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Boundedness in Lebesgue Spaces with
Variable Exponent of the Cauchy Singular
Operator on Carleson Curves
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Abstract. We prove the boundedness of the singular integral operator SΓ in
the spaces Lp(·)(Γ, ρ) with variable exponent p(t) and power weight ρ on
an arbitrary Carleson curve under the assumptions that p(t) satisfy the log-
condition on Γ. The curve Γ may be finite or infinite.

We also prove that if the singular operator is bounded in the space
Lp(·)(Γ), then Γ is necessarily a Carleson curve.
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1. Introduction

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ � ≤ ∞} be a simple rectifiable curve with
arc-length measure ν(t) = s. In the sequel we denote

γ(t, r) := Γ ∩B(t, r), t ∈ Γ, r > 0, (1.1)

where B(t, r) = {z ∈ C : |z − t| < r}. We also denote for brevity

ν(γ(t, r)) = |γ(t, r)|.
Everywhere below we assume that Γ is a Carleson curve. We remind that a

curve is called Carleson curve (regular curve), if there exists a constant c0 > 0 not
depending on t and r, such that

|γ(t, r)| ≤ c0r (1.2)

We consider the singular integral operator

SΓf(t) =
1
πi

∫

Γ

f(τ)
τ − t

dν(τ) (1.3)
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on Carleson curves Γ and prove that the operator S is bounded in weighted spaces

Lp(·)(Γ, w), w(t) =
n∏

k=1

|t−tk|βk , tk ∈ Γ with variable exponent p(t) (see definitions

in Section 2), under the assumption that p(t) satisfies the standard log-condition.
The curve Γ may be finite or infinite. On the latter case we assume also that p(t)
satisfies the log-condition at infinity.

2. Definitions

Let p be a measurable function on Γ such that p : Γ → (1,∞). In what follows we
assume that p satisfies the conditions

1 < p− := ess inf
t∈Γ

p(t) ≤ ess sup
t∈Γ

p(t) =: p+ <∞, (2.1)

|p(t) − p(τ)| ≤ A

ln 1
|t−τ |

, t ∈ Γ, τ ∈ Γ, |t− τ | ≤ 1
2
. (2.2)

Observe that condition (2.1) may be also written in the form

|p(t) − p(τ)| ≤ 2�A
ln 2�

|t−τ |
, t, τ ∈ Γ, (2.3)

where � is the length of the curve.
In the case where Γ is an infinite curve, we also assume that p satisfies the

following condition at infinity

|p(t) − p(τ)| ≤ A∞
ln 1

| 1t − 1
τ |
,

∣∣∣∣1t −
1
τ

∣∣∣∣ ≤ 1
2
, |t| ≥ L, |τ | ≥ L (2.4)

for some L > 0.
By P = P(Γ) we denote the class of exponents p satisfying condition (2.1)

and by P = P(Γ) the class of those p for which the maximal operatorM is bounded
in the space Lp(·)(Γ).

The generalized Lebesgue space with variable exponent is defined via the
modular

Ip
Γ (f) :=

∫

Γ

|f(t)|p(t) dν(τ)

by the norm

‖f‖p(·) = inf
{
λ > 0 : Ip

Γ

(
f

λ

)
≤ 1

}
.

Observe that
‖f‖p(·) = ‖fa‖ 1

a
p(·)

a

(2.5)

for any 0 < a ≤ inf p(t).
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By Lp(·)(Γ, w) we denote the weighted Banach space of all measurable func-
tions f : Γ → C such that

‖f‖Lp(·)(Γ,w) := ‖wf‖p(·) = inf


λ > 0 :

∫

Γ

∣∣∣∣w(t)f(t)
λ

∣∣∣∣
p(t)

dν(t) ≤ 1


 <∞.

(2.6)
We denote p′(t) = p(t)

p(t)−1 .

From the Hölder inequality for the Lp(·)-spaces∣∣∣∣
∫

Γ

u(τ)v(τ) dν(τ)
∣∣∣∣ ≤ k‖u‖Lp(·)(Γ)‖v‖Lp′(·)(Γ),

1
p(τ)

+
1

p′(τ)
≡ 1,

where k = 1 + 1
p− + 1

(p′)− = 1 + 1
p− − 1

p+
< 2, it follows that

∣∣∣∣
∫

Γ

u(t)v(t) dν(t)
∣∣∣∣ ≤ k‖u‖Lp′(Γ, 1

w )‖v‖Lp(Γ,w), (2.7)

and for the conjugate space
[
Lp(·)(Γ, w)

]∗
we have[

Lp(·)(Γ, w)
]∗

= Lp′(·) (Γ, 1/w) (2.8)

which is an immediate consequence of the fact that
[
Lp(·)(Γ)

]∗
= Lp′(·) (Γ) under

conditions (2.1), see [13], [16].
The following value

1
pγ

=
1
|γ|

∫

γ

dν(t)
p(t)

, γ ⊂ Γ (2.9)

will be used, introduced for balls in Rn by L. Diening [4]. Here γ = γ(t, r),
t ∈ Γ, r > 0, is any portion of the curve Γ.

By χγ(τ) =
{

1, τ ∈ γ
0, τ ∈ Γ\γ we denote the characteristic function of a por-

tion γ of the curve Γ.

3. The main statements

In the sequel we consider the power weights of the form

w(t) =
n∏

k=1

|t− tk|βk , tk ∈ Γ (3.1)

in the case of finite curve and the weights

w(t) = |t− z0|β
n∏

k=1

|t− tk|βk , tk ∈ Γ, z0 /∈ Γ (3.2)

in the case of infinite curve.
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Theorem A. Let

i) Γ be a simple Carleson curve;
ii) p satisfy conditions (2.1), (2.2) and also (2.4) in the case Γ is an infinite

curve.

Then the singular operator SΓ is bounded in the space Lp(·)(Γ, w) with weight (3.1)
or (3.2), if and only if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, . . . , n, (3.3)

and also

− 1
p∞

< β +
n∑

k=1

βk <
1

p′(∞)
(3.4)

in the case Γ is infinite.

Remark 3.1. From (2.4) it follows that there exists p∞ = lim |t|→∞
t∈Γ

p(t) and

|p(t) − p∞| ≤ A∞
ln|t| , |t| ≥ max{L, 2}.

For constant p Theorem A is due to G. David [3] in the non-weighted case,
for the weighted case with constant p see [2]. For earlier results on the subject
we refer to [9], Theorem 2.2. The statement of Theorem A for variable p(·) was
proved in [11] in the case of finite Lyapunov curves or curves of bounded rotation
without cusps.

Theorem B. Let Γ be a finite rectifiable curve. Let p : Γ → [1,∞) be a continuous
function. If the singular operator SΓ is bounded in the space Lp(·)(Γ), then the
curve Γ has the property

sup
t∈Γ
r>0

|γ(t, r)|
r1−ε

<∞ (3.5)

for every ε > 0. If p(t) satisfies the log-condition (2.2), then property (3.5) holds
with ε = 0, that is, Γ is a Carleson curve.

Observe that Theorem B for the case of constant p was proved in [15].

Theorem C. Let assumptions i)–ii) of Theorem A be satisfied, and let a ∈ C(Γ).
In the case where Γ is an infinite curve starting and ending at infinity, we assume
that a ∈ C(Γ̇), where Γ̇ is the compactification of Γ by a single infinite point, that
is, a(t(−∞)) = a(t(+∞)). Then under conditions (3.3)–(3.4), the operator

(SΓaI − aSΓ)f =
1
πi

∫

Γ

a(τ) − a(t)
τ − t

f(τ)dν(τ)

is compact in the space Lp(·)(Γ, w) with weight (3.1)–(3.2).

Theorems A, B and C are proved in Sections 6, 7 and 8, respectively.
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4. Preliminaries

We base ourselves on the following result for maximal operators on Carleson curves.
Let

Mf(t) = sup
r>0

1
ν{γ(t, r)}

∫

γ(t,r)

|f(τ)|dν(τ) (4.1)

be the maximal operator on functions defined on a curve Γ in the complex plane.
The following statements are valid.

Proposition 4.1. Let
i) Γ be a simple Carleson curve of a finite length;
ii) p satisfy conditions (2.1)–(2.2).

Then the maximal operator M is bounded in the space Lp(·)(Γ, w) with weight (3.1),
if and only if

− 1
p(tk)

< βk <
1

p′(tk)
, k = 1, . . . , n. (4.2)

Proposition 4.2. Let
i) Γ be an infinite simple Carleson curve;
ii) p satisfy conditions (2.1)–(2.2) and let there exist a circle B(0, R) such that

p(t) ≡ p∞ = const for t ∈ Γ\(Γ ∩B(0, R)).
Then the maximal operator M is bounded in the space Lp(·)(Γ, w), with weight
(3.2), if and only if

− 1
p(tk)

< βk <
1

p′(tk)
and − 1

p∞
< β +

n∑
k=1

βk <
1
p′∞

. (4.3)

The Euclidean space versions of Propositions 4.1 and 4.2 for variable expo-
nents were proved in [11] and [8], respectively. The proof of Propositions 4.1 and
4.2 for Carleson curves follows similar ideas, but needs some modifications. The
proofs of Propositions 4.1 and 4.2 for the case of Carleson curves will be given in
another publication.

We will also make use of the following Kolmogorov theorem, see [12], [3], [7].

Theorem 4.3. Let Γ be a Carleson curve of a finite length. Then for any s ∈ (0, 1)

 1
|Γ|

∫

Γ

|SΓf(t)|sdν(t)



1
s

≤ c
1
|Γ|

∫

Γ

|f(t)|dν(t). (4.4)

Theorem 4.3 is a consequence of the fact that the singular operator on Car-
leson curves has weak (1,1)-type:

ν {t ∈ Γ : |SΓf(t)| > λ} ≤ c

λ

∫

Γ

|f(t)|dν(t)

the latter being proved in [3].
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Proposition 4.4. Let p(t) satisfy condition (2.1) and the maximal operator M be
bounded in Lp(·)(Γ). Then there exists a constant C > 0 such that

‖χγ‖p(·) ≤ C|γ| 1
pγ for all γ = γ(t, r) ⊂ Γ (4.5)

where pγ is the mean value (2.9).

Proposition 4.4 was proved in [4], Lemma 3.4, for balls in the Euclidean
space and remains the same for arcs γ on Carleson curves. For completeness of
presentation we expose this proof in the appendix.

5. Auxiliary statements

Let

M#f(t) = sup
r>0

1
|γ(t, r)|

∫
γ(t,r)

|f(τ) − fγ(t,r)| dν(τ), t ∈ Γ (5.1)

where fγ(t,r) = 1
|γ(t,r)|

∫
γ(t,r)

f(τ) dν(τ), be the sharp maximal function on the
curve Γ.

Theorem 5.1. Let Γ be an infinite Carleson curve. Let p(t) satisfy conditions (2.1)–
(2.2) and p(t) = p∞ outside some circle B(t0, R). Let w(t) = |t − t0|β, t0 ∈ C,
where

− 1
p(t0)

< β <
1

p′(t0)
and − 1

p∞
< β <

1
p′∞

if t0 ∈ Γ

and − 1
p∞ < β < 1

p′∞
if t0 /∈ Γ. Then for f ∈ Lp(·)(Γ, w)

‖f‖Lp(·)(Γ,w) ≤ c
∥∥M#f

∥∥
Lp(·)(Γ,w)

. (5.2)

Proof. As is known, ‖f‖Lp(·) ∼ sup
‖g‖

Lp′(·)≤1

∣∣∣∣
∫
Γ

f(t)g(t) dν(t)
∣∣∣∣ , see [13], Theorem 2.3

or [16], Theorem 3.5. Therefore,

‖fw‖Lp(·) ≤ c sup
‖g‖

Lp′(·)≤1

∣∣∣∣
∫

Γ

f(t)g(t)w(t) dν(t)
∣∣∣∣ .

We make use of the inequality∫

Γ

|f(t)g(t)| dν(t) ≤
∫

Γ

M#f(t)Mg(t) dν(t) (5.3)

where f ∈ Lp(·)(Γ), g ∈ Lp′(·)(Γ), which is known for the Euclidean space, see [5],
Lemma 3.5, and is similarly proved for infinite Carleson curves. We obtain

‖fw‖Lp(·) ≤ c sup
‖g‖

Lp′(·)≤1

∣∣∣∣
∫

Γ

w(t)M#f(t)[w(t)]−1M(gw) dν(t)
∣∣∣∣
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and then

‖fw‖Lp(·) ≤ c sup
‖g‖

Lp′(·)≤1

‖wM#f‖Lp(·)‖w−1M(gw)‖Lp′(·)

by the Hölder inequality. Since − 1
p′(t0) < −β < 1

p(t0) , we may apply Proposition

4.2 for the space Lp′(·) with β replaced by −β and conclude that

‖fw‖Lp(·) ≤ C sup
‖g‖

Lp′(·)≤1

‖wM#f‖Lp(·)‖g‖Lp′(·) ≤ C‖wM#f‖Lp(·)

which proves (5.2). �

6. Proof of Theorem A

6.1. General remark

Remark 6.1. It suffices to prove Theorem A for a single weight |t − t0|β where
t0 ∈ Γ in the case Γ is finite and t0 may belong or not belong to Γ when Γ is
infinite.

Indeed, in the case of a finite curve let Γ =
n⋃

k=1

Γk where Γk contains the

point tk in its interior and does not contain tj , j �= k in its closure. Then

‖f‖
Lp(·)

(
Γ,

n∏
k=1

|t−tk|βk

) ∼
∑
k=1

‖f‖Lp(·)(Γk,|t−tk|βk) (6.1)

whenever 1 ≤ p− ≤ p+ < ∞. This equivalence follows from the easily checked
modular equivalence

Ip
Γ

(
f(t)

n∏
k=1

|t− tk|βk

)
∼
∑
k=1

Ip
Γk

(
f(t)|t− tk|βk

)
,

since
c1 ≤ ‖f‖p(·) ≤ c2 =⇒ c3 ≤ Ip

Γ(f) ≤ c4,

C1 ≤ Ip
Γ(f) ≤ C2 =⇒ C3 ≤ ‖f‖p(·) ≤ C4

(6.2)

with c3 = min
(
c
p−
1 , c

p+
1

)
, c4 = max

(
c
p−
2 , c

p+
2

)
, C3 = min

(
C

1
p−
1 , C

1
p+
1

)
and C4 =

max
(
C

1
p−
2 , C

1
p+
2

)
.

Similarly, in the case of an infinite curve

‖f‖
Lp(·)

(
Γ,|t−z0|β

n∏
k=1

|t−tk|βk

) ∼ ‖f‖Lp(·)(Γ∞,|t−z0|β) +
∑
k=1

‖f‖Lp(·)(Γk,|t−tk|βk)

(6.3)
where Γ∞ is a portion of the curve outside some large circle, so that Γ∞ does not
contain the points tk, k = 1, . . . , n.



174 V. Kokilashvili, V. Paatashvili and S. Samko

Then, because of (6.1) and (6.3), the statement of Remark 6.1 is obtained

by introduction of the standard partition of unity 1 =
n∑

k=1

ak(t), where ak(t) are

smooth functions equal to 1 in a neighborhood γ(tk, ε) of the point tk and equal to
0 outside its neighborhood γ(tk, 2ε) (and similarly in a neighborhood of infinity in
the case Γ is infinite), so that ak(t)|t− tj |±βj ≡ 0 in a neighborhood of the point
tk, if k �= j.

6.2. Auxiliary results

We start with proving the following statement known for singular integrals in the
Euclidean space (T. Alvarez and C. Pérez, [1]).

Proposition 6.2. Let Γ be a simple Carleson curve. Then the following pointwise
estimate is valid

M# (|SΓf |s) (t) ≤ c[Mf(t)]s, 0 < s < 1, (6.4)

where the constant c > 0 may depend on Γ and s, but does not depend on t ∈ Γ
and f .

To prove Proposition 6.2, we need – following ideas in [1] – the following
technical lemma.

Lemma 6.3. Let Γ be a simple Carleson curve, z0 ∈ Γ and γr = γ(z0, r) and

Hr,z0(t) =
1

|γr|2
∫

γr

∫

γr

∣∣∣∣ 1
z − t

− 1
τ − t

∣∣∣∣ dν(z)dν(τ). (6.5)

Then for any locally integrable function f the pointwise estimate holds

sup
r>0

∫

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) ≤ CMf(z0) (6.6)

where C > 0 does not depend on f and z0.

Proof. We have

Hr,z0(t) =
1

|γr|2
∫

γr

∫

γr

|τ − z|
|z − t| · |τ − t|dν(z)dν(τ).

For |t− z0| > 2r we have

|z − t| ≥ |t− z0| − |z − z0| ≥ |t− z0| − r ≥ 1
2
|t− z0|

and similarly |τ − t| ≥ 1
2 |t− z0| so that

Hr,z0(t) ≤
Cr

|t− z0|2
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where the constant C > 0 depends only on the length of the curve Γ. Then

sup
r>0

∫

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) ≤ c sup
r>0

m∑
k=0

∫

2kr<|t−z0|<2k+1r

r|f(t)|
|t− z0|2 dν(t)

with m = m(r). Hence

sup
r>0

∫

t∈Γ:|t−z0|>2r

|f(t)|Hr,z0(t)dν(t) ≤ 2c sup
r>0

m∑
k=0

1
2k

1
2k+1r

∫

|t−z0|<2k+1r

|f(t)|dν(t)

≤ 2cMf(z0)
m∑

k=0

1
2k

≤ c1Mf(z0). �

We will also need the following technical lemma

Lemma 6.4. Let f be an integrable function on Γ, fγ = 1
|γ|

∫
γ

f(τ)dν(τ). Then

1
|γ|

∫

γ

|f(τ) − fγ |dν(τ) ≤ 2
|γ|

∫

γ

|f(τ) − C|dν(τ) (6.7)

for any constant C on the right-hand side.

Proof. The proof is well known:

1
|γ|

∫

γ

|f(τ) − fγ |dν(τ) ≤ 1
|γ|2

∫

γ

∫

γ

|f(τ) − f(σ)|dν(τ)dν(σ)

≤ 1
|γ|2

∫

γ

∫

γ

(|f(τ) − C| + |C − f(σ)|)dν(τ)dν(σ)

=
2
|γ|

∫

γ

|f(τ) − C|dν(τ). �

Proof of Proposition 6.2. To prove estimate (6.4), according to Lemma 6.4 it suf-
fices to show that for any locally integrable function f and any 0 < s < 1 there
exists a positive constant A such that


 1
|γ|

∫

γ

∣∣∣∣ |SΓf(ξ)|s −As

∣∣∣∣dν(ξ)



1
s

≤ CMf(z0), γ = γ(z0, r) (6.8)

for almost all z0 ∈ Γ, where C > 0 does not depend on f and z0. We set f = f1+f2,
where f1 = f · χγ(z0,2r) and f2 = f · χΓ\γ(z0,2r). We take

A = (SΓf2)γ =
1
|γ|

∫

γ

|SΓf2(ξ)| dν(ξ).
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Then, taking into account that ||a|s − |bs|| ≤ |a− b|s, for 0 < s < 1, we have

 1
|γ|

∫

γ

∣∣∣∣ |SΓf(ξ)|s −As

∣∣∣∣dν(ξ)



1
s

≤ c


 1
|γ|

∫

γ

∣∣∣∣SΓf1(ξ)
∣∣∣∣
s

dν(ξ)




1
s

+

+c


 1
|γ|

∫

γ

∣∣∣∣ |SΓf2(ξ)| − A

∣∣∣∣
s

dν(ξ)




1
s

=: c(I1 + I2).

For I1 by (4.4) we obtain

I1 ≤ 1
|γ|

∫

γ

|f1(ξ)|dν(t) ≤ 1
|γ|

∫

γ

|f(t)|dν(ξ) ≤Mf(z0). (6.9)

For I2, by Jensen inequality and Fubini theorem after easy estimations we get

I2 ≤ 1
|γ|

∫

γ

∣∣∣∣∣(SΓf2)(ξ)− 1
|γ|

∫

γ

(SΓf2)(τ)dν(τ)

∣∣∣∣∣dν(ξ) ≤
∫

Γ\γ(z0,2r)

|f(t)|Hr,z0(t)dν(t),

where Hr,z0(t) is the function defined in (6.5). Therefore, by Lemma 6.3, I2 ≤
CMf(z0) which completes the proof. �

6.3. Proof of Theorem A itself. Sufficiency part

According to Remark 6.1, we consider the case of a single weight |t − t0|β where
t0 may be not belonging to Γ in case Γ is infinite.

I). The case of infinite curve and p constant at infinity. First we consider the
case where Γ is an infinite curve and we additionally suppose at this step that
p(t) ≡ const = p∞ outside some large ball B(0, R).

Let 0 < s < 1. Observe that

‖SΓf‖Lp(·)(Γ,w) = ‖|SΓf |s‖
1
s

L
p(·)

s (Γ,w)
.

Then by Theorem 5.1 we have

‖SΓf‖Lp(·)(Γ,w) ≤ C
∥∥M#(|SΓf |s)

∥∥ 1
s

L
p(·)

s (Γ,w)

for s sufficiently close to 1. Indeed, Theorem, 5.1 is applicable in this case, because
p(t)

s satisfies conditions (2.1)–(2.2) and when s is sufficiently close to 1, then the
exponent µ(t0) of the weight w satisfies the conditions − 1

p(t0)
s

< µ(t0) < 1
p′(t0)

s

,

required by Theorem 5.1, since the interval in (3.3) is open. Therefore, by Propo-
sition 6.2 we get

‖SΓf‖Lp(·)(Γ,w) ≤ c ‖(Mf)s‖ 1
s

L
p(·)

s (Γ,w)
= c ‖Mf‖Lp(·)(Γ,w) .

It remains to apply Proposition 4.2 to obtain ‖SΓf‖Lp(·)(Γ,w) ≤ c‖f‖Lp(·)(Γ,w).
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II). The case of finite curve and p constant on some arc. At the next step we
consider the case of finite curve under the additional assumption that there exists
an arc γ ⊂ Γ with |γ| > 0 on which p(t) ≡ const.

First we observe that the singular integral may be considered in the form

SΓf(t) =
1
πi

∫

Γ

f(τ)
τ − t

dτ (6.10)

instead of (1.3), since dτ = τ ′(s)dν(τ) and |τ ′(s)| = 1 on Carleson curves so that
‖fτ ′‖Lp(·)(Γ,w) = ‖f‖Lp(·)(Γ,w).

The case considered now is reduced to the previous case I) by the change of
variables. Let z0 ∈ γ be any point of γ (different from t0 if t0 ∈ γ). Without loss
of generality we may assume that z0 = 0. Let

Γ∗ = {t ∈ C : t =
1
τ
, τ ∈ Γ} and p̃(t) = p

(
1
t

)
, t ∈ Γ∗,

so that Γ∗ is an infinite curve and p̃(z) is constant on Γ∗ outside some large circle.
By the change of variables 1

τ = w and 1
t = z we get

(SΓf)(t) = −z(SΓ∗ψ)(z), z ∈ Γ∗ (6.11)

where ψ(w) = 1
wf

(
1
w

)
. The following lemma is valid where the equivalence A ∼ B

means that c1A ≤ B ≤ c2A with c1 and c2 not depending on A and B.

Lemma 6.5. The following modular equivalence holds

Ip
Γ

(|t− t0|βf(t)
) ∼ I p̃

Γ∗ (ρ(t)ψ(t)) (6.12)

where ρ(t) = |t|ν |t− t∗0|β with t∗0 = 1
t0

∈ Γ∗ and

ν = 1 − β − 2
p̃(∞)

= 1 − β − 2
p(0)

. (6.13)

Proof. Indeed,

Ip
Γ

(|t− t0|βf(t)
)

=
∫

Γ

|t− t0|βp(t)|f(t)|p(t)|dt|.

After the change of variables t→ 1
t we get

Ip
Γ

(|t− t0|βf(t)
)

=
∫

Γ∗

∣∣∣∣1t − t0

∣∣∣∣
βp̃(t) ∣∣∣∣f

(
1
t

)∣∣∣∣
p̃(t) |dt|

|t2|

=
∫

Γ∗

|t0|βp̃(t) |t∗0 − t|βp̃(t)

|t|βp̃(t)

∣∣∣∣f
(

1
t

)∣∣∣∣
p̃(t) |dt|

|t2| .

Since |t0|βp̃(t) ∼ const, we obtain

Ip
Γ

(|t− t0|βf(t)
) ∼

∫

Γ∗

|t∗0 − t|βp̃(t)

|t|βp̃(t)+2

∣∣∣∣f
(

1
t

)∣∣∣∣
p̃(t)

|dt|. (6.14)
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Now we have

f

(
1
t

)
= tψ(t).

Therefore, from (6.14) we get

Ip
Γ

(|t− t0|βf(t)
) ∼

∫

Γ∗

|t∗0 − t|βp̃(t)

|t|βp̃(t)+2
|tψ(t)|p̃(t) |dt|.

Hence

Ip
Γ

(|t− t0|βf(t)
) ∼

∫

Γ∗

(
|t∗0 − t|β

|t|(β−1)+ 2
p̃(t)

|tψ(t)|
)p̃(t)

|dt|.

Observe that the point z = 0 does not pass through the origin and therefore
|t|(β−1)+ 2

p̃(t) ∼ |t|(β−1)+ 2
p̃(∞) . As a result we arrive at (6.12)–(6.13). �

According to (6.2), from(6.12) we also have

‖f‖Lp(·)(Γ,|t−t0|β)) ∼ ‖ψ‖Lp̃(·)(Γ∗,ρ(t))

and
‖SΓf‖Lp(·)(Γ,|t−t0|β) ∼ ‖SΓ∗ψ‖Lp̃(·)(Γ∗,ρ(t)) (6.15)

where (6.11) was taken into account. Observe also that

− 1
p(t0)

< β <
1

p′(t0)
⇐⇒ − 1

p̃(t∗0)
< ν <

1
p̃′(t∗0)

. (6.16)

Obviously, p̃(t) satisfies conditions (2.1)–(2.2). Since p̃(t) is constant at in-
finity, according to part I) and Remark 6.1, the operator SΓ∗ is bounded in the
space Lp̃(·)(Γ∗, ρ(t)), the required conditions on the weight ρ(t) being satisfied by
(6.16) and by the fact that β + ν = 1 − 2

p̃(∞) is automatically in the interval(
− 1

p̃(∞) ,
1

p̃′(∞)

)
. Then the operator SΓ is bounded in the space Lp(·)(Γ, |t − t0|β)

by (6.15).

III). The general case of finite curve. Let γ1 ⊂ Γ and γ2 ⊂ Γ be two disjoint
non-empty arcs of Γ, γ1 ∩ γ2 = ∅. According to the part II) the operator wSΓ

1
w

with w(t) = |t− t0|β , t0 ∈ Γ, is bounded in the space Lp1(·)(Γ), if
1) p1(t) satisfies conditions (2.1)–(2.2),
2) p1(t) is constant at γ1,
3) − 1

p1(t0) < β < 1
p′
1(t0)

and similarly in the space Lp2(·)(Γ), if
1′) p2(t) satisfies conditions (2.1)–(2.2),
2′) p2(t) is constant at γ2,
3′) − 1

p2(t0) < β < 1
p′
2(t0)

Aiming to make use of the Riesz interpolation theorem, we observe that the
following statement is valid (see its proof in Appendix 2).
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Lemma 6.6. Given a function p(t) satisfying conditions (2.1)–(2.2), there exist arcs
γ2 ⊂ Γ and γ1 ⊂ Γ such that p(t) may be represented in the form

1
p(t)

=
θ

p1(t)
+

1 − θ

p2(t)
, θ =

1
2
, (6.17)

where pj(t), j = 1, 2, satisfy the above conditions 1), 2) and 1′), 2′), respectively
and

1
pj(t0)

=
1

p(t0)
, j = 1, 2,

so that conditions 3) and 3′( are also satisfied whenever they are satisfied for p(t).

In view of Lemma 6.6, the boundedness of the singular operator in Lp(·)(Γ)
with given p follows from the Riesz-Thorin interpolation theorem for the spaces
Lp(·)(Γ) (proved in [14]).

IV). The general case of infinite curve. Obviously, the after the step III) the general
case of infinite curve, that is, the case where Γ is infinite and p is not necessarily
constant outside some circle, is reduced to the case of finite curve by mapping the
infinite curve Γ onto a finite curve Γ∗ in the same way as it was done in the step
II). What is important to note is that thanks to conditions (2.2) and (2.4), the
new exponent p̃(t), t ∈ Γ∗ is log-continuous on the curve Γ∗.

Remark 6.7. We emphasize the following. We had to prove the boundedness of
the singular operator on an infinite curve under additional assumption that p(t)
is constant at infinity, then by the change of variables we could cover the case of a
finite curve with p(t) constant at any arc. After that we could use the interpolation
theorem to get a result on boundedness on a finite curve without the assumption
on p(t) to be constant an an arc. After that it remained to use change of variables
to get the general result for an infinite curve. This order is essential. Indeed, a
seeming possibility to treat first the general case of a finite curve and then cover
the case of infinite curve by the change of variables, is not applicable, because the
initial step in the whole proof was based on Theorem 5.1, which was proved for
infinite curves.

6.4. Proof of the necessity part of Theorem A

The proof of the necessity is in fact the same as in the case of smooth curves,
see [10], p. 153. We dwell on the main points. Let Γ be a finite curve. From the
boundedness of SΓ in Lp(·)(Γ, ρ) it follows that SΓf(t) exists almost everywhere for
an arbitrary f ∈ Lp(·)(Γ, ρ). Thus ρ should be such that f ∈ L1(Γ) for arbitrary f ∈
Lp(·)(Γ, ρ). The function f = fρρ−1 belongs to L1(Γ) for arbitrary f ∈ Lp(·)(Γ, ρ)
if and only if ρ−1 ∈ Lq(·). Then the function ρ−1(t) = |t − t0|−β, t0 ∈ Γ, belongs
to Lq(·)(Γ) if and only if β < 1

q(t0) . Indeed, by the log-condition we have

|t− t0|−βq(t) ∼ |t− t0|−βq(t0).

On the other hand, since Γ is a Carleson curve, from |t− t0|−βq(t0) ∈ L1 we have
β < 1

q(t0) .
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The necessity of the condition − 1
p(s0) < β follows from the duality argument.

In a similar way, with slight modifications the case of infinite curve and weight
fixed to infinity, is treated.

7. Proof of Theorem B

We start with the following remark.

Remark 7.1. If the operator SΓ is bounded in Lp(·)(Γ) and γ is a measurable subset
of Γ, then the operator Sγ = χγSΓχγ is bounded in Lp(·)(γ) and ‖Sγ‖Lp(·)(γ) ≤
‖SΓ‖Lp(·)(Γ) (we denote the restriction of p(·) onto γ by the same symbol p(·)).
7.1. Auxiliary lemmas

Lemma 7.2. For every point t ∈ Γ and every ρ ∈ (
0, 1

6 diam Γ
)

there exists a
function ϕt := ϕt,ρ(τ) such that

Ip (SΓϕt) ≥ m

( |γ(t, ρ|)
ρ

)p−−1

Ip (ϕt) , (7.1)

where m > 0 is a constant not depending on t and ρ.

Proof. Let us fix the point t = t0 and consider circles centered at t0 of the radii
ρ, 2ρ and 3ρ and 8 rays with the angle π

4 , one of them being parallel to the axis of
abscissas. These rays split the circle |z− t0| < ρ and the annulus 2ρ < |z− t0| < 3ρ
into 16 parts. It suffices to treat only those partes which lie in a semiplane, for
example, in the upper semiplane. We denote these parts of the circle |z − t0| < ρ
by Γk := Γk,t0,ρ and the parts of the annulus 2ρ < |z − t0| < 3ρ by γk := γk,t0,ρ,
respectively, k = 1, 2, 3, 4, counting them, e.g., counter clockwise. These rays may
be chosen so that there exists a pair k0, j0 such that

|Γk0 | ≥
1
8
|γ(t0, ρ)| and |γj0 | ≥

1
8
ρ. (7.2)

Without loss of generality we may take k0 = 1.
Let

ϕt0 = ϕt0,ρ(t) =
{

1, t ∈ Γ1

0, t ∈ Γ\Γ1
(7.3)

We have to estimate the integral

Ip(SΓϕt0,ρ) =
∫

Γ

∣∣∣∣∣∣
∫

Γ

ϕt0(τ)
τ − t

dν(τ)

∣∣∣∣∣∣
p(t)

dν(t). (7.4)

Let τ − t = |τ − t|eiα(τ,t). We have

Ip(SΓϕt0) ≥
∫

γj0

∣∣∣∣∣∣
∫

Γ1

cosα(τ, t) − i sinα(τ, t)
|τ − t| dν(τ)

∣∣∣∣∣∣
p(t)

dν(t). (7.5)
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Let first j0 = 1. We put M1 = (ρ, 0) and M2 =
(
2ρ cos π

4 , 2ρ sin π
4

)
. It is easily seen

that max |α(τ, t)| ≤ β1 <
π
2 , where β1 is the angle between the vector M2M2 and

the axis of abscissas. Similarly it can be seen that

if τ ∈ Γ1, t ∈ γ2, then π
4 ≤ α(τ, t) ≤ π − β2,

if τ ∈ Γ1, t ∈ γ3, then π
2 ≤ α(τ, t) ≤ π − β3,

if τ ∈ Γ1, t ∈ γ4, then 3π
4 ≤ α(τ, t) ≤ π + β4

where β2 = arctg 2, β3 = arctg 1
3 and β4 = arctg 2

√
2−1
7 . Therefore, when τ ∈ Γ1

and t ∈ γj0 , j0 = 1, 2, 3, 4, then

either | cosα(τ, t)| ≥ m0 > 0, or | sinα(τ, t)| ≥ m0 > 0.

Moreover, when τ ∈ Γ1 and t ∈ γ2 or t ∈ γ4, then cosα(τ, t) preserves the sign and
when τ ∈ Γ1 and t ∈ γ2 or t ∈ γ3, then sinα(τ, t) preserves the sign. Consequently,
from (7.5) we get

Ip(SΓϕt0) ≥
∫

γj0

max



∣∣∣∣∣∣Re

∫

Γ1

ϕt0(τ)dν(τ)
τ − t

∣∣∣∣∣∣
p(t)

,

∣∣∣∣∣∣Im
∫

Γ1

ϕt0(τ)dν(τ)
τ − t

∣∣∣∣∣∣
p(t)


 .

Hence

Ip(SΓϕt0) ≥
∫

γj0

∣∣∣∣∣∣
∫

Γ1

m0

3ρ
dν(τ)

∣∣∣∣∣∣
p(t)

dν(t) ≥
(m0

3

)p+
∫

γj0

( |Γ1|
ρ

)p(t)

dν(t).

Then by (7.2)

Ip(SΓϕt0) ≥
( m0

3 · 8
)p+

∫

γj0

( |γ(t, ρ)|
ρ

)p(t)

dν(t) ≥ m1

( |γ(t, ρ)|
ρ

)p−

|γj0 |.

Since |γ(t, ρ)| ≥ Ip(ϕt) = |Γ1| and |γj0 | ≥ ρ
8 , we obtain

Ip(SΓϕt0) ≥
m1

8

( |γ(t, ρ)|
ρ

)p− ρ

|γ(t, ρ)| |Γ1| = m

(
ν(γ(t, ρ))

ρ

)p−−1

Ip(ϕt0 )

which proves (7.1) with (7.3). �

We denote for brevity

α(f) = αγ(f) =
{
p+, if ‖f‖p(·) ≥ 1,
p−, if ‖f‖p(·) < 1,

and

β(f) = βγ(f) =
{
p−, if ‖f‖p(·) ≥ 1,
p+, if ‖f‖p(·) < 1,

so that α(f) + β(f) ≡ p+ + p− and

‖f‖β(f)
p(·) ≤ Ip(f) ≤ ‖f‖α(f)

p(·) . (7.6)



182 V. Kokilashvili, V. Paatashvili and S. Samko

Lemma 7.3. If the operator SΓ is bounded in the space Lp(·)(Γ), then for every
t ∈ Γ the estimate holds

|γ(t, ρ)|
ρ

≤ cΓ|γ(t, ρ)|δΓ(t) (7.7)

where δΓ(t) = 1
p−−1

(
α(SΓϕt)

β(ϕt)
− 1

)
, CΓ =

(
8‖SΓ‖p+

Lp(·)(Γ)

m

) 1
p−−1

and the function ϕt

and the constant were defined in (7.1).

Proof. Let K = ‖SΓ‖Lp(·) for brevity. By the boundedness ‖SΓf‖Lp(·) ≤ K‖f‖Lp(·)

and property (7.6) we have

Ip(SΓf) ≤ Kα(SΓf)‖f‖α(SΓf)

Lp(·) ≤ Kα(SΓf)[Ip(f)]
α(SΓf)

β(f) .

We choose f = ϕt with ϕt from Lemma 7.2 and take (7.1) and (7.3) into account,
which yields

Kα(SΓf)[Ip(ϕt)]
α(SΓf)

β(SΓϕt) ≥ Ip(SΓϕt) ≥ m

( |γ(t, ρ)|
ρ

)p−−1

Ip (ϕt)

≥ m

8

( |γ(t, ρ)|
ρ

)p−−1

|γ(t, ρ)|. (7.8)

We observe that in the first term in this chain of inequalities we have Ip(ϕt) ≤
|γ(t, ρ)| and then (7.8) yields (7.7). �

7.2. Proof of Theorem B itself

Let γ = γ(t, 3ρ) = Γ ∩ {z : |z − t| < 3ρ}. According to Remark 7.1, the operator
Sγ is boundeed in Lp(·)(γ). Then by Lemma 7.3 we obtain

|γ(ξ, ρ)|
ρ

≤ cγ |γ(ξ, ρ)|δγ(ξ) ≤ cΓ|γ(ξ, ρ)|δγ (ξ), ξ ∈ γ, (7.9)

where CΓ is the same as in Lemma 7.3 and

δγ(ξ) =
1

p−(γ) − 1

(
α(Sγϕξ)
β(ϕξ)

− 1
)

with p−(γ) = min
τ∈γ

p(τ). Depending on the values ‖Sγϕξ‖Lp(·)(γ) and ‖ϕξ‖Lp(·)(γ),

the exponent δγ(ξ) may take only three values 0, δ1and −δ2, where

δ1 =
p+(γ) − p−(γ)

p+(γ)
1

p−(γ) − 1
, δ2 =

p+(γ) − p−(γ)
p−(γ)

1
p−(γ) − 1

(in fact, according to (7.9) only two values 0 and −δ2 are possible, since γ(ξ,ρ)
ρ ≥ 1).

Therefore, when ρ is small, |δγ(ξ)| also has small values:

|δγ(ξ)| ≤ λω(p, 6ρ), λ =
1

(p−(Γ) − 1)p−(Γ)
, (7.10)
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where ω(p, h) is the continuity modulus of the function p, since p(t) is continuous
on the compact set Γ and consequently is uniformly continuous.

Let ρ1 < 1 be sufficiently small such that λω(p, 6ρ1) < ε.
From (7.9) we have |γ(ξ, ρ)|1−δγ (ξ) ≤ CΓρ and then

|γ(ξ, ρ)| < C
1

1−δ(ξ)

Γ ρ
1

1−δγ (ξ) < C
1

1−ε

Γ ρ
1

1+ε for ρ < ρ1 (7.11)

(where we took into account that CΓ > 1 and ρ ≤ ρ1 < 1). Thus, (3.5) has been
proved.

Let now p(t) satisfy the log-condition (2.2). For the function

ψξ(ρ) = |γ(ξ, ρ)|δγ (ξ)

by (7.11) we have

| lnψξ(ρ)| = |δγ(ξ) ln |γ(ξ, ρ)|| ≤ λω(p, 6ρ)
(

lnCΓ

1 − ε
+

| ln ρ|
1 + ε

)
.

In view of (7.10) and (2.3) we then obtain

| lnψξ(ρ)| ≤ λA

1 − ε

ln CΓ
ρ

ln �
3ρ

, ρ < min
{
ρ1,

�

6

}
. (7.12)

It is easy to see that
ln

CΓ
ρ

ln 

3ρ

is bounded for small ρ, so that | lnψξ(ρ)| ≤ C < ∞.

Since |γ(ξ,ρ)|
ρ ≤ CΓψξ(ρ) by (7.9), we get |γ(ξ,ρ)|

ρ ≤ CΓe
C , which means that Γ is a

Carleson curve.

8. Proof of Theorem C

Theorem C is derived from Theorem A, which is standard. Indeed, it is known that
any function a(t) continuous on Γ may be approximated in C(Γ) by a rational func-
tion r(t), whatsoever Jordan curve Γ we have, as is known from the Mergelyan’s
result, see for instance, [6], p. 169. Therefore, since the singular operator S is
bounded in L

p(·)
w (Γ) by Theorem A, we obtain that the commutator aS − SaI is

approximated in the operator norm in Lp(·)
w (Γ) by the commutator rS−SrI which

is finite-dimensional operator, and consequently compact in L
p(·)
w (Γ). Therefore,

aS − SaI is compact.
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9. Appendices

9.1. Appendix 1: Proof of Proposition 4.4

Let f(τ) = χγ(τ)|γ|− 1
p(τ) , γ = γ(t, r), so that ‖f‖p(·) = 1. For all z ∈ γ we have

CMf(z) ≥ 1
|γ|

∫

γ

f(τ) dν(τ) =
1
|γ|

∫

γ

|γ|− 1
p(τ) dν(τ)

for any γ = γ(t, r).

(9.1)

Since the function Φ(x) = a−x, x ∈ R1
+, is convex for any a > 0, by Jensen’s

inequality

Φ


 1
|γ|

∫

γ

|f(τ)|dν(τ)

 ≤ 1

|γ|
∫

γ

Φ(|f(τ)|) dν(τ) (9.2)

we obtain

CMf(z) ≥ |γ|
− 1

|γ|
∫
γ

dν(τ)
p(τ)

= |γ|− 1
pγ , z ∈ γ.

Hence ‖χγ(z)|γ|− 1
pγ ‖p(·) ≤ C‖Mf‖p(·) and by the boundedness of the maximal

operator we obtain that ‖χγ(z)|γ|− 1
pγ ‖p(·) ≤ C, which yields (4.5).

9.2. Appendix 2: Proof of Lemma 6.6
We have to prove the following. Let Γ be a Carleson curve and a(t) any function
on Γ, satisfying the log-condition and such that

0 < d ≤ a(t) ≤ D < 1 on Γ. (9.3)

Then there exist non-intersecting non-empty arcs γ1 and γ2 on Γ such that

a(t) =
b(t) + c(t)

2
with b(t) ≡ 0 on γ1 and c(t) ≡ 0 on γ2 (9.4)

and b(t) and c(t) are log-continuous on Γ, satisfy the same condition (9.3) and
b(t0) = c(t0) = a(t0).

We will take γ1 and γ2 so that t0 /∈ γ1 ∪ γ2 and construct the functions b(t)
and c(t) as follows

b(t) =




A , t ∈ γ1

�(t) , t ∈ Γ\(γ1 ∪ γ2)
2a(t) −B , t ∈ γ2

(9.5)

where A,B ∈ (0, 1) are some constants. The link �(t) between the values of b(t)
on γ1 and on γ2 may be constructed for instance in the following way: at each of
the components of the set Γ\(γ1 ∪ γ2) it is introduced as the linear interpolation
between the number A and the values of 2a(t)−B at the endpoints of this compo-
nent, if it does not belong to it, and as the piece-wise linear interpolation between
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A the value a(t0) and the values of 2a(t)−B at the endpoints of this component,
if it contains t0. Then

c(t) = 2a(t) − b(t) =




2a(t) −A , t ∈ γ1

2a(t) − �(t) , t ∈ Γ\(γ1 ∪ γ2)
B , t ∈ γ2

(9.6)

Obviously, b(t) and c(t) are log-continuous on Γ. Checking condition (9.3) for
b(t), c(t), we only have to verify this condition for 2a(t)−A on γ1 and for 2a(t)−B
on γ2. To this end, we have to choose A and B so that

2a(t) − 1 < A < 2a(t) on γ1, 2a(t) − 1 < B < 2a(t) on γ2

Let a−(γi) = inf
t∈γi

a(t) and a+(γi) = sup
t∈γi

a(t), i = 1, 2. It suffices to choose A and

B in the intervals

A ∈ (max{0, 2a+(γ1) − 1},min{2a−(γ1), 1}) ,
B ∈ (max{0, 2a+(γ2) − 1},min{2a−(γ2), 1})

These intervals are non-empty, if a+(γi) − a−(γi) > 1
2 , i = 1, 2. Obviously, γi may

be chosen sufficiently small so that the last condition is satisfied.
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[3] G. David. Opérateurs intégraux singuliers sur certaines courbes du plan complexe.
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