LP<~><r,w)} — 17O, 1/w) (2.8)

which is an immediate consequence of the fact that [Lp(')(F)] "= PO () under
conditions (2.1), see [13], [16].
The following value

11 [dv(t)
5 S e @9

will be used, introduced for balls in R™ by L. Diening [4]. Here v = ~(¢,7),
tel, r>0, isany portion of the curve I'.
1, Tey - .
By x5(7) = { 0, rel\y we denote the characteristic function of a por-

tion v of the curve I'.

3. The main statements

In the sequel we consider the power weights of the form

w(t) =[] It—tl®, twer (3.1)
k=1
in the case of finite curve and the weights
w(t) =t -zl [[ It —tel®,  thel, =z¢l (3.2)
k=1

in the case of infinite curve.
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Theorem A. Let

i) T be a simple Carleson curve;
i) p satisfy conditions (2.1), (2.2) and also (2.4) in the case T' is an infinite
curve.

Then the singular operator Sr is bounded in the space LPC)(T, w) with weight (3.1)
r (3.2), if and only if

_Zﬁ<ﬁk<lﬁ7 k=1,...,n, (3.3)
and also
—i<ﬁ+iﬂk<; (3.4)
Po —1 p/(OO)

in the case I is infinite.

Remark 3.1. From (2.4) it follows that there exists poo = lim¢— p(t) and
tel
P —poel < A%, [t > max{L,2}.

For constant p Theorem A is due to G. David [3] in the non-weighted case,
for the weighted case with constant p see [2]. For earlier results on the subject
we refer to [9], Theorem 2.2. The statement of Theorem A for variable p(-) was
proved in [11] in the case of finite Lyapunov curves or curves of bounded rotation
without cusps.

Theorem B. Let T be a finite rectifiable curve. Let p: T’ — [1,00) be a continuous
function. If the singular operator St is bounded in the space Lp(')(F), then the
curve I' has the property

Iy(t,7)|
e <o 5)
r>0

for every e > 0. If p(t) satisfies the log-condition (2.2), then property (3.5) holds
with € = 0, that is, T is a Carleson curve.

Observe that Theorem B for the case of constant p was proved in [15].

Theorem C. Let assumptions 1)-ii) of Theorem A be satisfied, and let a € C(T).
In the case where T is an infinite curve starting and ending at infinity, we assume
that a € C(f‘), where I' is the compactification of T by a single infinite point, that
is, a(t(—o0)) = a(t(+00)). Then under conditions (3.3)—(3.4), the operator

1 [a(r)—alt)
(SI‘GI — GSF)f = E / ﬁf(T)dV(T)
r
is compact in the space LPC)(T,w) with weight (3.1)~(3.2).

Theorems A, B and C are proved in Sections 6, 7 and 8, respectively.
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4. Preliminaries

We base ourselves on the following result for maximal operators on Carleson curves.

Let
M) = sp i [ Uiz (11)

y(t,r)

be the maximal operator on functions defined on a curve I' in the complex plane.
The following statements are valid.
Proposition 4.1. Let

i) T be a simple Carleson curve of a finite length;

ii) p satisfy conditions (2.1)—(2.2).
Then the mazximal operator M is bounded in the space LP) (T, w) with weight (3.1),
if and only if

1
< By k=1,...,
o) S

Proposition 4.2. Let

n. (4.2)

i) T be an infinite simple Carleson curve;
ii) p satisfy conditions (2.1)~(2.2) and let there exist a circle B(0, R) such that
p(t) = poo = const for t € T\(I'N B(0, R)).
Then the mazimal operator M is bounded in the space Lp(')(F,w), with weight
(3.2), if and only if

L —L<ﬁ+26k<,i. (4.3)

O < —— an
pl (tk) P h—1 Po

L <
p(tk)
The Euclidean space versions of Propositions 4.1 and 4.2 for variable expo-
nents were proved in [11] and [8], respectively. The proof of Propositions 4.1 and
4.2 for Carleson curves follows similar ideas, but needs some modifications. The
proofs of Propositions 4.1 and 4.2 for the case of Carleson curves will be given in
another publication.

We will also make use of the following Kolmogorov theorem, see [12], [3], [7].

Theorem 4.3. Let I' be a Carleson curve Of a finite length. Then for any s € (0,1)

|;| /|Spf( vty | < cm/|f Jdv(t) (4.4)

Theorem 4.3 is a consequence of the fact that the singular operator on Car-
leson curves has weak (1,1)-type:

v{teTsISei 0> A} < 5 [ 1@l

the latter being proved in [3].
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Proposition 4.4. Let p(t) satisfy condition (2.1) and the maximal operator M be
bounded in LPC)(T'). Then there exists a constant C' > 0 such that

1
IXAllpy < ClyP> forall  y=~(t,r)CT (4.5)
where p is the mean value (2.9).

Proposition 4.4 was proved in [4], Lemma 3.4, for balls in the Euclidean
space and remains the same for arcs v on Carleson curves. For completeness of
presentation we expose this proof in the appendix.

5. Auxiliary statements

Let
1
M#ft:Supi/ F1) = fom| dv(T), teT 51
(t) r>0 [7(t,7)] V(t,r)| (1) = fyem| dv(T) (5.1)
where fy¢,y = \v(tl—r)l f'y(t ) f(r) dv(7), be the sharp maximal function on the
curve I

Theorem 5.1. Let ' be an infinite Carleson curve. Let p(t) satisfy conditions (2.1)—
(2.2) and p(t) = poo outside some circle B(to, R). Let w(t) = |t —to|?, to € C,
where
1 1 1 1
———<f<—— and ——<pf<—  if tyel
p(to) P'(to) Poo Pho

and —-L < 8 < L if tg ¢ T. Then for | € LPO(I',w)

11 ooy < € IMPFl| oo 0y - (5.2)

J F(t)g(t) dv(t)

r

Proof. As is known, || f|lz»() ~  sup , see [13], Theorem 2.3
llgll pr ) <1

or [16], Theorem 3.5. Therefore,

[ st du<t>| .

[ fwllprey < sup
lgll ,pry <1

We make use of the inequality
[ 1rg1avt) < [ ar# s arg avto) (53)
r r

where f € LPO)(T), g € LP'()(T), which is known for the Euclidean space, see [5],

Lemma 3.5, and is similarly proved for infinite Carleson curves. We obtain

/F w(t) M () [w(t)]* M (gw) do ()

[ fwllproy <e  sup
H!]HLp/(.)Sl
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and then
Ifwleey e sup [fwM® f]l oo w™ M(gw)l| e
Nall pry <1
by the Holder inequality. Since ,p/(l_to) < -pB< m, we may apply Proposition

4.2 for the space LP'0) with 0 replaced by —f3 and conclude that

| fwll L) < CH HSUP lwM# fl| Lo 9]l porcy < CllwM# £l Loc)
g LP/(‘)Sl

which proves (5.2). O

6. Proof of Theorem A

6.1. General remark

Remark 6.1. It suffices to prove Theorem A for a single weight |t — to|® where
to € T in the case T' is finite and to may belong or not belong to ' when T" is
infinite.

n
Indeed, in the case of a finite curve let I' = |J I'y, where I';, contains the
k=1
point ¢ in its interior and does not contain ¢;, j # k in its closure. Then

HfHLP(‘)(F, ﬁ ‘tftk‘ﬁk) ~ I; ||f||LP(')(Fk)|t7tk‘5k) (61)
k=1 =

whenever 1 < p_ < py < oo. This equivalence follows from the easily checked
modular equivalence

7 (f(f) I11t- tk|ﬁk> ~ IR (F)IE - t])
k1 k=1

since
a1 < fllpy L = ez <IA(f) < ey,

(6.2)
Ci<I{(f)<Co = C3<|fllpe) < Ca
with ¢ = min (¢}, c{") ,cs = max (5, ¢5"),C3 = min <Clp,Clp+) and Cy =

1 1

max <02p Neis

Similarly, in the case of an infinite curve

171l ~ Il rer =m0y + 2 IF oo (b et o)

£rO (T =zl [ 1=t
k=1 k=1

(6.3)
where I', is a portion of the curve outside some large circle, so that I'o, does not
contain the points tx, k= 1,...,n.
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Then, because of (6.1) and (6.3), the statement of Remark 6.1 is obtained

n
by introduction of the standard partition of unity 1 = > ax(t), where ai(t) are
k=1
smooth functions equal to 1 in a neighborhood ~(tx, €) of the point ¢, and equal to
0 outside its neighborhood (g, 2¢) (and similarly in a neighborhood of infinity in

the case I is infinite), so that ax(t)|t — t;|*% =0 in a neighborhood of the point
tr, ifk #3.

6.2. Auxiliary results

We start with proving the following statement known for singular integrals in the
Euclidean space (T. Alvarez and C. Pérez, [1]).

Proposition 6.2. Let I' be a simple Carleson curve. Then the following pointwise
estimate is valid

MF(ISefl) () < e[Mf()°, 0<s<L, (6.4)

where the constant ¢ > 0 may depend on I' and s, but does not depend on t € T’
and f.

To prove Proposition 6.2, we need — following ideas in [1] — the following
technical lemma.

Lemma 6.3. Let I be a simple Carleson curve, zo € I' and . = v(zo,7) and

)=z [

Yr Yr

dv(z)dv(T). (6.5)

z—t T—t
Then for any locally integrable function f the pointwise estimate holds

swp [ O H () < OV (o) (6:5)
r>0
tel:|t—zo|>27

where C' > 0 does not depend on f and zp.

Proof. We have

|7 — z|
H, ., (t) // ——————dv(z)dv (7).
O=5F ) | Fmar g

Yr Ir

For |t — zg| > 2r we have
1
|z —t| >|t—20| — |z —20| > |t — 20| =7 > §|tfzo|
and similarly |7 —¢| > |t — 2| so that

Cr
H, . (t) < ——
»0()— |t—20|2
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where the constant C' > 0 depends only on the length of the curve I'. Then

rlf(t
Elilg / | f ()| Hr,zo (D) dr(t) < csupz / It |_(ZZ||2 dv(t)

r>0
tel:|t—zo|>2r 2’“T<\t zo|<2k+1p

with m = m(r). Hence

t)|Hy - ) <2 t)|dv(t
wp [ WOl <2 o [ o)
tel:|t—zo|>27 [t—zo|<2kt1p

1
< 2eM f(zp) Z—kgclezo) O
k=0

We will also need the following technical lemma

Lemma 6.4. Let f be an integrable function on I', f,

\il [ f(r)dv(r). Then

1
o / () = Fyldu(r) < = / |F(r) - Cldu(r) (6.7)

~

for any constant C on the right-hand side.

Proof. The proof is well known:
o [ 1) = vtz _||2//|f o)dv(7)du (o)
< W//(lf(ﬂ —Cl+1C = f(o))dv(T)dv(0)
= / 11(r) — Clav(r). 0

Proof of Proposition 6.2. To prove estimate (6.4), according to Lemma 6.4 it suf-
fices to show that for any locally integrable function f and any 0 < s < 1 there
exists a positive constant A such that

-/ ’ISrf(é)lsAs w(©)| <OMft),  v=1Gur)  (68)

for almost all z5 € T', where C' > 0 does not depend on f and zo. We set f = f1+ fa,
where fl = f * Xv(z0,2r) and f2 = f " XT\v(z0,27)" We take

= (Sch)y = o / 1S f2(6)] du(€).
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Then, taking into account that ||al® — [b°|| < |a — b|®, for 0 < s < 1, we have

1

s
S

1 s ) 1
o / Iser@l - a*lavte) | < / sen)] ane] +
o ﬁ/’wpfg(gn—,q (@) = ol + D).
For I by (4.4) we obtain
1
h<o / F©lan(t) < / (Bl (€) < MF(z0). (6.9)

For I, by Jensen mequahty and Fubini theorem after easy estimations we get
wO< [ OO0,

1
I, < —/
el
v I'\7v(20,27)

where H, ., (t) is the function defined in (6.5). Therefore, by Lemma 6.3, Iy <
CM f(20) which completes the proof. O

1
(Se12(O) - / (St-f2) (r)dw(7)

6.3. Proof of Theorem A itself. Sufficiency part

According to Remark 6.1, we consider the case of a single weight |t — ¢o|” where
to may be not belonging to I' in case I is infinite.

I). The case of infinite curve and p constant at infinity. First we consider the
case where I' is an infinite curve and we additionally suppose at this step that
p(t) = const = po, outside some large ball B(0, R).

Let 0 < s < 1. Observe that

ISt fll o> (0,w) = ST FI° H 222 oy’

Then by Theorem 5.1 we have
ISt f1l Lo (0 ) < C IMF(IS0f19)]] 2

()
L s

(T,w)
for s sufficiently close to 1. Indeed, Theorem, 5.1 is applicable in this case, because
@ satisfies conditions (2.1)—(2.2) and when s is sufﬁciently close to 1, then the
exponent p(to) of the weight w satisfies the conditions f@ < p(ty) <

1
P (fo) ’
required by Theorem 5.1, since the interval in (3.3) is open. Therefore by Propo—
sition 6.2 we get

1S £l e 0wy < (MM 40y

yWw

| = CHMfHLP(~)(F,w) :

It remains to apply Proposition 4.2 to obtain St f|l vy 0,y < €l fllLre) (0,w)-
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IT). The case of finite curve and p constant on some arc. At the next step we
consider the case of finite curve under the additional assumption that there exists
an arc v C I" with |y| > 0 on which p(¢) = const.

First we observe that the singular integral may be considered in the form

1
Srf(t) = — ﬂ dr (6.10)
m ) T—1
r
instead of (1.3), since dr = 7/(s)dv(r) and |7/(s)] = 1 on Carleson curves so that
HfT/HLP<~>(F,w) = ”fHLP(')(F,w)-
The case considered now is reduced to the previous case I) by the change of
variables. Let zg € v be any point of v (different from #¢ if ¢g € ). Without loss
of generality we may assume that zg = 0. Let

T t

so that ', is an infinite curve and p(z) is constant on Iy outside some large circle.
By the change of variables % = w and % = z we get

(Srf)(t) = —z(Sr.9)(2),  z€el. (6.11)

where ¢ (w) = % f (%) The following lemma is valid where the equivalence A ~ B
means that ¢c;A < B < c3A with ¢; and ¢ not depending on A and B.

1 1
T.={teC:t=—, 7€T} and 'pv(t)p<—>, tel,,

Lemma 6.5. The following modular equivalence holds

IE (It = tol” (1) ~ I, (p(t)eb(1)) (6.12)
where p(t) = |tV |t — t3|ﬁ with tf = % eIy and
2 2

Proof. Indeed,
12 (ft — ol £ () = / 1t — to] 2P| £(1) P
N

After the change of variables ¢t — % we get

B () p(t)
1 1 |dt]
4 _ 4+ |8 _ - Z i}
IE(Jt — o] f (1)) /‘t Lo f(t) 2]

Iy
- / T kil PY G A ]
VA 1770 t)l el
Since [to|?P®) ~ const, we obtain
Ity — t|ﬁﬁ(t) 1\ [P

*
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/ (%) — t().

|t — t|5ﬁ(t) _
I (1t = oI5 ) ~ | Sy O ldtl

*

T 0
2 (-t s0) ~ [ (W (e >|> ],
.

Observe that the point z = 0 does not pass through the origin and therefore
|t|(ﬁ D45t~ |t|(ﬁ D+5057 . As a result we arrive at (6.12)—(6.13). O

Now we have

Therefore, from (6.14) we get

Hence

According to (6.2), from(6.12) we also have

£l oo je—to1y ~ 191l L) (0, p(e))

and
1Sr fll oo t—to)8) ~ IST Pl L0 (1, p(t)) (6.15)
where (6.11) was taken into account. Observe also that
1 1 1 1
—m<ﬁ<m = —m<u<m. (6.16)

Obviously, p(t) satisfies conditions (2.1)—(2.2). Since p(¢) is constant at in-
finity, according to part I) and Remark 6.1, the operator St, is bounded in the
space LPC)(T,, p(t)), the required conditions on the weight p(t) being satisfied by
(6.16) and by the fact that 3 +v = 1 — % is automatically in the interval

( p(io) 7 (Oo)) Then the operator Sr is bounded in the space LPO)(T, |t — to|?)

by (6.15).
III). The general case of finite curve. Let 71 C ' and 72 C T be two disjoint
non-empty arcs of I', 377 N 73 = (). According to the part II) the operator wSp%
with w(t) = |t — to|?,to € T, is bounded in the space LP*()(T), if
1) p1(t) satisfies conditions (2.1)—(2.2),
2) ;m (t) is constant at ",
3) —mter <P < i@
and similarly in the space Lpz(')(F), if
1’) pa(t) satisfies conditions (2.1)—(2.2),
2") pa (t) is constant at s,
/
) ~mw <P < @
Aiming to make use of the Riesz interpolation theorem, we observe that the
following statement is valid (see its proof in Appendix 2).

Pz(to
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Lemma 6.6. Given a function p(t) satisfying conditions (2.1)—(2.2), there exist arcs
Y2 C T and 1 C T such that p(t) may be represented in the form

1 0 1-4 1
= + _—, 9 = —, 6.17
TORNTORET0 2 (17
where p;(t), j = 1,2, satisfy the above conditions 1), 2) and 1'), 2'), respectively

and
1 1 19
N T J=1,4
pi(to)  p(to)

so that conditions 3) and 3'( are also satisfied whenever they are satisfied for p(t).

In view of Lemma 6.6, the boundedness of the singular operator in LP)(T")
with given p follows from the Riesz-Thorin interpolation theorem for the spaces
LPO)(T) (proved in [14]).

IV). The general case of infinite curve. Obviously, the after the step III) the general
case of infinite curve, that is, the case where I' is infinite and p is not necessarily
constant outside some circle, is reduced to the case of finite curve by mapping the
infinite curve I' onto a finite curve I'y in the same way as it was done in the step
IT). What is important to note is that thanks to conditions (2.2) and (2.4), the
new exponent p(t),t € I', is log-continuous on the curve T,.

Remark 6.7. We emphasize the following. We had to prove the boundedness of
the singular operator on an infinite curve under additional assumption that p(t)
is constant at infinity, then by the change of variables we could cover the case of a
finite curve with p(t) constant at any arc. After that we could use the interpolation
theorem to get a result on boundedness on a finite curve without the assumption
on p(t) to be constant an an arc. After that it remained to use change of variables
to get the general result for an infinite curve. This order is essential. Indeed, a
seeming possibility to treat first the general case of a finite curve and then cover
the case of infinite curve by the change of variables, is not applicable, because the
initial step in the whole proof was based on Theorem 5.1, which was proved for
infinite curves.

6.4. Proof of the necessity part of Theorem A

The proof of the necessity is in fact the same as in the case of smooth curves,
see [10], p. 153. We dwell on the main points. Let I' be a finite curve. From the
boundedness of Sp in LP()(T, p) it follows that Srf(t) exists almost everywhere for
an arbitrary f € LPO)(T, p). Thus p should be such that f € L'(I") for arbitrary f €
LPO)(T, p). The function f = fpp~! belongs to LY(I") for arbitrary f € LPC)(T, p)
if and only if p=! € L90). Then the function p='(t) = |t — to|~P, to € T', belongs
to L9C)(T) if and only if § < ﬁ. Indeed, by the log-condition we have

|t —to| P10 ~ |t — to|Palto),

On the other hand, since I is a Carleson curve, from |t — to|7%9(*) € L1 we have
B < sy
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The necessity of the condition f@ < B follows from the duality argument.

In a similar way, with slight modifications the case of infinite curve and weight
fixed to infinity, is treated.

7. Proof of Theorem B
We start with the following remark.

Remark 7.1. If the operator Sr is bounded in LP()(T') and 7 is a measurable subset
of T, then the operator S, = y,Sry, is bounded in LP()(v) and [S51lLrer(yy <
1Sl e (ry (We denote the restriction of p(-) onto v by the same symbol p(-)).

7.1. Auxiliary lemmas

Lemma 7.2. For every point t € T' and every p € (0,%diam1") there exists a
function ¢y := @y ,(T) such that

I, (Srgr) > m <@) S ATSY (7.1)

where m > 0 s a constant not depending on t and p.

Proof. Let us fix the point t = ¢y and consider circles centered at ty of the radii
p,2p and 3p and 8 rays with the angle 7, one of them being parallel to the axis of
abscissas. These rays split the circle |z —tg| < p and the annulus 2p < |z —tg| < 3p
into 16 parts. It suffices to treat only those partes which lie in a semiplane, for
example, in the upper semiplane. We denote these parts of the circle |z — t9] < p
by T'y := T 4,,, and the parts of the annulus 2p < |z — to| < 3p by V& = Vi 10,p
respectively, k = 1,2, 3,4, counting them, e.g., counter clockwise. These rays may
be chosen so that there exists a pair kg, jo such that

1 1
kol = glhy(to,p)l  and |yl = gp. (7.2)
Without loss of generality we may take ky = 1.
Let
. . 1, tely
Pto = @tmp(t) - { O, te F\Fl (73)

We have to estimate the integral

p(t)

L(Srr.p) = / / Pin (7) du(T)|  du(t). (7.4)

T—1

Let 7 —t = |7 — t]e’("). We have

L(Sren) Z/ /cosa(T,t) —isina(r,t) v (7) av(t). (75)

[T =1

Yio 1
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Let first jo = 1. We put M7 = (p,0) and My = (2pcos T>2psin %) It is easily seen
that max|a(7,t)| < 31 < §, where 3; is the angle between the vector My M> and
the axis of abscissas. Similarly it can be seen that

if 7el,tey, then T <a(rt)<m— [,
if 7eli,t€~3, then %Sa(ﬁ',t) <7 - (3,
if 7el,t€y, then =f <a(rt)<7m+05

where Jy = arctg2, (3 = arctg% and 4 = arctg 2\/_# Therefore, when 7 € I'y
and t € vj,,J0 = 1,2, 3,4, then
either |cosa(r,t)| > mo > 0, or |sina(r,t)] > mgo > 0.

Moreover, when 7 € I'y and ¢ € 5 or ¢ € 74, then cos (T, t) preserves the sign and
when 7 € T’y and t € 9 or t € ~3, then sin «(7, t) preserves the sign. Consequently,
from (7.5) we get

p(®) p(t)
d d
I,(Srer,) > /max Re/M , Im/w
Tt T—t
Yio I Iy
Hence
p(t) o o
Mo mo\ P+ I
Yio T1 Yio

Then by (7.2)

1,(Srgs) > (:—%)m / (@)M dv(t) > my (Mtp’p)')p Vo -

Yio

Since |y(t, p)| > Ip(¢:) = |T'1] and |v;,| > £, we obtain

mi (e e _ . (Y00) =t
To(Bren) 2 8< p ) Iv(t,p)l|rl|7 < p ) To(eto)

which proves (7.1) with (7.3). O

We denote for brevity

Pty A | fllpey 2 1,
b—, lf ||f||17() < 17
and
— — - lf ||f||17() Z 17
sn=s0={ 2 L HZ)
so that a(f) + B8(f) = p+ + p— and

A5 < L,(F) < N Fledh) (7.6)
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Lemma 7.3. If the operator Sr is bounded in the space Lp(')(F), then for every
t € I' the estimate holds

DA ¢ oy t, (7.7)
p
SIsel”t )\
where dp(t) = pfil (ag‘?;f)‘) — 1), Cr = w> and the function g

and the constant were defined in (7.1).

Proof. Let K = ||St||»¢) for brevity. By the boundedness ||Stf||z»¢) < K| flzre)
and property (7.6) we have

a(Sr f)

L,(Srf) < KOSrD| f|at80D) < goSeh [, ()] 750,

We choose f = ¢; with ¢; from Lemma 7.2 and take (7.1) and (7.3) into account,
which yields

(Spf) t Pt
Ka(SFf) [Ip(@t)] B(SFF—W) > Ip(SFSﬁt) >m <M> Ip ((,Ot)

P
-1
m (1t )"
> — | 22D t,p)|. 7.8
> (0t ) (7.8
We observe that in the first term in this chain of inequalities we have I,,(¢:) <
|v(t, p)| and then (7.8) yields (7.7). O

7.2. Proof of Theorem B itself

Let v = v(t,3p) =T'N{z : |z — t| < 3p}. According to Remark 7.1, the operator
S., is boundeed in LP() (). Then by Lemma 7.3 we obtain

Mi PN < by, )2 < arlyie, >, gen, (7.9)

where Cr is the same as in Lemma 7.3 and

_ 1 (S5 pe) _
‘Wp_w—l( Blee) 1)

with p_(y) = rTnéBp(T) Depending on the values [[.S,¢¢| o)) and [l@ellLee ()

the exponent d,(§) may take only three values 0,d;and —dz, where

5 =P —p-(n) 1 5= e —p-(0) 1
p+(v)  p-(n) -1 p-(v)  p-(n-1
(in fact, according to (7.9) only two values 0 and —d, are possible, since W(i’p) > 1).
Therefore, when p is small, |0,(£)| also has small values:
1
05(8)] < Aw(p,6p), A= (7.10)

(p—(T) = Dp—(T)’
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where w(p, h) is the continuity modulus of the function p, since p(t) is continuous
on the compact set I' and consequently is uniformly continuous.

Let p; < 1 be sufficiently small such that Aw(p,6p1) < e.

From (7.9) we have |y(¢, p)|*~%&) < Cpp and then

1 1 1
(&P < O pTHE < CFFpTiE for p<p (7.11)

(where we took into account that Cr > 1 and p < p; < 1). Thus, (3.5) has been
proved.

Let now p(t) satisfy the log-condition (2.2). For the function

Ye(p) = [y(& p)|>®

by (7.11) we have

[ ve(o)] =16, n 1 (€. pl| < N0 (
In view of (7.10) and (2.3) we then obtain

AA €t , i
T ,0<m1n{p1,—}. (7.12)
1—¢ 111% 6

InCr  |Inp|
—c ' l+e/’

| e (p)] <

In &0
It is easy to see that —4— is bounded for small p, so that |In¢e(p)| < C < .

In 35

Since @ < Cripe(p) by (7.9), we get Mi%”‘ < Cre®, which means that I' is a
Carleson curve.

8. Proof of Theorem C

Theorem C is derived from Theorem A, which is standard. Indeed, it is known that
any function a(t) continuous on I may be approximated in C(T") by a rational func-
tion r(¢), whatsoever Jordan curve I' we have, as is known from the Mergelyan’s
result, see for instance, [6], p. 169. Therefore, since the singular operator S is
bounded in Lﬁ,(')(F) by Theorem A, we obtain that the commutator a5 — Sal is
approximated in the operator norm in 7% (T") by the commutator 7S — SrI which

is finite-dimensional operator, and consequently compact in qu(')(F). Therefore,
aS — Sal is compact.
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9. Appendices
9.1. Appendix 1: Proof of Proposition 4.4
Let f(7) = x+(T)[7| 777, 7 = y(t,7), so that || f],., = 1. For all z € v we have
1 1 1
OMS(E) 2 o [ ) dvtr) = o [ 177 dutr)
ol s (9.1)
for any v = (¢, 7).

Since the function ®(z) = a~*,z € RL, is convex for any a > 0, by Jensen’s
inequality

1 1
m!|f(T)|dV(T) < m/fb(|f(7')|)dy(7—) (9.2)

¢
we obtain

7%1 dp
CMf(z) =]y =pl z €.

Hence Hxv(z)|7|7%||p(_) < C[|M f]|p.y and by the boundedness of the maximal
operator we obtain that ||Xv(z)|7|7% lpy < C, which yields (4.5).

9.2. Appendix 2: Proof of Lemma 6.6

We have to prove the following. Let T be a Carleson curve and a(t) any function
on I, satisfying the log-condition and such that

0<d<a(t)<D<1 on T. (9.3)

Then there exist non-intersecting non-empty arcs v1 and v on I' such that

a(t) = M with  b(t) =0 on 7 and c(t)=0 on v (94)

and b(t) and c(t) are log-continuous on I', satisfy the same condition (9.3) and
b(to) = c(to) = a(to).

We will take v; and 72 so that tg ¢ 77 U~2 and construct the functions b(t)
and c(t) as follows

A ,tem
bt) =4 L) ;b €M\(mUn2) (9.5)
2a(t)— B , tE€y

where A, B € (0,1) are some constants. The link ¢(¢) between the values of b(t)
on y; and on 72 may be constructed for instance in the following way: at each of
the components of the set I'\(v1 U~2) it is introduced as the linear interpolation
between the number A and the values of 2a(t) — B at the endpoints of this compo-
nent, if it does not belong to it, and as the piece-wise linear interpolation between
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A the value a(tp) and the values of 2a(t) — B at the endpoints of this component,
if it contains tg. Then

2a(t) — A ,tem
c(t) =2a(t) —b(t) =< 2a(t)—L(t) ,t €T\(y1U2) (9.6)
B y €Y

Obviously, b(t) and c¢(t) are log-continuous on I'. Checking condition (9.3) for
b(t), c(t), we only have to verify this condition for 2a(t) — A on ;1 and for 2a(t) — B
on 7s. To this end, we have to choose A and B so that

2a(t) —1< A< 2a(t) on 71, 2a(t)—1<B<2a(t) on 73

Let a_(y;) = tienf a(t) and a4 (v;) = supa(t), i = 1,2. It suffices to choose A and
Vi tevyi
B in the intervals

A € (max{0,2a4 (1) — 1}, min{2a_(y1),1}),

B € (max{0,2a4(y2) — 1}, min{2a_(y2),1})
These intervals are non-empty, if a1 (v;) — a—(v;) > 3,i = 1,2. Obviously, 7; may
be chosen sufficiently small so that the last condition is satisfied.
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